Bibliography of Segmentation in Neuroimaging

Finn Årup Nielsen
CIMBI at DTU Informatics and NRU Rigshospitalet
Lyngby and Copenhagen, Denmark


  $Revision: 1.75 $
  $Date: 2009/03/11 15:24:52 $

Abstract:

Reference for segmentation in neuroimaging are collected. Both tissue segmentation and parcellation is included.

This structured bibliography is part of a larger collection of bibliographies see http://www.imm.dtu.dk/~fn/bib/Nielsen2001Bib/. The bibliography is written in LATEX and BIBTeX and should be available both as HTML and PostScript.

The bibliography is probably far from complete, but new references are added whenever the author finds new material and has the time to add them. You can email the author if corrections are required or you have found some reference that you fell ought to be included: fn@imm.dtu.dk.

Thanks to Jürgen Hänggi, Jonathan Bailleul and Arno Klein who provided information. Much of the information in this bibliography is from the SPM mailing list posted by numerous researchers.

This work is or has been funded by the European Union project MAPAWAMO, the International Neuroimaging Consortium (INC) American Human Brain Project, Danish Research Councils through THOR Center for Neuroinformatics, the Villum Kann Rasmussen Foundation and the Lundbeck Foundation.


Contents


List of Tables

  1. Inhomogeneity correction tools
  2. Stripping
  3. Methods for segmentation
  4. Tools for segmentation
  5. Cortical surface extraction
  6. Flattening algorithms
  7. Parcellation tools
  8. Parcellation tools
  9. Labeled brains

General references

A list of references is available from http://neuro-www.mgh.harvard.edu:16080/cma/seg/references.html

Unclassified

[Harris et al., 2001] parcellation of cortex with brain warping and manual atlas. PMID: 8978636, PMID: 9786148, PMID: 11185422

B. Dawant, S.L. Hartmann, J.-P. Thirion, F. Maes, D. Vandermeulen, P. Demaerel, Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations : part I, methodology and validation on normal subjects , IEEE transactions on medical imaging, vol. 18, no. 10, pp. 909-916, October 1999

Inhomogeneity correction

MRI intensity non-uniformity (intensity inhomogeneity) can have a substantial impact on the performance of the segmentation results [Sled et al., 1997a] and the image should be bias field corrected. Table 1 shows a number of the tools in use. [Ashburner and Friston, 1998] describes a combination of tissue classification with inhomogeneity correction.

[Arnold et al., 2001,Schaper et al., 2001] compared six algorithms for inhomogeneity correction (N3, hum, eq, bfc, cma and SPM99). [Boyes et al., 2008] investigated the performance of the N3 program on scans from 3T scanners. Other references in relation to bias field estimation are [Guillemaud and Brady, 1997] and a review [Hou, 2006].


Table 1: MRI Inhomogeneity correction tools.
Name Method and Description References
cma   Center for Morphometric Analysis, Massachusetts General Hospital
EMS * Polynomial basis functions. Part of segmentation program [Van Leemput, 2001, p. 15-19], [Van Leemput et al., 1999a]
eq   [Cohen et al., 2000]
FAST * ``FMRIB's Automated Segmentation Tool''. A segmentation tool including inhomobeneity correction http://www.fmrib.ox.ac.uk/fsl/fast/index.html
FreeSurfer * Implemented in the mri_normalize program. Can be executed from csurf GUI. [Dale et al., 1999,Fischl et al., 1999a,Fischl et al., 1999b,Fischl and Dale, 2000,Fischl et al., 2001,Busa, 2002] http://surfer.nmr.mgh.harvard.edu/
hum   [Brinkmann et al., 1998]
ITK * The ``itk::MRIBiasFieldCorrectionFilter'' class in the National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) based on Legendre polynomial http://www.itk.org-/HTML-/MRIBiasCorrection.htm, [Styner et al., 2000,Styner and Gerig, 1997]
N3 *   [Sled et al., 1998,Sled et al., 1997b,Sled, 1997], http://packages.bic.mni.mcgill.ca/, http://www.bic.mni.mcgill.ca/software/N3/
PABIC * ``PArametric BIas field Correction''. Included in ITK. [Styner et al., 2000,Styner and Gerig, 1997]
SPM *   [Ashburner and Friston, 2000]
SPM2 * Available in the functions with prefix spm_bias_ [Ashburner, 2002], Early version: ftp://ftp.fil.ion.ucl.ac.uk/spm/flatten
vol_homocor.m * Program by Gary Glover distributed by Kalina Christoff http://www-psych.stanford.edu/~ kalina/SPM99/Tools/vol_homocor.html



Stripping

The process of ``stripping'', ``skull-stripping'', ``brain/non-brain segmentation'', ``brain surface extraction'', ``brain extraction'' or ``brain extraction algorithms (BEA)'' removes the skull, scalp and meninges and maintains the ``brain'' which usually includes white and grey matter as well as CSF (at least the ventricular CSF). Table 2 is a list of the tools for this operation. A study showed that McStrip was much slower than BSE and BET, but that it was the most precise [Boesen et al., 2003]. In a comparison BET, 3dIntracranial, HWA and BSE against a manual stripping as gold standard ``BSE tended to perform best'' and ``HWA and BSE were more robust across diagnostic groups'' [Fennema-Notestine et al., 2006]. Another algorithm is described in [Atkins and Mackiewich, 1998].

One study found that in voxel-based morphometry (VBM) using SPM2 brain extraction would profoundly affect the results [Fein et al., 2006].

Table 2: Stripping
Name Impl. Description Reference
       
3dIntracranial *   Brain extraction included in AFNI [Ward, 1999], http://afni.nimh.nih.gov/afni/doc/help/3dIntracranial.html
BEMA   ``Brain extraction meta-algorithm'' [Rex et al., 2004]
BET *   ``Brain Extraction Tool'' by Stephen Smith. Conveniently included in FSL, MRIcro and mri3dX [Smith, 2002,Smith, 2000], http://www.fmrib.ox.ac.uk/fsl/bet/, MRIcro: http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html
BSE *   ``Brain Surface Extraction''part of BrainSuite. Interactive GUI version exists with the X/Motif-based xbse [Shattuck et al., 2001,Sandor and Leahy, 1997], http://neuroimage.usc.edu/BSE/
McStrip * IDL, C ``Minneapolis Consensus Strip'' (MCS). Consensus/hybrid based method relying on AIR5.0 and BSE [Rehm et al., 2004,Rehm et al., 1999], http://www.neurovia.umn.edu/incweb/McStrip_download.html
MIPAV * Java   [Bazin et al., 2007,Goldszal et al., 1998], http://mipav.cit.nih.gov/
FreeSurfer *   Can be executed from csurf GUI. [Dale et al., 1999,Fischl et al., 1999a,Fischl et al., 1999b,Fischl and Dale, 2000,Fischl et al., 2001,Busa, 2002] http://surfer.nmr.mgh.harvard.edu/
HWA *   Hybrid Watershed algorithm in FreeSurfer [Segonne et al., 2004]


Brain tissue segmentation

Brain tissue segmentation typically classifies voxels into grey matter, white matter, CSF and ``non-brain''. Some segmentations works with a further ``lesion'' class.

Methods for segmentation

Many papers describe methods for brain tissue segmentation, and just a few are listed in Table 3. Others are [Cocosco et al., 2002,Sun and Wang, 2005].

Table 3: Methods for segmentation.
Description Reference
   
Use of atlas prior (tissue probability maps in stereotaxic space) [Kamber et al., 1995]
Input as T1, T2, PD and output as GM, WM, CSF. Selection of a training classes for the segmentation [Harris et al., 1999]
Input as T1, T2, PD and output as WM, GM, CSF, outliers. With inhomogeneity correction and atlas prior. Gaussian mixture estimated robustly. Lesions detected as outliers. Bias field modeled with polynomials. Markov random field for prior volumes [Van Leemput et al., 2001,Van Leemput et al., 2000]
K-Nearest Neighbor on data from five types of regular MRI-scans for classification of white matter lesions [Anbeek et al., 2003]
``Fuzzy inference system'' on 3 different MR images for classifying white matter hyperintensity [Admiraal-Behloul et al., 2005]
Support vector machine on 4 different MR images for white matter lesion segmentation [Lao et al., 2006]

A ``ground truth'' makes it possible to evaluate the performance of the segmentation algorithm. [Moretti et al., 2000] took this approach with the use of the BrainWeb labeled brain as ground truth.

Tools

Table 4: Tools for segmentation
Name Input Output Description Reference
         
BrainSeg       Ali Hojjat
EMS     `Expectation-Maximization Segmentation' implemented as an SPM plugin [Van Leemput et al., 2001,Van Leemput et al., 1999b,Van Leemput et al., 1999a,Maes et al., 1997,Van Leemput et al., 2000] http://bilbo.esat.kuleuven.ac.be/web-pages/downloads/ems/ems.html
FAST *   GM, WM, CSF, ... FMRIB's Automated Segmentation Tool, Hidden Markov model with inhomogeneity correction [Zhang et al., 2001a,Zhang et al., 2000,Zhang et al., 2001b] http://www.fmrib.ox.ac.uk/fsl/fast/
INSECT     GM, WM and CSF segmentation with an artificial neural network with 9-parameter spatial normalization [Kollokian, 1996,Collins et al., 1994]
IRIS *     Visualization program with manual drawing by Guido Gerig and Sean Ho. One of the versions is called IRIS2000 http://www.cs.unc.edu/~ruffin/iris/
MIDAS (Freeborough)     ``Medical Image Display and Analysis Software''. Interactive Unix/X program, with thresholding, region growing and morphological operations [Freeborough et al., 1997]
SEAL     ``Sulcal Extraction and Automated Labelling'' [Goualher et al., 1999]
SEGRAS   WM, GM, CSF, Lesion Trained artificial neural network used as classifier Alan Rene Rasmussen, Hvidovre Hospital
SPM *     Segments into GM, WM, CSF and other. Implemented in versions SPM99 and SPM2. [Ashburner and Friston, 1997,Ashburner and Friston, 2000,Ashburner and Friston, 2003]
SPM5 *     Segmentation with image registration and bias correction [Ashburner and Friston, 2005]
--     Combined manual/automatic [Zavaljevski et al., 2000]

Labeled brains

Probalistic volumes for background, CSF, grey matter, white matter, fat, muscle/skin, skin, skull, glial matter, and ``connective'' are available in connection with the BrainWeb web-service/database from the URL http://www.bic.mni.mcgill.ca/brainweb/anatomic_normal.html [Cocosco et al., 1997].

``ICBM tissue probabilities'' with gray matter, white matter and CSF are available from http://www.loni.ucla.edu/ICBM/ICBM_TissueProb.html

The Internet Brain Segmentation Repository (IBSR), http://www.cma.mgh.harvard.edu/ibsr/, has simulated and real MRI data with gray/white/other expert segmentations.

Gray, white and CSF and brain mask are also distributed with the SPM2 package (in the apriori subdirectory).

Cortical surface extraction

``Cortical surface extraction'' or ``Cortical surface reconstruction''.

The ``marching cubes'' algorithm [Lorensen and Cline, 1987] can extract the cortical surface but usually with a bad results, e.g., not necessarily topologically correct. The algorithm is implemented in Matlab, IDL, VTK and polyr [Jensen, 1995,Nielsen, 1998].

[Mohlberg and Zilles, 2000] obtains somewhat better results by combining surface warping, marching cubes and a fluid membrane model. [Zeng et al., 1999,MacDonald et al., 2000] use coupled inner and outer surface of the cortex. [Goldenberg et al., 2002] describes an other method. None of these seem to be publicly available. The MacDonald program seems to be available internally at MNI and able to handle MINC files, see http://www.bic.mni.mcgill.ca/~david/FAQ/How_to_extract_cortical_surfaces.txt.

FreeSurfer traces the white matter [Dale et al., 1999]. A poor man's method with a MRI T1 along this line is first to do skull-stripping, then threshold on a sufficiently high value to only incorporate the white matter and lastly make an ordinary marching cubes. [Schaper et al., 2006] perform a quantitative comparison between four of the algorithms.

Table 5: Cortical surface extraction
Name Impl. Description Reference
       
BrainVisa     [Cointepas et al., 2001]
BrainVoyager     http://www.brainvoyager.com
FreeSurfer *   Can be executed from csurf GUI. [Dale et al., 1999,Fischl et al., 1999a,Fischl et al., 1999b,Fischl and Dale, 2000,Fischl et al., 2001,Busa, 2002] http://surfer.nmr.mgh.harvard.edu/
Geometrical Atlas Visualizer MacOS Visualization of the cortical surface on a disc and where the principal sulci and landmarks are aligned with the the axes. [Toro, 2003], http://www.snv.jussieu.fr/insermu483/geometricatlas/
IsoSurf *   Isosurface http://svr-www.eng.cam.ac.uk/~gmt11/software/isosurf/isosurf.html
Polyr * C Marching cube [Jensen, 1995,Nielsen, 1998] , http://hendrix.imm.dtu.dk/software/
SureFit *     http://brainvis.wustl.edu/resources/surefitnew.html/
SurfRelax *     [Larsson, 2001], http://www.cns.nyu.edu/~jonas/software.html


Flattening

After extraction of the surface algorithms can smooth it, into a sphere or cut and flatten it (unfold it) [Sherk, 1992,Carman et al., 1995,Van Essen and Maunsell, 1980,Jouandet et al., 1989]. Several of the tools in Table 5 have these capabilities.

Table 6: Flattening algorithms
Name Impl. Description Reference
       
DMflatten     [Balasubramanian et al., 2005,Balasubramanian et al., 2006]
mrFlatMesh Matlab Companion to mrGray A. R. Wade


Parcellation

IBASPM (``Individual Brain Atlases using Statistical Parametric Mapping software'' , http://www.thomaskoenig.ch/Lester/ibaspm.htm) is an SPM2 plugin that utilizes the normalization and brain tissue segmetation parts of SPM2 together with the AAL atlas for the construction of parcellation of the brain in individuals. Programs by Claus Svarer and others (http://nru.dk/software/) provide similar capabilities [Svarer et al., 2005,Svarer et al., 2002] using, e.g., MRIWarp [Kjems et al., 1999a,Kjems et al., 1999b]

Rview contains a number of interactive drawing functions http://www.colin-studholme.net/software/software.html

[Schleicher et al., 1999,Schleicher et al., 2000,Schmitt et al., 2003] describe methods for parcellation based on cytoarchitectonics. Macaque cortex parcellation based receptor binding density across multiple ligands is performed with different multivariate analysis techniques in [Kötter et al., 2001].

Tools

Table 7: Parcellation tools
   
Name Description Reference
     
ANIMAL `Automatic Non-linear Image Matching and Anatomical Labeling' Nonlinear warping and labeling by a previous labeled volume [Collins et al., 1995], http://www.bic.mni.mcgill.ca/users/louis/MNI_ANIMAL_home/readme/ ?
Mindboggle Automatic labeling based on 20 labeled templates [Klein et al., 2005,Klein and Hirsch, 2005,Klein and Hirsch, 2001]
pveout Nonlinear alignment with MRIWarp to 10 different labeled templates [Svarer et al., 2005]

Table 8: Mask and region tools
   
Name Description Reference
     
SimpleROIBuilder SPM2 and SPM5 toolbox http://www-personal.umich.edu/~rcwelsh/SimpleROIBuilder/
SPM Anatomy toolbox   http://www.fz-juelich.de/ime/spm_anatomy_toolbox


Labeled brains

Table 9: Labeled brains. The second column with the `#' heading indicates the number of labels. `*' denotes that the labeled brain is readily available on the Internet. Entries above the line is digitized and paper atlasses are below the line.
     
Name # Description Reference
       
AAL   See Tzourio-Mazoyer  
Brodmann * 41+1 Brodmann areas. Non-space filling, non-probabilistic. Van Essen, Drury. Included in MRIcro as brodmann.hdr/brodmann.img(.gz)
CBA ``almost 400'' Atlas incorporated in a commercial program. ``Greitz atlas''. Brodmann areas, gyri, central structures [Applied Medical Imaging, 1994,Seitz et al., 1990,Greitz et al., 1991,Thurfjell et al., 1994,Thurfjell et al., 1995,Bohm et al., 1986,Bohm et al., 1989,Bohm et al., 1991,Bohm et al., 1985]
Cerefy   Commercial digitized versions of the Talairach and Schaltenbrand atlases and Windows/MacIntosh program. [Nowinski et al., 2001,Nowinski et al., 1997,Nowinski et al., 1995b,Nowinski et al., 1995a]
Hammers 2002 2 $ \times$ 19 + 3(?), 43 Segmentation of MNI single subject Non-probabilistic, space-filling, Non-hierarchical. [Hammers et al., 2002]
IBSR ``18'' 43 ``18 Scans: T1-weighted MR Image data with expert segmentations of 43 individual structures'' http://www.cma.mgh.harvard.edu/ibsr/data.html
ICBM label *(?) 58(?) ICBM Single subject MRI anatomical template. Distributed in Minc format (ICBM_labels.mnc and ICBM_1.0mm_label.mnc). Almost space-filling. Non-hierarchical. http://www.loni.ucla.edu/NCRR/Software/ICBM_Template.html, Label names: http://www.loni.ucla.edu/NCRR/Software/ICBM_Template/Templat_Labels.htm
ICBM Kabani 90/91(?) Parcellation of MNI single subject in accordance with NeuroNames [Kabani et al., 1998]
`Iowa' (frontal) 11 Parcellations of the frontal cortex by two human raters [Crespo-Facorro et al., 1999]
`Iowa' (temporal) 16 Parcellation of the temporal neocortex [Kim et al., 2000]
`Iowa' (cerebral cortex) 41   [Crespo-Facorro et al., 2000]
Mindboggle * ? Based on 10-20 subjects. Previously `The Whole Brain Atlas' transformed to MNI-space [Klein and Hirsch, 2005,Klein and Hirsch, 2001,Klein and Hirsch, 2002,Kikinis et al., 1996], http://www.binarybottle.com/mindboggle.html
MNI SPAM 91 Probabilistic volumes in MNI-space [Evans et al., 1996,Collins et al., 1999]
Jerne, ``Volumes of Interest'') * 100+ MNI-space, probabilistic, space-filled, hierarchical. Approximate volumes based on labeling in the BrainMap database. [Nielsen and Hansen, 2002], http://hendrix.imm.dtu.dk/services/jerne/ninf/voi.html
PMaps * 18 Probability map of selected cytoarchitectonic areas from Jülich: 1, 3a, 3b, 4a, 4p, 6, 17 (V1), 18 (V2), 41, 44, 45 [Eickhoff et al., 2005c,Eickhoff, 2005,Geyer et al., 1996,Amunts et al., 1999,Amunts et al., 2000,Morosan et al., 2001,Rademacher et al., 2001,Amunts et al., 1998,Morosan et al., 1996,Eickhoff et al., 2005b,Eickhoff et al., 2005a], http://www.fz-juelich.de/ime/spm_anatomy_toolbox, http://www.fz-juelich.de/ime/ProbabilityMaps_eng.html
Svarer * $ 2\times 17+1$ 10 subjects labeled in native space [Svarer et al., 2005,Svarer et al., 2002], http://nru.dk/software/
Talairach Daemon *   A program that contains two brain templates: A digitized Talairach atlas and MNI [Lancaster et al., 2000b,Lancaster et al., 1997a,Lancaster et al., 1997b,Lancaster et al., 2000a]. The labeling is used by the WFU PickAtlas program.
Tzourio-Mazoyer * 2 $ \times$ 45(?), 116 MNI-space, non-probabilistic, non-space filled, semi-hierarchical. This is sometimes referred to as ``automated anatomical labeling'' or ``AAL''. The labeled volume is distributed with MRIcro has 116 different labels [Tzourio-Mazoyer et al., 2002a,Tzourio-Mazoyer et al., 2002b], http://www.cyceron.fr/freeware/. The labeled volume is distributed with MRIcro as aal.hdr/aal.img(.gz) and aal.txt
VOXEL-MAN ? Commercial program with atlas [Höhne et al., 1992,Höhne, 1997,Höhne, 2001]
       
Brodmann   Book with simple drawings of cytoarchitectonic areas. [Brodmann, 1994]
      Duvernoy 1992
Mai   Book with labeled brain in stereotaxic space [Mai et al., 1997]
Ono   Book that describe sulcal variability [Ono et al., 1990]
Schaltenbrand   Book [Schaltenbrand and Wahren, 1977]
      Szikla et al. 1977
Talairach `Many' Book with a labeled brain in stereotaxic space [Talairach and Tournoux, 1988,Talairach and Szikla, 1967]

Anatomical labeled brains in stereotaxic coordinates can form the basis for automatic labeling new brains and coordinates. A bibliography on brain atlases is also available at http://www-iasc.enst-bretagne.fr/PROJECTS/ATLAS/atlas-dss.biblio.html. Early swedish effort is documented in [Bohm et al., 1985,Bohm et al., 1991,Greitz et al., 1991,Greitz et al., 1995]. Early montrealean in [Evans et al., 1988,Evans et al., 1991].

Brodmann area labeling has been developed using descriptions from the Caret package on the Colin27 atlas and a cortical surface matching method [Rasser et al., 2004]: Individual subject's structural MRI are deformed to an atlas.

An Internet service with the MNI SPAM probability volumes was announced with [Kim et al., 2002] with the URL http://nm.snu.ac.kr/SPAM/ but it does not seem to work.

Unclassified

[Bajcsy et al., 1983,Bailleul et al., 2004]

Comput Med Imaging Graph 1994 Nov-Dec;18(6):413-22 Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas. Migneco O, Darcourt J, Benoliel J, Martin F, Robert P, Bussiere-Lapalus F, Mena I. PMID 7850735

Bibliography

Admiraal-Behloul et al., 2005
Admiraal-Behloul, F., van den Heuvel, D. M. J., Olofsen, H., van Osch, M. J. P., J. van der Grond, M. A. v. B., and Reiber, J. (2005).
Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.
NeuroImage, 28(3):607-617. DOI: 10.1016/j.neuroimage.2005.06.061.

Amunts et al., 1998
Amunts, K., Klingberg, T., Binkofski, F., Schormann, T., Seitz, R. J., Roland, P. E., and Zilles, K. (1998).
Cytoarchitectonic definition of Broca's region and it's role in functions different from speech.
In Paus, T., Gjedde, A., and Evans, A. C., editors, Fourth International Conference on Functional Mapping of the Human Brain. NeuroImage, volume 7, page S8. Academic Press. ISSN 1053-8119 [ bibliotek.dk ] .

Amunts et al., 2000
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., and Zilles, K. (2000).
Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable?
NeuroImage, 11(1):66-84. PMID: 10686118.

Amunts et al., 1999
Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H. B., and Zilles, K. (1999).
Broca's region revisited: cytoarchitecture and intersubject variability.
Journal of Comparative Neurology, 412(2):319-341. PMID: 10441759.

Anbeek et al., 2003
Anbeek, P., Vincken, K. L., van Osch, M. J. P., Bisschops, B., Viergever, M. A., and van der Grond, J. (2003).
Automated white matter lesion segmentation by voxel probability estimation.
In Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2003, volume 2878 of Lecture Notes in Computer Science, pages 610-617, Berlin/Heidelberg. Springer. ISBN 0302-9743 [ bibliotek.dk | isbn.nu ] .

Applied Medical Imaging, 1994
Applied Medical Imaging (1994).
CBA User's Manual.
Applied Medical Imaging, Uppsala, Sweden, 3.1 edition.

Arnold et al., 2001
Arnold, J. B., Liow, J.-S., Schaper, K. A., Stern, J. J., Sled, J. G., Shattuck, D. W., Worth, A. J., Cohen, M. S., Leahy, R. M., Mazziotta, J. C., and Rottenberg, D. A. (2001).
Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects.
NeuroImage, 13(5):931-943. PMID: 11304088.

Ashburner, 2002
Ashburner, J. (2002).
Another MRI bias correction approach.
NeuroImage, 16(2).
Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-Rom.

Ashburner and Friston, 1997
Ashburner, J. and Friston, K. J. (1997).
Multimodal image coregistration and partitioning -- a unified framework.
NeuroImage, 6(3):209-217. PMID: 9344825.

Ashburner and Friston, 1998
Ashburner, J. and Friston, K. J. (1998).
MRI sensitivity correction and tissue classification.
NeuroImage, 7(4):S706.

Ashburner and Friston, 2000
Ashburner, J. and Friston, K. J. (2000).
Voxel-based morphometry - the methods.
NeuroImage, 11:805-821.

Ashburner and Friston, 2003
Ashburner, J. and Friston, K. J. (2003).
Image segmentation.
In Frackowiak, R. S. J., Friston, K. J., Dolan, R., and Price, C., editors, Human Brain Function. Academic Press, second edition. http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch5.pdf. ISBN 0122648412 [ bibliotek.dk | isbn.nu ] .

Ashburner and Friston, 2005
Ashburner, J. and Friston, K. J. (2005).
Unified segmentation.
NeuroImage, 26(3):839-851. PMID: 15955494. DOI: 10.1016/j.neuroimage.2005.02.018.

Atkins and Mackiewich, 1998
Atkins, M. S. and Mackiewich, B. T. (1998).
Fully automatic segmentation of the brain in MRI.
IEEE Transactions in Medical Imaging, 17(1):98-107. PMID: 9617911. CiteSeer: http://citeseer.ist.psu.edu/atkins98fully.html. ISSN 0278-0062 [ bibliotek.dk ] .

Bailleul et al., 2004
Bailleul, J., Ruan, S., Bloyet, D., and Romaniuk, B. (2004).
Segmentation of anatomical structures from 3D brain MRI using automatically-built statistical shape models.
In IEEE International Conference on Image Processing. IEEE Signal Processing Society. http://www.greyc.ensicaen.fr/~bailleul/These/PUBLIS/ICIP04.pdf.

Bajcsy et al., 1983
Bajcsy, R., Lieberson, R., and Reivich, M. (1983).
A computerized system for the elastic matching of deformed radiographic images to idealised atlas images.
Journal of Cerebral Blood Flow and Metabolism, 7(4):618-625. PMID: 6602820.

Balasubramanian et al., 2005
Balasubramanian, M., Polimeni, J. R., and Schwartz, E. L. (2005).
Efficient quasi-isometric flattening of large-scale cortical surfaces.
NeuroImage, 26(1):S751.
Abstract.

Balasubramanian et al., 2006
Balasubramanian, M., Polimeni, J. R., and Schwartz, E. L. (2006).
Quantitative evaluation and comparison of cortical flattening algorithms.
In Neuroscience. Society for Neuroscience. http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey=%7BEA18CB25-8F2C-41DB-ACB6-EB0BA37A3097%7DBEEA0476665%7D3A7DC0B9-D787-44AA-BD08-FA7BB2FE9004%7D.
#490.7/PP55.

Bazin et al., 2007
Bazin, P.-L., Cuzzocreo, J. L., Yassa, M. A., Gandler, W., McAuliffe, M. J., Bassett, S. S., and Pham, D. L. (2007).
Volumetric neuroimage analysis extension for the MIPAV software package.
Journal fo Neuroscience Methods, 165(1):111-121.

Boesen et al., 2003
Boesen, K., Rehm, K., Schaper, K., Stoltzner, S., Woods, R., and Rottenberg, D. A. (2003).
Quantitative comparison of three brain extraction algorithms.
NeuroImage, 19(2). http://208.164.121.55/hbm2003/abstract/abstract782.htm.
Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19-22, 2003, New York, NY. Available on CD-Rom.

Bohm et al., 1986
Bohm, C., Greitz, T., Blomqvist, G., Farde, L., Forsgren, P. O., Kingsley, D., and Sjogren, I. (1986).
Applications of a computerized adjustable brain atlas in positron emission tomography.
Acta Radiologica, 369:449-452.

Bohm et al., 1989
Bohm, C., Greitz, T., and Eriksson, L. (1989).
A computerized adjustable brain atlas.
European Journal of Nuclear Medicine, 15(11):687-689. PMID: 2583193. ISSN 0340-6997 [ bibliotek.dk ] .

Bohm et al., 1985
Bohm, C., Greitz, T., Kingsley, D., Berggren, B. M., and Olsson, L. (1985).
A computerized individually variable stereotaxic brain atlas.
In Greitz, T., Ingvar, D. H., and Widén, L., editors, The Metabolism of the Human Brain Studied with Positron Emission Tomography, pages 85-91. Raven Press, New York. ISBN 0881670561 [ bibliotek.dk | isbn.nu ] .

Bohm et al., 1991
Bohm, C., Greitz, T., Seitz, R., and Eriksson, L. (1991).
Specification and selection of regions of interest (ROIs) in a computerized atlas.
Journal of Cerebral Blood Flow and Metabolism, 11(2):A64-A68. PMID: 1997490. ISSN 0271-678X [ bibliotek.dk ] .

Boyes et al., 2008
Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L., Bernstein, M. A., Thompson, P. M., Weiner, M. W., Schuff, N., Alexander, G. E., Killiany, R. J., DeCarli, C., Jack, C. R., and Fox, N. C. (2008).
Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils.
NeuroImage, 39(4):1752-1762. DOI: 10.1016/j.neuroimage.2007.10.026.

Brinkmann et al., 1998
Brinkmann, B. H., Manduca, A., and Robb, R. A. (1998).
Optimized homomorphic unsharp masking for mr grayscale inhomogeneity correction.
IEEE Transactions on Medical Imaging, 17(2):161-171. PMID: 9688149.

Brodmann, 1994
Brodmann, K. (1909/1994).
Brodmann's `Localisation in the Cerebral Cortex'.
Smith-Gordon, London, UK. ISBN 1854630288 [ bibliotek.dk | isbn.nu ] .

Busa, 2002
Busa, E. (2002).
FreeSurfer Manual.
Massachusetts General Hospital, Boston, Massachusetts. ftp://surfer.nmr.mgh.harvard.edu/pub/docs/FreeSurferGuide.pdf.

Carman et al., 1995
Carman, G. J., Drury, H. A., and Van Essen, D. C. (1995).
Computational methods for reconstructing and unfolding the cerebral cortex.
Cerebral Cortex, 5(6):506-517. PMID: 8590824.

Cocosco et al., 1997
Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., and Evans, A. C. (1997).
BrainWeb: Online interface to a 3D MRI simulated brain database.
In [Friberg et al., 1997]. http://www.bic.mni.mcgill.ca/users/crisco/HBM97_abs/HBM97_abs.ps.gz. ISSN 1053-8119 [ bibliotek.dk ] .

Cocosco et al., 2002
Cocosco, C. A., Zijdenbos, A. P., and Evans, A. C. (2002).
Automatic generation of training data for brain tissue classification from MRI.
In Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2002, volume 2488 of Lecture Notes in Computer Science, Berlin/Heidelberg. Springer.

Cohen et al., 2000
Cohen, M. S., DuBois, R. M., and Zeneih, M. M. (2000).
Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging.
Human Brain Mapping, 10:204-211.

Cointepas et al., 2001
Cointepas, Y., Mangin, J.-F., Garnero, L., Poline, J.-B., and Benali, H. (2001).
BrainVISA: Software platform for visualization and analysis of multi-modality brain data.
NeuroImage, 13(6):98. http://www.academicpress.com/www/journal/hbm2001/11140.html. Modular software environment in Python for processing and visualizing multi-modality (MRI, fMRI, EEG, MEG) brain data.

Collins et al., 1995
Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C. (1995).
Automatic 3-D model-based neuroanatomical segmentation.
Human Brain Mapping, 3(3):190-208.

Collins et al., 1994
Collins, D. L., Neelin, P., Peters, T. M., and Evans, A. C. (1994).
Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
Journal of Computer Assisted Tomography, 18(2):192-205. PMID: 8126267.

Collins et al., 1999
Collins, D. L., Zijdenbos, A. P., Baaré, W. F. C., and Evans, A. C. (1999).
ANIMAL+INSECT: Improved cortical structure segmentation.
In Kuba, A., Sámal, M., and Todd-Pokropek, A., editors, Information Processing in Medical Imaging, volume 1613 of Lecture Notes in Computer Science, pages 210-223. Springer, Heidelberg, Germany. http://link.springer.de/link/service/series/0558/papers/1613/16130210.pdf. ISBN 3540661670 [ bibliotek.dk | isbn.nu ] .

Crespo-Facorro et al., 1999
Crespo-Facorro, B., Kim, J. J., Andreasen, N. C., O'Leary, D. S., Wiser, A. K., Bailey, J. M., Harris, G., and Magnotta, V. A. (1999).
Human frontal cortex: an mri-based parcellation method.
NeuroImage, 10(5):500-519. PMID: 10547328. DOI: 10.1006/nimg.1999.0489. ISSN 1053-8119 [ bibliotek.dk ] .

Crespo-Facorro et al., 2000
Crespo-Facorro, B., Kim, J.-J., Andreasen, N. C., Spinks, R., O'Leary, D. S., Bockholt, H. J., Harris, G., and Magnotta, V. A. (2000).
Cerebral cortex: a topographic segmentation method using magnetic resonance imaging.
Psychiatry Research: NeuroImaging, 100(2):97-126. PMID: 11114495. ISSN 0925-4927 [ bibliotek.dk ] .

Dale et al., 1999
Dale, A. M., Fischl, B., and Sereno, M. I. (1999).
Cortical surface-based analysis i: Segmentation and surface reconstruction.
NeuroImage, 9(2):179-194. ftp://ftp.nmr.mgh.harvard.edu/pub/flat/freesurfer/docs/recon1.ps.

Eickhoff, 2005
Eickhoff, S. (2005).
SPM Anatomy toolbox.
Institute for Medicine, Research Center Jülich, Jülich, Germany, 1.0 edition. http://www.fz-juelich.de/ime/datapool/SPM/Manual_v10.pdf.

Eickhoff et al., 2005a
Eickhoff, S. B., Amunts, K., Mohlberg, H., and Zilles, K. (2005a).
The human parietal operculum. ii. stereotaxic maps and correlation with functional imaging results.
Cerebral cortex. DOI: 10.1093/cercor/bhi106.
Advanced access.

Eickhoff et al., 2005b
Eickhoff, S. B., Schleicher, A., Zilles, K., and Amunts, K. (2005b).
The human parietal operculum. i. cytoarchitectonic mapping of subdivisions.
Cerebral Cortex. DOI: 10.1093/cercor/bhi105.
Advanced access.

Eickhoff et al., 2005c
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., and Zilles, K. (2005c).
A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
NeuroImage, 25(4):1325-1335. PMID: 15850749. DOI: 10.1016/j.neuroimage.2004.12.034.

Evans et al., 1988
Evans, A. C., Beil, C., Marrett, S., Thomason, C. J., and Hakim, A. (1988).
Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography.
Journal of Cerebral Blood Flow and metabolism, 8(4):513-530. PMID: 3260594.

Evans et al., 1996
Evans, A. C., Collins, D. L., and Holmes, C. J. (1996).
Automatic 3D regional MRI segmentation and statistical probability anatomy maps.
In Myers, R., Cunningham, V. J., Bailey, D. L., and Jones, T., editors, Quantification of Brain Function Using PET, chapter 25, pages 123-130. Academic Press, San Diego, California. ISBN 0123897602 [ bibliotek.dk | isbn.nu ] .

Evans et al., 1991
Evans, A. C., Marrett, S., Torrescorzo, J., Ku, S., and Collins, L. (1991).
MRI-PET correlation in three dimensions using a volume-of-interest (VOI) atlas.
Journal of Cerebral Blood Flow and Metabolism, 11(2):A69-A78. PMID: 1997491.

Fein et al., 2006
Fein, G., Landman, B., Tran, H., Barakos, J., Moon, K., Di Sclafani, V., and Shumway, R. (2006).
Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs.
NeuroImage, 30(4):1187-1195. PMID: 16442817.

Fennema-Notestine et al., 2006
Fennema-Notestine, C., Ozyurt, I. B., Clark, C. P., Morris, S., Bischoff-Grethe, A., Bondi, M. W., Jernigan, T. L., Fischl, B., Segonne, F., Shattuck, D. W., Leahy, R. M., Rex, D. E., Toga, A. W., Zou, K. H., Morphometry BIRN, and Brown, G. G. (2006).
Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location.
Human Brain Mapping, 27:99-113. PMID: 15986433. DOI: 10.1002/hbm.20161.

Fischl and Dale, 2000
Fischl, B. and Dale, A. (2000).
Measuring the thickness of the human cerebral cortex from magnetic resonance images.
Proceedings of the National Academy of Sciences, 97:11044-11049. ftp://surfer.nmr.mgh.harvard.edu/pub/docs/cortical_thickness.pdf.

Fischl et al., 2001
Fischl, B., Liu, A., and Dale, A. M. (2001).
Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex.
IEEE Transactions on Medical Imaging, 20(1):70-80. ftp://surfer.nmr.mgh.harvard.edu/pub/docs/topology_fixing_reprint.pdf.gz.

Fischl et al., 1999a
Fischl, B., Sereno, M. I., and Dale, A. M. (1999a).
Cortical surface-based analysis. ii: Inflation, flattening, and a surface-based coordinate system.
NeuroImage, 9(2):195-207. PMID: 9931269. ftp://ftp.nmr.mgh.harvard.edu/pub/flat/freesurfer/docs/recon2.ps.

Fischl et al., 1999b
Fischl, B., Sereno, M. I., Tootell, R. B., and Dale, A. M. (1999b).
High-resolution intersubject averaging and a coordinate system for the cortical surface.
Human Brain Mapping, 8(4):272-284. PMID: 10619420. ftp://ftp.nmr.mgh.harvard.edu/pub/flat/freesurfer/docs/morphing_resubmitted .doc.ps.

Fox and Lancaster, 2000
Fox, P. T. and Lancaster, J. L., editors (2000).
Sixth International Conference on Functional Mapping of the Human Brain. NeuroImage, volume 11. Academic Press.

Freeborough et al., 1997
Freeborough, P. A., Fox, N. C., and Kitney, R. I. (1997).
Interactive algorithms for the segmentation and queantitation of 3-D MRI brain scans.
Computer Methods and Programs in Biomedicine, 53(1):15-16. PMID: 9113464.

Friberg et al., 1997
Friberg, L., Gjedde, A., Holm, S., Lassen, N. A., and Nowak, M., editors (1997).
Third International Conference on Functional Mapping of the Human Brain, NeuroImage, volume 5. Academic Press.

Geyer et al., 1996
Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Burgel, U., Klingberg, T., Larsson, J., Zilles, K., and Roland, P. E. (1996).
Two different areas within the primary motor cortex of man.
Nature, 382(6594):805-807. PMID: 8752272. WOBIB: 163. http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v382/% -n6594/full/382805a0.html. ISSN 0028-0836 [ bibliotek.dk ] .

Goldenberg et al., 2002
Goldenberg, R., Kimmel, R., Rivlin, E., and Rudzsky, M. (2002).
Cortex segmentation: a fast variational geometric approach.
IEEE Transactions on Medical Imaging, 21(12):1544-1551. PMID: 12588038. ISSN 0278-0062 [ bibliotek.dk ] .

Goldszal et al., 1998
Goldszal, A. F., Davatnikos, C., Pham, D. L., Yan, M. X. H., Bryan, R. N., and Resnick, S. M. (1998).
An image processing system for qualitative and quantitative volumetric analysis of brain images.
Journal of Computer Assisted Tomography, 22(5):827-837. PMID: 15528100.

Goualher et al., 1999
Goualher, G. L., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., and Evans, A. C. (1999).
Automated extraction and variability analysis of sulcal neuroanatomy.
IEEE Transactions on Medical Imaging, 18(3):206-217. PMID: 10363699.

Greitz et al., 1995
Greitz, T., Bohm, C., Eriksson, L., Ingvar, M., and Thurfjell, L. (1995).
Hjärnan kartläggs: Datoriserad hjärnatlas oumbärligt hjälpmedel för identifiering av struktur och funktion.
Läkartidningen, 92(34):2993-2997. PMID: 7650987.

Greitz et al., 1991
Greitz, T., Bohm, C., Holte, S., and Eriksson, L. (1991).
A computerized brain atlas: construction, anatomical content, and some applications.
Journal of Computer Assisted Tomography, 15(1):26-38. PMID: 1987199.

Guillemaud and Brady, 1997
Guillemaud, R. and Brady, M. (1997).
Estimating the bias field of mr images.
IEEE Transactions on Medical Imaging, 16(3):238-51. PMID: 9184886. ISSN 0278-0062 [ bibliotek.dk ] .

Hammers et al., 2002
Hammers, A., Koepp, M. J., Free, S. L., Brett, M., Richardson, M. P., Labbé, C., Cunningham, V. J., Brooks, D. J., and Duncan, J. (2002).
Implementation and application of a brain template for multiple volumes of interest.
Human Brain Mapping, 15(3):165-174. DOI: 10.1002/hbm.10016. http://www3.interscience.wiley.com/cgi-bin/abstract/89013541/. ISSN 1065-9471 [ bibliotek.dk ] . Describes a segmentation of the MNI single subject brain. Assessment of the method by using manual labeling of landmarks and exemplified on a FMZ PET study.

Harris et al., 1999
Harris, G., Andreasen, N. C., Cizadlo, T., Bailey, J. M., Bockholt, H. J., Magnotta, V. A., and Arndt, S. (1999).
Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection.
Journal of Computer Assisted Tomography, 23(1):144-154. PMID: 10050826.

Harris et al., 2001
Harris, G., Spinks, R., Magnotta, V., Andreasen, N., O'Leary, D., and Ghosheh, T. (2001).
Methods for a refined automated cortical parcellation procedure.
NeuroImage, 13(6):S147. http://www.apnet.com/www/journal/hbm2001/10293.html. Briefly reports of a cortical parcellation method by using a manually labeled brain atlas and brain warping.

Höhne, 1997
Höhne, K. H. (1997).
VOXEL-MAN. Part 1: Brain and Skull.
Springer-Verlag, Heidelberg, second edition. ISBN 3540145842 [ bibliotek.dk | isbn.nu ] .
CD-ROM. UNIX-/Linux-Version. An interaktive 3-D atlas for teaching and studying anatomy, radiology and surgery.

Höhne, 2001
Höhne, K. H. (2001).
VOXEL-MAN 3D-Navigator. Brain and Skull, Regional, Functional, and Radiological Anatomy.
Springer-Verlag, Heidelberg, second edition. ISBN 3540149104 [ bibliotek.dk | isbn.nu ] .
CD-ROM. Windows version.

Höhne et al., 1992
Höhne, K. H., Bomans, M., Riemer, M., Schubert, R., Tiede, U., and Lierse, W. (1992).
A volume-based anatomical atlas.
IEEE Computer Graphics & Applications, pages 72-78.

Hou, 2006
Hou, Z. (2006).
A review on MR image intensity inhomogeneity correction.
International Journal of Biomedical Imaging. DOI: 10.1155/IJBI/2006/49515.
Article ID 49515.

Jensen, 1995
Jensen, J. J. (1995).
3d visualisering.
Technical report, Electronics Institute, Technical University of Denmark, Lyngby, Denmark.
In Danish. http://isp.imm.dtu.dk.

Jouandet et al., 1989
Jouandet, M. L., Tramo, M. J., Herron, D. M., Hermann, A., Loftus, W. C., Bazell, J., and Gazzaniga, M. S. (1989).
Brainprints: Computer-generated two-dimensional maps of the human cerebral cortex in vivo.
Journal of Cognitive Neuroscience, 1(1):88-117.

Kabani et al., 1998
Kabani, N. J., MacDonald, D., Holmes, C. J., and Evans, A. C. (1998).
3D anatomical atlas of the human brain.
NeuroImage, 7(4):S717. Describes the manual segmentation of a single MRI into 90 (an other paper mentions 91) brain structures organized according to the NeuroNames hierarchy. The result is a non-probabilistic and completely space filling 3D atlas.

Kamber et al., 1995
Kamber, M., Shinghal, R., Collins, D. L., Francis, G. S., and Evans, A. C. (1995).
Model-based 3-D segmentation of multiple sclerosis lesions inmagnetic resonance brain images.
IEEE Transactions on Medical Imaging, 14(3):442-453. DOI: 10.1109/42.414608.

Kikinis et al., 1996
Kikinis, R., Shenton, M. E., Iosifescu, D. V., McCarley, R. W., Saiviroonporn, P., Hokama, H. H., Robatino, A., Metcalf, D., Wible, C. G., Portas, C. M., Donnino, R. M., and Jolesz, F. A. (1996).
A digital brain atlas for surgical planning, model-driven segmentation, and teaching.
IEEE Transactions on Visualization and Computer Graphics, 2(3):232-241. http://www.spl.harvard.edu:8000/pages/papers/atlas/text.html.

Kim et al., 2000
Kim, J. J., Crespo-Fecorro, B., Andreasen, N., O'Leary, D. S., Harris, G., and Magnotta, V. A. (2000).
An MRI-based parcellation method for the temporal lobe.
NeuroImage, 11(4):271-288. PMID: 10725184.

Kim et al., 2002
Kim, J. S., Lee, J. S., and Lee, D. S. (2002).
Internet-accessible daemon for the probabilistic anatomical labeling of brain structures in ICBM standard coordinate.
NeuroImage, 16(2):77. http://www.academicpress.com/journals/hbm2002/15256.html.
Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-Rom.

Kjems et al., 1999a
Kjems, U., Strother, S. C., Anderson, J. R., and Hansen, L. K. (1999a).
Enhancing the multivariate signal of [15O] water PET studies with a new nonlinear neuroanatomical registration algorithm.
IEEE Transaction on Medical Imaging, 18(4):306-319. PMID: 10385288. http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=2837.

Kjems et al., 1999b
Kjems, U., Strother, S. C., Anderson, J. R., and Hansen, L. K. (1999b).
A new unix toolbox for non-linear warping of MR brain images applied to a [$ ^{15}$O] water PET functional experiment.
In Rosen, B. R., Seitz, R. J., and Volkmann, J., editors, Fifth International Conference on Functional Mapping of the Human Brain, NeuroImage, volume 9, page S18. Academic Press. ISSN 1053-8119 [ bibliotek.dk ] .

Klein and Hirsch, 2001
Klein, A. and Hirsch, J. (2001).
Automatic labeling of brain anatomy and FMRI brain activity.
NeuroImage, 13(6, part 2):S174. http://www.binarybottle.com/mindboggle/hbm2001poster_arnoklein.jpg.

Klein and Hirsch, 2002
Klein, A. and Hirsch, J. (2002).
Fully-automated nonlinear labeling of human brain activity.
NeuroImage, 16(2):486. http://www.binarybottle.com/mindboggle/hbm2002poster_arnoklein.jpg.
Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM.

Klein and Hirsch, 2005
Klein, A. and Hirsch, J. (2005).
Mindboggle: a scatterbrained approach to automate brain labeling.
NeuroImage, 24(2):261-280. http://www.binarybottle.com/mindboggle/downloads/mindboggle_neuroimage2005.pdf.

Klein et al., 2005
Klein, A., Mensh, B., Ghosh, S., Tourville, J., and Hirsch, J. (2005).
Mindboggle: Automated brain labeling with multiple atlases.
BMC Medical Imaging, 5(7). DOI: 10.1186/1471-2342-5-7. http://www.biomedcentral.com/1471-2342/5/7/.

Kollokian, 1996
Kollokian, V. (1996).
Performance analysis of automatic techniques for tissue classification in MRI of the human brain.
Master's thesis, Concordia University, Montreal, Canada.

Kötter et al., 2001
Kötter, R., Stephan, K. E., Palomero-Gallager, N., Geyer, S., Schleicher, A., and Zilles, K. (2001).
Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity.
Anatomy and Embryology, 204(4):333-349. PMID: 11720237. DOI: 10.1007/s004290100199. ISSN 0340-2061 [ bibliotek.dk ] . A study on macaque brain regions using binding characteristics from 9 different ligands as well as using anatomical connectivity information. Multidimensional scaling and hierarchical clustering are used on the two receptor-times-brain-regions data matrices.

Lancaster et al., 2000a
Lancaster, J. L., Kochunov, P., Woldorff, M., Liotti, M., Parsons, M., Rainey, L., Nikerson, D., and Fox, P. T. (2000a).
Automatic Talairach labels for functional activation sites.
In [Fox and Lancaster, 2000], page S483. ISSN 1053-8119 [ bibliotek.dk ] .

Lancaster et al., 1997a
Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., Toga, A. W., and Mazziotta, J. C. (1997a).
Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method.
Human Brain Mapping, 5(4):238-242. DOI: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4. ttp://www3.interscience.wiley.com/cgi-bin/abstract/56443/START. ISSN 1065-9471 [ bibliotek.dk ] . Description of the Talairach Daemon for neuroanatomical labeling from Talairach coordinates.

Lancaster et al., 1997b
Lancaster, J. L., Summerlin, J. L., Rainey, L., Freitas, C. S., and Fox, P. T. (1997b).
The Talairach daemon, a database server for Talairach atlas labels.
In [Friberg et al., 1997], page S633. ISSN 1053-8119 [ bibliotek.dk ] .

Lancaster et al., 2000b
Lancaster, J. L., Woldorff, M. G., Liotti, M., Freitas, C. S., Rainey, L., Kochunov, P. V., Nickerson, D., Mikiten, S. A., and Fox, P. T. (2000b).
Automated Talairach atlas labels for functional brain mapping.
Human Brain Mapping, 10(3):120-131. PMID: 10912591. Describes the Talairach Daemon and validation of the scheme through BrainMap labels, expert annotations and an activation study.

Lao et al., 2006
Lao, Z., Shen, D., Jawad, A., Karacali, B., Liu, D., Melhem, E. R., Bryan, R. N., and Davatzikos, C. (2006).
Automated segmentation of white matter lesions in 3D brain MR images, using multivariate pattern classification.
In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pages 307-310. IEEE.

Larsson, 2001
Larsson, J. (2001).
Imaging vision: functional mapping of intermediate visual processes in man.
PhD thesis, Karolinska Institutet, Stockholm, Sweden.

Lorensen and Cline, 1987
Lorensen, W. E. and Cline, H. E. (1987).
Marching cubes: A high resolution 3D surface construction algoritm.
Computer graphics, 21(4):163-168.

MacDonald et al., 2000
MacDonald, D., Kabani, N., Avis, D., and Evans, A. C. (2000).
Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI.
NeuroImage, 12(3):340-356. PMID: 10944416. DOI: 10.1006/nimg.1999.0534. http://kamares.ucsd.edu/~sereno/courses/276/readings/mcdonald.pdf. ISSN 1053-8119 [ bibliotek.dk ] .

Maes et al., 1997
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. (1997).
Multimodality image registration by maximization of mutual information.
IEEE Transactions of Medical Imaging, 16(2):187-198. PMID: 9101328.

Mai et al., 1997
Mai, J. K., Assheuer, J., and Paxinos, G. (1997).
Atlas of the Human Brain.
Academic Press, San Diego, California. ISBN 0124653618 [ bibliotek.dk | isbn.nu ] .

Mohlberg and Zilles, 2000
Mohlberg, H. and Zilles, K. (2000).
An automated method to reconstruct the surface of the cerebral cortex form 3D MR data.
NeuroImage, 11(5, part 2):S603.
Presented at the Sixth Annual Meeting of the Organization For Human Brain Mapping.

Moretti et al., 2000
Moretti, B., Fadili, J., Ruan, S., Bloyet, D., and Mazoyer, B. (2000).
Phantom-based performance evaluation: Application to brain segmentation from magnetic resonance images.
Medical Image Analysis, 4(4):303-316. PMID: 11154019.

Morosan et al., 2001
Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., and Zilles, K. (2001).
Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system.
NeuroImage, 13(4):684-701. PMID: 11305897.

Morosan et al., 1996
Morosan, P., Scheleicher, A., Schormann, T., and Zilles, K. (1996).
Cytoarchitectonic mapping of cortical areas on the first transverse temporal gyrus and intersubject variability.
In Belliveau, J., Fox, P., Kennedy, D., Rosen, B., and Ungeleider, L., editors, Second International Conference on Functional Mapping of the Human Brain, NeuroImage, volume 3, page S141. Academic Press. ISSN 1053-8119 [ bibliotek.dk ] .

Nielsen, 1998
Nielsen, F. Å. (1998).
polyr, Polygon generation program.
Section for Digital Signal Processing, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1.0.0 edition. http://hendrix.imm.dtu.dk/software/polyr/doc/polyrdoc.ps.gz.

Nielsen and Hansen, 2002
Nielsen, F. Å. and Hansen, L. K. (2002).
Finding related functional neuroimaging volumes.
NeuroImage, 16(2). http://www.imm.dtu.dk/~fn/ps/Nielsen2002Finding_abstract.ps.gz.
Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-Rom.

Nowinski et al., 1997
Nowinski, W. L., Bryan, R. N., and Raghavan, R. (1997).
The Electronic Clinical Brain Atlas.
Thieme. ISBN 3131076615 [ bibliotek.dk | isbn.nu ] .
CD-ROM.

Nowinski et al., 1995a
Nowinski, W. L., Fang, A., and Nguyen, B. T. (1995a).
Medical imaging 1995: Image display.
In Kim, Y., editor, Schaltenbrand-Wahren/Talairach-Tournoux brain atlas registration, volume 2431 of SPIE Proceedings, pages 126-136, San Diego. The International Society for Optical Engineering. http://spie.org/scripts/abstract.pl?bibcode=1995SPIE%2e2431%2e%2e126N&page=1&qs=spie. ISBN 0819417793 [ bibliotek.dk | isbn.nu ] .

Nowinski et al., 1995b
Nowinski, W. L., Fang, A., Nguyen, B. T., Raghavan, R., Bryan, R. N., and Miller, J. (1995b).
Talairach-Tournoux / Schaltenbrand-Wahren based electronic brain atlas system.
In Ayache, N., editor, CVRMed'95, volume 905 of Lecture Notes in Computer Science, pages 257-261, Heidelberg, Germany. Nice, France, Springer Verlag.

Nowinski et al., 2001
Nowinski, W. L., Thirunavuukarasuu, A., and Kennedy, D. N. (2001).
Brain Atlas for Functional Imaging: Clinical and Research Applications.
Thieme, Heidelberg, Germany. ISBN 0865779279 [ bibliotek.dk | isbn.nu ] .
CD-ROM.

Ono et al., 1990
Ono, M., Kubik, S., and Abernathey, C. D. (1990).
Atlas of the Cerebral Sulci.
Georg Thieme Verlag, Stuttgart. ISBN 3137321018 [ bibliotek.dk | isbn.nu ] .

Rademacher et al., 2001
Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H.-J., and Zilles, K. (2001).
Probabilistic mapping and volume measurement of human primary auditory cortex.
NeuroImage, 13(4):669-683. PMID: 11305896. http://www.fz-juelich.de/ime/Rademacher_02.pdf.

Rasser et al., 2004
Rasser, P. E., Johnson, P. J., Ward, P. B., and Thompson, P. M. (2004).
A deformable Brodmann area atlas.
In Leahy, R. M., editor, Proc. IEEE International Symposium on Biomedical Imaging. http://www.loni.ucla.edu/~thompson/ISBI2004/PRasserISBI2004_final.pdf.

Rehm et al., 2004
Rehm, K., Schaper, K., Anderson, J., Woods, R., Stoltzner, S., and Rottenberg, D. (2004).
Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes.
NeuroImage, 22(3):1262-1270. PMID: 15219598.

Rehm et al., 1999
Rehm, K., Shattuck, D., Leahy, R., Schaper, K. A., and Rottenberg, D. A. (1999).
Semi-automated stripping of T1 MRI volumes: I. consensus of intensity- and edge-based methods.

Rex et al., 2004
Rex, D. E., Shattuck, D. W., Woods, R. P., Narr, K. L., Luders, E., Rehm, K., Stolzner, S. E., Rottenberg, D. A., and Toga, A. W. (2004).
A meta-algorithm for brain extraction in MRI.
NeuroImage, 23(2):625-637. DOI: 10.1016/j.neuroimage.2004.06.019. http://wiki.na-mic.org/Wiki/images/4/42/Meta_algorithm_LONI.pdf.

Sandor and Leahy, 1997
Sandor, S. and Leahy, R. (1997).
Surface-based labeling of cortical anatomy using deformable database.
IEEE Transactions on Medical Imaging, 16(1):41-54.

Schaltenbrand and Wahren, 1977
Schaltenbrand, G. and Wahren, W. (1977).
Atlas for Stereotaxy of the Human Brain.
Thieme, Stuttgart, 2nd edition. ISBN 0865770557 [ bibliotek.dk | isbn.nu ] .

Schaper et al., 2001
Schaper, K. A., Arnold, J. B., Liow, J.-S., Stern, J. J., Sled, J. G., Shattuck, D. W., Worth, A. J., Cohen, M. S., Leahy, R. M., Mazziotta, J. C., and Rottenberg, D. A. (2001).
Evaluation of six algorithms for correcting intensity non-uniformity effects in mri volumes.
NeuroImage, 13(6, part 2):S237. http://pet.med.va.gov:8080/papers/abstracts_posters/HBM2001/kschaper_HBM20 01.pdf.

Schaper et al., 2006
Schaper, K. A., Jarvis, T. R., Rehm, K., Menon, R., and Rottenberg, D. A. (2006).
Evaluation of extracted cortical surfaces.
In Corbetta, M., Nichols, T., and Pietrini, P., editors, NeuroImage speciel issue: Twelfth Annual Meeting of the Organization for Human Brain Mapping, volume 31, supplement 1. Elsevier. http://www.meetingassistant.com/ohbm2006/referee/abstract_popup.php?abstractno=.

Schleicher et al., 2000
Schleicher, A., Amunts, K., Geyer, S., Kowalski, T., Schormann, T., Palomero-Gallagher, N., and Zilles, K. (2000).
A stereological approach to human cortical architecture: Identification and delineation of cortical areas.
J. Chem. Neuroanat., 20:31-47.

Schleicher et al., 1999
Schleicher, A., Amunts, K., Geyer, S., Morosan, P., and Zilles, K. (1999).
Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics.
NeuroImage, 9(1):165-177. PMID: 9918738.

Schmitt et al., 2003
Schmitt, O., Hörnke, L., and Dümbgen, L. (2003).
Detection of cortical transition regions utilizing statistical analyses of excess masses.
NeuroImage, 19(1):42-63. PMID: 12781726. DOI: 10.1016/S1053-8119(03)00040-5. ISSN 1053-8119 [ bibliotek.dk ] .

Segonne et al., 2004
Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., and Fischl, B. (2004).
A hybrid approach to the skull stripping problem in MRI.
NeuroImage, 22(3):1060-1075. PMID: 15219578.

Seitz et al., 1990
Seitz, R. J., Bohm, C., Greitz, T., Roland, P. E., Eriksson, L., Blomqvist, H., Rosenqvist, G., and Nordell, B. (1990).
Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography.
Journal of Cerebral Blood Flow and Metabolism, 10(4):443-457.

Shattuck et al., 2001
Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., and Leahy, R. M. (2001).
Magnetic resonance image tissue classification using a partial volume model.
NeuroImage, 13(5):856-876.

Sherk, 1992
Sherk, H. (1992).
Flattening the cerebral cortex by computer.
Journal of Neuroscience Methods, 41(3):255-267. PMID: 1513183.

Sled, 1997
Sled, J. G. (1997).
A non-parametric method for automatic correction of intensity non-uniformity in MRI data.
Master's thesis, McGill University, Montreal, Quebec, Canada. http://www.bic.mni.mcgill.ca/users/jgsled/thesis/jgs_thesis.ps.gz.

Sled et al., 1997a
Sled, J. G., Zijdenbos, A. P., Collins, D. L., and Evans, A. C. (1997a).
The impact of intensity non-uniformity on automated anatomical analysis of 3D MRI images.
NeuroImage, 5(4):S399.

Sled et al., 1997b
Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1997b).
A comparison of retrospective intensity non-uniformity correction methods for MRI.
In Information Processing in Medical Imaging, pages 459-464. http://www.bic.mni.mcgill.ca/users/jgsled/IPMI97/poster.html.

Sled et al., 1998
Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998).
A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
IEEE Transactions on Medical Imaging, 17(1):87-97. PMID: 9617910.

Smith, 2000
Smith, S. (2000).
Robust automated brain extraction.
In [Fox and Lancaster, 2000], page S625. http://www.fmrib.ox.ac.uk/fsl/bet. ISSN 1053-8119 [ bibliotek.dk ] .

Smith, 2002
Smith, S. M. (2002).
Fast robust automated brain extraction.
Human Brain Mapping, 17(3):143-155. http://www3.interscience.wiley.com/cgi-bin/abstract/98517506/ABSTRACT. CiteSeer: http://citeseer.ist.psu.edu/492470.html.

Styner and Gerig, 1997
Styner, M. and Gerig, G. (1997).
Evaluation of 2D/3D bias correction with 1+1ES-optimization.
Technical Report BIWI-TR-179, Communication Technology Laboratory, Image Science, ETH-Zentrum, Zürich, Switcherland. http://www.ia.unc.edu/public/styner/docs/StynerTR97.pdf.

Styner et al., 2000
Styner, M., Gerig, G., Brechbuehler, C., and Szekely, G. (2000).
Parametric estimate of intensity inhomogeneities applied to MRI.
IEEE Transactions on Medical Imaging, 19(3):153-165. http://www.ia.unc.edu/public/styner/docs/tmi00.pdf.

Sun and Wang, 2005
Sun, W. and Wang, Y. (2005).
Segmentation method of MRI using fuzzy gaussian basis neural network.
Neural Information Processing -- Letters and Reviews, 8(2):19-24. http://www.nip-lr.info/V08N02/V08N02P1-19-24.pdf.

Svarer et al., 2005
Svarer, C., Madsen, K., Hasselbalch, S. G., Pinborg, L. H., Haugbøl, S., Frøkjær, V. G., Holm, S., Paulson, O. B., and Knudsen, G. M. (2005).
MR-based automatic delineation of volume of interest in human brain PET imaging using probability maps.
NeuroImage, 24(4):969-979. PMID: 15670674. DOI: 10.1016/j.neuroimage.2004.10.017.

Svarer et al., 2002
Svarer, C., Willendrup, P., Adams, K. H., and Knudsen, G. M. (2002).
Region of interest analysis: One for all.
NeuroImage, 16(3):S87.
The Fourth International Symposium on Functional Neuroreceptor Mapping of Living Brain.

Talairach and Szikla, 1967
Talairach, J. and Szikla, G. (1967).
Atlas d'Anatomie Stereotaxique du Telencephale: Etudes Anatomo-Radiologiques.
Masson & Cie., Paris.

Talairach and Tournoux, 1988
Talairach, J. and Tournoux, P. (1988).
Co-planar Stereotaxic Atlas of the Human Brain.
Thieme Medical Publisher Inc, New York. ISBN 0865772932 [ bibliotek.dk | isbn.nu ] .

Thurfjell et al., 1995
Thurfjell, L., Bohm, C., and Bengtsson, E. (1995).
CBA -- an atlas-based software tool used to facilitate the interpretation of neuroimaging data.
Computer Methods and Programs in Biomedicine, 47(1):51-71. PMID: 7554863. DOI: 10.1016/0169-2607(95)01629-8. http://www.sciencedirect.com/science/article/B6T5J-3YXBJHX-S/2/78597e854cedf40f431306530264a04.

Thurfjell et al., 1994
Thurfjell, L., Bohm, C., Greitz, T., Eriksson, T., and Ingvar, M. (1994).
Accuracy and precision in image standardization in intra- and intersubject comparisons.
In Functional Neuroimaging, pages 121-130. Futura, New York.

Toro, 2003
Toro, R. (2003).
Geometric atlas: modeling the cortex as an arganized surface.
NeuroImage, 20:1468-1484. DOI: 10.1016/j.neuroimage.2003.07.008. http://www.snv.jussieu.fr/insermu483/geometricatlas/publi/toro03geometric.pdf. ISSN 1053-8119 [ bibliotek.dk ] .

Tzourio-Mazoyer et al., 2002a
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and Joliot, M. (2002a).
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage, 15(1):273-289. DOI: 10.1006/nimg.2001.0978.

Tzourio-Mazoyer et al., 2002b
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and Joliot, M. (2002b).
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain.
NeuroImage, 16(2). http://www.academicpress.com/journals/hbm2002/14297.html.
Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-Rom CD-ROM.

Van Essen and Maunsell, 1980
Van Essen, D. C. and Maunsell, J. H. (1980).
Two-dimensional maps of the cerebral cortex.
Journal of Comparative Neurology, 191(2):255-281. PMID: 7410593.

Van Leemput, 2001
Van Leemput, K. (2001).
Quantitative Analysis of Signal Abnormalities in MR Imaging for Multiple Sclerosis and Creutzfeldt-Jakob Disease.
PhD thesis, K. U. Leuven, Leuven, Belgium. http://bilbo.esat.kuleuven.ac.be/web-pages/mic_papers/Koen.VanLeemput/PHD.pdf.

Van Leemput et al., 2000
Van Leemput, K., Maes, F., Bello, F., Vandermeulen, D., Colchester, A., and Suetens, P. (2000).
Automated segmentation of MS lesions in MR.
NeuroImage, 11(5):S565.

Van Leemput et al., 2001
Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P. (2001).
Automated segmentation of multiple sclerosis lesions by model outlier detection.
IEEE Transactions on Medical Imaging, 20(8):677-688. PMID: 11513020.

Van Leemput et al., 1999a
Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. (1999a).
Automated model-based bias field correction of MR images of the brain.
IEEE Transaction on Medical Imaging, 18(10):885-896.

Van Leemput et al., 1999b
Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. (1999b).
Automated model-based tissue classification of MR images of the brain.
IEEE Transactions on Medical Imaging, 18(10):897-908.

Ward, 1999
Ward, B. D. (1999).
Intracranial Segmentation.
Biophysics Research Institute, Medical College of Wisconsin. http://afni.nimh.nih.gov/pub/dist/doc/manuals/3dIntracranial.pdf.

Zavaljevski et al., 2000
Zavaljevski, A., Dhawan, A. P., Gaskil, M., Ball, W., and Johnson, J. D. (2000).
Multi-level adaptive segmentation of multi-parameter MR brain images.
Comput. Med. Imaging. Graph., 24(2):87-98. PMID: 10767588.

Zeng et al., 1999
Zeng, X., Staib, L. H., Schultz, R. T., and Duncan, J. S. (1999).
Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation.
IEEE Transactions on Medical Imaging, 18(10):927-937. PMID: 10628952. http://noodle.med.yale.edu/staib/papers/tmicortex.pdf. ISSN 0278-0062 [ bibliotek.dk ] .

Zhang et al., 2000
Zhang, Y., Brady, M., and Smith, S. (2000).
A hidden Markov random field model for segmentation of brain MR images.
In Proc. SPIE Medical Imaging, number 3979 in SPIE Proceedings, pages 1126-1137, San Diego, USA. http://www.fmrib.ox.ac.uk/~yongyue/papers/mi2000-1.ps.gz.

Zhang et al., 2001a
Zhang, Y., Brady, M., and Smith, S. (2001a).
Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm.
IEEE Transaction of Medical Imaging, 20(1):45-57. http://www.fmrib.ox.ac.uk/analysis/techrep/tr00yz1/tr00yz1.ps.gz.

Zhang et al., 2001b
Zhang, Y., Brady, M., and Smith, S. (2001b).
A statistical framework for automatic brain MR image segmentation.
NeuroImage, 13(6):S292.


Index

3dIntracranial
Stripping
AAL
Parcellation | Labeled brains | Labeled brains
AFNI
Stripping
ANIMAL
Tools
automated anatomical labeling
Labeled brains
BEMA
Stripping
BET
Stripping
brain extraction
Stripping
BrainMap
Labeled brains
BrainSeg
Tools
BrainStuite
Stripping
BrainVisa
Cortical surface extraction
BrainVoyager
Cortical surface extraction
BrainWeb
Methods for segmentation | Labeled brains
Brodmann
Labeled brains | Labeled brains | Labeled brains
BSE
Stripping
Caret
Labeled brains
CBA
Labeled brains
Cerefy
Labeled brains
cytoarchitecture
Parcellation
DMflatten
Flattening
EMS
Inhomogeneity correction | Tools
FAST
Tools
Flattening
no title
FreeSurfer
Inhomogeneity correction | Stripping | Cortical surface extraction
FSL
Stripping
Geometric Atlas
Cortical surface extraction
ground truth
Methods for segmentation
Hammers
Labeled brains
HWA
Stripping
IBASPM
Parcellation
IBSR
Labeled brains | Labeled brains
ICBM
Labeled brains | Labeled brains
INSECT
Tools
Internet Brain Segmentation Repository
Labeled brains
IRIS
Tools
IRIS2000
Tools
IsoSurf
Cortical surface extraction
ITK
Inhomogeneity correction
Jülich
Labeled brains
Jerne
Labeled brains
labeled brain
no title
macaque
Parcellation
Mai
Labeled brains
marching cubes
Cortical surface extraction
McStrip
Stripping
MIDAS
Tools
Mindboggle
Tools | Labeled brains
MIPAV
Stripping
mrFlatMesh
Flattening
mrGray
Flattening
mri3dX
Stripping
mri_normalize
Inhomogeneity correction
MRIcro
Stripping | Labeled brains | Labeled brains
MRIWarp
Parcellation
N3
Inhomogeneity correction
Ono
Labeled brains
PABIC
Inhomogeneity correction
parcellation
no title
PMaps
Labeled brains
polyr
Cortical surface extraction | Cortical surface extraction
pveout
Tools
Rview
Parcellation
SEAL
Tools
segmentation
no title
brain tissue
no title
SimpleROIBuilder
Tools
SPM
Inhomogeneity correction | Tools
SPM Anatomy toolbox
Tools
SPM2
Inhomogeneity correction | Tools | Labeled brains | Parcellation
SPM5
Tools
SPM99
Tools
stripping
no title | Stripping
SureFit
Cortical surface extraction
SurfRelax
Cortical surface extraction
Svarer
Labeled brains
Talairach
Labeled brains
Talairach Daemon
Labeled brains
Tzourio-Mazoyer
Labeled brains
VBM
Stripping
voxel-based morpometry
Stripping
VOXEL-MAN
Labeled brains
VTK
Cortical surface extraction



Finn Årup Nielsen 2010-04-23