Bibliography on Path Analysis in Functional Neuroimaging
Finn Årup
Nielsen
CIMBI
at
DTU Informatics
and
NRU
Rigshospitalet
Lyngby and Copenhagen, Denmark
$Revision: 1.58 $
$Date: 2008/10/23 11:28:32 $
Abstract:
References for
path analysis (structural equation modeling)
and related connectivity analyses (``functional integration'')
for functional neuroimaging are collected.
This bibliography is part of a larger collection of
bibliographies that was begun in 2001 see
http://www.imm.dtu.dk/~fn/bib/Nielsen2001Bib/.
The bibliography is written in LATEX and BIBTeX and should be
available both as HTML, PDF and PostScript:
The bibliography is probably far from complete, but new references
are added whenever the author finds new material and has the time to
add them.
You can email the author if corrections are required or you have
found some reference that you fell ought to be included:
fn@imm.dtu.dk.
Funding is from Lundbeck Foundation, the European Union project
MAPAWAMO,
International Neuroimaging
Consortium
(INC) HBM project,
THOR Center for
Neuroinformatics,
the Villum Kann Rasmussen
Foundation
and the Lundbeck Foundation.
Path analysis in functional neuroimaging is usually used to described
the network between brain regions.
In functional neuroimaging the term structural equation modeling
(SEM) is
more common.
It has also been called covariance structural equation modelling
(CSEM) (Taylor et al., 2000; McIntosh and Gonzalez-Lima, 1994b).
The aspect revealed by path analysis in functional neuroimaging has
been termed effective connectivity
by Karl J. Friston, --
in contrast to functional connectivity which describes the correlation among brain regions
(Friston, 2004,1994),
cf. the related concept in spike train analysis, e.g.,
(Espinosa and Gerstein, 1988).
Systems-level neural modeling has also been used to denote path
analysis on the large scale brain regions (Horwitz et al., 1999, box on page
92).
Analysis of the network dynamics might reveal the transient
response plasticity
(McIntosh, 2000).
Bollen (1998a,1989,1998b)
gives general introductions to structural equation modeling and path
analysis,
and Ferron and Hess (2007) make a concrete example with maximum
likelihood estimation for the structural equation model.
Sánchez et al. (2005) review structural equation modeling
and give an example application in environment epidemiology.
The ``Computational approaches to network analysis in functional
imaging'' special issue of the journal Human Brain Mapping,
volume 2, numbers 1 and 2, 1994, contains 8 contributions, e.g.,
(Grafton et al., 1994; Horwitz, 1994; Alexander and Moeller, 1994; Gonzalez-Lima and McIntosh, 1994; Friston, 1994; McIntosh and Gonzalez-Lima, 1994b).
Introductions to path and related analyses in functional neuroimaging
are given by Büchel and Friston (1997b,a).
If a broad angle is taken to path analysis a number of different
analysis types can be regarded as ``path analysis'', e.g., principal
component analysis (PCA), ordinary
structural equation modeling, see table 1.
For independent component analysis (ICA) see the Bibliography on Independent Component Analysis in Functional Neuroimaging,
http://www.imm.dtu.dk/~fn/bib/Nielsen2001BibICA/.
The functional connectivity can be assessed by cross-correlation
analysis between voxels, also called ``seed voxel correlation
analysis''.
This can be done by selecting a few important voxels and examining
their correlation with the rest of the brain.
Worsley et al. (1998b,a,2005a)
compute the
correlation from all voxels to all
voxel and a threshold for on the 6D correlation random
field is applied (Cao and Worsley, 1998).
Worsley et al. (2005b) compare cross-correlation and SVD.
The validity of the inference made by dynamic causal modeling is
explored by Lee et al. (2006).
A general form of structural equations is (Bollen, 1989, eqs. 2.4, 2.8 and
2.9):
The first equation is for the latent variables, while the second and
third equations (``the measurement model'')
relate the latent variables to the observed variables,
and .
The diagonal of should be zero.
If there is no measurement noise,
and
,
and there is a one-to-one relationship between the latent and observed
variables,
and
, then the structural equations can be written as
In econometrics one finds the so-called ``structural
form'' in
``simultaneous equation systems'' (Mardia et al., 1979, section 7.3, equation
7.3.1)
|
|
(5) |
This is equivalent to equation 4 with
suitable redefinitions, e.g.,
,
and
.
and are called the exogenous or
independent variables while and are called the
endogenous variables.
If there are no exogenous variables,
, then
equation 4 simplifies to
When regarding this equation as a network the columns of the
are the nodes of the network, while the matrix
describes the links between the nodes.
Functional neuroimaging tends to use the relatively simple
equation 6, though, e.g., with this renaming
|
|
(7) |
Most often
will contain data from brain
scannings, e.g., as
a
scans brain regions matrix, while
is the ``network'' one wants to estimate and this is typically
regarded as sparse, i.e., many elements are zero.
An example taken from (Bullmore et al., 2000, page 295) with a
transposed notation for a single scan
In this kind of application of structural equation modeling the brain
regions are the nodes of the network.
Multisubject extension to this scheme make nodes also over subject so
the matrix gets the size
scansbrain
regions subjects (Mechelli et al., 2002).
The number of different networks (in terms of zero structure) for even
small sized structure matrices is very large.
For a two-by-two structure matrix,
, there are 3
non-zero networks and 4 if we allow for the zero network:
There are two elements of the structure matrix that can either by zero
or non-zero independent of each other.
This gives all compinations: .
Generally, for a -by- structure matrix,
,
the form for the number of networks is:
|
(10) |
Some examples: ,
,
,
.
If one considers a growing network where one non-zero element
in the structure matrix is added at a time, and when a non-zero
element is added it is maintained in the network, then the number of
possible networks shrinks dramatically.
The number of possible non-zero elements to start with is
.
When the first element is added and the network is incremented with a
new non-zero element then there are elements left to choose
from.
In the next step only and so on until the all off-diagonal element
of the structure matrix is non-zero.
The form for the total number of networks that is traversed is
Some examples:
,
,
,
,
and
.
Panel analysis is a dynamic (longitudinal) form of path
analysis, see, e.g., Easdon and McIntosh (2000) for an application in
functional neuroimaging.
Büchel et al. (1999) investigated the change in path
coefficients over time in associative learning.
Structural equation modeling on BOLD fMRI may be confounded by
1/f-noise and/or cardiac and respiratory noise that can cause nuisance
connectivity, see, e.g., a comment by Lund (2001).
Tools
Some of the few tools that enable path and related analyses are listed
in in table 2.
Haughton et al. (2006) describes three software packages for
directed acyclic graphs: MIM, Tetrad and WinMine.
Some early examples:
Høedt-Rasmussen and Skinhøj (1964) compared hemispheric cerebral blood
flow based on measurements with Krypton-85.
Paulson (1970); Paulson et al. (1970) compute the
``interchannel coefficient of variation'' (or ``interregional
coefficient of variation'') between 16 channels measuring
cerebral blood flow with Xenon-133.
Most studies analyze functional brain scans.
However, there has also been a study that considered the covariance
between gray matter density in different brain regions via voxel-based
morphometry (Mechelli et al., 2005).
.
Table 3:
Path analyses
in functional neuroimaging.
VEC: ventral extrastriate cortex,
PFC: prefrontal cortex,
SMA: supplementary motor area,
IFG: Interior frontal gyrus,
IPL: Inferior parietal lobule.
Type |
Scan |
Variables/Regions |
Behavioral
domain |
Remarks |
Reference |
|
|
|
|
|
|
|
|
-- |
-- |
Review |
McIntosh (1999) |
|
|
|
|
|
Horwitz et al. (1999) |
|
|
-- |
-- |
Review |
Taylor et al. (2000) |
-- |
-- |
-- |
Overview |
Brief describtion in section 3.1 |
Horwitz et al. (2000a) |
CC |
PET |
|
Resting |
Partial
correlation, kappa statistics |
Horwitz et al. (1984) |
CC |
PET |
|
Normals |
|
Metter et al. (1984b) |
CC |
PET |
|
Resting |
Normals, Alzheimer, Huntington,
Parkinson |
Metter et al. (1984a) |
SEM |
PET |
: BA 17/18, 19d, 19v, 7, 37, 21, 46 |
Object and spatial vision |
|
McIntosh et al. (1994); McIntosh and Gonzalez-Lima (1994b) |
? |
? |
? |
? |
? |
Horwitz (1994) |
SEM |
PET |
5: SMA/cing, motor, putamen,
GP, thalamus |
Movement |
Controls and
Parkinson's disease patients |
Grafton et al. (1994) |
CC |
fMRI |
|
Vision |
|
Kleinschmidt et al. (1994) |
CC |
fMRI |
? |
Resting state |
|
Biswal et al. (1995) |
SEM |
PET |
? |
Face matching with Alzheimer patients |
|
Horwitz et al. (1995) |
CC/SEM |
PET |
11 regions |
reading, visual word recognition |
|
Nyberg et al. (1996) |
SEM |
fMRI |
? |
Visual motion |
Modulation modeled with interaction term |
Büchel and Friston (1997c) |
? |
PET |
? |
Semantic processing in schizophrenia |
|
Jennings et al. (1998) |
CC |
PET |
|
Reading and dyslexia |
|
Horwitz et al. (1998) |
CC |
PET |
All voxels |
Vigilance task |
Correlation field threshold via random field theory |
Worsley et al. (1998b,a) |
SEM |
fMRI |
2 7 |
Motor task |
Low-frequency BOLD fMRI |
Lowe (1999) |
? |
PET |
? |
Face encoding and recognition |
|
Rajah et al. (1999) |
? |
PET |
? |
Episodic encoding and retrieval of words |
|
Krause et al. (1999) |
? |
fMRI |
? |
Associative learning |
|
Büchel et al. (1999) |
CC |
fMRI |
A few voxels in hippocambus and thalamus |
Resting
state |
|
Stein et al. (2000) |
? |
PET |
|
Language processing |
|
Petersson et al. (2000) |
CC |
PET |
Wernicke, Broca, others |
Language production |
|
Horwitz et al. (2000b) |
CC |
fMRI |
Voxels in Rolandic cortex, ventrolateral thalamus, anterior
putamen correlated with the rest of the brain |
Motor |
|
Mopritz et al. (2000) |
Panel/PLS |
PET |
Left cerebellum, left superior fronal cortex |
Eyeblink conditioning |
|
Easdon and McIntosh (2000) |
PLS |
PET |
|
Short-term memory wrt. age |
|
Della-Maggiore et al. (2000) |
SEM |
fMRI |
5: VEC, PFC, SMA, IFG, IPL |
Semantic
decision, subvocal rehearsal |
Model order determination by
P-values, AIC and Bollen's ``parsimonious fit index'' |
Bullmore et al. (2000) |
SEM |
fMRI |
7 |
Memory retrieval |
|
Maguire et al. (2000) |
SEM |
PET |
? |
? |
|
Nezafat et al. (2001) |
CC |
fMRI |
From/to anterior cerebellum |
Simple motor task |
Schizophrenia and control subjects |
Stephan et al. (2001) |
? |
fMRI |
9: EC, BA37, IPS, SMA, FEF, VPC, IFG, PSTS, AG |
Implicit language processing |
|
? |
SEM |
PET |
12 |
Working memory |
Split-half validation, AIC
and RMSEA |
Glabus et al. (2003) |
PLS |
? |
39 |
|
FDG, rats, |
Nair and Gon-za-lez-Lima (2003) |
SEM |
fMRI |
10 |
Visual attention |
In normals and Williams syndrome |
Meyer-Lindenberg et al. (2004) |
RAM |
fMRI |
5 |
Predictive error signal |
Depressive illness |
Steele et al. (2004) |
CC |
fMRI |
Voxels |
Finger opposition |
Power law, clustering
coefficient and path length computed (small world
variables) |
Eguíluz et al. (2005) |
SEM |
fMRI |
10 |
Flanker task (attentional control) |
|
Erickson et al. (2005) |
SEM |
fMRI |
4 |
Emotional face processing |
In normals and Williams syndrome |
Meyer-Lindenberg et al. (2005) |
SEM |
fMRI |
8 regions around amygdala |
Negative emotional faces |
Minimization with adaptive simulated annealing and with split half verification |
Stein et al. (2006) |
CC |
fMRI |
90 regions |
Resting state with pharmacological stimulation |
Wavelet correlation analysis in the frequency
interval 0.06-0.11 and with metrics of network efficiency (small
world |
Achard and Bullmore (2007) |
SEM |
MRI |
|
None |
Size of brain regions |
Colibazzi et al. (2008)
|
Functional connectivity has been assessed with resting state BOLD fMRI
(Biswal et al., 1995), e.g.,
Stein et al. (2000) pick a few seed voxels in the thalamus
and the hippocambus and compute the correlation coefficient between
these (each at a time) and the rest of the brain, thresholding at 0.5.
The correlation is high for low frequencies ( Hz), and
hypercapnia results in a substantial decrease in the correlation
(Biswal et al., 1997).
Lowe et al. (1998) report low-frequency resting state
fluctuation with low sampling rate multislice.
Xiong et al. (1999) pick the seed in the primary motor
cortex.
Kim et al. (2007): MAR, SEM, GLM
Clark et al. (1984)
Koch et al. (2002): Comparison of functional and
anatomical connectivity.
McIntosh and Gonzalez-Lima (1991): SEM on auditory system.
McIntosh and Gonzalez-Lima (1992): SEM on the visual system of the rat.
McIntosh and Gonzalez-Lima (1994a)
Anatomically based structural equation modeling (SEM) Rajah et al. (1999)
Friston et al. (1995b) ``regression''.
Cordes et al. (2001)
(Büchel and Friston (1998): ``variable parameter regression'' and Kalman filtering)
Cordes 2000, AJNR, 21:1636
"Structural equation" and PET
From PubMed:
Nezafat et al. (2001),
Della-Maggiore et al. (2000),
Petersson et al. (2000),
Taylor et al. (2000),
McIntosh (1999),
Rajah et al. (1999),
Horwitz et al. (1999),
McIntosh (1998),
Jennings et al. (1998),
Cabeza et al. (1997),
McIntosh et al. (1994).
Brain connectivity may also be obtained from tractography of diffusion
spectrum imaging (Hagmann et al., 2008).
The following functional networks are originally from
McIntosh et al. (1994).
The network descriptions are in the dot file format
Koutsofios and North (1996) and
figures 1 and 2
display the output from the program.
Negative path coefficients are indicated by dotted lines.
digraph ObjectVision {
rankdir=LR
"17/18" -> "19v"
"17/18" -> "19d" [style=dotted]
"19v" -> "37"
"19v" -> "19d"
"19d" -> "7" [style=dotted]
"19d" -> "46" [style=dotted]
"37" -> "21"
"37" -> "7" [style=dotted]
"7" -> "21"
"7" -> "46" [style=dotted]
"21" -> "46"
"46" -> "19v" [style=dotted]
}
digraph SpatialVision {
rankdir=LR
"17/18" -> "19v"
"17/18" -> "19d"
"19v" -> "37"
"19v" -> "19d"
"19d" -> "7"
"19d" -> "46"
"37" -> "21"
"37" -> "7" [style=dotted]
"7" -> "21" [style=dotted]
"7" -> "46"
"21" -> "46" [style=dotted]
"46" -> "19v"
}
McIntosh and Gonzalez-Lima (1994b) consider interhemispheric functional
models for the same task.
Motor system connectivity is examined by Grafton et al. (1994)
who used a cortical-subcortical network proposed by
Alexander et al. (1990); DeLong (1990).
Some of the results from a LISREL estimation are displayed in
figure 3 and the corresponding dot
file is shown below.
digraph GraftonS1994Network {
subgraph clusterNormalMovement {
label="Normal subjects, Movement task";
ranksep=0.75;
{ rank = same;
NM1 [label="SMA & Cingulate\n Motor Areas" ];
NM2 [label="Motor cortex"];
}
NM3 [label="Putamen"]
{ rank = same;
NM4 [label="Globus pallidus"];
NM5 [label="Ventrolateral\n Thalamus"];
}
NM1 -> NM2
NM1 -> NM3 [style=dotted]
NM1 -> NM5
NM2 -> NM3 [style=dotted]
NM2 -> NM5 [style=dotted]
NM3 -> NM4
NM4 -> NM5
NM5 -> NM1
NM5 -> NM2 [style=dotted]
}
subgraph clusterParkinsonBefore {
label="Parkinson patients, before pallidotomy";
ranksep=0.75;
{ rank = same;
PB1 [label="SMA & Cingulate\n Motor Areas" ];
PB2 [label="Motor cortex"];
}
PB3 [label="Putamen"]
{ rank = same;
PB4 [label="Globus pallidus"];
PB5 [label="Ventrolateral\n Thalamus"];
}
PB1 -> PB2
PB1 -> PB3 [style=dotted]
PB1 -> PB5
PB2 -> PB3
PB2 -> PB5
PB3 -> PB4
PB4 -> PB5
PB5 -> PB1
PB5 -> PB2
}
}
A visual implicit language processing network:
digraph McKiernanK2001Development {
rankdir=LR
IFG -> VPC
SMA -> VPC
FEF -> SMA
FEF -> VPC
FEF -> IPC
PSTS -> IFG
PSTS -> FEF
PSTS -> AG
AG -> IFG [style=dotted]
IPS -> IFG
IPS -> VPC
IPS -> AG
BA37 -> PSTS
BA37 -> VPC [style=dotted]
BA37 -> IPS
EC -> BA37
}
-
Achard, S. and Bullmore, E. (2007).
- Efficiency and cost of economical brain functional networks.
PLoS Computational Biology, 3(2):e17.
DOI: 10.1371/journal.pcbi.0030017.
- cited: Applications
-
Alexander, G. E., Crutcher, M. D., and DeLong, M. R. (1990).
- Basal ganglia thalamo-cortical circuits: Parallel substrates for
motor, oculomotor, ``prefrontal'' and ``limbic'' functions.
Prog. Brain Res., 85:119-146.
- cited: Motor system
-
Alexander, G. E. and Moeller, J. R. (1994).
- Application of the scaled subprofile model to functional imaging in
neuropsychiatric disorders: A principal component approach to modeling brain
function in disease.
Human Brain Mapping, 2(1 and 2):79-94.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: General references
-
Biswal, B., Hudetz, A. G., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S.
(1997).
- Hypercapnia reversibly suppresses low-frequency fluctuations in the
human motor cortex during rest using echo-planar MRI.
Journal of Cerebral Blood Flow and Metabolism, 17(3):301-308.
PMID: 9119903.
- cited: Resting state path analysis
-
Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995).
- Functional connectivity in the motor cortex of resting human brain
using echo-planar MRI.
Magnetic Resonance in Medicine, 34(4):537-541.
PMID: 8524021.
ISSN 0740-3194 [ bibliotek.dk ] .
- cited: Applications
| Resting state path analysis
-
Bollen, K. A. (1989).
- Structural Equations with Latent Variables.
Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons, New York.
- cited: General references
| Mathematical description of structural
-
Bollen, K. A. (1998a).
- Path analysis.
In Armitage, P. and Colton, T., editors, Encyclopedia of
biostatistics, pages 3280-3284. John Wiley & Sons, West Sussex, England.
ISBN 0471975761 [
bibliotek.dk
| isbn.nu ]
.
- cited: General references
-
Bollen, K. A. (1998b).
- Structural equation models.
In Armitage, P. and Colton, T., editors, Encyclopedia of
biostatistics, pages 4363-4372. John Wiley & Sons, West Sussex, England.
ISBN 0471975761 [
bibliotek.dk
| isbn.nu ]
.
- cited: General references
-
Büchel, C., Coull, J. T., and Friston, K. J. (1999).
- The predictive value of changes in effective connectivity for human
learning.
Science, 283(5407):1538-1541.
PMID: 10066177.
ISSN 0036-8075 [ bibliotek.dk ] .
- cited: Other remarks
| Applications
-
Büchel, C. and Friston, K. J. (1997a).
- Characterising functional integration.
In Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J.,
and Mazziotta, J. C., editors, Human Brain Function, chapter 7, pages
127-140. Academic Press, San Diego, California.
- cited: General references
-
Büchel, C. and Friston, K. J. (1997b).
- Effective connectivity and neuroimaging.
In SPMcourse, short course notes, chapter 6. Institute of
Neurology, Wellcome Department of Cognitive Neurology, London, UK.
http://www.fil.ion.ucl.ac.uk/spm/course/notes97/Ch6.pdf.
- cited: General references
-
Büchel, C. and Friston, K. J. (1997c).
- Modulation of connectivity in visual pathways by attention: cortical
interactions evaluated with structural equation modelling and fMRI.
Cerebral Cortex, 7(8):768-778.
PMID: 9408041.
- cited: Applications
-
Büchel, C. and Friston, K. J. (1998).
- Dynamic changes in effective connectivity characterized by variable
parameter regression and Kalman filtering.
Human Brain Mapping, 6(5-6):403-408.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: Unclassified
-
Bullmore, E., Horwitz, B., Honey, G., Brammer, M., Williams, S., and Sharma, T.
(2000).
- How good is good enough in path analysis of fMRI data?
NeuroImage, 11(4):289-301.
PMID: 10725185.
http://www-staff.psychiatry.cam.ac.uk/~gh242/Bullmore_Neuroimage_(11)_ 2000.pdf. Path analysis with fMRI data on five brain regions
with model order determination through P-values, Akaike's AIC and Bollen's
parsimonous fit index.
- cited: Functional neuroimaging
| Applications
-
Bullmore, E. T., Rabe-Hesketh, S., Morris, R. G., Williams, S. C. R., and
Gregory, L. (1996).
- Functional magnetic resonance image analysis of a large-scale
neurocognitive network.
NeuroImage, 4(1):16-33.
PMID: 9345494.
DOI: 10.1006/nimg.1996.0026.
WOBIB: 113. http://www.sciencedirect.com/science/article/B6WNP-45MGVH0-1P/2/33287689eb5bee8ad10fe7df7535d969. ISSN 1053-8119 [ bibliotek.dk ] .
- cited: Analysis types for brain
-
Cabeza, R., McIntosh, A. R., Tulving, E., Nyberg, L., and Grady, C. L. (1997).
- Age-related differences in effective neural connectivity during
encoding and recall.
NeuroReport, 8(16):3479-3483.
PMID: 9427311.
- cited: "Structural equation" and PET
-
Cao, J. and Worsley, K. J. (1998).
- The geometry of correlation fields with an application to functional
connectivity of the brain.
Annals of Applied Probability, 9:1021-1057.
http://www.math.mcgill.ca/~keith/correl/correl.abstract.html.
- cited: Analysis types for brain
| Analysis types for brain
-
Clark, C. M., Kessler, R., Buchsbaum, M. S., Margolin, R. A., and Holcomb,
H. H. (1984).
- Correlational methods for determining regional coupling of cerebral
glucose metabolism: a pilot study.
Biological Psychiatry, 19(5):663-678.
- cited: Unclassified
-
Colibazzi, T., Zhu, H., Bansal, R., Schultz, R. T., Wang, Z., and Peterson,
B. S. (2008).
- Latent volumetric structure of the human brain: Exploratory factor
analysis and structural equation modeling of gray matter volumes in healthy
children and adults.
Human Brain Mapping, 29(11):1302-1312.
DOI: 10.1002/hbm.20466.
- cited: Applications
-
Cordes, D., Haughton, V., Arfanakis, K., Carew, J., and Turski, P. (2001).
- Decomposition of cross correlation maps into frequency components to
measure functional connectivity in resting state MRI data.
NeuroImage, 13(6):S99.
- cited: Unclassified
-
Della-Maggiore, V., Sekuler, A. B., Grady, C. L., Bennett, P. J., Sekuler, R.,
and McIntosh, A. R. (2000).
- Corticolimbic interactions associated with performance on a
short-term memory task are modified by age.
Journal of Neuroscience, 20(22):8410-8416.
PMID: 11069948.
- cited: Applications
| "Structural equation" and PET
-
DeLong, M. R. (1990).
- Primate models of movement disorders of basal ganglia origin.
Trends in Neurosciences, 13(281-285).
- cited: Motor system
-
Easdon, C. and McIntosh, A. R. (2000).
- Measuring dynamic connectivity in eyeblink conditioning: A panel
analysis.
NeuroImage, 11(5, part 2):S572.
Sixth Annual Meeting of the Organization For Human Brain Mapping.
- cited: Other remarks
| Applications
-
Edwards, D. (1995).
- Introduction to Graphical Modelling.
Springer texts in statistics. Springer Verlag, Heidelberg.
ISBN 0387944834 [
bibliotek.dk
| isbn.nu ]
.
- cited: Tools
-
Edwards, D. (2000).
- Introduction to graphical modelling.
Springer texts in statistics. Springer.
ISBN 0387950540 [
bibliotek.dk
| isbn.nu ]
.
- cited: Tools
-
Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., and Apkarian,
A. V. (2005).
- Scale-free brain functional networks.
Physical Review Letters, 94(018102):1-4. http://link.aps.org/abstract/PRL/v94/e018102.
- cited: Applications
-
Erickson, K. I., Ho, M.-H. R., Colcomb, S. J., and Kramer, A. F. (2005).
- A structural equation modeling analysis of attentional control: an
event-related fMRI study.
Cognitive Brain Research, 22:349-357.
DOI: 10.1016/j.cogbrainres.2004.09.004.
- cited: Applications
-
Espinosa, I. E. and Gerstein, G. L. (1988).
- Cortical auditory neuron interactions during presentation of 3-tone
sequences: effective connectivity.
Brain Research, 450(1-2):39-50.
PMID: 3401720.
- cited: Terminology
-
Ferron, J. M. and Hess, M. R. (2007).
- Estimation in SEM: A concrete example.
Journal of Educational and Behavioral Statistics,
32(1):110-120.
DOI: 10.3102/1076998606298025.
- cited: General references
-
Friston, K. J. (1994).
- Functional and effective connectivity in neuroimaging: A synthesis.
Human Brain Mapping, 2(1 and 2):56-78.
DOI: 10.1002/hbm.460020107. http://www3.interscience.wiley.com/cgi-bin/fulltext/109711709/PDFSTART.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: Terminology
| General references
-
Friston, K. J. (2003).
- Dynamical causal models.
In Frackowiak, R. S. J., Friston, K. J., Dolan, R., and Price, C.,
editors, Human Brain Function, chapter 22. Academic Press, second
edition. http://www.fil.ion.ucl.ac.uk/spm/HBF2/pdfs/Ch22.pdf. ISBN 0122648412 [
bibliotek.dk
| isbn.nu ]
.
- cited: Analysis types for brain
| Tools
-
Friston, K. J. (2004).
- Functional integration in the brain.
In Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan, R. J.,
Price, C. J., Zeki, S., Ashburner, J., and Penny, W., editors, Human
Brain Function, chapter 48, pages 971-997. Elsevier, Amsterdam, Holland,
second edition. http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch18.pdf.
- cited: Terminology
-
Friston, K. J., Büchel, C., Fink, G. R., Morris, J., Rolls, E., and Dolan,
R. J. (1997).
- Psychophysiological and modulatory interactions in neuroimaging.
NeuroImage, 6(3):218-229.
PMID: 9344826.
http://www.fil.ion.ucl.ac.uk/spm/doc/papers/karl_ppi.pdf.
- cited: Analysis types for brain
-
Friston, K. J., Frith, C. D., and Frackowiak, R. S. J. (1993).
- Time-dependent changes in effective connectivity measured with PET.
Human Brain Mapping, 1(1):69-80.
DOI: 10.1002/hbm.460010108. Presents a model with regression from voxels to voxels by
first performing a principal component analysis on the neuroimaging data and
then estimate the regression parameters from the principal components to the
neuroimaging data.
- cited: Analysis types for brain
-
Friston, K. J., Frith, C. D., Frackowiak, R. S. J., and Turner, R. (1995a).
- Characterizing dynamic brain responses with fMRI: A multivariate
approach.
NeuroImage, 2(2):166-172.
DOI: 10.1006/nimg.1995.1019. http://www.fil.ion.ucl.ac.uk/spm/doc/papers/karl_dyn_multivariate.pdf.
- cited: Analysis types for brain
-
Friston, K. J., Harrison, L., and Penny, W. (2003).
- Dynamic causal modelling.
NeuroImage, 19(4):1273-1302.
PMID: 12948688.
- cited: Analysis types for brain
| Tools
-
Friston, K. J., Ungeleider, L. G., Jezzard, P., and Turner, R. (1995b).
- Characterizing modulatory interactions between V1 and V2 in human
cortex with fMRI.
Human Brain Mapping, 2:211-224.
- cited: Unclassified
-
Glabus, M. F., Horwitz, B., Holt, J. L., Kohn, P. D., Gerton, B. K., Callicott,
J. H., Meyer-Lindenberg, A., and Berman, K. F. (2003).
- Interindividual differences in functional interactions among
prefrontal, parietal and parahippocampal regions during working memory.
Cerebral Cortex, 13(12):1352-1361.
PMID: 14615300.
DOI: 10.1093/cercor/bhg082. Structural equations modeling of PET images with normal
subjects performing a working memory task. The MX software was used with AIC
and root-means quare error of approximation and a split-half validation.
Talairach coordinates and path coefficients are reported.
- cited: Applications
-
Gonzalez-Lima, F. and McIntosh, A. R. (1994).
- Neural network interactions related to auditory learning analyzed
with structural equation modeling.
Human Brain Mapping, 2(1 and 2):23-44.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: General references
-
Grafton, S. T., Sutton, J., Couldwell, W., Lew, M., and Waters, C. (1994).
- Network analysis of motor system connectivity in parkinson's disease:
Modulation of thalamocortical interactions after pallidotomy.
Human Brain Mapping, 2(1 and 2):45-55.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: General references
| Applications
| Motor system
| Motor system
-
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., and Wedeen,
V. J. (2008).
- Mapping the structural core of human cerebral cortex.
PLoS Biology, 6(7):e157.
DOI: 10.1371/journal.pbio.0060159.
- cited: Other connectivity analyses
-
Haughton, D., Kamis, A., and Scholten, P. (2006).
- A review of three directed acyclic graphs software packages: MIM,
Tetrad, and WinMine.
The American Statistician, 60(3):272-286.
DOI: 10.1198/000313006X117972.
- cited: Tools
-
Høedt-Rasmussen, K. and Skinhøj, E. (1964).
- Transneural depression of the cerebral hemispheric metabolism in man.
Acta Neurologica Scandinavica, 40:41-46. 2-channel
measurements of regional cerebral blood flow with Krypton-85. The
measurements are compared between the hemispheres.
- cited: Applications
-
Horwitz, B. (1994).
- Data analysis paradigms for metabolic-flow data: through the skull:
Advanced EEGs use MRIs to accurately measure combining neural modeling
and functional neuroimaging.
Human Brain Mapping, 2(1 and 2):112-122.
ISSN 1065-9471 [ bibliotek.dk ] .
- cited: General references
| Applications
| Object and spatial vision
| Object and spatial vision
-
Horwitz, B., Duara, R., and Rapoport, S. I. (1984).
- Intercorrelations of glucose metabolic rates between brain regions:
Application to healthy males in a state of reduced sensory input.
Journal of Cerebral Blood Flow and Metabolism, 4(4):484-499.
ISSN 0271-678X [ bibliotek.dk ] .
- cited: Analysis types for brain
| Applications
-
Horwitz, B., Friston, K. J., and Taylor, J. G. (2000a).
- Neural modeling and functional brain imaging: an overview.
Neural Networks, 13(8-9):829-846.
PMID: 11156195.
http://www.ling.umd.edu/poeppel/HorwitzPET.pdf.
- cited: Applications
-
Horwitz, B., Jeffries, K. J., and Braun, A. R. (2000b).
- Functional connectivity among language areas during speech
production.
In Fox, P. T. and Lancaster, J. L., editors, Sixth International
Conference on Functional Mapping of the Human Brain, NeuroImage, volume 11,
page S284. Academic Press. ISSN 1053-8119 [ bibliotek.dk ] . Demonstrates varying cross-correlation
among Wenicke's and Broca's during different language production tasks.
- cited: Applications
-
Horwitz, B., McIntosh, A. R., Haxby, J. V., Furey, M., Salerno, J. A.,
Schapiro, M. B., Rapoport, S. I., and Grady, C. L. (1995).
- Network analysis of PET-mapped visual pathways in Alzheimer type
dementia.
NeuroReport, 6(17):2287-2292.
PMID: 8747138.
- cited: Applications
-
Horwitz, B., Rumsey, J. M., and Donohue, B. C. (1998).
- Functional connectivity of the angular gyrus in normal reading and
dyslexia.
Proceedings of the National Academy of Sciences,
95(15):8939-8944.
- cited: Applications
-
Horwitz, B., Tagamets, M. A., and McIntosh, A. R. (1999).
- Neural modeling, functional brain imaging, and cognition.
Trends in Cognitive Science, 3(3):91-98.
PMID: 10322460.
- cited: Terminology
| Applications
| "Structural equation" and PET
-
Jennings, J. M., McIntosh, A. R., Kapur, S., Zipursky, R. B., and Houle, S.
(1998).
- Functional network differences in schizophrenia: a rCBF study of
semantic processing.
NeuroReport, 9(8):1697-1700.
PMID: 9665585.
- cited: Applications
| "Structural equation" and PET
-
Kim, J., Zhu, W., Chang, L., Bentler, P. M., and Ernst, T. (2007).
- Unified structural equation modeling approach for the analysis of
multisubject, multivariate functional MRI data.
Human Brain Mapping, 28(2):85-93.
DOI: 10.1002/hbm.20259. http://www3.interscience.wiley.com/cgi-bin/abstract/112634766/.
- cited: Unclassified
-
Kleinschmidt, A., Merboldt, K. D., Hanicke, W., Steinmetz, H., and Frahm, J.
(1994).
- Correlational imaging of thalamocortical coupling in the primary
visual pathway of the human brain.
Journal of Cerebral Blood Flow and Metabolism, 14(6):954-957.
PMID: 7929658.
- cited: Applications
-
Koch, M. A., Norris, D. G., and Hund-Georgiadis, M. (2002).
- An investigation of functional and anatomical connectivity using
magnetic resonance imaging.
NeuroImage, 16(1):241-250. http://www.idealibrary.com/links/doi/10.1006/nimg.2002.1076. Assess anatomical
connectivity by diffusion-weighted magnetic resonance imaging and functional
connectivity by resting state BOLD fMRI (a la Biswal). The functional
connectivity showed little correlation for white matter and high correlation
among grey matter areas particularly corresponding areas collateral.
- cited: Unclassified
-
Koutsofios, E. and North, S. C. (1996).
- Drawing graphs with dot.
AT&T Bell Laboratories, Murray Hill, New Jersey.
- cited: Object and spatial vision
-
Krause, B. J., Horwitz, B., Taylor, J. G., Schmidt, D., Mottaghy, F. M.,
Herzog, H., Halsband, U., and Muller-Gartner, H. (1999).
- Network analysis in episodic encoding and retrieval of word-pair
associates: a PET study.
European Journal of Neuroscience, 11(9):3293-3301.
PMID: 10510193. This is
a network analysis with no Talairach coordinates.
- cited: Applications
-
Lee, L., Friston, K. J., and Horwitz, B. (2006).
- Large-scale neural models and dynamic causal modelling.
NeuroImage, 30(4):1243-1254.
PMID: 16387513.
- cited: Analysis types for brain
-
Lohmann, G. and Bohn, S. (2002).
- Using replicator dynamics for analyzing fMRI data of the human
brain.
IEEE Transactions on Medical Imaging, 21(5):485-492.
- cited: Analysis types for brain
-
Lowe, M. J. (1999).
- Functional connectivity with continuous state fMRI assessed with
structural equations.
NeuroImage, 9(6):S197.
- cited: Applications
-
Lowe, M. J., Mock, B. J., and Sorenson, J. A. (1998).
- Functional connectivity in single and multislice echoplanar imaging
using resting-state fluctualations.
NeuroImage, 7(2):119-132.
PMID: 9558644.
http://linkinghub.elsevier.com/retrieve/pii/S1053811997903153.
- cited: Resting state path analysis
-
Lund, T. E. (2001).
- fcMRI - mapping functional connectivity or correlating
cardiac-induced noise?
Magnetic Resonance in Medicine, 46(3):628.
DOI: 10.1002/mrm.1238.
- cited: Other remarks
-
Maguire, E. A., Mummery, C. J., and Büchel, C. (2000).
- Patterns of hippocampal-cortical interaction dissociate temporal lobe
memory subsystems.
Hippocampus, 10:475-482. fMRI study.
- cited: Applications
-
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979).
- Multivariate Analysis.
Probability and Mathematical Statistics. Academic Press, London.
ISBN 0124712525 [
bibliotek.dk
| isbn.nu ]
.
- cited: Mathematical description of structural
-
McArdle, J. J. and McDonald, R. P. (1984).
- Some algebraic properties of the reticular action model for moment
structures.
British Journal of Mathematical and Statistical Psychology,
37:234-251.
PMID: 6509005.
- cited: Analysis types for brain
-
McIntosh, A. R. (1998).
- Understanding neural interactions in learning and memory using
functional neuroimaging.
Ann. New York Academy of Sci., 855:556-571.
PMID: 9929651.
- cited: "Structural equation" and PET
-
McIntosh, A. R. (1999).
- Mapping cognition to the brain through neural interactions.
Memory, 7(5-6):523-548.
PMID: 10659085.
- cited: Applications
| "Structural equation" and PET
-
McIntosh, A. R. (2000).
- Towards a network theory of cognition.
Neural Network, 13:861-870.
- cited: Terminology
-
McIntosh, A. R. and Gonzalez-Lima, F. (1991).
- Structural modeling of functional neural pathways mapped with
2-deoxyglucose: Effects of acoustic startle habituation on the auditory
system.
Brain Research, 547(2):295-302.
PMID: 1884204.
- cited: Unclassified
-
McIntosh, A. R. and Gonzalez-Lima, F. (1992).
- Structural modeling of functional visual pathways mapped with
2-deoxyglucose: Effects of patterned light and footshock.
Brain Research, 578(1-2):75-86.
PMID: 1511292.
ISSN 0006-8993 [ bibliotek.dk ] .
- cited: Unclassified
-
McIntosh, A. R. and Gonzalez-Lima, F. (1994a).
- Network interactions among limbic cortices, basal forebrain, and
cerebellum differentiate a tone conditioned as a Pavlovian excitor or
inhibitor: fluorodeoxyglucose mapping and covariance structural modeling.
Journal of Neurophysiology, 72(4):1717-1733.
PMID: 7823097.
- cited: Unclassified
-
McIntosh, A. R. and Gonzalez-Lima, F. (1994b).
- Structural equation modeling and its application to network analysis
in functional brain imaging.
Human Brain Mapping, 2(1 and 2):2-22.
ISSN 1065-9471 [ bibliotek.dk ] . General introduction to structural
equation modeling in functional brain imaging. Examples are given with object
and spatial vision in a human PET study and a rat brain study for the
geniculocortical circuit.
- cited: Terminology
| General references
| Applications
| Object and spatial vision
-
McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport,
S. I., and Horwitz, B. (1994).
- Network analysis of cortical visual pathways mapped with PET.
Jornal of Neuroscience, 14(2):655-666.
PMID: 8301356.
- cited: Applications
| "Structural equation" and PET
| Object and spatial vision
| Object and spatial vision
| Object and spatial vision
-
McIntosh, A. R. and Lobaugh, N. L. (2004).
- Partial least squares analysis of neuroimaging data: applications and
advances.
NeuroImage, 23(1):S250-S263.
DOI: 10.1016/j.neuroimage.2004.07.020.
- cited: Analysis types for brain
-
McKiernan, K. A., Conant, L. L., Chen, A., and Binder, J. R. (2001).
- Development and cross-validation of a model of linguistic processing
using neural network and path analyses with FMRI data.
NeuroImage, 13(6):S200. Shortly describes a connection
analysis on fMRI data with ``path analysis'' and an associative neural
network in connection with visual implicit language processing.
- cited: Cognition
-
Mechelli, A., Friston, K. J., Frackowiak, R. S. J., and Price, C. J. (2005).
- Structural covariance in the human cortex.
The Journal of Neuroscience, 25(36):8303-8310.
DOI: 10.1523/JNEUROSCI.0357-05.2005.
- cited: Applications
-
Mechelli, A., Penny, W. D., Price, C. J., Gitelman, D. R., and Friston, K. J.
(2002).
- Effective connectivity and intersubject variability: using a
multisubject network to test differences and commonalities.
NeuroImage, 17(3):1459-1469.
PMID: 12414285.
- cited: Functional neuroimaging
-
Metter, E. J., Riege, W. H., Kameyama, M., Kuhl, D. E., and Phelps, M. E.
(1984a).
- Cerebral metabolic relationships for selected brain regions in
Alzheimer's, Huntington's, and Parkinson's diseases.
Journal of Cerebral Blood Flow and Metabolism, 4(4):500-506.
- cited: Applications
-
Metter, E. J., Riege, W. H., Kuhl, D. E., and Phelps, M. E. (1984b).
- Cerebral metabolic relationships for selected brain regions in
healthy adults.
Journal of Cerebral Blood Flow and Metabolism, 4(1):1-7.
ISSN 0271-678X [ bibliotek.dk ] .
- cited: Analysis types for brain
| Applications
-
Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay,
V. S., colleen A. Morris, and Berman, K. F. (2005).
- Neural correlates of genetically abnormal social cognition in
Williams syndrome.
Nature Neuroscience, 8(8):991-993.
DOI: 10.1038/nn1494.
- cited: Applications
-
Meyer-Lindenberg, A., Kohn, P., Mervis, C. B., Kippenhan, J. S., Olsen, R. K.,
Morris, C. A., and Berman, K. F. (2004).
- Nerual basis of genetically determined visuospatial construction
deficit in Williams syndrome.
Neuron, 43:623-631. fMRI, voxel-based morphometry and
structural equation modeling neuroimaging study.
- cited: Applications
-
Moeller, J. R., Strother, S. C., Sidtis, J. J., and Rottenberg, D. A. (1987).
- Scaled subprofile model: A statistical approach to the analysis of
functional patterns in positron emission tomographic data.
Journal of Cerebral Blood Flow and Metabolism, 7:649-658.
- cited: Analysis types for brain
-
Mopritz, C., Arfanakis, K., Cordes, D., Haughton, V., and Meyerand, M. E.
(2000).
- Connectivity analysis of fMRI activation datasets.
NeuroImage, 11(5):S575. Cross-correlation with time-series
from seed voxels located in rolandic cortex, ventrolateral thalamus and
anterior putamen.
- cited: Applications
-
Muthén, L. K. and Muthén, B. O. (2006).
- Mplus. Statistical Analysis With Latent Variables. User's
Guide.
Muthén and Muthén, Los Angeles, California.
http://www.statmodel.com/download/usersguide/Mplus%20Users%20Guide%20v41.pdf.
Version 4.1.
- cited: Tools
-
Nair, H. P. and Gonzalez-Lima, F. (2003).
- Large-scale networks in learning analyzed with partial least squares.
In Sommer, F. T. and Wichert, A., editors, Exploratory analysis
and data modeling in functional neuroimaging, pages 273-294. MIT Press,
Cambridge, MA, USA. ISBN 0262194813 [
bibliotek.dk
| isbn.nu ]
.
- cited: Applications
-
Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (2003).
- Mx: Statistical Modeling.
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, Richmond, VA, sixth edition. http://www.vipbg.vcu.edu/~vipbg/software/mxmanual.pdf.
- cited: Tools
-
Nezafat, R., Shadmehr, R., and Holcomb, H. H. (2001).
- Long-term adaptation to dynamics of reaching movements: a PET
study.
Experimental Brain Research, 140(1):66-76.
PMID: 11500799.
http://link.springer-ny.com/link/service/journals/00221/bibs/1140001/11400066.htm.
- cited: Applications
| "Structural equation" and PET
-
Nielsen, F. Å., Hansen, L. K., and Strother, S. C. (1998).
- Canonical ridge analysis with ridge parameter optimization.
NeuroImage, 7(4, part 2):S758. http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=4981.
4th International Conference on Functional Mapping of the Human
Brain. June 7-12, 1998, Montreal, Quebec, Canada.
- cited: Analysis types for brain
-
Nyberg, L., McIntosh, A. R., Cabeza, R., Nilsson, L.-G., Houle, S., Habib, R.,
and Tulving, E. (1996).
- Network analysis of positron emission tomography regional cerebral
blood flow data: ensemble inhibition during episodic memory retrieval.
Journal of Neuroscience, 16(11):3753-3759.
PMID: 8642418.
ISSN 0270-6474 [ bibliotek.dk ] .
- cited: Applications
-
Paulson, O. B. (1970).
- Regional cerebral blood flow in apoplexy due to occlusion of the
middle cerebral artery.
Neurology, 20(1):63-77.
PMID: 5460771.
- cited: Applications
-
Paulson, O. B., Lassen, N. A., and Skinhøj, E. (1970).
- Regional cerebral blood flow in apoplexy without arterial occlusion.
Neurology, 20(1):125-138.
PMID: 5460771.
- cited: Applications
-
Penny, W. D., Stephan, K. E., Mechelli, A., and Friston, K. J. (2004).
- Modelling functional integration: a comparison of structural equation
and dynamic causal models.
NeuroImage, 23(Supplement 1):S264-S274.
PMID: 15501096.
http://www.fil.ion.ucl.ac.uk/~wpenny/publications/integration.pdf.
- cited: Analysis types for brain
| Analysis types for brain
-
Petersson, K. M., Reis, A., Askelof, S., Castro-Caldas, A., and Ingvar, M.
(2000).
- Language processing modulated by literacy: a network analysis of
verbal repetition in literate and illiterate subjects.
Journal of Cognitive Neuroscience, 12(3):364-382.
PMID: 10931764.
- cited: Applications
| "Structural equation" and PET
-
Rajah, M. N., McIntosh, A. R., and Grady, C. L. (1999).
- Frontotemporal interactions in face encoding and recognition.
Brain Research. Cognitive Brain Research, 8(3):259-269.
PMID: 10556604.
- cited: Applications
| Unclassified
| "Structural equation" and PET
-
Sánchez, B. N., Budtz-Jørgensen, E., Ryan, L. M., and Hu, H. (2005).
- Structural equation models: A review with applications to
environmental epidemiology.
Journal of the American Statistical Association,
100(472):1443-1455.
DOI: 10.1198/016214505000001005.
- cited: General references
-
Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. (2006).
- A linear nongaussian acyclic model for causal discovery.
Journal of Machine learning Research, 7:2003-2030.
http://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf.
- cited: Tools
-
Steele, J. D., Meyer, M., and Ebmeier, K. P. (2004).
- Neural predictive error signal correlates with depressive illness
severity in a game paradigm.
NeuroImage, 23(1):269-280.
PMID: 15325374.
DOI: 10.1016/j.neuroimage.2004.04.023.
- cited: Analysis types for brain
| Applications
-
Stein, J. L., Wiedholz, L. M., Weinberg, D., Mattay, V. S., and
Meyer-Lindenberg, A. (2006).
- Automatic construction and stringent validation of path models from
human fMRI data.
In Neuroscience. Society for Neuroscience.
#492.10/PP85. A Bullmore-like construction of network models
(structural equation models) with minimization by adaptive simulated
annealing and split half validation. The title on the poster was ``A
Validated Network of Effect Amygdala Connectivity During Perceptual
Processing of Negative Emotional Stimuli''.
- cited: Applications
-
Stein, T., Moritz, C., Quigley, M., Cordes, D., Haughton, V., and Meyerand, E.
(2000).
- Functional connectivity in the thalamus and hippocambus studied with
functional MR imaging.
AJNR American Journal of Neuroradiology, 21:1397-1401.
http://ntp.neuroscience.wisc.edu/students/student-art/stein21.pdf.
- cited: Applications
| Resting state path analysis
-
Stephan, K. E., Magnotta, V. A., White, T., Arndt, S., Flaum, M., O'Leary,
D. S., and Andreasen, N. C. (2001).
- Effects of olanzapine on cerebellar functional connectivity in
schizophrenia measured by fMRI during a simple motor task.
Psychological Medicine, 31(6):1065-1078.
PMID: 11513374.
http://journals.cambridge.org/abstract_S0033291701004330.
- cited: Applications
-
Sychra, J. J., Bandettini, P. A., Bhattacharya, N., and Lin, Q. (1994).
- Synthetic images by subspace transform. I. principal components
images and related filters.
Medical Physics, 21(2):193-201.
PMID: 8177152.
- cited: Analysis types for brain
-
Taylor, J. G., Krause, B., Shah, N. J., Horwitz, B., and Mueller-Gaertner,
H. W. (2000).
- On the relation between brain imagings and brain neural networks.
Human Brain Mapping, 9(3):165-182.
PMID: 10739367.
- cited: Terminology
| Applications
| "Structural equation" and PET
-
Worsley, K. J., Cao, J., Paus, T., Petrides, M., and Evans, A. C. (1998a).
- Applications of random field theory to functional connectivity.
Human Brain Mapping, 6:364-367. http://www.math.mcgill.ca/~keith/bm97/bm97.abstract.html.
- cited: Analysis types for brain
| Applications
-
Worsley, K. J., Cao, J., Paus, T., Petrides, M., and Evans, A. C. (1998b).
- Detecting functional connectivity by threshlding correlation random
fields.
NeuroImage, 7:S36. http://www.math.mcgill.ca/~keith/HBM98/HBM98.ps. Short description of determination of
functional connectivity by examining the cross-correlation between voxels and
determing a threshold setting from random field theory. The method is
exemplified on a positron emission tomography data set.
- cited: Analysis types for brain
| Applications
-
Worsley, K. J., Charil, A., Lerch, J., and Evans, A. C. (2005a).
- Connectivity of anatomical and functional MRI data.
In International Joint Conference on Neural Networks, July
31-August 4, 2005, Montreal, Quebec, Canada. http://www.math.mcgill.ca/keith/oury/oury2.pdf.
- cited: Analysis types for brain
-
Worsley, K. J., Chen, J.-I., Lerch, J., and Evans, A. C. (2005b).
- Comparing connectivity via thresholding correlations and SVD.
Philosophical Transactions of the Royal Society, 360:913-920.
- cited: Analysis types for brain
-
Xiong, J., Parsons, L. M., Gao, J.-H., and Fox, P. T. (1999).
- Interregional connectivity to primary motor cortex revealed using
MRI resting state images.
Human Brain Mapping, 8(2-3):151-156. http://www3.interscience.wiley.com/cgi-bin/fulltext/66000621/PDFSTART.
- cited: Resting state path analysis
- Achard and Bullmore (2007)
- Bibliography
- Alexander and Moeller (1994)
- Bibliography
- Alexander et al. (1990)
- Bibliography
- amygdala
- Applications
- Büchel and Friston (1997a)
- Bibliography
- Büchel and Friston (1997b)
- Bibliography
- Büchel and Friston (1997c)
- Bibliography
- Büchel and Friston (1998)
- Bibliography
- Büchel et al. (1999)
- Bibliography
- Biswal et al. (1995)
- Bibliography
- Biswal et al. (1997)
- Bibliography
- Bollen (1989)
- Bibliography
- Bollen (1998a)
- Bibliography
- Bollen (1998b)
- Bibliography
- Bullmore et al. (1996)
- Bibliography
- Bullmore et al. (2000)
- Bibliography
- Cabeza et al. (1997)
- Bibliography
- Cao and Worsley (1998)
- Bibliography
- CCA
- Analysis types for brain
- Clark et al. (1984)
- Bibliography
- Colibazzi et al. (2008)
- Bibliography
- Cordes et al. (2001)
- Bibliography
- CRA
- Analysis types for brain
- DCM
- Analysis types for brain
| Tools
- Della-Maggiore et al. (2000)
- Bibliography
- DeLong (1990)
- Bibliography
- Easdon and McIntosh (2000)
- Bibliography
- Edwards (1995)
- Bibliography
- Edwards (2000)
- Bibliography
- effective connectivity
- Terminology
- Eguíluz et al. (2005)
- Bibliography
- emotional faces
- Applications
- Erickson et al. (2005)
- Bibliography
- Espinosa and Gerstein (1988)
- Bibliography
- Ferron and Hess (2007)
- Bibliography
- finger opposition
- Applications
- Friston et al. (1993)
- Bibliography
- Friston et al. (1995a)
- Bibliography
- Friston et al. (1995b)
- Bibliography
- Friston et al. (1997)
- Bibliography
- Friston et al. (2003)
- Bibliography
- Friston (1994)
- Bibliography
- Friston (2003)
- Bibliography
- Friston (2004)
- Bibliography
- functional connectivity
- Terminology
- Glabus et al. (2003)
- Bibliography
- Gonzalez-Lima and McIntosh (1994)
- Bibliography
- gR
- Tools
- Grafton et al. (1994)
- Bibliography
- Høedt-Rasmussen and Skinhøj (1964)
- Bibliography
- Hagmann et al. (2008)
- Bibliography
- Haughton et al. (2006)
- Bibliography
- Horwitz et al. (1984)
- Bibliography
- Horwitz et al. (1995)
- Bibliography
- Horwitz et al. (1998)
- Bibliography
- Horwitz et al. (1999)
- Bibliography
- Horwitz et al. (2000a)
- Bibliography
- Horwitz et al. (2000b)
- Bibliography
- Horwitz (1994)
- Bibliography
- ICA
- Analysis types for brain
- Jennings et al. (1998)
- Bibliography
- Kim et al. (2007)
- Bibliography
- Kleinschmidt et al. (1994)
- Bibliography
- Koch et al. (2002)
- Bibliography
- Koutsofios and North (1996)
- Bibliography
- Krause et al. (1999)
- Bibliography
- latent variable
- Mathematical description of structural
- Lee et al. (2006)
- Bibliography
- LiNGAM
- Tools
- LISREL
- Tools
- Lohmann and Bohn (2002)
- Bibliography
- Lowe et al. (1998)
- Bibliography
- Lowe (1999)
- Bibliography
- Lund (2001)
- Bibliography
- Maguire et al. (2000)
- Bibliography
- Mardia et al. (1979)
- Bibliography
- McArdle and McDonald (1984)
- Bibliography
- McIntosh and Gonzalez-Lima (1991)
- Bibliography
- McIntosh and Gonzalez-Lima (1992)
- Bibliography
- McIntosh and Gonzalez-Lima (1994a)
- Bibliography
- McIntosh and Gonzalez-Lima (1994b)
- Bibliography
- McIntosh and Lobaugh (2004)
- Bibliography
- McIntosh et al. (1994)
- Bibliography
- McIntosh (1998)
- Bibliography
- McIntosh (1999)
- Bibliography
- McIntosh (2000)
- Bibliography
- McKiernan et al. (2001)
- Bibliography
- measurement model
- Mathematical description of structural
- Mechelli et al. (2002)
- Bibliography
- Mechelli et al. (2005)
- Bibliography
- Metter et al. (1984a)
- Bibliography
- Metter et al. (1984b)
- Bibliography
- Meyer-Lindenberg et al. (2004)
- Bibliography
- Meyer-Lindenberg et al. (2005)
- Bibliography
- MIM
- Tools
- Moeller et al. (1987)
- Bibliography
- Mopritz et al. (2000)
- Bibliography
- morphometry
- voxel-based
- Applications
- Mplus
- Tools
- Muthén and Muthén (2006)
- Bibliography
- Mx
- Tools
- Nair and Gon-za-lez-Lima (2003)
- Bibliography
- Neale et al. (2003)
- Bibliography
- network
- Mathematical description of structural
- Nezafat et al. (2001)
- Bibliography
- Nielsen et al. (1998)
- Bibliography
- node
- Mathematical description of structural
- Nyberg et al. (1996)
- Bibliography
- Paulson et al. (1970)
- Bibliography
- Paulson (1970)
- Bibliography
- PCA
- Analysis types for brain
- Penny et al. (2004)
- Bibliography
- PET
- no title
- Petersson et al. (2000)
- Bibliography
- PLS
- Analysis types for brain
- PPI
- Analysis types for brain
- principal component analysis
- Analysis types for brain
- Rajah et al. (1999)
- Bibliography
- RAM
- Analysis types for brain
| Applications
- RD
- Analysis types for brain
- replicator dynamics
- Analysis types for brain
- Sánchez et al. (2005)
- Bibliography
- schizophrenia
- Applications
- seed voxel correlation analysis
- Analysis types for brain
- SEM
- Analysis types for brain
| Tools
- Shimizu et al. (2006)
- Bibliography
- simulated annealing
- Applications
- simultaneous equation systems
- Mathematical description of structural
- small world
- Applications
| Applications
- sparse
- Functional neuroimaging
- SSM
- Analysis types for brain
- Steele et al. (2004)
- Bibliography
- Stein et al. (2000)
- Bibliography
- Stein et al. (2006)
- Bibliography
- Stephan et al. (2001)
- Bibliography
- structural form
- Mathematical description of structural
- SVD
- Analysis types for brain
- Sychra et al. (1994)
- Bibliography
- Taylor et al. (2000)
- Bibliography
- Tools
- no title
| Tools
| Tools
- transient response plasticity
- Terminology
- voxel-based morphometry
- Applications
- wavelet
- Applications
- Worsley et al. (1998a)
- Bibliography
- Worsley et al. (1998b)
- Bibliography
- Worsley et al. (2005a)
- Bibliography
- Worsley et al. (2005b)
- Bibliography
- Xiong et al. (1999)
- Bibliography
Finn Årup Nielsen
2010-04-23