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Community structures in networks

Assortative communities

Dense connection within groups

Sparse connection between groups

Min cut, spectral partitioning,
modularity, etc.

Functional communities

Structure equivalence

Disassortative communities

Mixed structures, satellite structures

Food webs, leaders and followers
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Stochastic block model

Assumptions:

We represent our network as an undirected simple graph G = (V ,E) with the
adjacency matrix A.

Each node u ∈ V has a hidden block label g(u) ∈ {1, . . . , k}.
Each node’s block label g(u) is first generated according to qg(u). Let ns be the
number of nodes of type s, with n =

∑
s ns .

Between each pair of nodes {u, v}, an edge is generated independently with
probability pg(u)g(v). Let mst be the number of edges from block s to block t,
with

∑
st mst = m.

Given the parameters pst and a block assignment, i.e., a function g : V → {1, . . . , k}
assigning a label to each node, the likelihood of generating a given graph G in this
model is:

P(G , g |q, p)

=
∏
u

qg(u)

∏
u<v

(pg(u)g(v))Auv (1− pg(u)g(v))1−Auv

=
k∏

s=1

qnss

k∏
s,t=1

(pst)
mst (1− pst)

nsnt−mst .
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The total likelihood

Summing over latent block assignment

Overcoming discreteness

A natural requirement in Bayesian approaches

Avoid over-fitting by averaging over of latent states of different fit

kn number of terms in the sum

P(G | q, p) =
∑
g

P(G , g | q, p) ,

In statistical physics terms

Assuming temperature T = 1/β = 1

State energy E(g) = − log P(G , g | q, p) —likelihood

Ground state arg ming E(g) —Maximum likelihood state

The Boltzmann distribution P∗(g) =
e−E(g)∑
g e−E(g)

The free energy
∑

g e−E(g) = − log P(G | q, p) —the total likelihood

Calorimetry Tricks for estimating the free energy
simulated annealing, population annealing, parallel tempering
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Variational approximation for the total likelihood

The variational trick

log P(G | q, p) = log
∑
g

Q(g)
P(G , g | q, p)

Q(g)

≥
∑
g

log

[
Q(g)

P(G , g | q, p)

Q(g)

]

=EQ(g)

[
log

P(G , g | q, p)

Q(g)

]
=EQ(g) [log P(G , g | q, p)] + S[Q(g)]

=− 〈E〉+ S

The variational distribution

If Q(g) = P∗(g) the approximation is exact

Use simpler forms of Q(g) the approximation becomes a optimization

log P(G | q, p) ≈ sup
Q

[
EQ(g)[log P(G , g | q, p)] + S[Q(g)]

]
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The choice of Q(g)

P(G , g |q, p) =
∏
u

qg(u)

∏
u<v

(pg(u)g(v))Auv (1− pg(u)g(v))1−Auv .

log P(G | q, p) ≥
∑
g

log

[
Q(g)

P(G , g | q, p)

Q(g)

]

Wish list

Be able to factor Q(g) into local
terms

Each individual local factor can be
efficiently solved

Can be optimized to achieve good
approximation

The mean field free energy

Q(g) =
∏
u

bugu

Easy to solve

Total independence

Poor approximation for almost any
graphs
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The Bethe free energy

Estimating the average energy

−〈E〉 =EQ(g)[log P(G , g | q, p)]

=EQ(g)[
∑
u

log qg(u) +
∑

(u,v)∈E
log pg(u)g(v) +

∑
(u,v)/∈E

log(1− pg(u)g(v))]

=
∑
u

∑
s

bus log qs +
∑

(u,v)∈E

∑
st

buvst log pst +
∑

(u,v)/∈E

∑
st

buvst log(1− pst)

The cluster variational distribution

Q(g) =

∏
u<v b

uv
gugv∏

u(bugu )du−1
, with bugu =

∑
t,∀v

buvgu t

Exact for trees

Empirical results show that it works pretty well for loopy graphs

Conditional independence

Corresponds to the 2nd order Kikuchi free energy

Belief Propagation leads to the same fixed points (Yedidia, 2001)
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Belief Propagation

The message passing algorithm

Equivalent to the cavity method in statistical physics

Each node u send a message to each neighbor v about u’s 1-point marginal

The message bu→v
s is based on all the other neighbors of u, as if v is absent

Pass the messages around until convergence

v

w

 u

Updating the messages

bu→v
s =

1

Zu→v
qs

∏
w 6=u,v

k∑
t=1

bw→u
t (pst)

Auv (1− pst)
1−Auv

Since we take non-edges into account, there are
O(n2) messages to update

In sparse networks, the messages along non-edges
is of order O(1/n), if we apply a mean field
approximation for ∀v , (u, v) /∈ E

bu→v
s = bus =

1

Zu
qs
∏
w 6=u

k∑
t=1

bw→u
t (pst)

Auv (1−pst)1−Auv
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Belief Propagation (continued)

The messages with a mean field on non-edges

bu→v
s =

1

Zu→v
qs

(w,u)∈E∏
w 6=u,v

k∑
t=1

bw→u
t pst

(w,u)/∈E∏
w 6=u,v

k∑
t=1

bus (1− pst) if (u, v) ∈ E

bus =
1

Zu
qs

(w,u)∈E∏
w 6=u

k∑
t=1

bw→u
t pst

(w,u)/∈E∏
w 6=u

k∑
t=1

bus (1− pst)

v

w

 u

Running time analysis

O(m + n) messages to update each sweep

The messages converge within constant sweeps

Linear time E-step

The EM outer loop converges even faster

Constant number of initial restarts

O(m + n) linear total time
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Convergence time: finite correlation length
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Optimal detectability of Belief Propagation

Detectability

BP fails when the pst are
too similar

MCMC with extended
running time also fails

The same bound from
spectral method in dense
graphs

Better bound than
spectral method in sparse
graphs

Theoretical proof that
BP is optimal in trees
(Mossel, Neeman and
Sly, 2001)

No algorithm can do
better!
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The variational expectation maximization framework

Variational E-step

log P(G | q, p) ≈ sup
Q

[
EQ(g)[log P(G , g | q, p)] + S[Q(g)]

]
Choose your favorite Q(g)

Optimize Q(g) while fixing the parameters q, p

For SBMs: Bethe approximation with linear Belief Propagation

M-step

q̂s =
n̄s

n
=

∑
u b

u
s

n
, ω̂st =

mst

nsnt
=

∑
u 6=v Auvbuvst

(
∑

u b
u
s )(
∑

u b
u
t )
,

Solving for the MLEs of the parameters q, p while fixing Q(g)

Go back to E-step, rinse and repeat until a fixed point is reached

Gradient ascent in the joint space, maximizing the total likelihood

Linear approximation for an exponential size problem
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A case study: building the right stochastic block model

Variants and elaborations

Degree corrected SBM

Extensions for rich data

More blocks!

K++

SBM

Poisson
SBM

M
odel e laborat ion

 DC-
SBM

Gen- 
SBM

+Text

Model selection

Which model to choose given the
data?

Number of blocks (order selection)?

Over-fitting?
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Model selection

Occam’s razor

Complex models with more parameters have a natural advantage at fitting data.

Simpler models have lower variability, thus less sensitive to noise in the data.

Balance the trade-off between bias and variance.

Excessive complexity not only increases the cost of the model, but also hurts the
generalization performance.
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Model selection for stochastic block models

Common approaches

Use the model you like.

Make a choice based on domain expertise.

Use off-the-shelf Information Criteria for independent data.
Akaike information criterion (AIC), Bayesian information criterion (BIC), etc.

Non-parametric methods

Generalization test (cross validation)

Node classification

Link prediction

The good
can compare any model
generalization performance
focused

The bad
require multiple data instances
or the ability to divide data into
i.i.d. subsamples
multiple runs lead to inefficiency
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Frequentist model selection

Likelihood Ratio Test for block models

Model selection between a pair of nested models as a hypothesis test

Test results have proper confidence intervals

The likelihood ratio test (LRT) is the uniformly most powerful test

Basis for many off-the-shelf statistical tools (AIC)

Constructing a LRT

Null model H0, nesting alternative H1

Λ(G) = log
supH∈H1

P(G | H)

supH∈H0
P(G | H)

,

Reject the null model when Λ exceeds
some threshold, which is based on

our desired error rate
Null distribution of Λ

To get the Null distribution of Λ, we can
analytic prediction
parametric bootstrapping

LRT for block models

Classic 1
2
χ2
` result

Key assumptions:
parameter estimates have
Gaussian distributions
central limit theorems for IID
data
large data limit

Networks data is relational

The latent block assignment
variables are discrete

Sparse networks far from large
data limit
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Bootstrapping results using BP

Likelihood Ratio Test for SBM vs DC-SBM

H0 : Graph is generated according to the Vanilla-SBM

H1 : Graph is generated according to the DC-SBM, where an edge is generated
with probability θuθvpg(u)g(v).

Λ(G) = log
supH∈H1

P(G | H)

supH∈H0
P(G | H)

,

According to classic χ2 test, Λ(G) ∼ 1
2
χ2
` with ` = n − k
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Bayesian model selection

The Bayesian approach

Integrating over parameters of different fit

The posterior is proportional to total likelihood

BIC has close relation with Minimum Description Length

Posterior of the SBM

P(Mi | G) =
P(Mi )

P(G)
P(G | Mi )

∝
∑
g

∫∫∫ 1

0
d{pst}d{qs}P(G , g | q, p)

Uniform prior on P(Mi )

Constant evidence P(G)

Bayes factor

Bayesian model selection for SBMs

The good
compare any model with proper
posterior
combine domain prior with data
conjugate priors lead to
tractability

The bad
realistic priors often not
conjugate
model selection is inherently
NOT Bayesian

Belief propagation for the sum
over integrated likelihood
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Conclusions

The variational expectation maximization framework

A flexible framework for community based models
Mixed membership block model (Airoldi, Blei, Fienberg and Xing, 2008)
The Ball-Karrer-Newman model (2011)

Choice of variational distribution balance between accuracy and scalability

SBM: Linear Belief Propagation for the exponential sum

The analogy between machine learning and statistical physics is powerful

Applications

Works for both Frequentist and Bayesian model selection

The right scalability and accuracy lead to better theories

Project: Bayesian recommendation system based on the SBM (Roger Guimerà)

Even faster algorithm with message sub-sampling
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Thank you

Looking for Postdoc opportunities

Getting my Ph.D. this July

Up for interesting projects in any discipline

Preferably in the US, but open for other places

everyxt@gmail.com
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The secret last slide

Out[207]=
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Histogram Order selection for
SBMs

Even a challenge
for classic i.i.d
mixture models

Degeneracy at
zero

The non-zero
peak scale with
the size of
network

AIC and BIC are
bad for order
selection
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