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LATENT STRUCTURE WITHIN NETWORKS

e.g., Block / clique structure
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LATENT STRUCTURE WITHIN NETWORKS

e.g., Transitivity / latent space
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PROBABILISTIC LATENT VARIABLE MODELS

I Each node is assigned a latent variable, say Ui

I Latent variable determines stochastic properties of each node i.e., existence of a
link between nodes i and j, (Xij = 1), depends stochastically on Ui and Uj

Example : Latent class / block models [WW87]

Ui ∼iid Multinomial(K) - Nodes assigned latent classes
Λij ∼iid Beta - Independent class interaction probabilities
Wij := ΛUiUj - Node interaction probabilties depend on classes
Xij ∼ Bernoulli(Wij) - Bernoulli likelihood

Example: Distance models [HRH02]

Ui ∼iid N (0, I) - Nodes assigned latent positions
dij := |Ui − Uj| - Distances between latent positions

Wij := α− βdij - ‘Affinity’ of nodes decays with distance
Xij ∼ Bernoulli(σ(Wij)) - Bernoulli sigmoid likelihood
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LATENT VARIABLE MODELS ARE GENERAL

Results from probability theory. . .

I We assume the nodes of the network are exchangeable i.e., have no ordering

I We demonstrate a characterisation of all probability distributions for
exchangeable networks

I We discuss the types of structures that can be found using two particular models

. . . inspire directly modelling adjacency matrices with a latent
variable model

≈
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NETWORKS TYPICALLY REPRESENTED BY ARRAYS

e.g., a protein interactome represented by its adjacency matrix
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EXCHANGEABILITY FOR NETWORK DATA
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EXCHANGEABILITY FOR CORRESPONDING ARRAYS
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EXCHANGEABILITY CAN BE CHARACTERISED

Definition
An array X = (Xij)i,j∈N is called a (jointly/weakly) exchangeable array if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞ .

Theorem (Aldous [Ald81], Hoover [Hoo82])
A random 2-array (Xij) is exchangeable if and only if there exists a random
(measurable) function F : [0, 1]3 → X such that

(Xij)
d
= (F(Ui,Uj,Uij)).

where (Ui)i∈N and (Uij)i≤j∈N are i.i.d. Uniform[0, 1] random variables and Uji = Uij

for j < i ∈ N.

James Lloyd 9 / 31



AN ARBITRARILY GOOD APPROXIMATION

A simpler representation can be used

Call an array (Xij) simple if it admits a representation

(Xij)
d= (Θ(Ui,Uj))

where Θ : [0, 1]2 → X is a random measurable function and (Ui)i∈N are i.i.d.
Uniform[0, 1] random variables.

Let L(Y) be the law (distribution) of a random variable Y and define
χmX := (Xij; i, j ≤ m).

Theorem (Kallenberg [Kal99])
Let X be an exchangeable array in a Borel space X . Then there exist some simple
exchangeable arrays X1,X2, . . . such that L(χmXn) and L(χmX) are mutually
absolutely continuous for all m, n ∈ N and the associated Radon–Nikodym
derivatives converge uniformly to 1 as n→∞ for fixed m.
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DIRECTLY MODELLING ADJACENCY MATRICES

Representation results provide a generic modelling recipe

Θ - Adjacency matrix approximated by function on unit square
Ui - Each node associated with a latent variable in [0, 1]

Wij := Θ(Ui,Uj) - Evaluation of approximate adjacency matrix
Xij ∼ Bernoulli(Wij) - Bernoulli likelihood (can be shown to be general)

Θ can be pictured as blurred adjacency matrix
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EXAMPLES THAT FIT THIS PATTERN

Note
I Ui not restricted to be Uniform[0, 1] - used in theorems as canonical distribution

I Wij often specified directly, but function Θ can often be characterised

Latent class / block models

Ui ∼iid Multinomial(K) - Nodes assigned latent classes
Λij ∼iid Beta - Independent class interaction probabilities
Wij := ΛUiUj - Node interaction probabilties depend on classes

Distance models

Ui ∼iid N (0, I) - Nodes assigned latent positions
dij := |Ui − Uj| - Distances between latent positions

Wij := σ(α− βdij) - Probability of interaction decays with distance
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MANY OTHER MODELS FIT THIS PATTERN

Wij κ Ui ∼ .

Random function model φ(Ui)
′Λ κU×U Gaussian

SMGB, InfTucker φ(Ui)
′Λφ(Uj) κU ⊗ κU Laplace

GPLVM φ(Ui)
′Λ κU ⊗ δ Gaussian

Eigenmodel U′i ΛUj LU ⊗ LU Gaussian
Linear relational GP U′i ΛUj LU ⊗ LU Gaussian
PCA, PMF U′i Λ LU ⊗ δ Gaussian
Latent distance −|Ui − Uj| 0 Gaussian
Mondrian process based Decision tree * Uniform

Latent class ΛUiUj δU×U Multinomial
IRM, IHRM ΛUiUj δU×U CRP
BMF, LFRM U′i ΛUj LU ⊗ LU IBP
ILA

∑
d IUid IUjd Λ

(d)
UidUjd

* CRP + IBP

Notes
κ is the kernel in the often equivalent Gaussian process representation; φ is the
corresponding feature map. L is a linear kernel, δ is the Kronecker delta function, ⊗
is a tensor / Kronecker product. Λ is a matrix. I is an indicator function.
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EXAMPLE: RANDOM FUNCTION MODEL (RFM)

Directly model smoothed adjacency matrix [LOGR12]

Ui ∼iid N (0, I) - Nodes embedded in latent space
Θ ∼ GP(0, κ) - Adjacency matrix modelled by Gaussian process

Wij := Θ(Ui,Uj) - Evaluation of smoothed adjacency matrix
Xij ∼ Bernoulli(σ(Wij)) - Bernoulli sigmoid likelihood

Observations

I Gaussian processes can approximate any measurable function, so this model
can approximate any exchangeable distribution for networks

I Model will favour functions Θ that are smooth

I Smoothness can be seen when reordering adjacency matrices using Ui learnt
from data, resulting in visually smooth adjacency matrix
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RFM FINDS SMOOTH STRUCTURES

A protein interactome
Adjacency matrix sorted

by MAP embedding MAP Θ
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RFM FINDS SMOOTH STRUCTURES

Unsorted
adjacency matrix

Adjacency matrix sorted
by MAP embedding MAP Θ
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RFM: BLOCK STRUCTURE
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RFM: SPARSE WITH SOME TRANSITIVITY
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RFM: HUB NODES
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RFM: ORDERED AND ALMOST BIPARTITE
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RFM: ORDERED AND ALMOST BIPARTITE
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RFM: ORDERED AND ALMOST BIPARTITE

Near
equivalent

Increasing
degree

Variance of
degrees larger
than expected
by blockmodel
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GOOD PREDICTIONS WITH LOW DIMENSION VARIABLES

RFM performs well on prediction tasks. . .

5 fold cross validation AUC results
Data set High school NIPS Protein

Latent dim. 1 2 3 1 2 3 1 2 3

PMF 0.747 0.792 0.792 0.729 0.789 0.820 0.787 0.810 0.841
Eigenmodel 0.742 0.806 0.806 0.789 0.818 0.845 0.805 0.866 0.882

GPLVM 0.744 0.775 0.782 0.888 0.876 0.883 0.877 0.883 0.873
RFM 0.815 0.827 0.820 0.907 0.914 0.919 0.903 0.910 0.912

. . . even with low dimensional latent space

I Performance of RFM with one dimensional latent space outperformed all
benchmarks with up to three dimensions

I Benchmarks include Hoff’s eigenmodel [Hof08] which empirically
outperforms block models and latent distance models

I High predictive performance with low dimensional latent space may lead to
interpretability
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AN ALTERNATIVE INTERPRETATION

I RFM assumes simple priors on latent variables, but allows Θ to be any function

I Alternative modelling paradigm is to use highly structured priors for the latent
variables and a simple Θ

I The Inifinite Latent Attribute model assumes a multiple clustering prior for the
latent variables and a linear Θ
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MOTIVATION FOR LATENT ATTRIBUTE MODEL

I Imagine a social network in a collegiate university. Friendships may arise based
on attributes / features each person has and their values

I e.g., A person may be a member of a college
I This is then partitioned by the different colleges e.g., King’s, Trinity etc.

I e.g., A person may play a sport
I This is then partitioned by the different sports e.g., Tennis, Hockey etc.

I This type of structure can be succinctly expressed by multiple overlapping
clusterings
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THE INFINITE LATENT ATTRIBUTE MODEL

A multiple clustering model using highly structured latent
variables [PKG12]

I Each node assumed to posses some collection of attributes / features
I Specified by IBP prior

I Within each feature nodes are assumed to belong to a cluster
I Specified by CRP prior

Generative Model

Z|α ∼ IBP(α)

c(m)|γ ∼ CRP(γ),where m ∈ {1, . . .M}

λ
(m)

kk′ |σw ∼ N(0, σ2),where k, k′ ∈ {1, . . . ,K(m)}

Wij =
∑

m

zimzjmw(m)
cm

i cm
j

+ s.
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THE INFINITE LATENT ATTRIBUTE MODEL
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THE INFINITE LATENT ATTRIBUTE MODEL
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ILA CAN PRODUCE VERY ACCURATE PREDICTIONS

NIPS coauthorship network prediction
Cross validation on NIPS 1-17 coauthorship dataset (Globerson et al., 2007). 234
most connected authors, 10 repeats, holding out 20% of the data. ILA 500 iterations,
IRM and LFRM 1000 iterations.

IRM LFRM ILA (M =∞)

Test error (0-1 loss) 0.0440± 0.0014 0.0228± 0.0041 0.0106± 0.0007
Test log likelihood −0.0859± 0.0043 −0.0547± 0.0079 −0.0318± 0.0094
AUC 0.9565± 0.0037 0.9631± 0.0150 0.9910± 0.0056

Visualisation of link prediction
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The lighter the entry, the more confident the model is that the corresponding authors
would collaborate.
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ILA: EXAMPLE STRUCTURE

ILA finds disconnected group in protein interactome. . .
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. . . corresponding to a feature with two sub-clusters

I ILA has identified similar structure to RFM but automatically identifies it as a
separate sub-clustering

I Ongoing work to better intepret this model and find biologically interesting /
relevant structures
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SUMMARY

I Latent variable models are a generic way to probabilistically model networks
I Assuming exchangeability, networks can be modelled by a random

function on the unit square
I Framework encompasses many standard models of networks

I Introduced the RFM which directly instantiates the random function
representation

I Inference in RFM reveals block and latent space structure, as well as hub
nodes and other structures

I Good predictive performance even with low dimensional node latent
variables

I Also briefly discussed the multiple clustering model ILA
I Automatically reveals structures similar to those found by the RFM
I ILA also has excellent predictive performance
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