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A Network

Dynamic network data record the link statuses in the network

at T time points:
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Generative Models of Networks

... encoded as link adjacency matrices {Y (1),Y (2), . . . ,Y (T )}:

Y (t) =
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Example: friendship statuses in a social network

• y
(t)
ij = 1: actors i and j are friends at time t;

• y
(t)
ij = 0: actors i and j are not friends at time t.
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Latent feature representations

Assume there are K latent features underlying the population.

Associate actor n with feature indicators h
(t)
n ∈ {0, 1}K at time t:

H(t) =

Interpretation: features represent unobserved hobbies/interests,

e.g., if feature k represents “plays tennis”, then

• h
(t)
nk = 1: actor n plays tennis at time t;

• h
(t)
nk = 0: actor n doesn’t play tennis at time t.
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Hidden Markov models

Hidden Markov models assume features evolve independently

h
(t)
ik | h

(t−1)
ik ∼ Q

(

h
(t−1)
ik , h

(t)
ik

)

where Q is a Markov transition matrix. Then the edges are

conditionally independent given the latent features

y
(t)
ij | h

(t)
i ,h

(t)
j ∼ Bernoulli

[

σ

(

∑

kℓ

h
(t)
ik h

(t)
jℓ vkℓ

)]

where V is a feature-interaction weight matrix

vkℓ ∼ N (0, σ2
H)
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An Example

Consider the following example: feature h
(t)
ik evolves asa

h
(t)
ik | h

(t−1)
ik ∼ Bernoulli

(

a
1−h

(t−1)
ik

k b
h
(t−1)
ik

k

)

• ak ∈ [0, 1] controls the probability of feature k switching from

off to on

• bk ∈ [0, 1] controls the persistency of feature k in the off state

aFinite version of the DRIFT model from ?.
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Factorial HMM
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Y (1) Y (2) Y (3) . . . Y (T )

n = 1 : N .

Each feature evolves over time independently. The latent feature

configuration at a given time step produces the observed network.

See ?.
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Latent Feature Evolution

But consider the following:

• If my friends enjoy playing tennis, I am likely to start playing

tennis

• If a friend gets me to join the tennis team, then I am more

likely to befriend other tennis players

We call this phenomenon latent feature propagation
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Latent Feature Propagation

Want something more like this:

H(1) H(2) H(3) . . . H(T )

Y (1) Y (2) Y (3) . . . Y (T )

Network observations influence future latent features; information

propagates between the observed and latent structures throughout

the network over time
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Latent Feature Propagation

We use the following model (?)

h
(t+1)
ik | µ

(t+1)
ik ∼ Bernoulli

[

σ
(

ck

[

µ
(t+1)
ik − bk

] ) ]

µ
(t+1)
ik = (1− λi)h

(t)
ik + λi

h
(t)
ik +

∑

j∈ε(i,t) wjh
(t)
jk

1 +
∑

j′∈ε(i,t) wj′

1. λi ∈ (0, 1): actor i’s susceptibility to the influence of friends;

(1− λi) is the corresponding measure of social independence;

2. wi ∈ R+: the weight of influence of person i;

3. ck ∈ R+: a scale parameter for the persistence of feature k;

4. bk ∈ R+: a bias parameter for feature k.
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Latent Feature Propagation

• Inference by MCMC; Forward-Backwards Algorithm from ?

• Datasets:

– Simulated: N = 50, T = 100,K = 10.

– NIPS: N = 110, T = 17,K = 15.

– INFOCOM (?): N = 78, T = 50,K = 10.
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Prediction of Missing Links

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Lo
g−

lik
el

ih
oo

d

LFP** DRIFT LFRM

−0.2

−0.15

−0.1

−0.05

Lo
g−

lik
el

ih
oo

d

LFRMDRIFTLFP**

−0.3

−0.25

−0.2

−0.15

Lo
g−

lik
el

ih
oo

d

LFRMLFP DRIFT

0.76

0.78

0.8

0.82

0.84

0.86

A
U

C
 s

co
re

LFP** DRIFT LFRM

(d) Simulated data
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(e) NIPS dataset
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(f) INFOCOM dataset

Top: log-likel. of test edges. Bottom: AUC scores for classifying

test edges. 10 repeats on different 20% hold-outs. Averaged over

300 samples. Significance indicated by (⋆⋆) (α = 0.05).
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Forecasting Future Networks

(g) NIPS dataset, K = 15 (h) INFOCOM dataset, K = 10

Forecasting a future unseen network. Differences from a naive

baseline of the log-likelihoods of Y (t) after training on Y (1:t−1)
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Visualising Feature Propagation

(i) H1997,Y1997 (j) H1998,Y1997 (k) H1998,Y1998 (l) H1999,Y1998

Visualising feature propagation in the NIPS dataset (K = 15).
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Visualising Feature Propagation

We can look at the research interests of a trio of sparsely linked

authors between 1997 and 1998 who are nearby in latent space:

Author & year Topics

Top cluster “Prior Knowledge in Support Vector Kernels”

Bengio Y, Singer Y, et al. “Shared Context Probabilistic Transducers”

Hinton G, Ghahramani Z “Hierarchical Non-linear Factor Analysis and Topographic Maps”

Bishop C, Williams C, et al. “Regression w/ Input-depend. Noise: A Gaussian Process Treatment”

Sollich P, Barber D “On-line Learning from Finite Training Sets in Nonlinear Networks”

Barber D, Bishop C “Ensemble Learning for Multi-Layer Networks”

Bishop C, Jordan M “Approx. Posterior Distributions in Belief Networks Using Mixtures”
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Visualising Feature Propagation

We can also examine the five authors with the largest inferred

weights wn and some of their research interests ( 1995 - 1999):

Author wn (relative) Topics

Barto A 1.55 reinforcement learning, planning algorithms

Rasmussen C 1.32 Gaussian processes, Bayesian methods

Vapnik V 1.29 SVMs, learning theory

Scholkopf B 1.28 SVMs, kernel methods

Tresp V 1.26 neural networks, Bayesian methods
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