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The Switching Algorithm SA is the most common algorithm used for the generation of a random version of a given graph
preserving the degree distribution ([1, 2, 3]). Let G = (E, V ) a undirected graph without loops with e edges and with edge
density d. The SA is composed by a sequence of N Switching Steps SS in which the following actions are performed: two
edges (a, b) and (c, b) are randomly selected; if (a, d), (c, b) 6∈ E the edges (a, b), (c, b) are removed and (a, d), (c, b) are added
and the SS ends; otherwise, if (a, c), (b, d) 6∈ E the edges (a, b), (c, b) are removed and (a, c), (b, d) are added and the SS
ends; if both the previous situations are satisfied then one pair is chosen randomly (Fig.1). The SA is widely used for the
generation of null models preserving the degree distribution. Usually in literature the number N of SSs is chosen empirically
(e.g. N = 100e [3]). In this work we first formalize the concept of ”random version” of a graph and then we compute a
theoretical lower bound N in order to obtain such random version.

Figure 1: Scheme of a SS in the SA.

Let x(k) be the number of common edges between G and its rewired
version G(k) after k SSs and let 0 < pr ≤ 1 be the probability to perform
a SS. We measure the ”randomness” between G(k) and G through the

Jaccard Index JI s(k) that in this case reads as s(k) = x(k)

2e−x(k) . Since the

JI is an injective function we need only to consider the behaviour of x(k).
We prove that:

x(k) → x for k → +∞ and that

|x(k) − x| < 1 for k > N =
e(1 − d)

2pr

ln e(1 − d).

In the case of bipartite graphs:

N =
e

2(1 − d)
ln e(1 − d)

as proved in an our recent work [4], otherwise

N =
e

2d3 − 6d2 + 2d + 2
ln e(1 − d).

In order to derive such bound, we estimate the mean value of x(k+1)

using the value x(k); indeed, after a SS, the number of common edges
between G(k+1) and G can increase (decrease) by 1, increase (decrease) by 2 or remain unchanged w.r.t. the number of
common edges between G(k) and G . For each of these five possibilities fi(x

(k)) we compute the relative probabilities pi(x
(k)).

We estimate the mean number of common edges at the (k + 1)-th step as

x(k+1) =
5∑

i=1

pi(x
(k))fi(x

(k))

and the result is a second order linear sequence for which a closed form reads as

x(k+1) = mk+1 + q with m =
et − 2pr(t − z) − e2 − ez

(t − e − z)e
and q =

2epr

t − e − z
.

We prove that 0 < m < 1 and so the unique fixed point of the recursive equation is q. Finally we show that |x(k) − x| < 1
of k > N(z) = logm

t−z
(t−e−z)e . The value z is an unknown parameter related to the number of possible random graphs that

could be obtained from G preserving the degree distribution. We also prove that N(z) has a maximum for z = 0 and so the
value N = N(0) can be chosen as a bound. Finally, by using the same strategy described above, we prove that for each step
k of the SA, the number of common edges between G(k) and G is lager than the number of common edges between G(k) and
H(k) where H(k) is a different instance of the SA starting from G.
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