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Abstract

Bisimulations are standard in modal logic and, more generally, in the theory of state-
transition systems. The quotient structure of a Kripke model with respect to the
bisimulation relation is called a bisimulation contraction. The bisimulation contrac-
tion is a minimal model bisimilar to the original model, and hence, for (image-)finite
models, a minimal model modally equivalent to the original. Similar definitions exist
for bounded bisimulations (k-bisimulations) and bounded bisimulation contractions.
Two finite models are k-bisimilar if and only if they are modally equivalent up to
modal depth k. However, the quotient structure with respect to the k-bisimulation
relation does not guarantee a minimal model preserving modal equivalence to depth
k. In this paper, we remedy this asymmetry to standard bisimulations and provide a
novel definition of bounded contractions called rooted k-contractions. We prove that
rooted k-contractions preserve k-bisimilarity and are minimal with this property. Fi-
nally, we show that rooted k-contractions can be exponentially more succinct than
standard k-contractions.

Keywords: Modal logic, Kripke models, Bounded bisimulations, Bisimulation
contractions, Exponential succinctness.

1 Introduction

Bisimulation plays a central role in countless fields, such as modal logic, set
theory, formal verification, concurrency theory, process calculus, and others.
Two structures are bisimilar if they are indistinguishable with respect to some
behavioral property. In the case of Kripke models, bisimilarity between two
models mean that their accessibility relations are structurally equivalent, and
it then follows that two (image-)finite models are bisimilar if and only if they
are modally equivalent (modal equivalence means they satisfy the same for-
mulas) [3]. When using Kripke models for computational purposes, it is often
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desirable to keep the models as small as possible while preserving their logi-
cal properties, e.g., preserving modal equivalence. The quotient structure of a
Kripke model with respect to the bisimulation relation is called a bisimulation
contraction, giving us a minimal model modally equivalent to the original [4].

Bounded bisimulations only preserve structural equivalence up to some
depth k. In the case of Kripke models, two models are k-bisimilar if their acces-
sibility relations are structurally equivalent up to depth k. Two finite models
are then k-bisimilar if and only if they are modally equivalent to modal depth
k [3]. When the modalities are used to represent knowledge in an epistemic
logic, k-bisimilarity means that higher-order reasoning is preserved to depth k.
If we are only interested in reasoning to depth k, say in a setting with agents
having bounded rationality, it seems intuitive to consider the quotient structure
with respect to k-bisimilarity in the attempt to find a minimal model preserv-
ing modal equivalence to depth k. We call the quotient structure with respect
to k-bisimilarity the standard k-contraction [17]. However, as we will show, the
standard k-contraction does not guarantee a minimal model preserving modal
equivalence to depth k. We provide an alternative notion of k-bisimulation
contraction, called a rooted k-contraction, that indeed guarantees minimality.

The inspiration for this paper came from bounded rationality in epistemic
planning [2]. Epistemic planning is concerned with computing plans for agents
having incomplete information about the world and each other’s knowledge,
using epistemic logic as the underlying formalism [5]. Unfortunately, epistemic
planning is in general undecidable, i.e., it has an undecidable plan existence
problem [5,7]. In the search for interesting decidable fragment of epistemic
planning, we decided to limit the reasoning capabilities of agents to some fixed
depth k (e.g. limiting to depth 2 would mean that agents can reason about
what they know about the knowledge of others, but not what they know about
what others know about them). In order to define such depth-limited epis-
temic planning formally, we needed a notion of contraction that would pre-
serve modal equivalence to depth k. We originally started out using standard
k-contractions, but soon discovered that they didn’t guarantee minimality of
the contracted models, in many cases actually quite far from it. We then set out
on a quest to try to find a better notion of k-contraction that would guarantee
minimality among k-bisimilarity preserving models, hence also reestablishing
the symmetry to the corresponding existing results for standard bisimulations.
In this paper we report on the results of that quest. We will report on the
results of applying these notions to epistemic planning in a separate paper.

2 Preliminaries

In this section, we recall some basic notions in modal logic, i.e., pointed Kripke
models, bisimulation and bounded bisimulation [3]. Let P be a countable set
of atomic propositions and I a finite set of modality indices. The language L
of multi-modal logic is defined by the following BNF (where p ∈ P and i ∈ I):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2iϕ.
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Symbols>, ⊥, ∨ and 3i are defined as usual. Modal depth is defined inductively
on the structure of formulas: md(p) = 0 (for all p ∈ P), md(¬ϕ) = md(ϕ),
md(ϕ1 ∧ ϕ2) = max{md(ϕ1),md(ϕ2)} and md(2iϕ) = 1 + md(ϕ).

Definition 2.1 A model of L is a triple M = (W,R, V ) where:

• W 6= ∅ is a finite set of (possible) worlds;

• R : I → 2W×W assigns to each i ∈ I an accessibility relation Ri;

• V : P → 2W is a valuation function assigning to each atom a set of worlds.

A pointed model M is a pair (M,wd), where wd ∈W is the designated world.

We also use wRiv for (w, v) ∈ Ri. We call an i-edge, or simply an edge, such
a pair of worlds. A path is a sequence of worlds connected by edges. Note that
we have restricted our attention to finite models. All of our results generalize
to infinite models, but for many of the results we then have to make additional
assumptions such as the models being image-finite, the underlying set of propo-
sitional atoms being finite or the number of modalities being finite [3]. To avoid
this additional layer of complexity, and since all of our intended applications
are within finite models, we restrict to those throughout the paper.

Definition 2.2 Let M = (W,R, V ) be a model of L and let w ∈W .

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= 2iϕ iff for all v if wRiv then (M,v) |= ϕ

We say that two pointed models M and M′ agree on (the formulas of) a
set Φ ⊆ L if, for all φ ∈ Φ, M |= φ iff M′ |= φ. We recall below the notions of
bisimulation and bounded bisimulation (k-bisimulations) [3,15].

Definition 2.3 Let (M,wd) and (M ′, w′d) be two pointed models, with M =
(W,R, V ) and M ′ = (W ′, R′, V ′). A bisimulation between (M,wd) and
(M ′, w′d) is a non-empty binary relation Z ⊆ W × W ′ with (wd, w

′
d) ∈ Z

and satisfying:

• [atom] If (w,w′) ∈ Z, then for all p ∈ P, w ∈ V (p) iff w′ ∈ V ′(p).
• [forth] If (w,w′) ∈ Z and wRiv, then there exists v′ ∈W ′ such that w′R′iv

′

and (v, v′) ∈ Z.

• [back] If (w,w′) ∈ Z and w′R′iv
′, then there exists v ∈W such that wRiv

and (v, v′) ∈ Z.

If a bisimulation between (M,wd) and (M ′, w′d) exists, we say that (M,wd) and
(M ′, w′d) are bisimilar, denoted (M,wd) - (M ′, w′d). When (M,w) - (M,w′)
for some worlds w,w′ of the same model M , we simply write w - w′, and say
that w and w′ are bisimilar. Finally, we denote the bisimulation (equivalence)
class of a world w ∈W as [w]- = {v ∈W | w - v}.

Proposition 2.4 ([3]) Two pointed models are bisimilar iff they agree on L.
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Definition 2.5 Let k ≥ 0 and let (M,wd) and (M ′, w′d) be two pointed models,
with M = (W,R, V ) and M ′ = (W ′, R′, V ′). A k-bisimulation between (M,wd)
and (M ′, w′d) is a sequence of non-empty binary relations Zk ⊆ · · · ⊆ Z0 ⊆
W ×W ′ with (wd, w

′
d) ∈ Zk and satisfying, for all h < k:

• [atom] If (w,w′) ∈ Z0, then for all p ∈ P, w ∈ V (p) iff w′ ∈ V ′(p).
• [forthh] If (w,w′) ∈ Zh+1 and wRiv, then there exists v′ ∈ W ′ such that
w′R′iv

′ and (v, v′) ∈ Zh.

• [backh] If (w,w′) ∈ Zh+1 and w′R′iv
′, then there exists v ∈ W such that

wRiv and (v, v′) ∈ Zh.

If a k-bisimulation between (M,wd) and (M ′, w′d) exists, we say that (M,wd)
and (M ′, w′d) are k-bisimilar, denoted (M,wd) -k (M ′, w′d). When (M,w) -k

(M ′, w′), we often simply write w -k w
′, and say that w and w′ are k-bisimilar

(when M and M ′ are clear from the context). Finally, we denote the k-
bisimulation (equivalence) class of a world w ∈W as [w]k = {v ∈W | w -k v}.

Note that a k-bisimulation between pointed models is also an h-bisimulation
for all h ≤ k, and hence that k-bisimilar worlds are also h-bisimilar for all h ≤ k.

Proposition 2.6 ([3]) Two pointed models are k-bisimilar iff they agree on
{φ ∈ L | md(φ) ≤ k}, i.e., on all of formulas up to modal depth k.

Definition 2.7 Let (M,wd) be a pointed model. The depth d(w) of a world
w is the length of the shortest path from wd to w (∞ if no such path exists).
Given k ≥ 0, the restriction M � k of M to k is the sub-model containing all
worlds with depth at most k (and preserving all edges between them).

Lemma 2.8 ([3]) Let M and k be as above. Then, for every world w of M � k,
we have (M � k,w) -k−d(w) (M,w).

3 Defining Rooted k-Contractions

The notion of bisimulation contraction is well-known in modal logic. The
(bisimulation) contraction of a pointed model M = ((M,R, V ), wd), that we
denote with bMc, is defined as the quotient structure of M with respect
to -, i.e., bMc = ((W ′, R′, V ′), [wd]-), where W ′ = {[w]- | w ∈ W},
R′i = {([w]-, [v]-) | wRiv}, and V ′(p) = {[w]- ∈ W ′ | w ∈ V (p)} [15]. It
is relatively straightforward to prove that: (i) bMc is bisimilar to M; and
(ii) bMc is a minimal model bisimilar to M. A similar definition exists for k-
(bisimulation) contractions. Namely, the k-contraction of M, that we denote
with bMck, has been defined as the quotient structure of M with respect to
-k [8,17]. We call this the standard k-contraction of M. However, although
such a contracted model is k-bisimilar to the original one [8,17], in general it
is not minimal, as the following example shows.

Example 3.1 Consider the chain model M in Figure 1 (left). Since p is true
in all worlds, and the length of the chain is k, a minimal model k-bisimilar toM
is a singleton pointed model with a loop (Figure 1, right). This is because the
loop model preserves all formulas up to depth k, cf. Proposition 2.6. However,
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wk−1:p
M = bMck =

wk−2:p w1:p w0:p w′k−1:p

TMUk =

Fig. 1. Standard (bMck) and rooted (TMUk) k-contractions of chain M (symbol
TMUk is borrowed from Definition 3.10). Each world w is denoted by a bullet labeled
by its name, followed by the atomic propositions that hold in w. An arrow labeled
with i from w to v means that wRiv. We omit the labels on arrows whenever |I| = 1.
The designated world is represented by a circled bullet.

wd:p

w1:p w2:p

w3:q w4:q

d b (k=1) b (k=2) b (k=3)

0

1

2

1

0

−1

2

1

0

3

2

1

Fig. 2. Depth (d) and bound (b) of worlds for k = 1, 2 and 3.

the standard k-contraction of M is simply M itself: First note that for all
h ≤ k − 1, the formula 3h2⊥ is true only in world wh of M (it expresses the
existence of a path of length h to a world from which no world is accessible).
Hence, any two worlds ofM can be distinguished by a formula 3h2⊥ of depth
h ≤ k−1. This implies that no two distinct worlds ofM are modally equivalent
to modal depth k, and hence cannot be part of the same k-bisimulation class.
Thus, the standard k-contraction of M is M itself (or, more precisely, the
k-contraction of M is isomorphic to M).

We now move to introduce our rooted k-contractions. First, in this section,
we show how to define a notion of a rooted k-contraction that guarantees the
resulting model to have the smallest number of worlds among any model k-
bisimilar to the original one (we call this property world minimality). Later we
then define a stronger notion of rooted k-contraction that additionally guar-
antees the set of edges of the contracted model to be minimal (called edge
minimality). In what follows, we fix a constant k ≥ 0 and a pointed model
M = (M,wd) with M = (W,V,R). Recall the notion of the depth d(w) of a
world w (Definition 2.7). We now introduce the notion of bound of a world.

Definition 3.2 The bound of a world w is b(w) = k − d(w).

Lemma 3.3 If xRiy, then b(y) ≥ b(x)− 1.

Proof. d(y) is the length of the shortest path from the designated world to y.
Such a path either goes through the edge (x, y) ∈ Ri, or there is a shorter path
to y. Hence, d(y) ≤ d(x) + 1⇔ k − b(y) ≤ k − b(x) + 1⇔ b(y) ≥ b(x)− 1. 2

Example 3.4 The notion of bound of a world will play a key role in the defi-
nition of rooted k-contractions. Figure 2 shows an example of bound of worlds
for k = 1, 2 and 3. Now consider the pointed models N1 and N2 of Figure 3.
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wd:p

w1:q
w2:r

w3:r w4:p

wd:p

w1:q w2:r

Fig. 3. Two 2-bisimilar pointed models: N1 (left) and N2 (right).

Taking the standard 2-contraction of N1 would result in the model N1 itself,
by a similar argument as in Example 3.1 (no two worlds of N1 are 2-bisimilar,
actually not even 1-bisimilar). However, N1 is not world minimal among mod-
els 2-bisimilar to N1. That is true for N2, however. Any model 2-bisimilar to
N1 must have at least three worlds (one for each atomic proposition), which
is exactly what N2 has. The 2-bisimulation between N1 and N2 is defined by:
Z2 = {(wd, w

′
d)}; Z1 = Z2 ∪ {(w1, w

′
1), (w2, w

′
2)}; and Z0 = Z1 ∪ {(w3, w

′
2)}.

Notice that N2 has been obtained by N1 by redirecting all incoming edges of
w3 to w2 and deleting the worlds that are no longer reachable from the desig-
nated world. In standard bisimulation contractions, we simply identify worlds
that are bisimilar, meaning that we can merge them into one world. In the
case of N1 and N2, we cannot just trivially merge w2 and w3 into one world,
as they don’t have the same successor worlds (we might be left with w4 as a
successor to w2, which destroys 2-bisimilarity). The idea of redirecting edges
rather than merging worlds forms a crucial part of the intuition behind our
rooted k-contractions. The point is that w2 can be used as a “representative”
for w3 when we perform the contraction, and hence we can get rid of w3. The
reason that w2 works as a representative for w3 is that w3 is at depth 2, so has
bound 0. Intuitively this means that w3 can be represented by any world that
it is 0-bisimilar to, as to maintain k-bisimilarity at the designated worlds, we
only need to require (k−d)-bisimilarity of the worlds at depth d, i.e., worlds of
bound b only need to be b-bisimilar. These intuitions are made formally precise
in the following.

Lemma 3.5 Let k ≥ 0, let (M,wd) be a pointed model, with M = (W,R, V )
and let x, y ∈ W \ {wd} be two distinct worlds such that b(x) ≥ b(y) ≥ 0
and x -b(y) y. Let (M ′, wd), with M ′ = (W ′, R′, V ′), be the pointed model
obtained by deleting y from (M,wd) and redirecting its incoming edges to x.
More precisely:

• W ′ = W \ {y};
• R′i = (Ri ∩ (W ′ ×W ′)) ∪ {(w, x) | wRiy};
• V ′(p) = V (p) ∩W ′, for all p ∈ P.

Then (M,wd) -k (M ′, wd).

Proof. To avoid confusion, we remark that, for all w, b(w) refers to the bound
that w has in M (and not in M′). Similarly, w -h w′ means (M,w) -h
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(M,w′). For all 0 ≤ h ≤ k, let Zh ⊆W ×W ′ be the following binary relation:

Zh = {(w,w′) ∈W ×W ′ | w -h w
′, b(w) ≥ h and b(w′) ≥ h}

We now show that Zk, . . . , Z0 is a k-bisimulation betweenM andM′. Clearly,
Zk ⊆ · · · ⊆ Z0. Also, trivially, (wd, wd) ∈ Zk (recalling that w -h w

′ means
(M,w) -h (M,w′)). We get [atom] since (w,w′) ∈ Z0 implies w -0 w

′ and
thus w ∈ V (p) iff w′ ∈ V ′(p) (by [atom] of Definition 2.5).

We now show [forthh]. Let h < k, (w,w′) ∈ Zh+1 and wRiv. We need to
find a v′ ∈ W ′ such that w′R′iv

′ and (v, v′) ∈ Zh. Since (w,w′) ∈ Zh+1, we
have w -h+1 w

′, b(w) ≥ h + 1 and b(w′) ≥ h + 1. From w -h+1 w
′, there

exists u ∈ W such that w′Riu and v -h u. Since wRiv, w′Riu, b(w) ≥ h + 1
and b(w′) ≥ h+ 1, by Lemma 3.3, we get b(v) ≥ h and b(u) ≥ h. We have two
cases. (i) If u 6= y, then by construction of R′i, we get w′R′iu. Since v -h u,
b(v) ≥ h and b(u) ≥ h, letting v′ = u we get (v, v′) ∈ Zh. (ii) If u = y, then
by construction of R′i, we get w′R′ix. From b(y) = b(u) ≥ h and x -b(y) y, we
get x -h y. Since v -h y -h x, b(v) ≥ h and b(y) ≥ h, letting v′ = x we get
(v, v′) ∈ Zh. This concludes [forthh].

Now for [backh]. Let h < k, (w,w′) ∈ Zh+1 and w′R′iv
′. We need to find

v such that wRiv and (v, v′) ∈ Zh. Since (w,w′) ∈ Zh+1, we have w -h+1 w
′,

b(w) ≥ h + 1 and b(w′) ≥ h + 1. We have two cases. (i) If v′ 6= x, then by
construction of R′i, we get w′Riv

′. Since w -h+1 w
′, there exists v ∈ W such

that wRiv and v -h v
′. As in [forthh], Lemma 3.3 gives b(v) ≥ h and b(v′) ≥ h.

Thus, (v, v′) ∈ Zh. (ii) If v′ = x, then by construction of R′i, we get w′Rix
or w′Riy. If w′Rix, we can reason as in (i). If w′Riy, pick v with wRiv and
v -h y. As before, b(v) ≥ h and b(y) ≥ h. Since b(x) ≥ b(y) ≥ h and x -b(y) y,
we get x -h y, and thus v -h x. Hence (v, x) ∈ Zh, as required. 2

The lemma tells us that if we’re only interested in preserving k-bisimilarity,
a world y can be deleted from a model if there exists a distinct world x such
that b(x) ≥ b(y) and x -b(y) y. This leads us to the following definition.

Definition 3.6 Let x, y be two worlds with non-negative bound. We say that
x represents y, denoted by x � y, iff b(x) ≥ b(y) and x -b(y) y. If furthermore
b(x) > b(y), we say that x strictly represents y, denoted by x � y. The set of
maximal representatives of W is the set of worlds Wmax = {x ∈ W | b(x) ≥
0 and ¬∃y ∈W (y � x)}. We say that a world x is a maximal representative of
y if x ∈Wmax and x � y.

Note that every world w ∈ W with b(w) ≥ 0 has at least one maximal
representative: Any chain w ≺ w′ ≺ w′′ ≺ · · · is finite (since W is finite) and
must hence end in a maximal representative of w. We are going to build our
rooted k-contractions on the maximal representatives, the intuition being that
all other worlds can be represented by one of these and hence be deleted, cf.
Lemma 3.5.

Proposition 3.7 For any pointed model ((W,R, V ), wd), we have:

1) wd ∈Wmax;



8 Better Bounded Bisimulation Contractions

2) if w � v, then v /∈Wmax;

3) if b(w) < 0, then w /∈Wmax;

4) if w, v ∈Wmax and w -b(w) v then b(w) = b(v).

Proof. Item 1 follows since wd has bound b(wd) = k and there can not be any
world with a greater bound. Items 2 and 3 immediately follow by definition of
Wmax. Item 4 is by contradiction: Suppose that w -b(w) v and b(w) > b(v) (the
case b(v) > b(w) being symmetric). Since w -b(w) v, it follows that w -b(v) v,
which implies that w � v, contradicting the fact that v ∈Wmax. 2

Example 3.8 LetM the pointed model in Figure 2, let W be its set of worlds
and let k = 2. Using Proposition 2.6, we can show that for all worlds w, v ∈W ,
if b(w) > b(v) then w 6-b(v) v: w3 and w4 of bound 0 are not propositionally
equivalent to any world of greater bound (they are the only ones satisfying
q); w1 and w2 of bound 1 both satisfy 3q of modal depth 1, which is not
satisfied by the only world of greater bound, wd. Hence, all worlds are maximal
representatives, i.e., Wmax = W . We immediately get Wmax = W for k = 3
as well, since if worlds w and v are not n-bisimilar, they are also not (n + 1)-
bisimilar. For k = 1, Proposition 3.7(3) gives w3, w4 /∈ Wmax, and since
wd � w1, w2 (they satisfy the same atomic propositions), we get Wmax = {wd}.
Definition 3.9 The representative class of a world w is the class [w]b(w), which
we denote with the compact notation JwK.

Definition 3.10 Let M = ((W,R, V ), wd) and let k ≥ 0. The rooted k-
contraction of M is the pointed model TMUk = ((W ′, R′, V ′), JwdK), where:

• W ′ = {JxK | x ∈Wmax};
• R′i = {(JxK, JyK) | x, y ∈Wmax,∃z(xRiz and y -b(x)−1 z) and b(x) > 0}; 3

• V ′(p) = {JxK | x ∈Wmax and x ∈ V (p)}. 4

The definition of R′i requires some explanation. At first, one might think
that defining the set of i-edges as {(JxK, JyK) | x, y ∈ Wmax and xRiy}
would be sufficient. However, this is not the case. To show this, con-
sider the pointed model N1 in Figure 3 and let k = 2. One can easily
show that Wmax = {wd, w1, w2}, hence the rooted 2-contraction has worlds
W ′ = {JwdK, Jw1K, Jw2K}. Since (w1, w2) /∈ R, defining the accessibility relation

3 The definition of R′i doesn’t depend on the choice of maximal representatives: If JxK = Jx′K
and JyK = Jy′K and x, x′, y, y′ ∈Wmax, then b(x) > 0 iff b(x′) > 0 and ∃z(xRiz and y -b(x)−1

z) iff ∃z′(x′Riz
′ and y′ -b(x′)−1 z′). To prove this, first note that since JxK = Jx′K, we

get x ∈ Jx′K and x′ ∈ JxK. Similarly for y and y′. Since x ∈ Jx′K = [x′]b(x′), we then get
x -b(x′) x′, and hence b(x) = b(x′), by Proposition 3.7(4). Hence, b(x) > 0 iff b(x′) > 0. Now
suppose ∃z(xRiz and y -b(x)−1 z). We need to show that ∃z′(x′Riz

′ and y′ -b(x′)−1 z′).
Since x -b(x′) x′ and xRiy, there exists a z′ such that x′Riz

′ and y -b(x′)−1 z′. Since
xRiy then b(y) ≥ b(x) − 1, by Lemma 3.3. As b(x) = b(x′), we get b(y) ≥ b(x′) − 1. Since
y′ ∈ JyK = [y]b(y), we get y′ -b(y) y and hence y′ -b(x′)−1 y. Combining y -b(x′)−1 z′ and
y′ -b(x′)−1 y, we get y′ -b(x′)−1 z′, as required.
4 The definition of V ′(p) is well-defined since from x′ ∈ JxK we get that x′ -b(x) x and, thus,
x ∈ V (p) iff x′ ∈ V ′(p), by [atom] of Definition 2.5.
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wd:p

w1:p w2:p

w3:q w4:q

[wd]3:p

[w1]2:p [w2]2:p

[w3]1:q [w4]1:q

[wd]2:p

[w1]1:p [w2]1:p

[w3]0:q

Fig. 4. Pointed model M (left) of Figure 2, TMU3 (center) and TMU2 (right).

of the contracted model by R′ = {(JxK, JyK) | x, y ∈ Wmax and xRy} would
imply (Jw1K, Jw2K) /∈ R′. But then the formula 3r would be true in w1 and not
in Jw1K, i.e., w1 6-1 Jw1K, implying that N1 is not even 2-bisimilar to its own
rooted 2-contraction! With our current definition of R′, we actually get that
the rooted 2-contraction of N1 is exactly the model N2 of Figure 3 that we in
Example 3.4 showed to be a world-minimal model 2-bisimilar to N1.

Lemma 3.11 Let M = ((W,R, V ), wd) and TMUk = ((W ′, R′, V ′), w′d). For
all i ∈ I we have R′i ⊇ {(JxK, JyK) | x, y ∈Wmax, xRiy and b(x) > 0}.
Proof. Let x, y ∈ Wmax be such that xRiy and b(x) > 0. We need to show
that (JxK, JyK) ∈ R′i. By definition of R′i, this is true if there exists a z ∈ W
such that xRiz and y -b(x)−1 z. Since xRiy, we can take z = y. 2

Example 3.12 Let M = (M,wd) with M = (W,R, V ) be the pointed model
of Figure 2, shown again in Figure 4 (left). Let TMU3 = (M ′, w′d), with
M ′ = (W ′, R′, V ′), shown in Figure 4 (center). In Example 3.8, we showed
that, when k = 3, we have Wmax = W . From Definition 3.10, we then have
W ′ = {[wd]3, [w1]2, [w2]2, [w3]1, [w4]1} and w′d = [wd]3, where [wd]3 = {wd},
[w1]2 = {w1}, [w2]2 = {w2}, [w3]1 = {w3} and [w4]1 = {w4}. Since Wmax = W
and JwK = w for all w ∈W , it is easy to check that we also get R′ = {JxK, JyK |
xRy}. Let now TMU2 = (M ′, w′d), with M ′ = (W ′, R′, V ′), shown in Figure 4
(right). Again, from Example 3.8, we have Wmax = W . From Definition
3.10, we then have W ′ = {[wd]2, [w1]1, [w2]1, [w3]0} and w′d = [wd]2, where
[wd]2 = {wd}, [w1]1 = {w1}, [w2]1 = {w2} and [w3]0 = {w3, w4}. In this case
we get R′ = {(JxK, JyK) | xRy and b(x) > 0}.

4 Properties of Rooted k-Contractions

The first crucial property to show is that rooted k-contractions are k-bisimilar
to their original models.

Theorem 4.1 Let M be a pointed model and let k ≥ 0. Then, M -k TMUk.

Proof. Let M = ((W,R, V ), wd) and TMUk = ((W ′, R′, V ′), w′d). For all
0 ≤ h ≤ k, let Zh ⊆W ×W ′ be the following binary relation:

Zh = {(x, Jx′K) | x′ ∈Wmax, x′ -h x and b(x) ≥ h}.

We now show that the sequence Zk, . . . , Z0 is a k-bisimulation betweenM and
TMUk. Clearly, Zk ⊆ · · · ⊆ Z0. Moreover, since wd ∈ Wmax (by Proposition
3.7(1)) and b(wd) = k, it follows that (wd, JwdK) ∈ Zk.
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We first show [atom]. Let (x, x′′) ∈ Z0. Then, by definition of Z0, we have
that x′′ = Jx′K for some x′ ∈ Wmax such that x′ -0 x and b(x) ≥ 0. From
x′′ = Jx′K, we get x′′ -b(x′) x

′ and hence x′′ -0 x
′. Thus, x′′ -0 x

′ -0 x and,
by [atom] of Definition 2.5, we then get x′′ ∈ V ′(p) iff x ∈ V (p), as required.

Before moving to [forthh] and [backh], we show the following claim.

Claim 1. Let h ≤ k, x ∈W and x′ ∈Wmax be such that x -h x
′ and b(x) ≥ h.

Then b(x′) ≥ h.

Proof of claim. Since x′ ∈ Wmax, we have x 6� x′, hence either b(x) 6> b(x′) or
x 6-b(x′) x

′. If b(x) 6> b(x′), we get b(x′) ≥ b(x) ≥ h, as required. If x 6-b(x′) x
′,

then since x -h x
′, we must have b(x′) > h. This proves the claim.

We now show [forthh]. Let h < k, (x, x′′) ∈ Zh+1, and xRiy. Then x′′ =
Jx′K, where x′ ∈ Wmax, x′ -h+1 x and b(x) ≥ h + 1. From Claim 1, we
get b(x′) ≥ h + 1. We need to find a world y′′ ∈ W ′ such that x′′R′iy

′′ and
(y, y′′) ∈ Zh. Since xRiy and x -h+1 x

′, there exists z ∈W such that x′Riz and
y -h z. Let y′ be a maximal representative of z. Then, y′ ∈Wmax, b(y′) ≥ b(z)
and y′ -b(z) z. Since x′Riz, by Lemma 3.3 we have b(z) ≥ b(x′) − 1. Since
y′ -b(z) z, then we also get y′ -b(x′)−1 z. We now have x′, y′ ∈ Wmax, x′Riz,
y′ -b(x′)−1 z and b(x′) ≥ h+ 1 > 0, which by Definition 3.10 means Jx′KR′iJy′K.
Letting y′′ = Jy′K, we have hence found a y′′ such that x′′R′iy

′′. The only
thing left to prove now is that (y, y′′) ∈ Zh. By definition of Zh, it suffices to
prove y′ ∈ Wmax, y′ -h y and b(y) ≥ h. We already have y′ ∈ Wmax. Since
y′ -b(x′)−1 z and b(x′) ≥ h+ 1, we get y′ -h z. As we also have y -h z, we get
y′ -h y, as required. Finally, since xRiy and b(x) ≥ h + 1, Lemma 3.3 gives
b(y) ≥ h. This concludes [forthh].

We now show [backh]. Let h < k, (x, x′′) ∈ Zh+1, and x′′R′iy
′′. We need

to find a world y ∈ W such that xRiy and (y, y′′) ∈ Zh. Since x′′R′iy
′′, by

Definition 3.10 there exist x′, y′ ∈ Wmax and z ∈ W such that x′′ = Jx′K,
y′′ = Jy′K, x′Riz, y

′ -b(x′)−1 z and b(x′) > 0. Since (x, x′′) ∈ Zh+1, then
x′′ = Jx̂K, where x̂ ∈ Wmax, x̂ -h+1 x and b(x) ≥ h + 1. By Claim 1, we get
b(x̂) ≥ h+ 1. Since x′, x̂ ∈Wmax and Jx′K = Jx̂K, by Proposition 3.7(4) we get
b(x′) = b(x̂). From x′ -b(x′) x̂ and b(x′) ≥ h+ 1 we get x′ -h+1 x̂ and, hence,
x′ -h+1 x. Since x′ -h+1 x and x′Riz, there exists y ∈ W such that xRiy
and y -h z. Only left to show is that (y, y′′) ∈ Zh. From y′ -b(x′)−1 z and
b(x′) ≥ h+ 1, we get y′ -h z and, thus, y′ -h y. Since xRiy and b(x) ≥ h+ 1,
Lemma 3.3 gives b(y) ≥ h. We now have y′ ∈ Wmax, y′ -h y and b(y) ≥ h.
Thus, (y, y′′) ∈ Zh, as required. This concludes [backh]. 2

We now prove world minimality. To show this property, it is useful to group
the worlds of a rooted k-contraction wrt. to their bound and analyze them sep-
arately. Specifically, we prove that each such group of worlds is minimal. To
this end, we first show an intermediate result, namely that a maximal repre-
sentative x ofM and its representative class JxK have the same bound (wrt.M
and TMUk, respectively). This result highlights the link between the notions of
maximal representatives and representative classes, since a representative class
JxK maintains the same bound as the maximal representative x.
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Lemma 4.2 Let M = ((W,R, V ), wd) be a pointed model with rooted k-
contraction TMUk = ((W ′, R′, V ′), w′d) and let x ∈Wmax. Then b(x) = b(JxK).

Proof. The proof is by induction on h = b(x). For the base case, we consider
h = k (we do induction from h = k down to h = 0). By definition, only
the designated world of a model has bound k, so we immediately get b(wd) =
b(JwdK) = k, concluding the base case. Assume now by induction hypothesis
(I.H.) that for all x ∈ Wmax with b(x) = h > 0 we have b(x) = b(JxK). Let
y ∈Wmax with b(y) = h−1. We need to show b(JyK) = h−1. Since b(y) = h−1,
there must exist an x with xRiy and b(x) = h. We now prove x ∈ Wmax by
contradiction: Assuming x /∈ Wmax, there exists x′ ∈ Wmax such that x′ � x,
i.e., b(x′) > b(x) and x′ -b(x) x. Since xRiy, there exists y′ such that x′Riy

′

and y -b(x)−1 y
′. As b(x) = h and b(y) = h− 1 we get y -b(y) y

′. Since x′Riy
′

and b(x′) > b(x) = h, Lemma 3.3 gives b(y′) > h − 1 and thus b(y′) > b(y).
We now have b(y′) > b(y) and y′ -b(y) y, which means y′ � y, contradicting
y ∈ Wmax. Thus, x ∈ Wmax. Since x, y ∈ Wmax, xRiy and b(x) = h > 0,
Lemma 3.11 gives JxKR′iJyK. Since b(JxK) = h (by I.H.), Lemma 3.3 then gives
b(JyK) ≥ h−1. We also have b(JyK) ≤ h−1, since if b(JyK) ≥ h, then I.H. would
give b(y) ≥ h, contradicting b(y) = h− 1. Thus b(JyK) = h− 1, as required. 2

Corollary 4.3 If x 6= y are worlds of TMUk and b(x) = b(y) = h then x 6-h y.

Proof. Let TMUk = (M,wd) andM = (M ′, w′d). By Definition 3.10, we have
x = Jx′K and y = Jy′K for some worlds x′, y′ ∈ Wmax. By Lemma 4.2 we get
b(x) = b(x′) and b(y) = b(y′), and hence b(x′) = b(y′) = h. Since x 6= y and
b(x′) = b(y′) = h, we get x′ 6-h y′. From the proof of Theorem 4.1 we get
(M ′, x′) -h (M,x) and (M ′, y′) -h (M,y), and hence x 6-h y. 2

For a model M = (W,R, V ) and h ≥ 0, let Wh denote the subset of worlds
with bound h, i.e., Wh = {w ∈W | b(w) = h} (given a k ≥ 0).

Lemma 4.4 Let k ≥ 0, letM = ((W,V,R), wd) be a rooted k-contraction, and
M′ = ((W ′, V ′, R′), w′d) be a world-minimal pointed model k-bisimilar to M.
Then, for any 0 ≤ h ≤ k, the relation -h is a bijection between Wh and W ′h.

Proof. Since M = ((W,R, V ), wd) is a rooted k-contraction, we have M =
TM′′Uk for some M′′ = ((W ′′, R′′, V ′′), w′′d ). We first show that for each x ∈
Wh, there is a unique x′ ∈ W ′h such that x -h x′. Given x ∈ Wh, we have
b(x) = h, which implies the existence of a path of length k − h from wd to x.
Since wd -k w

′
d, by repeated application of [forth], we get a path of length k−h

from w′d to a world x′ with x -h x
′. Since x′ is reachable by a path of length

k − h from w′d, we have b(x′) ≥ k − (k − h) = h. We now show that b(x′) ≤ h
by contradiction, which together with b(x′) ≥ h gives b(x′) = h, thus obtaining
x′ ∈W ′h. Assume b(x′) > h, i.e., d(x′) < k−h. Then, there is a path of length
< k− h from w′d to x′ and, since wd -k w

′
d, by repeated applications of [back],

we get a path of length < k − h from wd to a world y with y -h x
′. As above,

since y is reachable by such a path, we have b(y) > h. From Definition 3.10,
there exists x′′, y′′ ∈ Wmax such that x = Jx′′K and y = Jy′′K. Lemma 4.2 now
gives b(x′′) = b(x) = h and b(y′′) = b(y) > h. Since x′′, y′′ ∈ Wmax and since
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both have bound ≥ h, we have that (x′′, Jx′′K), (y′′, Jy′′K) ∈ Zh, where Zh is the
binary relation defined in the proof of Theorem 4.1. The proof of Theorem 4.1
shows that Z0, . . . , Zh is an h-bisimulation, so x′′ -h Jx′′K and y′′ -h Jy′′K. We
then get y′′ -h Jy′′K = y -h x

′ -h x = Jx′′K -h x
′′, showing that y′′ -h x

′′.
We now have b(y′′) > h = b(x′′) and y′′ -h x′′, which implies y′′ � x′′,
contradicting x′′ ∈ Wmax. This gives the required proof by contradiction that
x′ ∈ W ′h. So far, we showed that for any x ∈ Wh there exists a world x′ ∈ W ′h
such that x′ -h x

′. Since M′ is world minimal, there is no y′ ∈ W ′h such that
x′ -h y

′. Therefore, such an x′ is unique in W ′h, as required.
We now show that for each x′ ∈ W ′h, there exists a unique x ∈ Wh with

x -h x
′. Letting x′ ∈ W ′h, we can first reason symmetrically as above to show

that there exists a world x ∈Wh such that x -h x
′ and b(x) ≥ h (using [back]

instead of [forth]). Symmetrically to before, we now show that b(x) ≤ h by
contradiction, from which we can conclude x ∈ Wh. Assume b(x) > h, i.e.,
d(x) < k − h. Then there is a path of length < k − h from wd to x and,
since wd -k w

′
d, by repeated applications of [forth], we get a path of length

< k − h from w′d to a world y′ with x -h y
′. As above, since y′ is reachable

by such a path, we have b(y′) > h. We now have b(y′) > h = b(x′) and
y′ -h x -h x

′. By Lemma 3.5, this implies that there exists a pointed model
N with world set W ′\{x′} such that N -k M′, contradicting the fact thatM′
is a world-minimal pointed model k-bisimilar to M. This complete the proof
by contradiction that x ∈ Wh. The only thing left to prove is uniqueness of
x. Suppose x′ was h-bisimilar to another world y ∈ Wh. Then we would have
x 6= y, b(x) = b(y) = h, and x -h y, contradicting Corollary 4.3. 2

Theorem 4.5 Let M be a pointed model and let k ≥ 0. Then TMUk is a
world-minimal model k-bisimilar to M, i.e., it has the least number of worlds
among all models k-bisimilar to M.

Proof. Let M′ = TMUk, let M′′ be a world-minimal pointed model with
M′ -k M′′ and let W ′ and W ′′ be the world sets ofM′ andM′′, respectively.
We need to show that |W ′| = |W ′′|. From Lemma 4.4, we immediately get that
|W ′h| = |W ′′h | for all 0 ≤ h ≤ k, and hence |W ′| = |W ′′|, as required. 2

5 Minimal Contractions

We have defined rooted k-contractions and shown them to be world minimal.
However, Definition 3.10 does not guarantee that the resulting k-contraction is
also edge minimal, as we now exemplify.

Example 5.1 Let M = ((W,R, V ), wd) be the pointed model in Figure 4 left
and let TMU3 = ((W ′, R′, V ′), w′d) be its rooted 3-contraction (Figure 4 center).
Recall from Example 3.12 that Wmax = W and b(w3) = 1. Since w3Rw1 and
w3Rw2, Lemma 3.11 hence gives us Jw3KR′Jw1K and Jw3KR′Jw2K. However,
including only one of those edges in R′ is sufficient to guarantee 3-bisimilarity
to M: b(w3) = 1 and thus Jw3K only needs to preserve 1-bisimilarity to w3.

When not all edges are required, we need to decide which to preserve. To
this end, we introduce the notion of least h-representative of a world.
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wd:p

w1:p w2:p

w3:q w4:q

[wd]3:p

[w1]2:p [w2]2:p

[w3]1:q [w4]1:q

[wd]2:p

[w1]1:p [w2]1:p

[w3]0:q

Fig. 5. Pointed model M (left) of Example 5.5, TMU<
3 (center) and TMU<

2 (right).

Definition 5.2 Let < be a total order on W and let 0 ≤ h ≤ k. The least
h-representative of w ∈W is the world minh(w) = min<{v ∈Wmax | v -h w}.

The least h-representative of a world w is the minimal (wrt. <) maximal
representative v such that v -h w. We now present the revised definition of
rooted k-contraction guaranteeing minimality among k-bisimilar models both
in number of worlds and edges (and hence minimality in terms of overall size).

Definition 5.3 Let M = ((W,R, V ), wd), let k ≥ 0 and let < be a total
order on W . The rooted k-contraction of M wrt. < is the pointed model
TMU<

k = ((W ′, R′, V ′), JwdK), where:

• W ′ = {JxK | x ∈Wmax};
• R′i = {(JxK, Jminb(x)−1(y)K) | x ∈Wmax, xRiy and b(x) > 0};
• V ′(p) = {JxK | x ∈Wmax and x ∈ V (p)}.
Well-definedness of the definition (independence of choice of representatives)

is guaranteed in the same way as for Definition 3.10.

Lemma 5.4 Let M = ((W,R, V ), wd), TMU<
k = ((W ′, R′, V ′), w′d) and

TMUk = ((W ′′, R′′, V ′′), w′′d ). Then, R′i ⊆ R′′i .

Proof. Let x′R′iy
′. Then by Definition 5.3, there exists x, y ∈W such that x′ =

JxK, y′ = Jminb(x)−1(y)K, x ∈ Wmax, xRiy and b(x) > 0. From Definition 5.2,
we immediately get minb(x)−1(y) -b(x)−1 y and minb(x)−1(y) ∈ Wmax. Since
x,minb(x)−1(y) ∈ Wmax, xRiy, minb(x)−1(y) -b(x)−1 y, and b(x) > 0, choosing
z = y in Definition 3.10, we get (JxK, Jminb(x)−1(y)K) ∈ R′′i , i.e., x′R′′i y

′. 2

Example 5.5 Let M = ((W,R, V ), wd) be the pointed model of Figure 2
(also shown in Figure 5 left). Let < be a total order on W such that wd <
w1 < w2 < w3 < w4. The pointed models TMU<

3 and TMU<
2 , also shown in

Figure 5, will now be analyzed. First let TMU<
3 = ((W ′, R′, V ′), w′d). From

Example 3.12, we have Wmax = W , W ′ = {[wd]3, [w1]2, [w2]2, [w3]1, [w4]1} and
w′d = [wd]3. Now for the edges of TMU<

3 . Notice that for all xRy of M such
that b(x) ≥ 2, we have that minb(x)−1(y) = y. Thus, we have [wd]3R

′[w1]2,
[wd]3R

′[w2]2, [w1]2R
′[w3]1, [w2]2R

′[w2]2 and [w2]2R
′[w4]1. Finally, consider the

edges w3Rw1 and w3Rw2 as discussed in Example 5.1. Since minb(w3)−1(w1) =
minb(w3)−1(w2) = w1, we have [w3]1R

′[w1]2 (and not [w3]1R
′[w2]2).

Now let TMU<
2 = ((W ′, V ′, R′), w′d). From Example 3.12, we have Wmax =

W , W ′ = {[wd]2, [w1]1, [w2]1, [w3]0} and w′d = [wd]2. From minb(wd)−1(w1) =
w1 and minb(wd)−1(w2) = w2 we get [wd]2R

′[w1]1 and [wd]2R
′[w2]1. From
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minb(w1)−1(w3) = minb(w2)−1(w4) = w3 we get [w1]1R
′[w3]0 and [w2]1R

′[w3]0.
Finally, since minb(w2)−1(w2) = wd, we have [w2]1R

′[wd]2.

Theorem 5.6 Let M be a pointed model and let k ≥ 0. Then M -k TMU<
k .

Proof. Let M = ((W,R, V ), wd) and TMU<
k = ((W ′, R′, V ′), w′d). For all

0 ≤ h ≤ k, let Zh ⊆W ×W ′ be as in the proof of Theorem 4.1:

Zh = {(x, Jx′K) | x′ ∈Wmax, x′ -h x and b(x) ≥ h}.

We now show that Zk, . . . , Z0 is a k-bisimulation betweenM and TMU<
k . From

the proof of Theorem 4.1, we immediately get Zk ⊆ · · · ⊆ Z0, (wd, JwdK) ∈ Zk

and [atom]. Moreover, from the same proof, we also get [backh], since by
Lemma 5.4 we have R′i ⊆ R′′i , where ((W ′′, R′′, V ′′), w′′d ) is the k-contraction of
M of Definition 3.10.

To show [forthh], let h < k, (x, x′′) ∈ Zh+1, and xRiy. Then x′′ = Jx′K,
where x′ ∈ Wmax, x′ -h+1 x and b(x) ≥ h + 1. We need to find y′′ ∈ W ′

such that x′′R′iy
′′ and (y, y′′) ∈ Zh. Since xRiy and x -h+1 x

′, there exists
z ∈ W such that x′Riz and y -h z. Let y′ = minb(x′)−1(z). Then y′ ∈ Wmax

and y′ -b(x′)−1 z. By Claim 1 of Theorem 4.1, we get b(x′) ≥ h+ 1, and thus
y′ -h z -h y. Since xRiy and b(x) ≥ h + 1, Lemma 3.3 gives b(y) ≥ h. Let
y′′ = Jy′K. We now have y′ ∈Wmax, y′ -h y and b(y) ≥ h, which by definition
of Zh means that (y, y′′) ∈ Zh. By Definition 5.3, from x′ ∈ Wmax, x′Riz,
y′ = minb(x′)−1(z) and b(x′) ≥ h+ 1 > 0, we get x′′R′iy

′′, as required. 2

Lemma 5.7 Let M = ((W,R, V ), wd) be a pointed model with rooted k-
contraction TMU<

k = ((W ′, R′, V ′), w′d) and let x ∈Wmax. Then b(x) = b(JxK).

Proof. The proof mimics the proof of Lemma 4.2, except we have fewer edges
in TMU<

k than in TMUk, so we cannot rely on Lemma 3.11. The proof is again
by induction on h = b(x) (from h = k down to h = 0), and the base case
is identical to the proof of Lemma 4.2. Assume now by induction hypothe-
sis (I.H.) that for all x ∈ Wmax with b(x) = h > 0 we have b(x) = b(JxK).
Let y ∈ Wmax with b(y) = h − 1. We need to show b(JyK) = h − 1. Since
b(y) = h − 1, there must exist an x with xRiy and b(x) = h. From this it
follows that x ∈ Wmax exactly as in the proof of Lemma 4.2 (we are here
reasoning about M only). Since x ∈ Wmax, xRiy and b(x) = h > 0, Defini-
tion 5.3 gives JxKR′iJminb(x)−1(y)K, i.e., JxKR′iJminb(y)(y)K. Since b(JxK) = h,
Lemma 3.3 then gives b(Jminb(y)(y)K) ≥ h− 1. Since minb(y)(y) -b(y) y, we get
that minb(y)(y) � y. Since y ∈Wmax, we must then have b(minb(y)(y)) ≤ b(y),
since otherwise we would have minb(y)(y) � y, contradicting the maximal-
ity of y. Since minb(y)(y) ∈ Wmax, we must also have b(minb(y)(y)) ≥ b(y),
since otherwise we would have y � minb(y)(y), contradicting the maximal-
ity of minb(y)(y). We can thus conclude b(minb(y)(y)) = b(y). We also
have b(Jminb(y)(y)K) ≤ h − 1, since if b(Jminb(y)(y)K) ≥ h, then I.H. would
give b(minb(y)(y)) ≥ h > h − 1 = b(y), contradicting what we just con-
cluded. We can thus conclude b(Jminb(y)(y)K) = h − 1. Now note that since
minb(y)(y) -b(y) y and b(minb(y)(y)) = b(y), we get Jminb(y)(y)K = JyK, and
hence b(JyK) = b(Jminb(y)(y)K) = h− 1, as required. 2
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Corollary 5.8 If x 6= y are worlds of TMU<
k and b(x) = b(y) = h then x 6-h y.

Proof. The proof is identical to that of Corollary 4.3 by using Lemma 5.7
instead of Lemma 4.2. 2

Lemma 5.9 Let k ≥ 0, letM be a rooted k-contraction wrt. <,M′ be a world-
minimal pointed model k-bisimilar to M and let W and W ′ be their world sets.
Then, for any 0 ≤ h ≤ k, the relation -h is a bijection between Wh and W ′h.

Proof. The proof is identical to that of Lemma 4.4 by using Definition 5.3,
Lemma 5.7 and Theorem 5.6 instead of Definition 3.10, Lemma 4.2 and Theo-
rem 4.1, respectively. 2

Theorem 5.10 Let M be a pointed model and k ≥ 0. Then TMU<
k is a min-

imal pointed model k-bisimilar to M (i.e., it is both world and edge minimal).

Proof. For any model M = (W,R, V ), let (Ri)h denote the set of i-edges out-
going from worlds inWh, i.e., (Ri)h = Ri∩(Wh×W ). LetM = ((W,R, V ), wd),
M′ = TMU<

k = ((W ′, R′, V ′), w′d), and letM′′ = ((W ′′, R′′, V ′′), w′′d ) be a min-
imal pointed model with M′ -k M′′. We can prove that |W ′′| = |W ′| as in
Theorem 4.5 by using Lemma 5.9 and Corollary 5.8 instead of Lemma 4.4 and
Corollary 4.3, respectively. We then only need to show that |R′i| ≤ |R′′i | for
all i ∈ I. To achieve a contradiction, assume |(R′i)h| > |(R′′i )h| for some i
and h. Then (x′, y′) ∈ (R′i)h for some x′, y′. This implies x′ ∈ W ′h and hence
b(x′) = h. By Lemma 5.9, there then exists x′′ ∈ W ′′h such that x′ -h x

′′. By
[back] and [forth], this implies that each i-successor of x′′ is (h−1)-bisimilar
to an i-successor of x′ and vice versa. Since |(R′i)h| > |(R′′i )h|, this is only
possible if there exist two distinct i-successors y′1 and y′2 of x′ that are (h−1)-
bisimilar. We can now reason as follows for n = 1, 2. Since b(x′) = h and
(x′, y′n) ∈ (R′i)h, Lemma 3.3 gives us b(y′n) ≥ h− 1; and Definition 5.3 further
gives us the existence of x ∈ Wmax and yn ∈ W such that xRiyn, x′ = JxK
and y′n = Jminh−1(yn)K. Since, by definition, minh−1(yn) ∈ Wmax, and since
b(y′n) ≥ h − 1, Lemma 5.7 gives b(minh−1(yn)) ≥ h − 1. From minh−1(yn) ∈
Wmax and b(minh−1(yn)) ≥ h − 1, we then get (minh−1(yn), Jminh−1(yn)K) ∈
Zh−1, where Zh−1 is the binary relation defined in the proof of Theorem 5.6.
The proof of that theorem shows that Z0, . . . , Zh−1 is an (h− 1)-bisimulation,
so minh−1(yn) -h−1 Jminh−1(yn)K. We now get y1 -h−1 minh−1(y1) -h−1
Jminh−1(y1)K = y′1 -h−1 y′2 = Jminh−1(y2)K -h−1 minh−1(y2) -h−1 y2.
This shows that y1 -h−1 y2, and hence minh−1(y1) = minh−2(y2) and thus
y′1 = Jminh−1(y1)K = Jminh−1(y2)K = y′2, contradicting y′1 6= y′2. 2

6 Exponential Succinctness

In this section, we show that, for any k ≥ 0, rooted k-contractions can be
exponentially more succinct than standard k-contractions. This means that
we can create models of arbitrary size for which the rooted k-contraction is
exponentially smaller than the corresponding standard k-contraction.

A binary tree of height k has 2k+1 − 1 nodes. We will build a model
Mk = ((Wk, Rk, Vk), ε) on a binary tree of height k such that the standard
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ε:p0

l:p1

ll:p2

lll:p3 llr:p3

lr:p2

lrl:p3 lrr:p3

r:p1

rl:p2

rll:p3 rlr:p3

rr:p2

rrl:p3 rrr:p3

Fig. 6. The pointed model Mk = ((Wk, Rk, Vk), ε) with designated world ε, for k = 3.
The solid and dashed edges are the accessibility edges of 2s and 2d, respectively.

k-contraction of Mk still has all 2k+1 − 1 nodes as worlds, but the rooted k-
contraction is just a path in the tree, so a model with k+ 1 worlds. Hence the
rooted k-contraction is exponentially smaller.

The nodes of a binary tree of height k can be represented as strings of
length at most k over the alphabet {l, r}, where l and r represent the left and
right child of a node, respectively. This is illustrated in Figure 6 for k = 3.
The root is named ε (the empty string), and the left and right children of a
node σ are σl and σr, respectively. More precisely, we let the set of worlds Wk

of Mk be the set of strings of length at most k over the alphabet {l, r}, i.e.,
Wk = {σ ∈ {l, r}∗ | |σ| ≤ k}. The tree edges (solid edges in Figure 6) are the
edges from σ to σl (left child) and to σr (right child). We let I = {s, d}, where
the accessibility relation (Rk)s of the modality 2s represents the solid edges.
Hence we let (Rk)s = {(σ, σα) ∈ Wk × Wk | α ∈ {l, r}}. The accessibility
relation (Rk)d of the modality 2d represents the dashed edges, described later.

As shown in Figure 6, the valuation function Vk of Mk is such that each
world at depth n of the tree makes pn true and all other propositions false.
More precisely, the set of atomic propositions of Mk is P = {p0, . . . , pk}, and
we let Vk(pn) = {σ ∈Wk | |σ| = n}. Suppose we decided to let (Rk)d = ∅, i.e.,
ignore the dashed edges. Then, the model is simply a binary tree where each
world is labelled by an atomic proposition denoting the depth of the world.
Clearly, any two worlds at the same depth are then bisimilar. Hence, the
bisimulation contraction ofMk will simply be a chain model with k+ 1 worlds
where the first world is labelled p0, the second p1, etc. We add the dashed edges
to ensure thatMk cannot be contracted further when considering standard k-
contractions, but where the rooted k-contraction is still the simple chain model.

We now describe the dashed edges of the model. The dashed edges are from
the leaf nodes of the binary tree to nodes of the leftmost branch of the tree. The
crucial property of these edges is that each leaf node has edges to a different
subset of the nodes of the leftmost branch. Hence no two leaf nodes will satisfy
the same formulas of modal depth 1. Our specific choice is to put an edge from
a leaf node σ to the leftmost node at depth n iff the (n+1)st letter of σ is l, see
Figure 6. More precisely, we let (Rk)d = {(α1 · · ·αk, l

n) ∈Wk×Wk | αn+1 = l}
(where ln as usual denotes the string with n occurrences of l).
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Lemma 6.1 Let σ, τ be distinct worlds of Mk at depth n. Then σ -k−n τ but
not σ -k−n+1 τ .

Proof. Since σ and τ are worlds at depth n of the tree, they satisfy the same
formulas up to modal depth k − n, since none of the dashed edges can be
reached by formulas of modal depth ≤ k − n from worlds at depth n. From
Proposition 2.6 we can then conclude that σ -k−n τ , as required.

Since σ 6= τ , they differ in at least one of their positions, say position m+ 1
(i.e., they differ in the (m+1)st letter). Suppose without loss of generality that
σ has l in position m+1 and τ has r. Then by construction ofMk we have that
the formula 3n−k

s 3d pm is true in σ but not in τ : There exists a solid path of
length n− k from σ to a leaf node that can see a pm world via a dashed edge,
but there is no such path from τ . Hence σ and τ are not (n−k+1)-bisimilar.2

We can now reason as follows. Since the standard k-contraction only iden-
tifies worlds that are k-bisimilar, it will never be able to identify worlds at the
same depth of the tree since, according to the lemma, any such two distinct
worlds σ and τ are not (k − n+ 1)-bisimilar and hence not k-bisimilar. It will
not be able to identify worlds at different levels either, as they have distinct
valuations. Hence the standard k-contraction of Mk will contain all worlds of
the original tree, so 2k+1−1 worlds. Compare this to the rooted k-contraction.
The worlds of the rooted k-contraction are of the form JσK where σ ∈ Wmax

k .
Note that if σ is a world of Mk at depth n, then b(σ) = k − n, and hence
JσK = [σ]k−n. By the lemma, we then get that any two worlds σ, τ at the same
depth ofMk belong to the same representative class JσK (since they are (k−n)-
bisimilar). Hence the rooted k-contraction can have at most k + 1 worlds, one
per level of the tree. We have hence proved the following succinctness result.

Theorem 6.2 (Exponential succinctness) There exist models Mk, k ≥ 0,
for which the rooted k-contraction has Θ(k) worlds whereas the standard k-
contraction has Θ(2k) worlds.

7 Related and Future Work

Implementation and computational complexity The most commonly
used technique to calculate bisimulation contractions is partition refinement
[1,16]. In these algorithms, the worlds are initially partitioned into equivalence
classes called blocks, for instance the blocks of the initial partition might con-
sist of all worlds having the same valuation. The algorithms then refine the
partition iteratively until some stopping condition is met, and the worlds of the
contracted model are then (usually) the blocks of that final partition. Many
partition refinement algorithms exist, the most famous probably being the one
by Paige and Tarjan [16]. The Paige and Tarjan algorithm doesn’t immedi-
ately lend itself to be adapted to do k-bisimulation contractions, as it is not
partitioning blocks in a stratified manner. Other simpler partition refinement
algorithms lend themselves more directly to be adapted to do k-bisimulation
contractions. One such partition refinement algorithm for k-bisimulation con-
traction has been presented by Bolander and Lequen [9]. In that algorithm,
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the first h refinement steps lead to a partition consisting exactly of the h-
bisimulation equivalence classes. Hence, by running the algorithm for k refine-
ment steps, we compute all classes [w]h for all w ∈W and h ≤ k. As shown in
that paper, this can be done in polynomial time in the size of the model.

Having computed all classes [w]h for all w ∈ W and h ≤ k, we can easily
compute the k-contraction (Definition 5.3). First we compute W ′, which can
also be done in polynomial time. 5 We then compute the accessibility relations
R′i, also in polynomial time. 6 Computing V ′ is trivial, and we hence have
a PTIME algorithm for computing rooted k-contractions. A version of this
algorithm has been implemented and is further discussed in Bolander, Burigana
and Montali [6] (under submission at the time of writing), as well as being
applied to doing depth-bounded epistemic planning.

Rooted k-Contractions and Modal Structures A series of works by Fa-
gin, Geanakoplos, Halpern and Vardi [10,11,12,13,14] explored an alternative
semantics to modal logic, with a particular emphasis on epistemic logic. In
these papers, they introduce and analyze objects called modal structures, which
are essentially infinite sequences of functions f = 〈f0, f1, . . . 〉 where a function
fk describes the knowledge of a set of agents up to modal depth k. Among the
many results they provide, the authors analyze the relation between pointed
Kripke models and modal structures. Interestingly, it turns out that differ-
ent k-bisimilar pointed models can be associated to the same subsequence
f≤k = 〈f0, . . . , fk〉 of functions, called the k-prefix of the modal structure f .
Hence, f≤k can be seen as representing a class of k-bisimilar pointed models.

In their works, the authors consider α-sequences of functions, where α is a
generic ordinal. Moreover, they also consider an infinitary language of modal
logic, where conjunctions of infinite formulas are allowed. Conversely, in this
paper we worked under the assumption that k is a finite ordinal, and we only
consider finite conjunctions. As a future avenue of research, we would like
to investigate the possibility of closing the gap between rooted k-contractions
and modal structures. We would like to generalize our notion of rooted k-
contraction to account for generic ordinals and infinite models. This, in turn,
would allow us to investigate the interplay between rooted k-contractions and
modal structures.

5 A naive algorithm to do this runs as follows. First we compute Wmax. For each world
x with b(x) ≥ 0, we can iterate through all worlds y with b(y) > b(x) and check whether
[y]b(x) = [x]b(x). If this is not true for any y, we put x in Wmax, since then no y strictly
represents x, cf. Definition 3.6. From Wmax, we can then easily compute W ′, since it is
simply the set of [x]b(x) for x ∈ Wmax. This algorithm runs in polynomial time since we
already computed all the relevant equivalence classes [w]h.
6 A naive algorithm to compute R′i is as follows. For each x ∈ Wmax with b(x) > 0 we can
iterate through all worlds y ∈ W such that xRiy. For each such y, we compute the least
(b(x) − 1)-representative z of y by taking the <-minimal world in the set Wmax ∩ [y]b(x)−1

(see Definition 5.2), and we add the pair (JxK, JzK) to R′i. Assuming we can compute whether
x < y in constant time, this also runs in polynomial time.
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