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Feedback control
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Feedback control – Linear systems

Linear system

ẋ(t) = Ax(t) +Bu(t) (1)

Control law

u(t) = −Lx(t) (2)

Closed-loop system

ẋ(t) = Ax(t)−BLx(t) = (A−BL)︸ ︷︷ ︸
Ā

x(t) (3)

Question: Is the closed-loop system stable?

Question: Are the real parts of the eigenvalues of Ā negative?
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Feedback control – Nonlinear systems
Nonlinear system

ẋ(t) = f(x(t), u(t), d(t), p) (4)

Control law

u(t) = µ(x(t)) (5)

Closed-loop system

ẋ(t) = f(x(t), µ(x(t)), d(t), p) = F (x(t), d(t), p) (6)

Typical objectives
▶ In steady state, x(t) = x̄, for some given setpoint x̄
▶ The steady state should be reached quickly
▶ The steady state should be stable
▶ The steady state should be robust against uncertainty in f , d,

and p
▶ The manipulated inputs should be used “sparingly”
▶ Optimize the economy
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Closed-loop stability

Closed-loop system

ẋ(t) = f(x(t), µ(x(t)), d(t), p) = F (x(t), d(t), p) (7)

Steady state

0 = f(xs, µ(xs), ds, p) = F (xs, ds, p), us = µ(xs) (8)

Jacobian matrix

A =
∂F

∂x
=

∂f

∂x
+

∂f

∂u

∂µ

∂x
=


∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...
∂Fn
∂x1

· · · ∂Fn
∂xn

 (9)
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State and output feedback

State feedback: All states are known to the controller

u(t) = µ(x(t)) (10)

Output equation (variables of interest/variables that are
measurable)

y(t) = g(x(t), p) (11)

Output feedback: Only the outputs are known

u(t) = µ(y(t)) (12)

Rule of thumb: You can only control as many states/outputs as
you have manipulated inputs
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Proportional-integral-derivative (PID) control
Proportional controller

u(t) = Kp(x(t)− x̄) (13)

Proportional-integral controller

u(t) = Kp(x(t)− x̄) +Ki

∫ t

0
x(s)− x̄ ds (14)

Proportional-integral-derivative controller (x̄ constant)

u(t) = Kp(x(t)− x̄) +Ki

∫ t

0
x(s)− x̄ ds+Kdẋ(t) (15)

Proportional-integral-derivative control with nominal input

u(t) = ū+Kp(x(t)− x̄) +Ki

∫ t

0
x(s)− x̄ ds+Kdẋ(t) (16)
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Closed-loop simulation of PID-controlled system
Integral

w(t) =

∫ t

t0

x(s)− x̄ ds (17)

Formulate integral as initial value problem

ẇ(t) = x(s)− x̄, w(t0) = 0 (18)

Closed-loop system

ẋ(t) = f(x(t), u(t), d(t), p), (19a)

ẇ(t) = x(s)− x̄, (19b)

u(t) = Kp(x(t)− x̄) +Kiw(t) +Kdẋ(t) (19c)

This is a set of implicit differential equations

Use, e.g., Matlab’s ode15i to simulate (19)
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Discrete-time PID control

Integral (right rectangle rule)

wk = wk−1 + (xk − x̄)∆t, w0 = 0 (20)

Derivative term

Kd
xk − xk−1

∆t
(21)

Discrete-time PID controller (x̄ constant)

uk = ū+Kp(xk − x̄) +Kiwk +Kd
xk − xk−1

∆t
(22)
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Optimal control

Optimal control problem

min
u

ϕ(x, u) =

∫ tf

t0

Φ(x(t), u(t), d(t), p) dt, (23a)

subject to

x(t0) = x0, (23b)

ẋ(t) = f(x(t), u(t), d(t), p), t ∈ [t0, tf ], (23c)

xmin ≤ x(t) ≤ xmax, t ∈ [t0, tf ], (23d)

umin ≤ u(t) ≤ umax, t ∈ [t0, tf ] (23e)

Zero-order-hold parametrization

u(t) = uk, t ∈ [tk, tk+1[, (24a)

d(t) = dk, t ∈ [tk, tk+1[ (24b)
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Optimal control – Linear quadratic regulator
Optimal control problem

min
u

ϕ(x, u) =

∫ ∞

t0

xT (t)Qx(t) + uT (t)Ru(t) dt, (25a)

subject to

x(t0) = x0, (25b)

ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, tf ] (25c)

Riccati equation

ATS + SA− SBR−1BTS +Q = 0 (26)

Optimal controller [1, Section 5.5], [2, Thm. 14.3 and 14.4]

u(t) = −Kx(t), K = R−1BTS (27)

Use, e.g., Matlab’s icare or lqr
11 / 21



Deviation variables
Linear system

ẋ(t) = Ax(t) +Bu(t) (28)

Desired steady state

0 = Ax̄+Bū, x̄ = −A−1Bū if A is invertible (29)

Deviation variables

X(t) = x(t)− x̄, U(t) = u(t)− ū (30)

Linear system for deviation variables

Ẋ(t) = ẋ(t)− ˙̄x = Ax(t) +Bu(t)

= A(X(t) + x̄) +B(U(t) + ū) = AX(t) +BU(t) +Ax̄+Bū︸ ︷︷ ︸
=0

= AX(t) +BU(t) (31)

Control law

U(t) = −KX(t), u(t) = ū+ U(t) = ū−K(x(t)− x̄) (32)
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Closed-loop simulation
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Closed-loop simulation

Nonlinear system

ẋ(t) = f(x(t), u(t), d(t), p), t ∈ [t0, tf ], (33a)

yk = g(x(tk), p), k = 0, . . . , N (33b)

Zero-order-hold parametrization

u(t) = uk, t ∈ [tk, tk+1[, (34a)

d(t) = dk, t ∈ [tk, tk+1[ (34b)

Control law

uk = µ(yk) (35)
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Closed-loop simulation

Initial value problems ({dk}N−1
k=0 are given)

xk(tk) =

{
x0, k = 0,

xk−1(tk), k = 1, . . . , N − 1,
(36a)

yk = g(xk(tk), p), (36b)

uk = µ(yk), (36c)

ẋk(t) = f(xk(t), uk, dk, p), t ∈ [tk, tk+1], k = 0, . . . , N − 1
(36d)

Closed-loop simulation

1. Determine the k’th initial state from (36a)

2. Compute the k’th measurement, yk, from (36b)

3. Compute the k’th manipulated input, uk, from (36c)

4. Solve the initial value problem (36d)
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Nuclear reactor model
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Nuclear reactor model 8 – Model 5 revisited (again)
Reactivity and thermal reactivity

ρ(t) = ρth(t) + ρext(t), ρ̇th(t) = −κṪr (37)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (38a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t), i = 1, . . . ,m (38b)

Energy balance equations (reactor core and heat exchanger)

Ṫr(t) =
f(t)

nr
(Thx(t)− Tr(t)) +

Qg(t)

nrcP
, (39a)

Ṫhx(t) =
f(t)

nhx
(Tr(t)− Thx(t))−

khx
nhxcP

(Thx(t)− Tc) (39b)
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Nuclear reactor model 9 – Model 7 revisited
Reactivity and thermal reactivity

ρ(t) = ρth(t) + ρext(t), ρ̇th(t) = −κṪr (40)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (41a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t) + (Ci,in(t)− Ci(t))D (41b)

Inlet concentration and dilution rate

Ci,in(t) = e−λiτCi(t− τ), D =
F

V
, F = Av, τ = L/v (42)

Energy balance equations

Ṫr(t) =
f(t)

nr
(Thx(t− τ/2)− Tr(t)) +

Qg(t)

nrcP
, (43a)

Ṫhx(t) =
f(t)

nhx
(Tr(t− τ/2)− Thx(t))−

khx
nhxcP

(Thx(t)− Tc)
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Questions?
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“Introduction to model based optimization of chemical processes on
moving horizons,” in Online Optimization of Large Scale Systems
(M. Grötschel, S. O. Krumke, and J. Rambau, eds.), Springer, 2001.

20 / 21



Bibliography II

[6] T. K. S. Ritschel and S. Stange, “Numerical optimal control for delay
differential equations: A simultaneous approach based on
linearization of the delayed state.” arXiv:2410.02687, 2024. Preprint.

[7] T. K. S. Ritschel, “Numerical optimal control for distributed delay
differential equations: A simultaneous approach based on linearization
of the delayed variables.” arXiv:2410.15083, 2024. Preprint.

[8] T. K. S. Ritschel and J. Wyller, “An algorithm for distributed time
delay identification based on a mixed Erlang kernel approximation
and the linear chain trick.” arXiv:2405.07328, 2024. Preprint.

21 / 21


	Feedback control
	Closed-loop simulation
	Nuclear reactor model
	References

