
01622 Advanced Dynamical Systems:
Applications in Science and Engineering

Week 4: Time delays

Tobias K. S. Ritschel,
Asst. Prof. in Stochastic Adaptive Control

Department of Applied Mathematics and Computer Science,
Technical University of Denmark

Last updated on February 6, 2025

1 / 29

Delay differential equations

2 / 29

Delay differential equations

General form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (1)

Memory states

zi(t) = x(t− τi), i = 1, . . . ,m (2)

3 / 29

How smooth is the solution? An example
Initial value problem with delay differential equations

x(t) = 1, t ≤ 0, (3a)

ẋ(t) = x(t− 1), t > 0 (3b)

Solution for t ∈ [0, 1]

x(t) = x(0) +

∫ t

0

=1︷ ︸︸ ︷
x(s− 1) ds = 1 + t (4)

Solution for t ∈ [1, 2]

x(t) = x(1) +

∫ t

1

=1+(s−1)︷ ︸︸ ︷
x(s− 1) ds = 2 +

1

2
(t2 − 12) =

3

2
+

1

2
t2 (5)

Derivatives

ẋ(t) =

0, t ≤ 0,

1, t ∈ [0, 1],

t, t ∈ [1, 2],

ẍ(t) =

0, t ≤ 0,

0, t ∈ [0, 1],

1, t ∈ [1, 2]

(6)

4 / 29

Steady states

In steady state, x(t) = xs for all t

Steady state equations

0 = f(xs, xs, . . . , xs, us, ds, p) (7)

The steady state is the same as for ordinary differential equations
in the form

ẋ(t) = f(x(t), x(t), . . . , x(t), u(t), d(t), p) (8)

Conclusion: Time delays do not change the steady state

5 / 29

Stability – Linear systems

For linear systems, e.g., in the form

ẋ(t) = A(p)x(t) +G(p)x(t− τ) +B(p)u(t) + E(p)d(t) (9)

the stability is determined by A, G, and the time delay τ

Characteristic equation

P (λ) = det
(
A+Ge−τλ − λI

)
= 0 (10)

In general, infinitely many solutions

6 / 29

Graphical stability analysis

Real and imaginary parts of characteristic function

Pr(λ) = ReP (λ), Pi(λ) = ImP (λ) (11)

Choose a grid of complex values

λmn = am + ibn, m = 1, . . . ,M, n = 1, . . . , N (12)

Plot the zero-contours of Pr and Pi

The intersection between the contours indicate the roots

7 / 29

Graphical stability analysis

8 / 29

Graphical stability analysis

9 / 29

Graphical stability analysis

10 / 29

Numerical computation of the roots

Decision variables: a and b

Algebraic equations

F (a, b) = Pr(a+ ib) = 0, (13a)

G(a, b) = Pi(a+ ib) = 0 (13b)

Two nonlinear equations in two variables that can be solved using,
e.g., Matlab’s fsolve

Initial guess: Use the graphical analysis

11 / 29

Stability – Nonlinear systems
For nonlinear systems in the general form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (14)

the stability is determined by A, Gi, and τi for i = 1, . . . ,m

Characteristic equation

P (λ) = det

(
A+

m∑
i=1

Gie
−τiλ − λI

)
= 0 (15)

Matrices

A =
∂f

∂x
=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , Gi =
∂f

∂zi
=

∂f1
∂zi,1

· · · ∂f1
∂zi,k

...
. . .

...
∂fn
∂zi,1

· · · ∂fn
∂zi,k

 ,

(16)

i = 1, . . . , k
12 / 29

Linearization – Linear systems
Linear system

ẋ(t) = Ax(t) +Gx(t− τ) +Bu(t) + Ed(t) (17)

Linearize the delayed state

x(t− τ) ≈ x(t) + ẋ(t)(t− τ − t) = x(t)− τ ẋ(t) (18)

Approximate linear system

ẋ(t) = Ax(t) +G(x(t)− τ ẋ(t)) +Bu(t) + Ed(t), (19a)

(I + τG)ẋ(t) = (A+G)x(t) +Bu(t) + Ed(t) (19b)

If I + τG is invertible

ẋ(t) = Āx(t) + B̄u(t) + Ēd(t), Ā = (I + τG)−1(A+G), (20)

B̄ = (I + τG)−1B, Ē = (I + τG)−1E (21)

13 / 29

Linearization – Differential-algebraic equations

If I + τG is not invertible

Mẋ(t) = Âx(t) +Bu(t) + Ed(t), M = I + τG, Â = A+G
(22)

Characteristic equation (generalized eigenvalue problem)

P (λ) = det(Â− λM) = 0 (23)

Can be solved using, e.g., Matlab’s eig

lambda = eig(Ahat, M)

14 / 29

Linearization – Comparison with original stability criterion
Characteristic function

P (λ) = det(Â− λM) = det(A+G− λ(I + τG))

= det(A+G(1− τλ)− λI) (24)

Original characteristic function

P (λ) = det
(
A+Ge−τλ − λI

)
= 0 (25)

Linearization of the exponential function (assume x is small)

ex =

∞∑
k=0

xk

k!
= 1 + x+

1

2
x2 + · · · ≈ 1 + x (26)

Linearization of the exponential function in the original
characteristic function

e−τλ ≈ 1− τλ (27)

15 / 29

Linearization – Nonlinear systems
Nonlinear system

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (28)

Linearize the memory states

zi(t) = x(t− τi) ≈ x(t)− τiẋ(t) (29)

Jacobian matrices

A =
∂f

∂x
=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , Gi =
∂f

∂zi
=

∂f1
∂zi,1

· · · ∂f1
∂zi,k

...
. . .

...
∂fn
∂zi,1

· · · ∂fn
∂zi,k

Characteristic equation

P (λ) = det

(
A+

m∑
i=1

Gi −

(
I +

m∑
i=1

Giτi

)
λ

)

= det

(
A+

m∑
i=1

Gi(1− τiλ)− λI

)
= 0 (30)

16 / 29

Nuclear reactor models

17 / 29

Nuclear reactor model 6 – Model 4 revisited
Reactivity

ρ̇(t) = −κHCn(t) (31)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (32a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t) + (Ci,in(t)− Ci(t))D (32b)

Inlet concentration

Ci,in(t) = e−λiτCi(t− τ) (33)

Dilution rate

D =
F

V
, F = Av, τ = L/v (34)

18 / 29

Nuclear reactor model 7 – Model 5 revisited
Reactivity

ρ̇(t) = −κṪr(t) (35)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (36a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t) + (Ci,in(t)− Ci(t))D (36b)

Energy balance equations

Ṫr(t) =
f(t)

nr
(Thx(t− τ/2)− Tr(t)) +

Qg(t)

nrcP
, (37a)

Ṫhx(t) =
f(t)

nhx
(Tr(t− τ/2)− Thx(t))−

khx
nhxcP

(Thx(t)− Tc)

(37b)

19 / 29

Time-varying time delays

20 / 29

Delay differential equations

General form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (38)

Memory states

zi(t) = x(t− τi), i = 1, . . . ,m (39)

Time-varying time delays

τi = τi(t), τi = τi(u(t)), (40a)

τi = τi(x(t)), τi = τi(t, x(t), u(t), d(t), p) (40b)

21 / 29

What are the underlying assumptions of time delays?

What do we assume about the process when we use time delays?

Thought experiment

1. Imagine two reactors that are connected by a pipe

2. Picture a model of the “receiving” reactor with time delay, τ

▶ The time delay is equal to length divided by velocity, τ = L/v

3. Imagine that you reduce the velocity by a factor of 10

4. What is the true “age” of the content in the pipe?

5. What is the age of the inlet stream in the receiving reactor?

22 / 29

Alternative to time delays: Transport equation
System

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (41)

Transport equation

∂zi
∂t

(t, s) = − 1

τi

∂zi
∂s

(t, s), zi(t, 0) = x(t), s ∈ [0, 1], (42)

Method of lines (first-order upwinded finite difference scheme)

zi,0(t) = x(t), (43a)

żi,n(t) = − 1

τi

zi,n(t)− zi,n−1(t)

∆s
, ∆s =

1

N
, n = 1, . . . , N,

(43b)

zi(t) = zi,N (t) (43c)

The differential equations (41) and (43b) are ordinary

See [1] for more details and other ways to approximate time delays
23 / 29

Open-loop simulation

24 / 29

Numerical simulation

Programming language Simulator Note

Matlab dde23 Constant time delays
Matlab ddesd General time delays
Matlab ddensd Neutral DDEs
Python JiTCDDE1 General time delays

1https://jitcdde.readthedocs.io/en
25 / 29

https://jitcdde.readthedocs.io/en

Open-loop simulation

System

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p), (44a)

zi(t) = x(t− τi), i = 1, . . . ,m (44b)

Zero-order hold parametrization

u(t) = uk, t ∈ [tk, tk+1[, (45a)

d(t) = dk, t ∈ [tk, tk+1[(45b)

Open-loop simulation:

1. Create a function that, for given time t, returns uk and dk, and
call dde23/ddesd/JiTCDDE once for all control intervals

2. For each control interval, use the solution structure from the
previous call to dde23/ddesd/JiTCDDE as the “history” input

26 / 29

Questions?

27 / 29

Bibliography I

[1] T. K. S. Ritschel, A. T. Reenberg, P. E. Carstensen, J. Bendsen, and
J. B. Jørgensen, “Mathematical meal models for simulation of human
metabolism.” arXiv: 2307.16444, 2024. Preprint.

[2] J. Hale, Theory of functional differential equations, vol. 3. Springer,
2nd ed., 1977.

[3] V. Kolmanovskii and A. Myshkis, Applied theory of functional
differential equations, vol. 85 of Mathematics and Its Applications.
Springer, 1992.

[4] S.-I. Niculescu and K. Gu, eds., Advances in time-delay systems,
vol. 38 of Lecture Notes in Computational Science and Engineering.
Springer, 2004.

[5] A. Bellen and M. Zennaro, Numerical methods for delay differential
equations. Numerical Mathematics and Scientific Computation,
Oxford University Press, 2003.

28 / 29

Bibliography II

[6] N. H. Du, V. H. Linh, and V. Mehrmann, “Robust stability of
differential-algebraic equations,” in Surveys in Differential-Algebraic
Equations I (A. Ilchmann and T. Reis, eds.), Differential-Algebraic
Equations Forum, pp. 63–95, Springer, 2013.

[7] T. K. S. Ritschel and S. Stange, “Numerical optimal control for delay
differential equations: A simultaneous approach based on
linearization of the delayed state.” arXiv:2410.02687, 2024. Preprint.

[8] T. K. S. Ritschel, “Numerical optimal control for distributed delay
differential equations: A simultaneous approach based on linearization
of the delayed variables.” arXiv:2410.15083, 2024. Preprint.

[9] T. K. S. Ritschel and J. Wyller, “An algorithm for distributed time
delay identification based on a mixed Erlang kernel approximation
and the linear chain trick.” arXiv:2405.07328, 2024. Preprint.

29 / 29

	Delay differential equations
	Nuclear reactor models
	Time-varying time delays
	Open-loop simulation
	References

