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Delay differential equations
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Delay differential equations

General form

Memory states

Zz(t) = :B(t — Ti),
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How smooth is the solution? An example
Initial value problem with delay differential equations
z(t) =1, t<0, (3a)
z(t) = z(t — 1), t>0 (3b)
Solution for t € [0,1]
-1

[ J——
x(t) :x(O)—i-/O z(s—1)ds=1+t (4)

Solution for t € [1,2]
. =1+4(s—1)

(1) :x(l)—i-/ ToDds=2+ -1 =34 1p (5
! 2 273
Derivatives
0, £<0, 0, £<0,
it =141, te1], @ =1do, te.] (6)
t, tell,2], 1, tell,2]
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Steady states

In steady state, x(t) = x5 for all ¢

Steady state equations

O:f(xS)xsu"'vxS)usudsap) (7)

The steady state is the same as for ordinary differential equations
in the form

x(t) :f(a:(t),a:(t),,ar(t),u(t),d(t),p) (8)

Conclusion: Time delays do not change the steady state
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Stability — Linear systems

For linear systems, e.g., in the form
() = A(p)z(t) + G(p)z(t — 7) + B(p)u(t) + E(p)d(t)  (9)
the stability is determined by A, (G, and the time delay 7
Characteristic equation
P()) = det (A +Ge ™ — )\I) —0 (10)

In general, infinitely many solutions
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Graphical stability analysis

Real and imaginary parts of characteristic function
P.(A) =Re P(\), Py(A\) =Im P()\)
Choose a grid of complex values
Amn = Qm + by, m=1,..., M, n=1,....,N
Plot the zero-contours of P, and P;

The intersection between the contours indicate the roots

(11)

(12)
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Graphical stability analysis
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Graphical stability analysis
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Graphical stability analysis
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Numerical computation of the roots

Decision variables: a and b

Algebraic equations

F(a,b) = Py(a+ib) =0, (13a)
G(a,b) = Pi(a+ib) =0 (13b)

Two nonlinear equations in two variables that can be solved using,
e.g., Matlab's fsolve

Initial guess: Use the graphical analysis
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Stability — Nonlinear systems
For nonlinear systems in the general form

x(t) = f($(t)7 Zl(t)v s 7Zm(t)7 u(t), d(t),p)

(14)

the stability is determined by A, G;, and 7; fori=1,...,m

Characteristic equation

P()\) = det (A + ZGie_”)‘ - AI) =0

i=1
Matrices
o ... Oh 59f1
[5) Oxn Zi1
of |7 . of
C ot . 0t | ok
o1 OTn 0zi,1
t=1,...,k

(15)

0 f1
82:1'7]C

9 fn
827;,]‘;

(16)
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Linearization — Linear systems

Linear system
z(t) = Ax(t) + Gx(t — 7) + Bu(t) + Ed(t) (17)
Linearize the delayed state
z(t—1)rzt)+z(t)(t—7—t) =x(t) — 172(t) (18)
Approximate linear system

#(t) = Ax(t) + G(z(t) — 7i(t)) + Bu(t) + Ed(t),  (19a)
(I +7G)i(t) = (A+ G)x(t) + Bu(t) + Ed(t)  (19b)

If I + 7@ is invertible

i(t) = Az(t) + Bu(t) + Ed(t), A= I +7G) Y (A+G), (20)
B=(I+71G)"'B, E=(I+7G)"'E (21)
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Linearization — Differential-algebraic equations

If I 4+ 7G is not invertible

Mi(t) = Az(t) + Bu(t) + Ed(t), M=1+71G, A=A+G
(22)

Characteristic equation (generalized eigenvalue problem)
P(\) =det(A—AM) =0 (23)
Can be solved using, e.g., Matlab's eig

lambda = eig(Ahat, M)
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Linearization — Comparison with original stability criterion
Characteristic function

P()\) = det(A — AM) = det(A+ G — A1 + 7Q))
= det(A+ G(1 —7A) — M) (24)

Original characteristic function
P()) = det (A +Ge ™ - /\I) ~0 (25)

Linearization of the exponential function (assume x is small)
= 2k 1
Zk——1+x+§w2+~-%1+x (26)
k=0

Linearization of the exponential function in the original
characteristic function

e al—TA (27)
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Linearization — Nonlinear systems
Nonlinear system

#(t) = F(z(t), 21(8), - - ., 2m(t), u(t), d(t), p) (28)

Linearize the memory states

zi(t) = x(t — 1) =~ x(t) — 72(t) (29)
Jacobian matrices
ofh ... 9f ofn ... 9N
of 89'51 8x'n of 02,1 02,k
T ot L Of S ) S} 5
1 OLr 0zi1 024 1

Characteristic equation
P()) = det (A +) G- (I +) Gm) )\)
i=1 i=1

= det (A—i—iGi(l—Ti)\)—)\I) =0 (30)

=1
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Nuclear reactor models
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Nuclear reactor model 6 — Model 4 revisited
Reactivity

p(t) = —wHCy(1)

Mass balance equations

e =D =Pe 0+ i \C),
Cit) = %C’n(t) — MG (t) + (Chan(®) — Co(#))D

Inlet concentration
Cijm(t) = 6_)\”—01' (t — T)
Dilution rate

D = F = Av, T=L/v

r
V’

(31)

(32a)

(32b)
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Nuclear reactor model 7 — Model 5 revisited
Reactivity

p(t) = —rT(t) (35)
Mass balance equations
et = "0 =P, + 3 aai) (362)
i=1
Ch(1) = SECu(1) = NCUt) + (Coinlt) ~ DD (36)

Energy balance equations

T(t) = frif) (Tha(t —7/2) — T,(t)) + e
Tha(t) = @(Tr(f —=7/2) = Tha(1)) —

Nha NhaCp

(37a)

(Thx (t) - TC)
(37b)
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Time-varying time delays
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Delay differential equations

General form

2(t) = f(z(t), 21(t), - ., zm (1), u(t), d(t), p)
Memory states

zi(t) = z(t — ), i=1,...,m
Time-varying time delays

7 = 7i(t), i = Ti(u(?)),
7 = 7i(z (1)), 7 = Ti(t, 2(t), u(t), d(t), p)

(38)

(39)

(40a)
(40b)
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What are the underlying assumptions of time delays?

’What do we assume about the process when we use time delays?‘

Thought experiment

1.
2.

Imagine two reactors that are connected by a pipe
Picture a model of the “receiving” reactor with time delay, 7

» The time delay is equal to length divided by velocity, 7 = L/v

3. Imagine that you reduce the velocity by a factor of 10

4. What is the true “age” of the content in the pipe?
5. What is the age of the inlet stream in the receiving reactor?
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Alternative to time delays: Transport equation
System

#(t) = f(2(t), z1(), - - 2m (1), u(t), d(t), p) (41)

Transport equation

) =22 (ns), a0 = a0, sel01) (1)
Method of lines (first-order upwinded finite difference scheme)
zio(t) = z(t), (43a)
Zin(t) = —;Zi’n(t) _Aj’nl(t), As = %, n=1,...,N,
(43b)
zi(t) = zi N (t) (43c)

The differential equations (41) and (43b) are ordinary

See [1] for more details and other ways to approximate time delays
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Open-loop simulation
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Numerical simulation

Programming language Simulator Note

Matlab dde23 Constant time delays
Matlab ddesd General time delays
Matlab ddensd Neutral DDEs
Python JiTCDDE! General time delays

'https://jitcdde.readthedocs.io/en
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https://jitcdde.readthedocs.io/en

Open-loop simulation

System

B(t) = f(x(t), 21(t), -, Zm(b), u(t), d(t),p),  (44a)

Zz(t) :$(t—Ti), i:1,...,m (44b)
Zero-order hold parametrization

U(t) = Uk, te [tkv tk+1[7 (453)

d(t) = dg, t € [t thra] (45b)

Open-loop simulation:

1. Create a function that, for given time ¢, returns ux and dg, and
call dde23/ddesd/JiTCDDE once for all control intervals

2. For each control interval, use the solution structure from the
previous call to dde23/ddesd/JiTCDDE as the “history” input
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Questions?

27/29



Bibliography |

(1]

2]
(3]

[4]

[5]

T. K. S. Ritschel, A. T. Reenberg, P. E. Carstensen, J. Bendsen, and
J. B. Jgrgensen, “Mathematical meal models for simulation of human
metabolism.” arXiv: 2307.16444, 2024. Preprint.

J. Hale, Theory of functional differential equations, vol. 3. Springer,
2nd ed., 1977.

V. Kolmanovskii and A. Myshkis, Applied theory of functional
differential equations, vol. 85 of Mathematics and Its Applications.
Springer, 1992.

S.-I. Niculescu and K. Gu, eds., Advances in time-delay systems,
vol. 38 of Lecture Notes in Computational Science and Engineering.
Springer, 2004.

A. Bellen and M. Zennaro, Numerical methods for delay differential
equations. Numerical Mathematics and Scientific Computation,
Oxford University Press, 2003.

28/29



Bibliography Il

[6]

[7]

(8]

[9]

N. H. Du, V. H. Linh, and V. Mehrmann, “Robust stability of
differential-algebraic equations,” in Surveys in Differential-Algebraic
Equations | (A. lichmann and T. Reis, eds.), Differential-Algebraic
Equations Forum, pp. 63-95, Springer, 2013.

T. K. S. Ritschel and S. Stange, “Numerical optimal control for delay
differential equations: A simultaneous approach based on
linearization of the delayed state.” arXiv:2410.02687, 2024. Preprint.

T. K. S. Ritschel, “Numerical optimal control for distributed delay
differential equations: A simultaneous approach based on linearization
of the delayed variables.” arXiv:2410.15083, 2024. Preprint.

T. K. S. Ritschel and J. Wyller, “An algorithm for distributed time
delay identification based on a mixed Erlang kernel approximation
and the linear chain trick.” arXiv:2405.07328, 2024. Preprint.

29/29



	Delay differential equations
	Nuclear reactor models
	Time-varying time delays
	Open-loop simulation
	References

