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Delay differential equations
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Delay differential equations

General form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (1)

Memory states

zi(t) = x(t− τi), i = 1, . . . ,m (2)
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How smooth is the solution? An example
Initial value problem with delay differential equations

x(t) = 1, t ≤ 0, (3a)

ẋ(t) = x(t− 1), t > 0 (3b)

Solution for t ∈ [0, 1]

x(t) = x(0) +

∫ t

0

=1︷ ︸︸ ︷
x(s− 1) ds = 1 + t (4)

Solution for t ∈ [1, 2]

x(t) = x(1) +

∫ t

1

=1+(s−1)︷ ︸︸ ︷
x(s− 1) ds = 2 +

1

2
(t2 − 12) =

3

2
+

1

2
t2 (5)

Derivatives

ẋ(t) =


0, t ≤ 0,

1, t ∈ [0, 1],

t, t ∈ [1, 2],

ẍ(t) =


0, t ≤ 0,

0, t ∈ [0, 1],

1, t ∈ [1, 2]

(6)
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Steady states

In steady state, x(t) = xs for all t

Steady state equations

0 = f(xs, xs, . . . , xs, us, ds, p) (7)

The steady state is the same as for ordinary differential equations
in the form

ẋ(t) = f(x(t), x(t), . . . , x(t), u(t), d(t), p) (8)

Conclusion: Time delays do not change the steady state
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Stability – Linear systems

For linear systems, e.g., in the form

ẋ(t) = A(p)x(t) +G(p)x(t− τ) +B(p)u(t) + E(p)d(t) (9)

the stability is determined by A, G, and the time delay τ

Characteristic equation

P (λ) = det
(
A+Ge−τλ − λI

)
= 0 (10)

In general, infinitely many solutions

6 / 29



Graphical stability analysis

Real and imaginary parts of characteristic function

Pr(λ) = ReP (λ), Pi(λ) = ImP (λ) (11)

Choose a grid of complex values

λmn = am + ibn, m = 1, . . . ,M, n = 1, . . . , N (12)

Plot the zero-contours of Pr and Pi

The intersection between the contours indicate the roots
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Graphical stability analysis
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Graphical stability analysis
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Graphical stability analysis
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Numerical computation of the roots

Decision variables: a and b

Algebraic equations

F (a, b) = Pr(a+ ib) = 0, (13a)

G(a, b) = Pi(a+ ib) = 0 (13b)

Two nonlinear equations in two variables that can be solved using,
e.g., Matlab’s fsolve

Initial guess: Use the graphical analysis
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Stability – Nonlinear systems
For nonlinear systems in the general form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (14)

the stability is determined by A, Gi, and τi for i = 1, . . . ,m

Characteristic equation

P (λ) = det

(
A+

m∑
i=1

Gie
−τiλ − λI

)
= 0 (15)

Matrices

A =
∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , Gi =
∂f

∂zi
=


∂f1
∂zi,1

· · · ∂f1
∂zi,k

...
. . .

...
∂fn
∂zi,1

· · · ∂fn
∂zi,k

 ,

(16)

i = 1, . . . , k
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Linearization – Linear systems
Linear system

ẋ(t) = Ax(t) +Gx(t− τ) +Bu(t) + Ed(t) (17)

Linearize the delayed state

x(t− τ) ≈ x(t) + ẋ(t)(t− τ − t) = x(t)− τ ẋ(t) (18)

Approximate linear system

ẋ(t) = Ax(t) +G(x(t)− τ ẋ(t)) +Bu(t) + Ed(t), (19a)

(I + τG)ẋ(t) = (A+G)x(t) +Bu(t) + Ed(t) (19b)

If I + τG is invertible

ẋ(t) = Āx(t) + B̄u(t) + Ēd(t), Ā = (I + τG)−1(A+G), (20)

B̄ = (I + τG)−1B, Ē = (I + τG)−1E (21)
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Linearization – Differential-algebraic equations

If I + τG is not invertible

Mẋ(t) = Âx(t) +Bu(t) + Ed(t), M = I + τG, Â = A+G
(22)

Characteristic equation (generalized eigenvalue problem)

P (λ) = det(Â− λM) = 0 (23)

Can be solved using, e.g., Matlab’s eig

lambda = eig(Ahat, M)
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Linearization – Comparison with original stability criterion
Characteristic function

P (λ) = det(Â− λM) = det(A+G− λ(I + τG))

= det(A+G(1− τλ)− λI) (24)

Original characteristic function

P (λ) = det
(
A+Ge−τλ − λI

)
= 0 (25)

Linearization of the exponential function (assume x is small)

ex =

∞∑
k=0

xk

k!
= 1 + x+

1

2
x2 + · · · ≈ 1 + x (26)

Linearization of the exponential function in the original
characteristic function

e−τλ ≈ 1− τλ (27)
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Linearization – Nonlinear systems
Nonlinear system

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (28)

Linearize the memory states

zi(t) = x(t− τi) ≈ x(t)− τiẋ(t) (29)

Jacobian matrices

A =
∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , Gi =
∂f

∂zi
=


∂f1
∂zi,1

· · · ∂f1
∂zi,k

...
. . .

...
∂fn
∂zi,1

· · · ∂fn
∂zi,k


Characteristic equation

P (λ) = det

(
A+

m∑
i=1

Gi −

(
I +

m∑
i=1

Giτi

)
λ

)

= det

(
A+

m∑
i=1

Gi(1− τiλ)− λI

)
= 0 (30)
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Nuclear reactor models
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Nuclear reactor model 6 – Model 4 revisited
Reactivity

ρ̇(t) = −κHCn(t) (31)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (32a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t) + (Ci,in(t)− Ci(t))D (32b)

Inlet concentration

Ci,in(t) = e−λiτCi(t− τ) (33)

Dilution rate

D =
F

V
, F = Av, τ = L/v (34)
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Nuclear reactor model 7 – Model 5 revisited
Reactivity

ρ̇(t) = −κṪr(t) (35)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (36a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t) + (Ci,in(t)− Ci(t))D (36b)

Energy balance equations

Ṫr(t) =
f(t)

nr
(Thx(t− τ/2)− Tr(t)) +

Qg(t)

nrcP
, (37a)

Ṫhx(t) =
f(t)

nhx
(Tr(t− τ/2)− Thx(t))−

khx
nhxcP

(Thx(t)− Tc)

(37b)
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Time-varying time delays
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Delay differential equations

General form

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (38)

Memory states

zi(t) = x(t− τi), i = 1, . . . ,m (39)

Time-varying time delays

τi = τi(t), τi = τi(u(t)), (40a)

τi = τi(x(t)), τi = τi(t, x(t), u(t), d(t), p) (40b)

21 / 29



What are the underlying assumptions of time delays?

What do we assume about the process when we use time delays?

Thought experiment

1. Imagine two reactors that are connected by a pipe

2. Picture a model of the “receiving” reactor with time delay, τ

▶ The time delay is equal to length divided by velocity, τ = L/v

3. Imagine that you reduce the velocity by a factor of 10

4. What is the true “age” of the content in the pipe?

5. What is the age of the inlet stream in the receiving reactor?
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Alternative to time delays: Transport equation
System

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p) (41)

Transport equation

∂zi
∂t

(t, s) = − 1

τi

∂zi
∂s

(t, s), zi(t, 0) = x(t), s ∈ [0, 1], (42)

Method of lines (first-order upwinded finite difference scheme)

zi,0(t) = x(t), (43a)

żi,n(t) = − 1

τi

zi,n(t)− zi,n−1(t)

∆s
, ∆s =

1

N
, n = 1, . . . , N,

(43b)

zi(t) = zi,N (t) (43c)

The differential equations (41) and (43b) are ordinary

See [1] for more details and other ways to approximate time delays
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Open-loop simulation
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Numerical simulation

Programming language Simulator Note

Matlab dde23 Constant time delays
Matlab ddesd General time delays
Matlab ddensd Neutral DDEs
Python JiTCDDE1 General time delays

1https://jitcdde.readthedocs.io/en
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Open-loop simulation

System

ẋ(t) = f(x(t), z1(t), . . . , zm(t), u(t), d(t), p), (44a)

zi(t) = x(t− τi), i = 1, . . . ,m (44b)

Zero-order hold parametrization

u(t) = uk, t ∈ [tk, tk+1[, (45a)

d(t) = dk, t ∈ [tk, tk+1[ (45b)

Open-loop simulation:

1. Create a function that, for given time t, returns uk and dk, and
call dde23/ddesd/JiTCDDE once for all control intervals

2. For each control interval, use the solution structure from the
previous call to dde23/ddesd/JiTCDDE as the “history” input
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Questions?
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