01622 Advanced Dynamical Systems: Applications in Science and Engineering Week 4: Time delays

Tobias K. S. Ritschel, Asst. Prof. in Stochastic Adaptive Control

Department of Applied Mathematics and Computer Science, Technical University of Denmark

Last updated on February 6, 2025

Delay differential equations

Delay differential equations

General form

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p)$$
(1)

Memory states

$$z_i(t) = x(t - \tau_i),$$
 $i = 1, \dots, m$ (2)

How smooth is the solution? An example

Initial value problem with delay differential equations

$$x(t) = 1, \qquad t \le 0, \qquad (3a)$$

$$\dot{x}(t) = x(t-1),$$
 $t > 0$ (3b)

Solution for $t \in [0, 1]$

$$x(t) = x(0) + \int_0^t \underbrace{x(s-1)}_{0}^{t-1} ds = 1 + t$$
 (4)

Solution for $t \in [1,2]$

$$x(t) = x(1) + \int_{1}^{t} \underbrace{\overbrace{x(s-1)}^{=1+(s-1)}}_{0} ds = 2 + \frac{1}{2}(t^2 - 1^2) = \frac{3}{2} + \frac{1}{2}t^2 \quad (5)$$

Derivatives

$$\dot{x}(t) = \begin{cases} 0, & t \le 0, \\ 1, & t \in [0, 1], \\ t, & t \in [1, 2], \end{cases} \qquad \ddot{x}(t) = \begin{cases} 0, & t \le 0, \\ 0, & t \in [0, 1], \\ 1, & t \in [1, 2] \end{cases}$$
(6)

Steady states

In steady state, $x(t) = x_s$ for all t

Steady state equations

$$0 = f(x_s, x_s, \dots, x_s, u_s, d_s, p) \tag{7}$$

The steady state is the same as for ordinary differential equations in the form

$$\dot{x}(t) = f(x(t), x(t), \dots, x(t), u(t), d(t), p)$$
(8)

Conclusion: Time delays do not change the steady state

Stability – Linear systems

For linear systems, e.g., in the form

$$\dot{x}(t) = A(p)x(t) + G(p)x(t-\tau) + B(p)u(t) + E(p)d(t)$$
(9)

the stability is determined by A, G, and the time delay τ

Characteristic equation

$$P(\lambda) = \det\left(A + Ge^{-\tau\lambda} - \lambda I\right) = 0$$
(10)

In general, infinitely many solutions

Graphical stability analysis

Real and imaginary parts of characteristic function

$$P_r(\lambda) = \operatorname{Re} P(\lambda), \qquad P_i(\lambda) = \operatorname{Im} P(\lambda) \qquad (11)$$

Choose a grid of complex values

$$\lambda_{mn} = a_m + ib_n, \qquad m = 1, \dots, M, \qquad n = 1, \dots, N$$
(12)

Plot the zero-contours of P_r and P_i

The intersection between the contours indicate the roots

Graphical stability analysis

Graphical stability analysis

Graphical stability analysis

Numerical computation of the roots

Decision variables: a and b

Algebraic equations

$$F(a,b) = P_r(a+ib) = 0,$$
 (13a)

$$G(a,b) = P_i(a+ib) = 0$$
 (13b)

Two nonlinear equations in two variables that can be solved using, e.g., Matlab's fsolve

Initial guess: Use the graphical analysis

Stability – Nonlinear systems

For nonlinear systems in the general form

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p)$$
 (14)

the stability is determined by A_{i} $G_i\text{, and }\tau_i$ for $i=1,\ldots,m$

Characteristic equation

$$P(\lambda) = \det\left(A + \sum_{i=1}^{m} G_i e^{-\tau_i \lambda} - \lambda I\right) = 0$$
 (15)

Matrices

 $i = 1, \ldots, k$

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \quad G_i = \frac{\partial f}{\partial z_i} = \begin{bmatrix} \frac{\partial f_1}{\partial z_{i,1}} & \cdots & \frac{\partial f_1}{\partial z_{i,k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial z_{i,1}} & \cdots & \frac{\partial f_n}{\partial z_{i,k}} \end{bmatrix},$$
(16)

Linearization – Linear systems

Linear system

$$\dot{x}(t) = Ax(t) + Gx(t - \tau) + Bu(t) + Ed(t)$$
 (17)

Linearize the delayed state

$$x(t-\tau) \approx x(t) + \dot{x}(t)(t-\tau-t) = x(t) - \tau \dot{x}(t)$$
 (18)

Approximate linear system

$$\dot{x}(t) = Ax(t) + G(x(t) - \tau \dot{x}(t)) + Bu(t) + Ed(t),$$
(19a)

$$(I + \tau G)\dot{x}(t) = (A + G)x(t) + Bu(t) + Ed(t)$$
 (19b)

If $I+\tau G$ is invertible

$$\dot{x}(t) = \bar{A}x(t) + \bar{B}u(t) + \bar{E}d(t), \quad \bar{A} = (I + \tau G)^{-1}(A + G), \quad (20)$$
$$\bar{B} = (I + \tau G)^{-1}B, \qquad \bar{E} = (I + \tau G)^{-1}E \quad (21)$$

Linearization – Differential-algebraic equations

If $I + \tau G$ is not invertible

$$M\dot{x}(t) = \hat{A}x(t) + Bu(t) + Ed(t), \quad M = I + \tau G, \quad \hat{A} = A + G$$
(22)

Characteristic equation (generalized eigenvalue problem)

$$P(\lambda) = \det(\hat{A} - \lambda M) = 0$$
(23)

Can be solved using, e.g., Matlab's eig

Linearization – Comparison with original stability criterion Characteristic function

$$P(\lambda) = \det(\hat{A} - \lambda M) = \det(A + G - \lambda(I + \tau G))$$

=
$$\det(A + G(1 - \tau\lambda) - \lambda I)$$
 (24)

Original characteristic function

$$P(\lambda) = \det\left(A + Ge^{-\tau\lambda} - \lambda I\right) = 0$$
(25)

Linearization of the exponential function (assume x is small)

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{1}{2}x^2 + \dots \approx 1 + x$$
 (26)

Linearization of the exponential function in the original characteristic function

$$e^{-\tau\lambda} \approx 1 - \tau\lambda$$
 (27)

Linearization – Nonlinear systems

Nonlinear system

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p)$$
(28)

Linearize the memory states

$$z_i(t) = x(t - \tau_i) \approx x(t) - \tau_i \dot{x}(t)$$
(29)

Jacobian matrices

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \quad G_i = \frac{\partial f}{\partial z_i} = \begin{bmatrix} \frac{\partial f_1}{\partial z_{i,1}} & \cdots & \frac{\partial f_1}{\partial z_{i,k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial z_{i,1}} & \cdots & \frac{\partial f_n}{\partial z_{i,k}} \end{bmatrix}$$

Characteristic equation

$$P(\lambda) = \det\left(A + \sum_{i=1}^{m} G_i - \left(I + \sum_{i=1}^{m} G_i \tau_i\right)\lambda\right)$$
$$= \det\left(A + \sum_{i=1}^{m} G_i(1 - \tau_i\lambda) - \lambda I\right) = 0$$
(30)

Nuclear reactor models

Nuclear reactor model 6 – Model 4 revisited Reactivity

$$\dot{\rho}(t) = -\kappa H C_n(t) \tag{31}$$

Mass balance equations

$$\dot{C}_{n}(t) = \frac{\rho(t) - \beta}{\Lambda} C_{n}(t) + \sum_{i=1}^{m} \lambda_{i} C_{i}(t), \qquad (32a)$$

$$\dot{C}_i(t) = \frac{\rho_i}{\Lambda} C_n(t) - \lambda_i C_i(t) + (C_{i,in}(t) - C_i(t))D$$
(32b)

Inlet concentration

$$C_{i,in}(t) = e^{-\lambda_i \tau} C_i(t-\tau)$$
(33)

Dilution rate

$$D = \frac{F}{V}, \qquad F = Av, \qquad \tau = L/v \qquad (34)$$

Nuclear reactor model 7 – Model 5 revisited Reactivity

$$\dot{\rho}(t) = -\kappa \dot{T}_r(t) \tag{35}$$

Mass balance equations

$$\dot{C}_{n}(t) = \frac{\rho(t) - \beta}{\Lambda} C_{n}(t) + \sum_{i=1}^{m} \lambda_{i} C_{i}(t), \qquad (36a)$$

$$\dot{C}_i(t) = \frac{\beta_i}{\Lambda} C_n(t) - \lambda_i C_i(t) + (C_{i,in}(t) - C_i(t))D$$
(36b)

Energy balance equations

$$\dot{T}_{r}(t) = \frac{f(t)}{n_{r}} (T_{hx}(t - \tau/2) - T_{r}(t)) + \frac{Q_{g}(t)}{n_{r}c_{P}},$$

$$\dot{T}_{hx}(t) = \frac{f(t)}{n_{hx}} (T_{r}(t - \tau/2) - T_{hx}(t)) - \frac{k_{hx}}{n_{hx}c_{P}} (T_{hx}(t) - T_{c})$$
(37b)

Time-varying time delays

Delay differential equations

General form

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p)$$
(38)

Memory states

$$z_i(t) = x(t - \tau_i),$$
 $i = 1, \dots, m$ (39)

Time-varying time delays

$$\tau_i = \tau_i(t), \qquad \qquad \tau_i = \tau_i(u(t)), \qquad (40a)$$

$$\tau_i = \tau_i(x(t)), \qquad \tau_i = \tau_i(t, x(t), u(t), d(t), p)$$
 (40b)

What are the underlying assumptions of time delays?

What do we assume about the process when we use time delays?

Thought experiment

- 1. Imagine two reactors that are connected by a pipe
- 2. Picture a model of the "receiving" reactor with time delay, au
 - $\blacktriangleright\,$ The time delay is equal to length divided by velocity, $\tau = L/v$
- 3. Imagine that you reduce the velocity by a factor of 10
- 4. What is the true "age" of the content in the pipe?
- 5. What is the age of the inlet stream in the receiving reactor?

Alternative to time delays: Transport equation System

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p)$$
(41)

Transport equation

$$\frac{\partial z_i}{\partial t}(t,s) = -\frac{1}{\tau_i} \frac{\partial z_i}{\partial s}(t,s), \quad z_i(t,0) = x(t), \quad s \in [0,1], \quad (42)$$

Method of lines (first-order upwinded finite difference scheme)

$$z_{i,0}(t) = x(t),$$

$$\dot{z}_{i,n}(t) = -\frac{1}{\tau_i} \frac{z_{i,n}(t) - z_{i,n-1}(t)}{\Delta s}, \quad \Delta s = \frac{1}{N}, \quad n = 1, \dots, N,$$
(43b)
$$z_i(t) = z_{i,N}(t)$$
(43c)

The differential equations (41) and (43b) are ordinary

See [1] for more details and other ways to approximate time delays

Open-loop simulation

Numerical simulation

Programming language	Simulator	Note
Matlab	dde23	Constant time delays
Matlab	ddesd	General time delays
Matlab	ddensd	Neutral DDEs
Python	Jitcdde1	General time delays

¹https://jitcdde.readthedocs.io/en

Open-loop simulation

System

$$\dot{x}(t) = f(x(t), z_1(t), \dots, z_m(t), u(t), d(t), p),$$
(44a)
$$z_i(t) = x(t - \tau_i), \quad i = 1, \dots, m$$
(44b)

Zero-order hold parametrization

$$u(t) = u_k,$$
 $t \in [t_k, t_{k+1}],$ (45a)

$$d(t) = d_k,$$
 $t \in [t_k, t_{k+1}]$ (45b)

Open-loop simulation:

- 1. Create a function that, for given time t, returns u_k and d_k , and call dde23/ddesd/JiTCDDE once for all control intervals
- 2. For each control interval, use the solution structure from the previous call to dde23/ddesd/JiTCDDE as the "history" input

Questions?

Bibliography I

- T. K. S. Ritschel, A. T. Reenberg, P. E. Carstensen, J. Bendsen, and J. B. Jørgensen, "Mathematical meal models for simulation of human metabolism." arXiv: 2307.16444, 2024. Preprint.
- [2] J. Hale, *Theory of functional differential equations*, vol. 3. Springer, 2nd ed., 1977.
- [3] V. Kolmanovskii and A. Myshkis, Applied theory of functional differential equations, vol. 85 of Mathematics and Its Applications. Springer, 1992.
- [4] S.-I. Niculescu and K. Gu, eds., Advances in time-delay systems, vol. 38 of Lecture Notes in Computational Science and Engineering. Springer, 2004.
- [5] A. Bellen and M. Zennaro, Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computation, Oxford University Press, 2003.

Bibliography II

- [6] N. H. Du, V. H. Linh, and V. Mehrmann, "Robust stability of differential-algebraic equations," in *Surveys in Differential-Algebraic Equations I* (A. Ilchmann and T. Reis, eds.), Differential-Algebraic Equations Forum, pp. 63–95, Springer, 2013.
- [7] T. K. S. Ritschel and S. Stange, "Numerical optimal control for delay differential equations: A simultaneous approach based on linearization of the delayed state." arXiv:2410.02687, 2024. Preprint.
- [8] T. K. S. Ritschel, "Numerical optimal control for distributed delay differential equations: A simultaneous approach based on linearization of the delayed variables." arXiv:2410.15083, 2024. Preprint.
- [9] T. K. S. Ritschel and J. Wyller, "An algorithm for distributed time delay identification based on a mixed Erlang kernel approximation and the linear chain trick." arXiv:2405.07328, 2024. Preprint.