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Abstract

In protocol verification we observe a wide spectrum from fully automated methods to inter-
active theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelm-
ingly high assurance of the correctness, which automated methods often cannot: due to their
complexity, bugs in such automated verification tools are likely and thus the risk of erroneously
verifying a flawed protocol is non-negligible. There are a few works that try to combine advan-
tages from both ends of the spectrum: a high degree of automation and assurance. We present
here a first step towards achieving this for a more challenging class of protocols, namely those
that work with a mutable long-term state. To our knowledge this is the first approach that
achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The
approach also includes a simple user-friendly transaction-based protocol specification language
embedded into Isabelle, and can also leverage a number of existing results such as soundness
of a typed model.

1 Introduction
There are at least three reasons why it is desirable to perform proofs of security in a proof assistant
like Isabelle/HOL or Coq. First, it gives us an overwhelming assurance that the proof of security
is actually a proof and not just the result of a bug in a complex verification tool. This is because
the basic idea of an LCF-style theorem prover is to have an abstract datatype theorem so that
new theorems can only be constructed through functions that correspond to accepted proof rules;
thus implementing just this datatype correctly prevents us from ever accepting a wrong proof as
a theorem, no matter what complex machinery we build for automatically finding proofs. Second,
a human may have an insight of how to easily prove a particular statement where a “stupid”
verification algorithm may run into a complex check or even be infeasible. Third, the language of a
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proof assistant can formalize all accepted mathematics, so there is no narrow limit on what aspects
of a system we can formalize. For instance, we have proved in Isabelle/HOL a compositionality
result [24] for our protocol model: given a set of protocols for which we have proved security and
that meet a number of requirement, then also their composition is correct. Since also the said
requirements are proved in Isabelle, we arrive at a full security proof of the entire system checked
by Isabelle. A result like this is beyond the scope of any standard verification tool. Note also that
as part of the composition, some of the component protocols may be proved secure by different
methods or even automatically.

Paulson [38] and Bella [5] developed a protocol model in Isabelle and performed several security
proofs in this model, e.g., [39]. That the proof of a single protocol (for which even some automated
security proofs exist) is worth a publication, underlines how demanding it is to conduct proofs in a
proof assistant. This raised the question of how one can automatically produce proofs that can be
checked by a proof assistant and thus get the mentioned overwhelming assurance. The first works
in this direction consider tools based on Horn-clause resolution like ProVerif [20, 11], as well as the
tool Scyther-proof [31] for the backward search-based tool Scyther [18].

A drawback of these approaches so far is that they only apply to Alice-and-Bob style protocols
where there is no relation between several sessions. When we consider, however, any system that
maintains a mutable long-term state, e.g., a security token or a server that maintains a simple
database, we hit the limits of tools like ProVerif and Scyther. To cope with the complexity, some
extensions to ProVerif have been proposed [3, 14], but also a tool that went a completely different
way: Tamarin [33] is actually inspired by Scyther-proof and has the flavor of a proof assistant
environment itself, namely combining partial automation with interactively performing a proof,
i.e., supplying the right lemmas to show. Interestingly, there is no connection to Isabelle or other
LCF-style theorem provers, while one may intuitively expect that this should be easily possible.
The reason seems to be that Tamarin combines several specialized automated methods, especially
for term algebraic reasoning, that would be quite difficult to “translate” into Isabelle/HOL—at
least the authors of this paper do not see an easy way to make such a connection. In fact, if it was
possible for a large class of stateful protocols, the combination of overwhelming assurance of proofs
and a high degree of automation would be extremely desirable.

The goal of this work is to achieve exactly this combination for a well-defined fragment of stateful
protocols. We are here using as a foundation the Isabelle/HOL formalization and protocol model by
Hess et al. [23]. One reason for this choice is that the proof technique we present in this paper works
only in a restricted typed model. Fortunately, that formalization ships with a typing result [26],
namely an Isabelle theorem that says: if a protocol is secure in this typed model, then it is also
secure in the full model without the typing restriction—as long as the protocol in question satisfies
a number of basic requirements. Thus we get fully automated Isabelle proofs for most protocols
even without a typing restriction.

The automated proof technique we employ in this paper is based on the set-based abstraction
approach of [12, 35]. The basic idea is that we represent the long-term state of a protocol by a
number of sets; the protocol rules specify how protocol participants shall insert elements into a set,
remove them from a set, and check for membership or non-membership. (The intruder may also
be given access to some sets.) Based on this, we perform an abstract interpretation approach that
identifies those elements that have the same membership status in all sets and compute a fixed point,
more precisely a representation of all messages that the intruder can ever know after any trace of
the protocol (including the set membership status of elements that occur in these messages). One
may wonder if considering just intruder-known messages limits the approach to secrecy goals, but
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thanks to sets, a wide range of trace-based properties can be expressed by reduction to the secrecy
of a special constant attack. (We cannot, however, handle privacy-type properties in this way.)

We thus check if the fixed point contains the attack constant, and if so, we can abort the attempt
to prove the protocol correct. This may happen also for a secure protocol as the abstraction entails
an over-approximation. However, vice-versa, if attack is not in the fixed point, then the protocol
should be secure—if the fixed point is indeed a sound representation of the messages the intruder
can ever know. The proof we perform in Isabelle now is thus basically to show that the fixed point
is closed under every protocol rule: given any trace where the intruder knows only messages covered
by the fixed point, then every extension by one protocol step reveals only messages also covered by
the fixed point.

Contributions Our main contribution is the formalization in Isabelle of the abstraction inter-
pretation approach for stateful protocols as the PSPSP tool. In a nutshell, we have implemented in
Isabelle the computation of the abstract fixed point—the proof idea so to speak—and how Isabelle
can convince herself that this fixed point covers everything that can happen in the concrete proto-
col. The Isabelle security proof that one obtains consists of two main parts: first, we have a number
of protocol-independent theorems that we have proved in Isabelle once and for all, and second, for
every protocol and fixed point, we have a number of checks that Isabelle can directly execute to
establish the correctness of a given protocol. The entire protocol-independent formalization consists
of more than 25,000 lines of Isabelle code (definitions, theorems and proofs).

A second contribution is the development and integration into Isabelle of a simple protocol
specification language for stateful protocols that is based on a notion of atomic transactions: in a
transaction, an entity may receive a message, consult its long-term database, make changes to the
database and finally send out a reply. This language is more high-level than for instance multi-set
rewriting while directly defining a state-transition system.

With respect to the conference version of this paper [27], we have made a number of improve-
ments. First, we have improved the verification method itself. We have devised a novel method for
checking the fixed-point coverage that significantly improves the runtime of many examples. We
have also improved the check that fixed point is closed under decryption rules.

Second, we have connected the PSPSP tool to the compositional reasoning results of [23]: the
transaction language now includes everything that is necessary to specify for protocol composition
(most importantly, protocol interfaces and declassification for shared messages). The PSPSP tool
now offers an automated check of the sufficient condition of compositionality. This allows for proving
the security of a complex system in Isabelle entirely automatically, namely by using PSPSP to check
the components and compositionality conditions, and then applying the composition theorem.

Third, related to that, one may of course prove only some components of a composition auto-
matically with PSPSP and prove other components manually when they do not fall into the scope
of what PSPSP can support. Also, one may integrate manual reasoning with automated PSPSP
analysis: when the runtime of automated analysis are high, a human prover may have an idea to
prove some aspect more easily avoiding, e.g., some lengthy enumerations.

Fourth, we have improved the user experience of the tool, e.g., by better error messages and
support to understand attacks. A trace of derivation steps for the attack constant can be of great
help: either this is a true attack and one can strengthen the protocol to prevent the attack, or it
is a false positive induced by the over-approximation and this may give a hint how to refine the
model of the protocol.

Fifth, while the transactions of a protocol specification immediately give rise to a state-transition
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systems there is a slight semantic gap between them namely that it is a necessity of the abstract
interpretation approach that in the abstract transactions, every value occurs in a message (while
in the transaction language specification a value may occur only in a set). This is without loss of
generality, because one can make a transformation that for every newly generated value v generates
a special message occurs(v) and require that occurs(v) holds for every non-fresh value v in a rule.
The tool includes this transformation so the modelers do not have to make this encoding themselves.
Now we have proved the soundness of this transformation. Another point is that the semantics of
transactions is defined as symbolic traces (“lazy intruder”) of unbounded length. This is particularly
practical for relative soundness results like typing and compositionality. We have now also proved
the equivalence with a more standard “ground” semantics.

Sixth, we have a major new case study from working with the Danish company Logos. In this
case study we verify a protocol that the company is using for a travel card solution. The verification
with PSPSP revealed a flaw in the protocol. After repairing the flaw, we were able to prove the
security of the fixed protocol using PSPSP.

The complete formalization is available at the Archive of Formal Proofs as the entry titled
Automated Stateful Protocol Verification [29]:

https://www.isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html

The latest development version and related works can be found at the following webpage:

https://people.compute.dtu.dk/samo/pspsp.html

The rest of this paper is organized as follows: Section 2 introduces preliminaries, Section 3 defines
the protocol model, Section 4 explains the set-based abstraction approach, Section 5 introduces the
protocol checks with optimizations introduced in Section 6, Section 7 presents and reports on the
results of a number of experiments applying our approach to a selection of protocols, Section 8
gives a short demonstration of PSPSP from the user’s perspective (and discusses the application
of the compositionality result [24]), Section 9 presents and reports on a case study where we apply
PSPSP to a protocol by the Danish company Logos and finally Section 10 is the conclusion where
we also discuss related work.

2 Preliminaries

2.1 Terms and Substitutions
We model terms over a countable set Σ of symbols (also called function symbols or operators) and
a countable set V of variables disjoint from Σ. Each symbol in Σ has an associated arity, and we
denote by Σn the symbols of Σ of arity n. A term built from S ⊆ Σ and X ⊆ V is then either a
variable x ∈ X or a composed term of the form f(t1, . . . , tn) where each ti is a term built from S
and X, and f ∈ Sn. The set of terms built from S and X is denoted by T (S,X). Arbitrary terms t
usually range over T (Σ,V), unless stated otherwise. By subterms(t) we denote the set of subterms
of t.

The set of constants C is defined as the symbols with arity zero: C ≡ Σ0. It contains the
following distinct subsets:

• the countable set V of concrete values (or just values),

• the finite set A of abstract values,
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• the finite set E of enumeration constants,

• the finite set S of database constants,1

• and a special constant attack.

The analyst, i.e., the author of a protocol specification may freely choose E and S as well as any
number of function symbols F with their arities (disjoint from the above subsets).

Example 1 Consider a protocol with two users a and b, where each user a has its own keyring
ring(a), and the server maintains databases of the currently valid keys valid(a) and revoked keys
revoked(a) for a. For such a protocol we define E = {a, b} and S = {ring(a), valid(a), revoked(a) |
a ∈ E}.

We regard all elements of S as constants, despite the function notation, which is just to ease spec-
ification. This work is currently limited to finite enumerations and finite sets, as handling infinite
domains would require substantial complications of the approach (e.g., a symbolic representation
or a small system result).

Arbitrary constants are usually denoted by a, b, c, d, whereas arbitrary variables are denoted
by x, y, and z. By x̄ we denote a finite list x1, . . . , xn of variables.

We furthermore partition Σ into the public symbols (those symbols that are available to the
intruder) and the private symbols (those that are not). We denote by Σpub and Σpriv the set of
public and private symbols, respectively. By Cpub and Cpriv we then denote the sets of public and
private constants, respectively. The constant attack, the values V, the abstract values A, and the
database constants S are all private.

The set of variables of a term t is denoted by fv(t) and we say that t is ground iff fv(t) = ∅.
Both definitions are extended to sets of terms as expected.

A substitution is a mapping from variables V to terms. The substitution domain (or just domain)
dom(θ) of a substitution θ is defined as the set of those variables that are not mapped to themselves
by θ: dom(θ) ≡ {x ∈ V | θ(x) ̸= x}. The substitution range (or just range) ran(θ) of θ is the image
of the domain of θ under θ: ran(θ) ≡ θ(dom(θ)). For finite substitutions we use the notation [x1 7→
t1, . . . , xn 7→ tn] to denote the substitution with domain {x1, . . . , xn} and range {t1, . . . , tn} that
sends each xi to ti. Substitutions are extended to composed terms homomorphically as expected.
A substitution δ is injective iff δ(x) = δ(y) implies x = y for all x, y ∈ dom(δ). An interpretation
is a substitution I such that dom(I) = V and ran(I) is ground. A variable renaming ρ is an
injective substitution such that ran(ρ) ⊆ V. An abstraction substitution is a substitution δ such
that ran(δ) ⊆ A.

2.2 The Intruder Model
We employ the intruder model from [23] which is in the style of Dolev and Yao: the intruder controls
the communication medium and can encrypt and decrypt with known keys, but the intruder cannot
break cryptography. More formally, we define that the intruder can derive a message t from a set of
known messages M (the intruder knowledge, or just knowledge), written M ⊢ t, as the least relation

1These databases are simply sets of messages, and we therefore often refer to them simply as “sets” in this paper.
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closed under the following rules:

M ⊢ t
(Axiom)
t ∈ M

M ⊢ t1 · · · M ⊢ tn
M ⊢ f(t1, . . . , tn)

(Compose)
f ∈ Σn

pub

M ⊢ t M ⊢ k1 · · · M ⊢ kn
M ⊢ r

(Decompose)
Ana(t) = (K,R), r ∈ R,

K = {k1, . . . , kn}

where Ana(t) = (K,R) is a function that maps a term t to a pair of sets of terms K and R. We also
define a restricted variant ⊢c of ⊢ as the least relation closed under the (Axiom) and (Compose)
rules only.

The (Axiom) rule simply expresses that all messages directly known to the intruder are derivable,
the (Compose) rule closes the derivable terms under the application of public function symbols
such as encryption or public constants (when f ∈ Σ0

pub = Cpub). The (Decompose) rule represents
decomposition operations: Ana(t) = (K,R) means that t is a term that can be analyzed, provided
that the intruder knows all the “keys” in the set K, and he will then obtain the “results” in R. This
gives us a general way to deal with typical constructor/destructor theories without needing to work
with algebraic equations and rewriting. We may also write Keys(t) and Result(t) to denote the set
of keys respectively results from analyzing t, i.e., Ana(t) = (Keys(t),Result(t)).

Example 2 To model asymmetric encryption and signatures we first fix two public crypt, sign ∈ F2

and one private inv ∈ F1 function symbols. The term crypt(k,m) then denotes the message m
encrypted with a public key k and sign(inv(k),m) denotes m signed with the private key inv(k) of k.
To obtain a message m encrypted with a public key k the intruder must produce inv(k). Formally,
we define the analysis rule Anacrypt(x1, x2) = ({inv(x1)}, {x2}). For signatures we define the rule
Anasign(x1, x2) = (∅, {x2}) modeling that the intruder can open any signature that he knows. We
also model a transparent pairing function by fixing pair ∈ Σ2 and defining the rule Anapair(x1, x2) =
(∅, {x1, x2}).

Note that we have in this example used a simple notation for describing Ana(t) for an arbitrary
term t: each rule Anaf (x1, . . . , xn) = (K,R) defines Ana for a constructor f ∈ Fn. Here xi

are distinct variable symbols, and K and R are sets of terms such that R ⊆ {x1, . . . , xn} and
K ⊆ T (F, {x1, . . . , xn}). Note that for each constructor we have at most one analysis rule, and for
all constructors without an analysis rule we just have Ana(t) = (∅, ∅). (An example for the latter is
a hash function: the intruder cannot obtain information from a hash value.)

The reason for this convention is that the formalization of [23] requires that the Ana function
satisfies certain conditions, most notably that it is invariant under substitutions.2 Without going
into detail, our notation of the Ana rules allows for an automated proof that all these requirements
are satisfied. Thus, this allows the user to specify an arbitrary constructor/destructor theory with
these Ana rules without having to prove anything manually.

2.3 Typed Model
Our result is based on a typed model in which the intruder is restricted to only making “well-typed”
choices. Many protocol verification methods [5, 7, 11, 38, 39] rely on such a typed model since it

2One may wonder why we do not allow for analysis rules of the form Anaf (t1, . . . , tn) = (K,R), where the ti are
arbitrary terms instead of just variables. Because of the substitution invariance requirement from [23] on Ana such
analysis rules would not lead to more expressive Ana functions.
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simplifies the protocol verification problem. There exist many typing results [16, 26, 1, 25, 22, 2]
that show that a restriction to a typed model is sound for large classes of protocols. That is, it is
without loss of attacks to restrict the verification to a typed model. Each such result shows that
if a protocol satisfies certain syntactic conditions and is secure in a typed model then the protocol
is secure also in an untyped model. [26] is such a result that is part of the Isabelle formalization
we employ. Since this result has itself been proved in Isabelle, it is sufficient to obtain the Isabelle
proof of a protocol in the unrestricted model from the Isabelle proof in the typed model and that
the protocol satisfies the requirements of the typing result. As a minor contribution of this paper
that we just mention here is that we have automated the Isabelle proof of these requirements of
the typing result for the protocol specification language we present. Thus, all that is left to do in
the following section is the automated proof for the protocol in the typed model.

In a nutshell, the typing result requires that messages with different intended meaning cannot
be confused for each other—a condition called type-flaw resistance. More formally, the typed model
is parameterized over a typing function Γ and a finite set of atomic types Ta satisfying the following:

• Γ(x) ∈ T (Σ \ C,Ta) for x ∈ V (where Ta here acts like a set of “variables”)

• Γ(c) ∈ Ta for c ∈ C

• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for f ∈ Σ \ C

A substitution θ is then said to be well-typed iff Γ(θ(x)) = Γ(x) for all variables x. In this paper we
use Ta = {value, enum, settype, attacktype}, and the elements of A∪V have type value, the elements
of E have type enum, the elements of S have type settype and attack has type attacktype. We
furthermore assume that all variables that we use in protocol specifications have atomic types,
and we denote by Va the set of variables with atomic type a (e.g., Vvalue is the set of value-
typed variables). As an example, let x, y ∈ Vvalue and a ∈ E, then Γ(sign(inv(x), pair(a, y))) =
sign(inv(value), pair(enum, value)). Suppose an agent expects to receive a term of this type; then
the typed model means the restriction that the intruder can only send messages of this type, i.e.,
he cannot send in place of x and y some terms of a different type. This restriction of the intruder
to typed terms—which is without loss of generality when the requirements of the typing result
hold—is drastically simplifying the task of proving the protocol correct.

3 Transactions
The Isabelle protocol model of [23] consists of a number of transactions specifying the behavior of the
participants. A transaction consists of any combination of the following: input messages to receive,
checks on the sets, modifications of the sets, and output messages to send. A transaction can only be
executed atomically, i.e., it can only fire when input messages are present, such that the checks are
satisfied, and then they produce all changes and the output messages in one state transition. Instead
of defining a ground state transition system, [23] considers building symbolic traces as sequences
of transactions with their variables renamed apart, and with any instantiation of the variables that
satisfies the checks and the intruder model in the sense that the intruder can produce every input
message from previous output messages. (Transactions can also describe additional abilities of
the intruder such as reading a set.) Security goals are formulated by transactions that check for
a situation we consider as a successful attack, and then reveal the special constant attack to the
intruder. Thus, a protocol is safe if no symbolic constraint with the intruder finally sending attack
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has a satisfying interpretation. Note that the length of symbolic traces is finite but unbounded
(i.e., an unbounded session model), and that the number of enumeration constants and databases
currently supported is arbitrary but fixed in the specification.

For the convenience of an automated verification tool, we have defined a small language called
trac based on transactions with a bit of syntactic sugar, and this language is directly embedded into
Isabelle. It is a simple text-based format directly accepted by our tool—see section 8. For now we
introduce this language only at hand of a keyserver example adapted from [23] that we also use as
a running example for the remainder of this paper.

3.1 A Keyserver Protocol
Before we proceed with the formal definitions, we illustrate our protocol model through the keyserver
example. Here users can register public keys at a trusted keyserver and these keys can later be
revoked. Each user U has an associated keyring ring(U) with which it keeps track of its keys.
(The elements of ring(U) are actually public keys; we implicitly assume that the user U knows the
corresponding private key.)

First, we model a mechanism outOfBand by which a user U can register a new key PK at the
keyserver out-of-band, e.g., by physically visiting the keyserver. The user U first constructs a fresh
public key PK and inserts PK into its keyring ring(U). We model that the keyserver—in the same
transaction—learns the key and adds it to its database of valid keys for user U , i.e., into a set
valid(U). Finally, PK is published:

outOfBand(U: user)
new PK
insert PK ring(U)
insert PK valid(U)
send PK .

Note that there is no built-in notion of set ownership, or who exactly is performing an action: we
just specify with such transactions what can happen. The intuition is that ring(U) is a set of public
keys controlled by U (and U has the corresponding private key of each) while valid(U) is controlled
by the server (who is not even given a name here). Putting it into a single transaction models that
this is something happening in collaboration between a user and a server.

Next, we model a key update mechanism that allows for registering a new key while simulta-
neously revoking an old one. Here we model this as two transactions, one for the user and one for
the server, since here we model a scenario where user and server communicate via an asynchronous
network controlled by the intruder. To initiate the key revocation process the user U first picks
and removes a key PK from its keyring to later revoke, then freshly generates a new key NPK and
stores it in its keyring. (Again the corresponding private key inv(NPK ) is known to U , but this is
not explicitly described.) As a final step the user signs the new key with the private key inv(PK )
of the old key and sends this signature to the server by transmitting it over the network:

keyUpdateUser(U: user,PK : value)
PK in ring(U)
new NPK
delete PK ring(U)
insert NPK ring(U)
send sign(inv(PK ), pair(U,NPK )).
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The check PK in ring(U) represents here a non-deterministic choice of an element of ring(U).
(Observe that a user can register any number of keys with the outOfBand transaction.) We declare
PK as a variable of type value, because PK is not freshly generated; all freshly generated elements,
like NPK here, are automatically of type value.

When the server receives the signed message, it checks that PK is indeed a valid key, that NPK
has not been registered earlier, and then revokes PK and registers NPK . To keep track of revoked
keys, the server maintains another database revoked(U) containing the revoked keys of U :

keyUpdateServer(U: user,PK : value,NPK : value)
receive sign(inv(PK ), pair(U,NPK ))
PK in valid(U)
NPK notin valid(_)
NPK notin revoked(_)
delete PK valid(U)
insert PK revoked(U)
insert NPK valid(U)
send inv(PK ).

As a last action, the old private key inv(PK ) is revealed. This is of course not what one would do
in a reasonable implementation, but it allows us to prove that the protocol is correct even if the
intruder obtains all private keys to revoked public keys. (This could also be separated into a rule
that just leaks private keys of revoked keys.)

Actions of the form x notin s(_) for s ∈ Σn are syntactic sugar for the sequence of actions
x notin s(a) for each a ∈ E.

Finally, we define that there is an attack if the intruder learns a valid key of an honest user.
This, again, can be modeled as a sequence of actions in which we check if the conditions for an
attack holds, and, if so, transmit the constant attack that acts as a signal for goal violations. Let
honest be a subset of user that contains only the honest agents. Then we define:

attackDef(U: honest,PK : value)
receive inv(PK )
PK in valid(U)
attack.

The last action attack is just syntactic sugar for send attack.

3.2 Protocol Model
The keyserver protocol that we just defined consists of transactions that we now formally define.
To keep the formal definitions simple we omit the variable declarations and the syntactic sugar
employed in our protocol specification language. Thus only value-typed variables remain in trans-
actions since the enumeration variables are resolved as syntactic sugar. A transaction T is then of
the form T = Sr · Sc · F · Su · Ss where the Si are strands built from the following grammar:

Sr ::= receive t1, . . . , tn · Sr | 0
Sc ::= x in s · Sc | x notin s · Sc | x ̸ .= x′ · Sc | 0
F ::= new x · F | 0
Su ::= insert x s · Su | delete x s · Su | 0
Ss ::= send u1, . . . , un · Ss | 0
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where x, x′ ∈ Vvalue, s ∈ S, ti ∈ T (E∪F,Vvalue), ui ∈ T (E∪F,Vvalue)∪{attack}, and where 0 denotes
the empty strand.

The function fv is extended to transactions as expected, and for a transaction T = Sr ·Sc ·F ·Su ·Ss

we define fresh(T ) ≡ fv(F ) (i.e., x ∈ fresh(T ) iff new x occurs in T ).
Protocols are defined as finite sets of such transactions P = {T1, . . . , Tn}. Their semantics is

defined in terms of a ground transition system in which each configuration is of the form (M,D,C)
where M is the intruder knowledge (the messages sent so far), D is a set of pairs representing the
current state of the databases (e.g., (k, s) ∈ D iff k is an element of the database s) and C keeps
track of the constants that are no longer fresh. For a configuration and a transaction we can check
if the transaction is executable from that configuration, and if so then there is a transition to the
new configuration which results from executing the transaction. When executing a transaction,
variables x occurring in new x actions will be instantiated with fresh values. This instantiation
takes care of the new x actions which are then no longer needed. The instantiation also requires
a slightly more flexible syntax compared to the transaction syntax, to allow for actions such as
insert t s where t /∈ V. We introduce a syntax that accounts for this, called constraints:

A ::= send t1, . . . , tn · A | receive t1, . . . , tn · A | t ̸ .= t′ · A | insert t t′ · A | delete t t′ · A |
t in t′ · A | t notin t′ · A | 0

where t, t′ ∈ T (Σ,V) and where 0 is the empty constraint. Note also that in contrast to transactions,
constraints are seen from the intruder’s point of view, in the sense that the directions of transmitted
messages are swapped (so receives become sends and vice-versa).

For the semantics of constraints we define a relation I |=M
D A where A is a constraint, M is the

intruder knowledge, D is a set of pairs representing the current state of the databases, and I is an
interpretation:

I |=M
D 0 iff true

I |=M
D send t1, . . . , tn · A iff M ⊢ I(ti), for all i ∈ {1, . . . , n}, and I |=M

D A
I |=M

D receive t1, . . . , tn · A iff I |=M∪{I(t1),...,I(tn)}
D A

I |=M
D insert t s · A iff I |=M

D∪{I((t,s))} A
I |=M

D delete t s · A iff I |=M
D\{I((t,s))} A

I |=M
D t ̸ .= t′ · A iff I(t) ̸= I(t′) and I |=M

D A
I |=M

D t in s · A iff I((t, s)) ∈ D and I |=M
D A

I |=M
D t notin s · A iff I((t, s)) /∈ D and I |=M

D A

We say that I is a model of A, written I |= A, iff I |=∅
∅ A. We may also apply substitutions θ to

constraints A, written θ(A), by extending the definition of substitution application appropriately.
The function fv is also extended to constraints.

We define what an intruder learns ik(A) when a constraint A is executed: ik(A) = {ti|1 ≤ i ≤
n, (receive t1, . . . , tn) ∈ A}. We also define how the databases look db(A, I, D) after a constraint A
is executed from a database D under interpretation I:

db(0, I, D) = D

db(t · S, I, D) =


db(S, I, D ∪ {(I(t), I(s))}) if t = insert t s

db(S, I, D \ {(I(t), I(s))}) if t = delete t s

db(S, I, D) otherwise
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With this in place, we define a transition relation ⇒P for protocols P in which states are
configurations and the initial state is the empty configuration (∅, ∅, ∅). First, we define the dual of
a constraint A, written dual(A), as “swapping” the direction of the sent and received messages of
A: dual(0) = 0, dual(receive t · A) = send t · dual(A), dual(send t · A) = receive t · dual(A), and
dual(a · A) = a · dual(A) otherwise. The transition

(M,D,C) ⇒P (M ∪ I(ik(A)), db(A, I,D), C ∪ (subterms(A) ∩ C))

is then applicable for a transaction T ∈ P if the following conditions are met:

1. T = Sr · Sc · F · Su · Ss for some F ,

2. σ is a substitution mapping fresh(T ) to fresh values (i.e., dom(σ) = fresh(T ), ran(σ) ⊆ V,
and ran(σ) ∩ C = ∅),

3. A = dual(σ(Sr · Sc · Su · Ss)), and

4. I |=M
D A.

A configuration (M,D,C) is said to be ground reachable in P iff 0 ⇒⋆
P (M,D,C) where ⇒⋆

P
denotes the transitive reflexive closure of ⇒P . For any configuration (M,D,C) ground reachable in
this transition system, M and D are ground because in each step the substitutions σ and I replace
variables with ground terms in the elements added to these sets.

We now define a different semantics for protocols, namely one defined in terms of a symbolic
transition system in which a single constraint is built up during transitions, essentially representing
a “trace” of what has happened. We use this system as a basis for our formalization of both typing
and compositionality because for these two aspects it is convenient to reason about the mentioned
single constraint. For typing, it is convenient to reason about the many solutions it may have,
and for compositionality it is convenient to split the constraint into parts that then constitute
constraints of the individual protocols. We call the system symbolic because we allow the built
constraint to contain variables—this is in contrast to the ground transition system which picks and
applies a new interpretation I in each transition. The symbolic transition system is defined using
a transition relation ⇒•

P for protocols P in which states are constraints and the initial state is the
empty constraint 0. The transition

A ⇒•
P A · dual(ρ(σ(Sr · Sc · Su · Ss)))

is applicable for a transaction T ∈ P if the following conditions are met:

1. T = Sr · Sc · F · Su · Ss for some F ,

2. σ is a substitution mapping fresh(T ) to fresh values (i.e., dom(σ) = fresh(T ), ran(σ) ⊆ V,
and the elements of ran(σ) do not occur in A), and

3. ρ is a variable renaming sending the variables of T to new variables that do not occur in A
or P (that is, dom(ρ) = fv(T ) and (fv(A) ∪ fv(P)) ∩ ran(ρ) = ∅).

A constraint A is said to be symbolically reachable in P iff 0 ⇒•⋆
P A where ⇒•⋆

P denotes the
transitive reflexive closure of ⇒•

P . The protocol then has an attack iff there exists a symbolically
reachable and satisfiable constraint where the intruder can produce the attack signal, i.e., there
exists a symbolically reachable A in P and an interpretation I such that I |= A · send attack. If P
does not have an attack then P is secure.

We show that the notions of reachability in the two systems correspond:

11



Theorem 1 3

{(M,D) | (M,D,C) is ground reachable in P} =

{(ik(I(A)), db(A, I, ∅)) | A is symbolically reachable in P and I |= A}

For the remainder of the paper we will focus our attention on the symbolic transition system as
justified by the above theorem and thus by reachable we will mean symbolically reachable.

3.3 Well-Formedness
We are going to employ the abstraction-based verification technique from [35] in the following to
automatically generate security proofs. The technique has a few more requirements in order to
work and which we bundle in a notion of well-formedness.

First, when a transaction uses a variable when sending a message or performing a set update,
then that variable must either be fresh or have occurred positively in a received message or check.
Intuitively, transactions cannot produce a value “out of the blue”, but the value either has to exist
before the transaction (in some message or set) or be created by the transaction. Formally, let
T = Sr · Sc · F · Su · Ss . Then we require:

C1: fv(Su) ∪ fv(Ss) ⊆ fv(Sr ) ∪ fv(Sc) ∪ fresh(T )

C2: fresh(T ) ∩ (fv(Sr ) ∪ fv(Sc)) = ∅

C3: fresh(T ) ⊆ fv(Ss) ∪ {x | insert x s ∈ Su}

(The second condition simply states that values that are freshly generated by a transaction T should
not also occur in the received messages and the checks of T .)

The abstraction approach that we employ, furthermore, would not work if, e.g., an agent freshly
creates a value and stores it in a set, but never sends it out as part of a message. This is because
the abstraction discards the explicit representation of sets, and just keeps the abstracted messages.
As an easy workaround we define a special private unary function symbol occurs and then do a
transformation. The transformation augments every rule containing action new x with the action
send occurs(x), and also augments every transaction where variable x occurs but is not freshly
generated with receive occurs(x). In order not to bother the user with this, our tool can make this
transformation automatically using the following function:

Definition 1 Let T = Sr · Sc · F · Su · Ss be a transaction, let y1...yn be its fresh variables and let
{x1, ..., xn} be its (possibly empty) set of other free variables. We define a function add_occurs_sends
that ensures that occurs messages are being sent:

add_occurs_sends(0) = send(occurs(y1), ..., occurs(yn))

add_occurs_sends(send(t1, ..., tn) · S) = send(occurs(y1), ..., occurs(yn), t1, ..., tn) · S

With this we define a function add_occurs_msgs that ensures that occurs messages are being
received and sent:

add_occurs_msgs(T ) = S′
r · Sc · F · Su · S′

s

3This theorem is called protocol_model_equivalence in the Isabelle formalization and can be found in the
Stateful_Protocol_Model.thy theory file.
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where

S′
r = if {x1...xn} = ∅ then Sr else receive(occurs(x1), ..., occurs(xn)) · Sr

S′
s = if F = 0 then Ss else add_occurs_sends(Ss)

This addition of occurs has, however, a subtle consequence. Suppose a specification contains no
transaction that generates any fresh value, but, say, only an attack rule like this:

attackDef2(PK : value)
receive PK
attack.

This rule cannot fire after the occurs transformation, because it adds the requirement to receive
occurs(PK ) which nobody can produce. One would, however, naturally expect that said protocol
is not secure.

One may wonder in the above example why the intruder is not able to provide the value, since
he has an unlimited supply of constants of every type, including type value. However, for such a
constant c he does not have occurs(c) (because it is not fresh and occurs is private) and thus cannot
use it in any transaction.

If the user does not include an initial value producing transaction then our tool will automatically
insert one. If the user does include one, then it is the design choice of the user to define exactly how
it should look, as long as it lives up to the definition of being an initial value producing transaction.
This is in our opinion more flexible than strictly enforcing a specific rule, since the user can adapt
the rule to the context of a particular model. For instance, in the keyserver example where values
represent public keys one may define the intruder rule that gives also the corresponding private key
to the intruder and inserts it into a dedicated set:

intruderValues()
new PK
insert PK intruderkeys
send PK
send inv(PK ).

Thus, we require (and automatically check) that each protocol specification includes a value-
producing transaction:

Definition 2 A transaction is an initial value-producing transaction for a protocol P if it is of
the form new x · Su · send t1, . . . , tn where ti = x for some i, no other variable than x occurs in a
subterm in t1, . . . , tn and where Su is either 0 or insert x c for a set c such that no transaction in
P deletes from nor does any check on c.

It is clear that an initial value-producing transaction is applicable in every state and generates a
fresh value.

Note that the occurs messages are only added during verification. We prove the transformation
to be sound. Essential to this proof is the above realization that the intruder will only have occurs
messages available for values from V. This essentially means that if a run of P relies on running
a transaction with its actual parameters being built from public constants (i.e. Cpub), then in the
transformed protocol the intruder cannot do the same, because he will not have in his knowledge
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the needed occurs messages for these. 4 In order to resolve this problem we prove the following
lemma which transforms a run A of P relying possibly on public constants into one that relies only
on values:

Lemma 1 Let P be a protocol that includes a value-producing transaction and which has a well-
typed attack A · attack with model I. Then there exists strand B and interpretation J such that
B · attack is a well-typed attack on P with model J and such that J maps all B’s free variables to
values from V.

The proof is essentially by induction on how A was reached by ⇒•. Thus, we have to consider an
A being extended with a transaction T = Sr · Sc · F · Su · Ss to A · dual(ρ(σ(Sr · Sc · Su · Ss)))
and then show that the corresponding B can be similarly be extended in a way that preserves the
properties required by the lemma. The substitution σ picked some number n of public constants.
In the extension of B we will apply first an initial value producing transaction n times to obtain n
values, and then use T , but with a substitution σ′ that uses these n values instead of the public
constants. The formalized proof is tricky, as it requires us to keep track of which fresh values and
variables have been used so far in the induction, and we also need to meticulously update our model
J to ensure that it is indeed a model of B. Therefore, in the formal proof, the induction is done in
a central step where the property proved is strengthened to account for these aspects.

Theorem 2 5 Let P be a protocol that includes a value-producing transaction and which has a
well-typed attack. Then the protocol {add_occurs_msgs(T ) | T ∈ P} also has a well-typed attack.

The proof has essentially three steps: The first step relies on lemma 1 by obtaining the attack B
and model J described by that lemma’s conclusion. The second step inserts in B the sending and
receiving of appropriate occurs messages, thus turning it into an attack on {add_occurs_msgs(T ) |
T ∈ P}. The third step proves that J is also a model of {add_occurs_msgs(T ) | T ∈ P}. ■

Finally, a small technical difficulty arises when a transaction has two variables x, y that could
be the same value, i.e., that allows for a model I with I(x) = I(y). This is difficult to handle in
the verification since the transaction may require inserting x into a set and delete y from that very
set. To steer clear of this, the paper [35] simply defines the semantics to be injective on variables.
For user-friendliness, we do not want to follow this, and rather do the following: for any rule with
variables x and y that are not part of a new construct, we generate a variant of the rule where we
unify x and y, checking whether this gives a consistent transaction. If so, we add it to the rule
system. Then we add the constraint x ̸ .= y to the original rule. We do that until all rules have x ̸ .= y
for all pairs of variables that are not freshly generated. For instance, in the keyserver example, we
have only one rule to look at: keyUpdateServer with variables PK and NPK . Since unifying PK
and NPK gives an unsatisfiable rule, it is safe to add PK ̸ .= NPK to it.

4 Set-Based Abstraction
We now come to the core of our approach: for a given protocol, how to automatically verify and
generate a security proof that Isabelle can accept. As explained earlier, this is based on an abstract

4One could perhaps be tempted to simply remove the public constants from the development, however that is
incompatible with the typing result of [26] which relies on an infinite set of these being available.

5This theorem is called add_occurs_msgs_soundness in the Isabelle formalization and can be found in the
Stateful_Protocol_Verification.thy theory file.
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interpretation method called set-based abstraction [34, 12, 35]. Essentially the method computes a
fixed point that over-approximates what can ever happen in any sequence of transactions. While it
is relatively easy to formalize the computation of this fixed point in Isabelle, the main work consists
in convincing Isabelle that every transaction is covered by the fixed point in the following sense.
Given any trace that is represented by the fixed point and in which a transaction is executable,
then also the resulting trace is covered by the fixed point. Thereby all traces are covered by the
fixed point, and when the attack predicate is not contained in the fixed point, it is not reachable in
any trace of the protocol. It is essential that the Isabelle proof does not rely on the correctness of
the approach or the correct computation of the fixed point: Rather, the fixed point can be regarded
as a mere proof idea, as a claimed upper bound on what can happen, and in the worst case, if this
upper bound were wrong then the attempt to prove coverage of all transactions would fail. Thus,
the coverage check is an approach to automatically “generate” a proof in Isabelle, and this is indeed
the core contribution of this work.

Recall that in the previous section we formalized a protocol model by reachable constraints
A (i.e., a sequence of transactions where variables have been named apart and the send/receive
direction has been swapped in order to express it from the intruder’s point of view) with their
satisfying interpretations I |= A. Note that |= is defined via a relation |=M

D , where here M denotes
the intruder knowledge (all the messages received so far) and D denotes the state of the sets S (all
values inserted into a set that were not deleted so far). We could thus characterize the “state” of
the entire system after a number of instantiated transactions by these two items, M and D.

Example 3 In our keyserver example the following trace is possible (after taking a transition of
outOfBand with variables instantiated by [PK 7→ pk1, U 7→ a] followed by a transition of keyUpdateUser
with variables instantiated by [PK 7→ pk1, U 7→ a,NPK 7→ pk2]):

insert pk1 ring(a)
insert pk1 valid(a)
receive pk1
pk1 in ring(a)
delete pk1 ring(a)
insert pk2 ring(a)
receive sign(inv(pk1), pair(a, pk2))

Suppose we start in state M0 = ∅ and D0 = ∅. After this trace we have

M = {pk1, sign(inv(pk1), pair(a, pk2))}, and
D = {(pk1, valid(a)), (pk2, ring(a))}.

In general, D consists of pairs (v, s) where v ∈ V is a value and s ∈ S is a set. The idea of our
abstract interpretation is that we stop distinguishing values that are members of the same sets. Let
thus A be the powerset of S and define an abstraction function αD from V to A that depends on
the current state D:

αD(c) = {s | (c, s) ∈ D}

and we extend it to terms and sets of terms as expected. Remember that A is included in Σ0 so we
can build abstract terms that include elements of A as abstract constants.

Example 4 In the previous example we have αD(pk1) = {valid(a)} and αD(pk2) = {ring(a)}. Thus
αD(M) = {{valid(a)}, sign(inv({valid(a)}), pair(a, {ring(a)}))}.
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The key idea is to compute the fixed point of all the abstract messages that the intruder can
obtain in any model of any reachable constraint. Note that this fixed point is in general infinite,
even if S is finite (and thus so is A), because the intruder can compose arbitrarily complex messages
and send them. This is why tools like [34, 12, 35] do not directly compute it but represent it by a
set of Horn clauses and check using resolution whether attack is derivable.

However, remember that we can restrict ourselves to the typed model and use the typing result
of [26] to infer the security proof without the typing restriction. All variables that occur in a
constraint are of type value (the parameter variables of the transactions are de-sugared) and thus,
in a typed model it holds that I(x) ∈ V for every variable x and well-typed interpretation I. While
V is still countably infinite, the abstraction (in any state D) maps to the finite A. Thus, the fixed
point is always finite in a typed model.

There is a subtle point here: even though we limit the variables to well-typed terms, and thus
also limit all messages that can ever be sent or received, the Dolev-Yao closure is still infinite, i.e.,
for a (finite) set M of messages there are still infinitely many t such that M ⊢ t. Only finitely many
of these t can be sent by the intruder in the typed model, but one may wonder if the entire derivation
relation ⊢ can be limited to “well-typed” terms without losing attacks. Indeed, we define well-typed
terms as the set of terms that includes all well-typed instances of sent and received messages in
transactions, and that is closed under subterms and Keys. We have now proved in Isabelle that
for the intruder to derive any well-typed term, it is sound to also limit the intruder deduction to
well-typed terms, so no ill-typed intermediate terms are needed during the derivation. (This is
indeed very similar to some lemmas we have proved for parallel compositionality, namely for so-
called homogeneous terms the deduction does not need to consider any inhomogeneous terms [23].)
Thus, it is sound to limit the fixed point, including intruder deduction, to well-typed terms, which
makes the fixed point finite.

4.1 Term Implication
Let us now see in more detail how to compute the fixed point. An important aspect of the abstraction
approach is that the global state is mutable, i.e., the set membership of concrete values can change
over transitions, and so their abstraction changes.

Example 5 The value pk1 in example 3 is created in the first transaction and has, after the first
transaction the abstraction {valid(a), ring(a)}. Since the second transaction deletes pk1 from ring(a),
it changes its abstract class to {valid(a)}.

As such transitions of abstract class play a crucial role in the approach, define the following notion:

Definition 3 (Term implication) A term implication (a, b) is a pair of abstract values a, b ∈ A
and a term implication graph TI is a binary relation between abstract values, i.e., TI ⊆ A × A.
Instead of (a, b) ∈ TI we may also write a →→ b.

The reason we use the word “implication” is as follows. Suppose an abstract set of messages con-
tains several occurrences of the same abstract value a ∈ A, say M = {f(a), g(a, a)}. Due to the
abstraction, we have lost the information of how many distinct constants are represented here,
e.g., two corresponding concrete set of messages could be M0 = {f(c1), f(c2), g(c1, c2), g(c1, c1)}
and M1 = {f(c2), g(c2, c2), g(c2, c1)} where both c1 and c2 have the same set memberships a. If
now value c1 changes its set memberships to, say, b ∈ A, then the abstraction of M0 becomes
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{f(b), f(a), g(b, b), g(b, a)} and the abtraction of M1 becomes {f(a), g(a, a), g(a, b)}. Thus, in gen-
eral, to include all possible terms that can be reached by a term implication a →→ b, each occurrence
of a can independently change to b. This means that all of the original terms with no a changed to
b are also reached and hence we call it an implication. This is captured by the following definitions:

Definition 4 (Term transformation) Let (a, b) be a term implication. The term transformation
under (a, b) is the least relation a→→b closed under the following rules:

x a→→b x x ∈ V a a→→b b

t1 a→→b s1 · · · tn a→→b sn
f(t1, . . . , tn) a→→b f(s1, . . . , sn)

f ∈ Σn

Note that this relation is also reflexive since a a→→b a follows from a ∈ A ⊆ Σ0 and the third rule.
If t a→→b t

′ then we say that t′ is implied by t under (a, b), or just t′ is implied by t for short.

Definition 5 (Term implication closure) Let TI be a term implication graph and let t be a
term. The term implication closure of t under TI is defined as the least set clTI (t) closed under
the following rules:

t ∈ clTI (t)

t′ ∈ clTI (t)

t′′ ∈ clTI (t)

(a →→ b) ∈ TI ,
t′ a→→b t

′′

This definition is extended to sets of terms M as expected. If t′ ∈ clTI (t) then we say that t′ is
implied by t (under TI ).

The idea is that the fixed point should ultimately be closed under the term implication graph.
However, this closure is actually quite large in many practical examples, and thus we just record
the messages that are ever received by the intruder together with the term implication graph, but
without performing this closure explicitly:

Definition 6 (Fixed point) A protocol fixed-point candidate, or fixed point for short,6 is a pair
(FP ,TI ) such that

1. FP is a finite and ground set of terms over T (Σ \ V, ∅).

2. TI is a term implication graph: TI ⊆ A× A.

4.2 Limitations
There are some limitations of our approach that we now mention. First, we inherit the free algebra
term model from [23] (two terms are equal iff they are syntactically equal) and so we do not support
algebraic properties such as needed for Diffie-Hellman. Secondly, we inherit the limitations of AIF’s
set-based abstraction approach:

• We require each protocol to have a fixed and finite number of enumeration constants and sets.
This typically means that also the number of agents is fixed—at least if the protocol has to
specify a number of sets for each agent.

• We require that the sets can only contain values. The reason is to allow these values to be
abstracted by set membership.

6Here “candidate” is to emphasize that this is just a proof idea that has yet to be verified by Isabelle.
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• We cannot refer directly to particular constants of type value. This would not be very useful
as every value with the same set-membership status are identified with the same abstract
value under the set-based abstraction.

Our approach allows for an unbounded number of sessions. The only difference here between
our work and, e.g., Tamarin [33] and ProVerif [9] is that we need, as mentioned, to fix the number
of enumeration constants and sets, and thereby, in a typical specification, also fix the number of
agents. However, there is no difference in the notion of unbounded sessions: We allow for an
unbounded number of transitions, every set can contain an unbounded number of values, and the
intruder can make an unbounded number of steps.

Because we use the typing result from [26], we also require that protocols have to satisfy the
type-flaw resistance requirements of that result. These requirements are a generalization of the
common tagging mechanisms which should in many applications not be a practical limitation.
Note that this requirement is checked automatically.

Finally, we do not directly support private channels, but one can instead send messages under
a private function. For instance, one can write in a transaction send privChan(A,B, t) where A and
B are of type enum and t is a message. Such communication is asynchronous. One can model syn-
chronous communication only in a limited way here through sets, e.g., as insert Nonce privCh(A,B).

4.3 Example of a Fixed-Point Computation
Consider again the keyserver protocol defined in Subsection 3.1; for simplicity we do this example
for just one user a who is also honest: user = honest = {a}. We show how the fixed point (or rather
the candidate that we then check with Isabelle) is computed; to make it more readable, let us give
the fixed point right away and then see how each element is derived: FPks ≡ (FPks ,TI ks) where

FPks ≡ { {ring(a), valid(a)}, {ring(a)}, inv({revoked(a)}),
sign(inv({valid(a)}), pair(a, {ring(a)}))
sign(inv(∅), pair(a, {ring(a)})) }

and where the term implication graph TI ks can be represented graphically as follows where each
edge a →→ b corresponds to an element of TI ks :

{ring(a)}

{ring(a), valid(a)}

∅ {valid(a)} {revoked(a)}

Note that we can actually reduce the representation of the fixed point a little as we do not need
to include facts that can be obtained via term implication from others; with this optimization we
obtain actually:

FP ′
ks ≡ { sign(inv(∅), pair(a, {ring(a)})), {ring(a)}, inv({revoked(a)}) }

To compute this, we first consider the transaction outOfBand where a fresh key is inserted into
both ring(a) and valid(a) and sent out. The abstraction of this key is thus the value {ring(a), valid(a)}.
This value is in the intruder knowledge in FPks but redundant due to other messages we derive
later.7 Note that this rule cannot produce anything else so we do not consider it for the remainder.

7In fact, the well-formedness conditions of the previous section require to also include occurs facts, but for
illustration, we have simply omitted them (as the intruder knows every public key that occurs).
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Next let us look at the transaction keyUpdateUser. For keyUpdateUser we need to choose
an abstract value for PK that satisfies the check PK in ring(a). At this point in the fixed-
point computation we have only {ring(a), valid(a)}. Since the transaction removes the key PK
from ring(a), we get the term implication {ring(a), valid(a)} →→ {valid(a)}. A fresh value NPK
is also generated and inserted into ring(a), and a signed message is sent out which gives us:
sign(inv({valid(a)}), pair(a, {ring(a)})). Also, this one is a message that later becomes redundant
with further messages. By analysis, the intruder also obtains {ring(a)}.

The new value {ring(a)} allows for another application of the keyUpdateUser rule, namely with
this key in the role of PK . This now gives the term implication {ring(a)} →→ ∅ and the message
sign(inv(∅), pair(a, {ring(a)})). After this, there are no further ways to apply this transaction rule,
because we will not get to any other abstract value that contains ring(a).

Applying the keyUpdateServer transaction to the first signature we have obtained (i.e., with
PK = {valid(a)} and NPK = {ring(a)}), we get the term implications {valid(a)} →→ {revoked(a)}
and {ring(a)} →→ {ring(a), valid(a)}, and the intruder learns inv({revoked(a)}). Applying it with
the second signature (i.e., with PK = ∅ and NPK as before), we get additionally the term im-
plication ∅ →→ {valid(a)}. Note that we must also check if the intruder can generate a signature
that works with keyUpdateServer: however, the only private keys he knows are those represented
by inv({revoked(a)}), and they are not accepted for this transaction. (In a model with dishonest
agents, the intruder can of course produce signatures with keys registered to a dishonest agent
name, but here we have just one honest user a.)

No other transaction can produce anything we do not have in FPks already—in particular
we cannot apply the attack transaction and this concludes the fixed-point computation. Thus—
according to our abstract interpretation analysis—the protocol is indeed secure. Next we try to
convince Isabelle.

5 Checking Fixed-Point Coverage
A major contribution of this work is now to use the fixed point that was automatically computed by
the abstract interpretation approach as a “proof idea” for conducting the security proof in Isabelle
on the concrete protocol. Essentially, we prove that the fixed point indeed “covers” everything that
can happen. We break this down into an induction proof: given any trace that is covered by the
fixed point, if we extended it by any applicable transition, then the resulting trace is also covered
by the fixed point. This induction step we break down into a number of checks that are directly
executable within Isabelle using the built-in term rewriting proof method code-simp. We have also
proved some protocol-independent Isabelle theorems that show that any protocol that passes said
checks is indeed correct. Note that these checks are not only fully automated, but they are also
terminating in all but a few degenerate cases.8

8It is technically possible to specify protocols for which the checks do not terminate. For instance, an analysis
rule of the form Anaf (x) = ({f(f(x))}, R), for some f , x and R, would lead to termination issues when automatically
proving the conditions for the typing result which we rely on, because we here need to compute a set that contains
the terms occurring in the protocol specification and is closed under keys needed for analysis, and such a set would
in this case be infinite. However, this is an artificial example that normally does not occur since it is usually the case
that keys cannot themselves be analyzed.
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5.1 Automatically Checking for Fixed-Point Coverage
Let us look at how we can automatically check if a fixed point covers a protocol. We first explain
how this works in general and thereafter give an example, in Example 6, of how it works using the
keyserver example.

A transaction of the protocol after resolving all the sugar has only variables of type value.
Thus, in a typed model and under the abstraction, we can instantiate the variables only with
abstract values, i.e., elements from A. We first define what it means that a transaction is applicable
under such a substitution of the variables with respect to the fixed point computed by the abstract
interpretation:

Definition 7 (Fixed-point coverage: pre-conditions) Let T = Sr · Sc · F · Su · Ss be a trans-
action and let FP = (FP ,TI ) be a fixed point. Let further δ be an abstraction substitution mapping
the variables of T to abstract values of A. We say that δ satisfies the pre-conditions (for T and
FP), written pre(FP, δ, T ), iff the following conditions are met:

F1. clTI (FP) ⊢ δ(ti) for all receive t1, . . . , tn occurring in Sr and for all i ∈ {1, . . . , n}

F2. s ∈ δ(x) for all x in s occurring in Sc

F3. s /∈ δ(x) for all x notin s occurring in Sc

F4. δ(x) = ∅ for all x ∈ fresh(T )

Here, F1 checks that the intruder can produce all input messages for the transaction under the given
δ. Note that the intruder has control over the entire network, so he can use here any message honest
agents have sent and also construct other messages from that knowledge (hence the ⊢). Moreover,
we consider here the closure of the intruder knowledge FP under the term implication rules, since
that represents all variants of the messages that are available to the intruder; we will later show as
an optimization that we can check whether clTI (FP) ⊢ δ(t) holds without first explicitly computing
clTI (FP). The next checks F2 and F3 are that all set membership conditions are satisfied, and F4
checks that all fresh variables represent values that are not member of any set.

Now for every δ under which the transaction T can be applied (according to FP), we compute
what T can “produce” and that that is also covered by FP. What the transaction can produce are
the outgoing messages and the changes in set memberships. The latter is captured by an updated
abstraction substitution δu that is identical with δ except for those values that changed their set
memberships during the transaction:

Definition 8 (Abstraction substitution update) Let T = Sr · Sc · F · Su · Ss be a transaction
and δ an abstraction substitution. We define the update of δ w.r.t. T , written δu, as follows:

δu(x) ≡ upd(Su , x, δ(x)), where

upd(0, x, a) = a

upd(t · S, x, a) =


upd(S, x, a ∪ {s}) if t = insert x s

upd(S, x, a \ {s}) if t = delete x s

upd(S, x, a) otherwise
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Note that according to this definition, if a transaction contains insert and delete operations of the
same value x for the same set, then “the last one counts”. But there is a more subtle point: suppose
the transaction includes the operations insert x s and delete y s . The above definition would not
necessarily formalize the updates of the set memberships if the transaction were applicable (in the
concrete) under an interpretation I with I(x) = I(y). Note that for this very reason the concrete
semantics requires I to be injective, and, as explained earlier in Subsection 3.3, we automatically
achieve this through appropriate syntactic sugar so as to not bother the user.

Based on this update, we can now define what it means for a transaction to be covered by a
fixed point:

Definition 9 (Fixed-point coverage: post-conditions) Let T = Sr ·Sc ·F ·Su ·Ss be a trans-
action and let FP = (FP ,TI ) be a fixed point. Let δ be an abstraction substitution and δu the update
of δ w.r.t. T . We say that δ satisfies the post-conditions (for T and FP), written post(FP, δ, T ), iff
the following conditions are met:

G1. (δ(x) →→ δu(x)) ∈ TI ∗ for all x ∈ fv(T ) \ fresh(T )

G2. clTI (FP) ⊢ δu(ti) for all send t1, . . . , tn occurring in Ss and for all i ∈ {1, . . . , n}

Here G1 expresses that every update of a value must be a path in the term implication graph (it
does not need to be a single edge). G2 means that the intruder learns every outgoing message δu(t)
and thus it must be covered by the fixed point when closed under term implication.

We can now put it all together: for the pre-conditions we are restricting the coverage check to
those abstraction substitutions that are actually possible in the fixed point. For the post-conditions
we are then checking that the fixed point covers everything that the transaction produces under
those same substitutions: fixed-point coverage is thus defined as follows:

Definition 10 (Fixed-point coverage) Let T be a transaction and let FP = (FP ,TI ) be a
fixed point. We say that FP covers T iff for all abstraction substitutions δ with domain fv(T ),
if pre(FP, T, δ) then post(FP, T, δ). For a protocol P we say that FP covers P iff FP covers all
transactions of P.

With this defined we can prove the following theorem:

Theorem 3 9 Let P be a protocol and let FP be a fixed point. If attack does not occur in FP, and
if P is covered by FP, then P is secure.

Example 6 Consider the key update transaction keyUpdateServer from Subsection 3.1. We now
show that the fixed point FPks defined in Example 4.3 covers this transaction, i.e., satisfies Defini-
tion 10.

The only variables occurring in keyUpdateServer are PK and NPK , so we can begin by finding
the abstraction substitutions with domain {PK ,NPK} that satisfy the pre-conditions given in Def-
inition 7. We denote by ∆ the set of those substitutions. Afterwards we show that all δ ∈ ∆ satisfy
the post-conditions given in Definition 9.

The variables PK and NPK are not declared as fresh in keyUpdateServer so condition F4 is
vacuously satisfied. From F2 and F3 we know that valid(a) ∈ δ(PK ) and valid(a), revoked(a) /∈
δ(NPK ), for all δ ∈ ∆. From F1 we know that clTI ks

(FPks) ⊢ δ(sign(inv(PK ), pair(a,NPK ))).
9This theorem is called protocol_secure in the Isabelle code and can be found in the Stateful_Protocol_-

Verification.thy theory file.
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The intruder cannot compose the signature himself since he cannot derive a private key of the
form inv(b) where b ∈ A and valid(a) ∈ b. Hence, the only signatures available to him—that also
satisfy the constraints for ∆ that we have deduced so far—are sign(inv({valid(a)}), pair(a, b)) for
each b ∈ {{ring(a)}, ∅}. The only surviving substitutions are

δ1 = [PK 7→ {valid(a)},NPK 7→ ∅], and
δ2 = [PK 7→ {valid(a)},NPK 7→ {ring(a)}].

That is, ∆ = {δ1, δ2}.
Next, we compute the updated substitutions w.r.t. the transaction keyUpdateServer:

δ1u = [PK 7→ {revoked(a)},NPK 7→ {valid(a)}], and
δ2u = [PK 7→ {revoked(a)},NPK 7→ {ring(a), valid(a)}].

Now we can verify that conditions G1 and G2 hold for δ1 and δ2: We have that δi(x) →→ δiu(x) is
covered by TI ks , for all i ∈ {1, 2} and all x ∈ {PK ,NPK}. We also have that the outgoing message
inv(PK ) is in clTI ks

(FPks) under each δiu. Thus keyUpdateServer is covered by FPks .
We can, in a similar fashion, verify that the remaining transactions of the keyserver protocol

are covered by the fixed point. Thus the keyserver protocol is covered by FPks . ■

5.2 Automatic Fixed-Point Computation
An interesting consequence of the coverage check is that we can also use it to compute a fixed
point for protocols P. In a nutshell, we can update a given a fixed-point candidate FP0 for P as
follows: For each transaction of P we first compute the abstraction substitutions ∆ that satisfy the
pre-conditions F1 to F4. Secondly, we use the post-conditions G1 and G2 to compute the result of
taking T under each δ ∈ ∆ and add those terms and term implications to FP0. Starting from an
empty initial iterand (∅, ∅) we can then iteratively compute a fixed point for P. Definition 11 gives
a simple method to compute protocol fixed points based on this idea.

Definition 11 Let P be a protocol and let f be the function defined as follows:

f((FP ,TI )) ≡ (FP ∪ {t ∈ F̂PT
δ | T ∈ P, δ ∈ ∆T

FP,TI },
TI ∪ {ab ∈ T̂I Tδ | T ∈ P, δ ∈ ∆T

FP,TI })

where
∆T

FP,TI ≡ {δ | dom(δ) = fv(T ), pre((FP ,TI ), T, δ)}
F̂PT

δ ≡ {δu(ti) | send t1, . . . , ti, . . . , tn occurs in T}
T̂I Tδ ≡ {(δ(x), δu(x)) | x ∈ fv(T ) \ fresh(T )}

Then we can compute a fixed point for P by computing a fixed point of f , e.g., by computing the
least n ∈ N such that fn((∅, ∅)) = fn+1((∅, ∅)).

We provide, as part of our Isabelle formalization, a function to compute such a fixed point (with
some optimizations to avoid computing terms and term implications that are subsumed by the
remaining fixed point), using the built-in code generation functionality of Isabelle.
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6 Improving the Coverage Check
We now describe a number of improvements that are essential to an efficient check (small experi-
ments show that without these, performance is quite poor even in minimal examples). We emphasize
again that even if we had introduced mistakes here, it would not affect the correctness of the entire
approach, since in the worst case the proofs would be rejected by Isabelle.

There are two major issues that make the coverage check from the previous section quite ineffi-
cient when implemented directly. One concerns the fact that the fixed point should be considered
closed under intruder deduction and term implication. Even though the typed model allows us to
keep even the intruder deduction closure finite, explicitly computing the closure is not feasible even
on rather modest examples. The second issue is about the abstraction substitutions δ of the check:
recall that in the check we defined above, for a given transaction we consider every substitution δ
of the variables with abstract values, which is of course exponential both in the number of variables
and the number of sets.

Let us first deal with this second issue. We can indeed compute exactly those substitutions that
satisfy conditions F2 to F4: every positive set-membership check x in s of the transaction requires
that s ∈ δ(x), and similarly for the negative case. Moreover, δ(x) can be only an abstract value that
actually occurs in the fixed point. Starting from these constraints often substantially cuts down
the number of substitutions δ that we need to consider in the check, especially when we have more
agents than in the example. This is because typically (at least in a good protocol) most values will
not be members of many sets that belong to different agents (but rather just a few that deal with
that particular value).

The first issue, i.e., avoiding computing the term implication closure clTI (FP) when performing
intruder deductions, is more difficult. The majority of this section is therefore dedicated to improv-
ing on conditions F1 and G2 so that we can avoid computing the entire closure clTI (FP)—only in
a few corner cases do we need to compute the closure for a few terms of FP . A key to that is to
saturate the intruder knowledge with terms that can be obtained by analysis and then work with
composition only, i.e., ⊢c.

6.1 Intruder Deduction Modulo Term Implications
Recall that ⊢c is the intruder deduction without analysis, i.e., only the (Axiom) and (Compose)
rules. We first consider how we can handle in this restricted deduction relation the term implication
graph TI efficiently, i.e., how to decide clTI (M) ⊢c t (for given TI , M and t) without computing
clTI (M). In a second step we then show how to also handle analysis, i.e., the full ⊢ relation.

In fact, it boils down to checking the side condition of (Axiom), i.e., in our case, whether
t ∈ clTI (M), without having to compute clTI (M) first. (The composition rule is then easier
because it does not “directly look” at the knowledge.) For this, it is sufficient if we can check
whether t ∈ clTI (t

′) for any t′ ∈ M , without having to compute clTI (t
′).

Consider again Definition 5. We can use this to derive a recursive check function t′ ⇝TI t for
the question t ∈ clTI (t

′): it can only hold if either

• t and t′ are the same variable,

• or t, t′ are abstract values with a path from t′ to t in TI ,

• or t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t
′
n), where recursively t′i ⇝TI ti holds for all 1 ≤ i ≤ n.
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With this we can now define a recursive function ⊩c that checks for given M , TI , and t whether
clTI (M) ⊢c t without computing clTI (M), defined as follows:

M ⊩TI
c t iff (∃t′ ∈ M. t′ ⇝TI t) or

t is of the form t = f(t1, . . . , tn) where f ∈ Σn
pub and M ⊩TI

c ti for all i ∈ {1, . . . , n}

This function indeed fulfills its purpose:

Lemma 2 clTI (M) ⊢c t iff M ⊩TI
c t

Next, we show how to reduce the intruder deduction problem ⊢ to the restricted variant ⊢c.

6.2 Analyzed Intruder Knowledge
The idea is now that ⊢c is actually already sufficient, if we have an analyzed intruder knowledge:
we define that a knowledge M is analyzed iff M ⊢ t implies M ⊢c t for all t. More in detail, we
can consider a knowledge M that is saturated by adding all subterms of M that can be obtained
by analysis. Then M is analyzed, i.e., we do not need any further analysis steps in the intruder
deduction. This is intuitively the case because the intruder cannot learn anything from analyzing
messages he has composed himself.

We now define formally what it means for a term t to be analyzed using the keys (Keys(t)) and
results (Result(t)) from the analysis as defined in Subsection 2.2:

Definition 12 (Analyzed term) Let M be a set of terms and let t be a term. We then say that
t is analyzed in M iff M ⊢c Keys(t) implies M ⊢c Result(t) (where M ⊢c N for sets of terms M
and N is a shorthand for ∀t ∈ N. M ⊢c t).

The following lemma then provides us with a decision procedure for determining if a knowledge
is analyzed:

Lemma 3 M is analyzed iff all t ∈ M are analyzed in M .

We now consider again an intruder knowledge given as the term implication closure of a set of
messages, i.e., clTI (M) instead of M . Efficiently checking whether an intruder knowledge’s term
implication closure is analyzed, without actually computing it, is challenging. The following lemma
shows that if we can derive the results of analyzing a term t in the knowledge M then we can also
derive the results of analyzing any implied term t′ ∈ clTI (t):

Lemma 4 Let t ∈ M . If clTI (M) ⊢c Result(t) then for all t′ ∈ clTI (t), clTI (M) ⊢c Result(t
′).

Therefore, if all k ∈ Keys(t) can be derived and t is analyzed in clTI (M) then we can conclude that
all implied terms t′ ∈ clTI (t) are analyzed in clTI (M). If, however, some of the keys for t are not
derivable then we are forced to check the implied terms as well as the following example shows:

Example 7 Let f, g ∈ Σ1
priv , TI = {a →→ b}, and M = {f(a), g(b)}. Define the analysis rules

Anaf (x) = ({g(x)}, {x}) and Anag(x) = (∅, ∅). Then clTI (M) = {f(b)} ∪ M . The term f(a) is
analyzed in clTI (M) because the key g(a) cannot be derived: clTI (M) ̸⊢c g(a). However, f(a) a→→b

f(b) and f(b) is not analyzed in clTI (M): Ana(f(b)) = ({g(b)}, {b}) but the key g(b) is derivable
from clTI (M) in ⊢c whereas the result b is not. Thus clTI (M) is not an analyzed knowledge. ■
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So in most cases we can efficiently check if clTI (M) is analyzed, and in some cases we need to
also compute the term implication closure clTI (t) of problematic terms t ∈ M (but not necessarily
compute all of clTI (M)). The former corresponds to the “if”-branch of the following definition and
the latter corresponds to final “else”-branch:

Lemma 5 clTI (M) is analyzed iff for all t ∈ M , the following holds

if clTI (M) ⊢c Keys(t) then t is analyzed in clTI (M)
else if A ∩ subterms(Keys(t)) = ∅ then true
else if ∀s ∈ clTI (Keys(t)). clTI (M) ̸⊢c s then true
else all t′ ∈ clTI (t) are analyzed in clTI (M).

Lemma 5 provides us with the means to extend a knowledge M to one whose term implication
closure is analyzed: The idea is to close M under the rule that extends it with the result Result(t)
of those analyzable terms t ∈ M for which the conditions on the right-hand side of the biconditional
in Lemma 5 fails. For instance, in Example 7 we need to extend M = {f(a), g(b)} with b, resulting
in the analyzed knowledge M ′ = {f(a), g(b), b}.

The two “else-if”-branches are an improvement we have made for this journal version of the
paper. The idea is the following:

1. If Keys(t) are not derivable from the term-implication closed knowledge clTI (M), and if there
is no abstract value occurring in Keys(t), then Keys(s) = Keys(t) for all implied terms s of t,
and so t is analyzed in clTI (M).

2. If none of the implied keys of t are derivable then t is also analyzed in clTI (M).

These two special cases are useful to speed up the analyzed-fixed-point check when the fixed
point contains terms that have lots of abstract values in them and that cannot be analyzed by the
intruder (the last else-branch would in such cases take a lot of time to compute since the size of
clTI (t) grows exponentially with the number of occurrences of abstract values in t)—also, it is often
the case that Keys(t) has fewer abstract values in it than Result(t), and so the size of clTI (Keys(t))
is likely to be much smaller than clTI (t), hence the second “else-if” condition is usually much faster
to check than the last else-branch.

As an example, when modeling private channels one may use terms of the form secch(secchcr(a, b), t),
denoting that t is sent on a private channel from agent a to agent b, where the term t is derivable
if the secret secchcr(a, b) is known, and where there would be an attack on the protocol if the
intruder knew secchcr(a, b) for honest a and b. In a secure protocol the term secch(secchcr(a, b), t),
for honest a and b, would not be derivable by the intruder, and so it is sufficient to check that
clTI (M) ̸⊢c secchcr(a, b) and A ∩ subterms(secchcr(a, b)) = ∅ instead of checking that all elements
of clTI (secch(secchcr(a, b), t)) are analyzed in clTI (M), which may take a significant amount of
time since t may contain a lot of abstract values.

6.3 A Further Improvement of the Coverage Check
We return to the second issue described in the beginning of this section: the issue of restricting
how many abstraction substitutions need to be considered in order to conclude that a transaction is
covered. The solution presented so far restricted the number of abstraction substitions considered
by computing those that satisfy conditions F2 to F4 of Definition 7. We now show a way to
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take into consideration also condition F1 to further restrict the set of abstraction substitutions to
consider. This will not be exactly the set of substitutions that satisfy F1 to F4, but rather do an
over-approximation that allows us to also calculate the desired set of abstration substitutions in an
efficient way.

F1 essentially says that for each received term t of a considered transaction, its abstraction δ(t)
must be something that the intruder can actually produce from the fixed point. Thus, by inspecting
t and comparing it to the terms available in the fixed point we will be able to see what the variables
in t could be instantiated to if δ(t) were to be a term producible from the fixed point.

The following functions capture this idea:

Definition 13 Let T be a transaction and let t1, . . . , tn be the terms in the receive-steps of T .
Assume that n > 0, i.e., that T has at least one receive-step. Let FP = (FP ,TI ) be a fixed point
and let OCC be the abstract values that occur in FP. Assume that FP is analyzed. Let furthermore
x be a free variable of T . Then an over-approximation of the possible abstractions of x constrained
by t1, . . . , tn is the set rcvconstrsx({t1, . . . , tn}) where rcvconstrsx is defined as follows:

rcvconstrsx({t1, . . . , tn}) =
⋂

i∈{1,...,n} rcvconstrsx({ti})
rcvconstrsx({y}) = {b | a ∈ FP ∩ A, (a, b) ∈ TI ∗} if x = y
rcvconstrsx({y}) = OCC if x ̸= y
rcvconstrsx({c}) = ∅ if c ∈ Cpriv and c /∈ FP
rcvconstrsx({c}) = OCC if c ∈ Cpub or c ∈ FP ∩ Cpriv

rcvconstrsx({f(t1, . . . , tn)}) = θ1 ∪ θ2 if f ∈ Σn, n > 0,
θ1 =

⋃
δ∈∆ δ(x),

θ2 = rcvconstrsx({t1, . . . , tn}),
∆ = match(f(t1, . . . , tn),FP)

and where match is defined as follows:

match(t,M) = {δ ∈ match(t, s) | s ∈ M}
match(t, s) = {θ} if δ ∈ match′(t, s),

∀x. δ′(x) =
⋂

a∈δ(x){b | (a, b) ∈ TI ∗},
∀x ∈ fv(t). δ′(x) ̸= ∅,
∀x. θ(x) = if x ∈ fv(t) then δ′(x) else OCC

match(t, s) = ∅ otherwise
match′(x, a) = {θ} if x ∈ V, a ∈ A,∀y. θ(y) = if x = y then {a} else ∅
match′(t, s) = {θ} if t = f(t1, . . . , tn), s = f(s1, . . . , sn),

∀i ∈ {1, . . . , n}. match′(ti, si) ̸= ∅,
∆ = {δ ∈ match′(ti, si) | i ∈ {1, . . . , n}},
∀x. θ(x) =

⋃
δ∈∆ δ(x)

match′(t, s) = ∅ otherwise

We explain now what the above functions will do. Consider first the match′ function from a
syntactical point of view. This function takes as input a received term t and tries to match it with
a term s from the intruder knowledge. It will firstly check if there is a way to replace each variable
occurrence in t with an abstract value such that t becomes syntactically equal to s. If there is no
such replacement, then it will simply give ∅. However, if there is such a replacement match′ will
return a singleton set consisting of a map θ from variables into sets of abstract values. Each variable
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is mapped to the set of abstract values that have the property that some occurrence of the variable
needs to be replaced with that abstract value in order for t to become syntactically equal to s.

Example 8 As an example, we have that match′(f(X,X), f({valid(a), ring(a)}, {revoked(a), ring(a)}) =
{[X 7→ {{valid(a), ring(a)}, {revoked(a), ring(a)}}]}. It is perhaps surprising that X is mapped to a
set of values and not as in more simple matching algorithms to a single value. The reason is that an
abstract value in a term in FP does not only represent itself, but its whole closure under the term
implication graph. Thus, {valid(a), ring(a)} and {revoked(a), ring(a)} might actually be able to repre-
sent the same value, or more precisely, there might be a set of abstract values that {valid(a), ring(a)}
and {revoked(a), ring(a)} both represent under term implication.

The example also points to a more semantic way to understand match′. Say that we are interested
in the set of abstraction substitutions that when applied to t gives a term represented by the
term implication closure of s. For each free variable x in t, such an abstraction substitution must
necessarily return an abstract value that is part of the term implication closures of all abstract
values in θ(x) for the θ ∈ match′(t, s). Consider now the match function which captures exactly this
semantic idea. When possible, it returns a singleton containing a map θ that expresses our idea
more directly: The match function ensures that for each variable x, the abstraction substitutions we
were interested in just above will necessarily return an abstract value in θ(x). Additionally, match
can also be applied to a received term t and a whole intruder knowledge M . Consider here any
abstraction substitution, that when applied to t gives a term represented by the term implication
closure of some s in M . For such an abstraction substitution there must be a θ ∈ match(t,M)
such that for each variable x, the abstraction substitution returns an abstract value in θ(x). Let us
consider an example:

Example 9 Assume that the term implication graph is {valid(a), ring(a)} →→ {revoked(a), ring(a)}.
Consider then the following calculation by the match function:

match(f(X,X), f({valid(a), ring(a)}, {revoked(a), ring(a)}))
= {[X 7→ {{{valid(a), ring(a)}, {revoked(a), ring(a)}} ∩ {{revoked(a), ring(a)}}}]}
= {[X 7→ {{revoked(a), ring(a)}}]}

Notice here that indeed the term f({revoked(a), ring(a)}, {revoked(a), ring(a)}) is represented by the
term f({valid(a), ring(a)}, {revoked(a), ring(a)}) when considering the term implication graph.

Consider lastly the rcvconstrs function. This can take a variable x and singleton set of a received
term t. It then essentially checks if t actually is a term that the intruder could potentially find in
or build from the fixed point, and if that is the case then it collects a set of abstract values which
x could have for that to happen. A simple case is when t is exactly the variable x because here we
simply collect all abstract values that are directly in the fixed point when closed under the term
implication graph. The most interesting case is when t is a composite term f(t1, . . . , tn). Here, we
have essentially to consider two cases:

• the case that the intruder can directly “match” f(t1, . . . , tn) with a term in FP

• the case that the intruder can construct f(t1, . . . , tn) by composition from the intruder knowl-
edge, thus having to recursively consider for t1, . . . , tn the two cases we are considering here.
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We need not consider analysis, because we are assuming that FP is analyzed. The matching done in
the former case is then where possible values for x is found. We also define rcvconstrs when applied
to a non-singleton set M of received terms, representing a set of received terms. The variable
x of course has to live up to the constraints generated by all the received terms relative to the
fixed point, and thus we can simply take the intersection of constraints generated by the individual
received terms. The following example illustrates the idea:

Example 10 Consider a transaction receiving the set of terms {cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}
where cpub is a public constant, fpriv1 and fpriv2 are private functions and fpub2 is a public function.

Assume that we have the following fixed point:

FP = { fpriv2({valid(a)}, {valid(a)}), fpriv2({revoked(a)}, {valid(a)}),
{revoked(a)}, fpriv1({revoked(a)})}

TI = ∅

Assume also for the sake of simplicity that there are no analysis rules. Then this fixed point is
clearly analyzed because all messages that the intruder can derive from FP using ⊢ can also be derived
using ⊩c. Let us now apply rcvconstrs to get rcvconstrsX({cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}) =
{{revoked(a)}} and rcvconstrsY ({cpub, X, fpriv2(X,Y ), fpub2(fpriv1(X), Y )}) = {{valid(a)}}. Thus, in
this case we get one possible abstraction substitution, namely [X 7→ {revoked(a)}, Y 7→ {valid(a)}].

Example 11 Consider a transaction receiving the set of terms {fpriv2(X,Y )} where fpriv2 is a private
function. Consider the fixed point FP = ({fpriv2({valid(a)}, {revoked(a)}), fpriv2({revoked(a)}, {valid(a)})}, ∅).
Assume also for the sake of simplicity that there are no analysis rules. Let us now apply rcvconstrs
to get rcvconstrsX({fpriv2(X,Y )}) = {{revoked(a)}, {valid(a)}} and rcvconstrsY ({fpriv2(X,Y )}) =
{{revoked(a)}, {valid(a)}}. Thus, in this case we get four possible abstraction substitution, namely
[X 7→ {revoked(a)}, Y 7→ {valid(a)}], [X 7→ {valid(a)}, Y 7→ {revoked(a)}], [X 7→ {revoked(a)}, Y 7→
{revoked(a)}] and [X 7→ {valid(a)}, Y 7→ {valid(a)}]. Notice that we see here that an overapproxi-
mation is happening because actually only the first two abstraction substitutions will generate terms
represented by the fixed point.

We explain also how the mentioned functions are implemented. The way that match′ does the
mentioned checks and calculates its θ is simply by recursion on the structure of t. In the recursive
case each subterm of t will create a mapping, and these mappings are combined by pointwise union.
The match function calculates its θ as follows: It uses match′ to check if t can potentially match
s and the resulting map is δ. For each variable x the match function calculates which abstract
values δ(x) represents by taking the term implication closure of each a ∈ δ(x) and in order to find
the abstract values that all these closures represent, their intersection is taken. This results in the
mapping δ′ which maps each variable x to the mentioned intersection. Then match checks that all
free variables in t can actually represent some abstract value, because if not then no abstraction
substitution can make t be represented by s. Lastly the resulting mapping θ is simply δ′, but
modified to return OCC for all variables not free in t, because for such variables the intruder may
pick any abstract value, which the intruder might do to also make some other pair of terms match,
but we know here at least that the intruder will not be able to use any other value than the ones
that occur in FP. The function match can also be applied to a received term t and the full intruder
knowledge M . This is done by applying match individually to all terms in M and collecting the
resulting maps in a set. The way that rcvconstrs works when applied to a variable x and a singleton
set of a term is to do a recursion on the term. In case the term is a different variable than x, a
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public constant or an intruder-known private constant then this is not constraining what x could
be, and thus the whole OCC is returned because we then know only that the intruder at least must
pick a variable occurring in FP. In case t is an intruder-unknown private constant then the intruder
has no way to give x an abstract value, and thus ∅ is returned. This also means that no abstraction
substitution will make the transaction applicable. If t is equal to x then the intruder can pick
any intruder-known abstract value for x. If t is a composite term f(t1, . . . , tn) then, as mentioned
earlier, we need to take into account both of the possibilities that the intruder can directly match
f(t1, . . . , tn) with a term in FP and that the intruder can construct f(t1, . . . , tn) by composition.
In the former case we can use match to calculate what possible values x can have when t is matched
with the intruder knowledge. This is in the definition collected as the set θ1. In the latter case
we can use recursion to see what possible abstract values x can get if it occurs in one or more of
t1, . . . , tn. The result is the set θ2, and we finally return θ1 ∪ θ2.

The following lemma captures the idea of match:

Lemma 6 If θ(t) ∈ clTI (s) and fv(s) = ∅, and there are no abstract values occurring in t, and θ
is an abstraction substitution, then match(t, s) ̸= ∅.

This lemma essentially shows that if a term t (which is intended to be from a recive step) can be
instantiated by some abstraction substitution θ to be in the term implication closure of s (which is
intended to be in FP), then match(t, s) will return a non-emtpy set of functions.

Next, we have lemma capturing the idea of rcvconstrs:

Lemma 7 Let T be a transaction with at least one receive-step, FP = (FP ,TI ) be a fixed point
where FP is analyzed, x ∈ fv(T ), δ be an abstraction substitution with domain fv(T ), and let
t1, . . . , tn be the terms occurring in the receive-steps of T . If FP ⊢c δ({t1, . . . , tn}) then δ(x) ∈
rcvconstrsx({t1, . . . , tn}).

This lemma essentially says that if there is an abstraction substitution that will instantiate a
set of received terms to terms that the intruder can actually derive, then the application of that
abstraction substitution to any variable will indeed be one of the abstract values that rcvconstrsx
calculates. ■

This section demonstrates how the Isabelle formalization allows for describing different strategies
in order to prove to Isabelle that the computed fixed point covers the transactions. Indeed, as part
of such arguments we show in Isabelle that the strategy is sound, like in Lemma 7. The strategies
can often negotiate an efficient solution between different extremes. For instance, not considering
the messages the intruder needs to produce (F1) leads to an unnecessarily large set of abstractions
to consider, while computing the precise set of abstractions that satisfy (F1) would often waste a
lot of time on an optimization that is just not worth it (or it may even be undecidable). While
we here used our intuition and experience with examples, in general an extensive study of different
variants on a larger benchmark suite could allow for further improvements.

7 Experimental Results
Table 1 shows the fixed-point sizes of various example protocols together with measurements of
the elapsed real time it takes to generate and verify the Isabelle specifications. First, we report
the time for translating the protocol specifications into Isabelle/HOL (Translation), the time for
showing that the given protocol is an instance of the formal protocol model (Setup), and the time
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Verification

Initialization Fixed Point Safe Check NBE Check Unsafe Check
Protocol Translation Setup Computation |FP| |TI| Default Receive Default Receive Default Receive

Keyserver_2_1 00:00:07 00:00:46 00:00:04 22 27 00:01:05 00:01:45 00:00:24 00:00:25 00:00:19 00:00:24
Keyserver_3_1 00:00:08 00:00:36 00:00:04 31 40 00:00:44 00:00:53 00:00:24 00:00:23 00:00:22 00:00:21
Keyserver_4_1 00:00:09 00:00:38 00:00:04 40 53 00:00:59 00:01:21 00:00:22 00:00:20 00:00:18 00:00:17
Keyserver2_2_1 00:00:08 00:00:35 00:00:04 9 4 00:01:22 00:02:13 00:00:20 00:00:22 00:00:20 00:00:18
Keyserver2_3_1 00:00:06 00:00:46 00:00:04 12 6 00:01:57 00:04:27 00:00:26 00:00:30 00:00:19 00:00:20
Keyserver2_4_1 00:00:07 00:00:37 00:00:04 15 8 00:04:02 00:10:49 00:00:35 00:00:42 00:00:19 00:00:18
KS_Comp_2_1 00:00:09 00:00:38 00:00:06 40 105 00:23:51 00:57:32 00:02:00 00:02:37 00:00:18 00:00:21
KS_Comp_3_1 00:00:09 00:00:36 00:00:08 56 153 01:36:50 03:55:23 00:06:30 00:08:47 00:00:20 00:00:23
KS_Comp_4_1 00:00:09 00:00:37 00:00:13 70 201 04:57:05 11:38:15 00:15:57 00:24:45 00:00:18 00:00:25
NSLclassic 00:00:06 00:00:35 00:00:04 69 6 00:05:26 00:05:49 00:00:25 00:00:26 00:00:19 00:00:22
NSPKclassic 00:00:06 00:00:35 00:00:04 43 6 attack attack attack attack attack attack
PKCS_Model03 00:00:06 00:00:37 00:00:07 8 2 attack attack attack attack attack attack
PKCS_Model07 00:00:10 00:00:34 00:00:29 15 5 attack attack attack attack attack attack
PKCS_Model09 00:00:07 00:00:36 00:00:13 40 20 attack attack attack attack attack attack
TLS12_auth_simp 00:00:09 00:00:38 00:00:07 48 20 11:59:01 04:21:27 08:22:19 00:02:47 00:00:27 00:00:19

Table 1: Runtime Measurements (Time Format: hh:mm:ss).

for computing the fixed point and its size. In the last six columns, we report the run-time of
three different strategies for the security proof: Safe employs symbolic evaluation using Isabelle’s
simplifier code-simp. For each of these strategies, we report the time our default version of the
coverage check (Default) and the time for the improved coverage check (Receive). For the latter,
please recall section 6.

In the safe configuration, all proof steps are checked by Isabelle’s LCF-style kernel. NBE
employs normalization by evaluation, a technique that uses a partially symbolic evaluation approach
that, to a limited extend, relies on Isabelle’s code generator. Finally, Unsafe is an approach that
directly employs the code generator and internally uses the proof method eval. In general, the
configurations NBE and Unsafe require the user to trust the code generator. While Isabelle’s code
generator is thoroughly tested, it is not formally verified. We mainly provide these configurations
to provide faster alternatives during interactive protocol explorations. Ultimately, it is up to the
user to decide which approach to use, preferably after consulting [21], which discusses the software
stack that needs to be trusted in each of these configurations in more detail.

All experiments have been conducted on a shared Linux server with an Intel Xeon E5-2640 CPU
and 96GB main memory. Our implementation provides an option to measure the time required for
executing individual “top-level” commands (e.g., protocol_security_proof). We only report the
times that are specific to the individual protocols using a “pre-compiled” session that contains our
generic protocol translator as well as the protocol-independent formalizations and proofs. Compiling
this session takes ca. 20 minutes on the same machine.

The example Keyserver_h_d is our running keyserver example for h honest agents and d dis-
honest agents.10 The example Keyserver_Composition_h_d with h honest agents and d dishonest
agents is inspired by [23] where another keyserver protocol—named Keyserver2_h_d here—runs

10We verify here a generalized version of the keyserver example (as compared to the running example): we include
dishonest agents who can participate in the protocol. This also requires that agents maintain a set of deleted keys,
because otherwise the abstraction ∅ leads to false attacks.
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in parallel on the same network and where databases are shared between the protocols.
We made further experiments where our focus is not the precise modeling and verification of

particular protocols, but rather to experiment with our method on more complex examples and get
an understanding of how our method scales.

With TLS12simp we have looked at one practical protocol, TLS 1.2, with two honest agents
and one dishonest agent, albeit with some simplifications, in particular modeling only one variant
of the flow and simplifying the hashing.

NSLclassic and NSPKclassic are based on the NSL and Needham–Schroeder protocol specifica-
tions shipped with AIF-ω [35].

Finally, scenario 3 and 7 (PKCS#11_3 and PKCS#11_7), from the “PKCS#11” model that
is distributed with AIF-ω [35] are examples of another flavor of stateful protocols, namely security
tokens that can store keys and perform encryption and decryption and with which the intruder can
interact through an API. Generally modeling such tokens and their APIs works quite well with the
set-based abstraction. We report only two scenarios as they are the only ones that do not lead
to an attack. In fact there is a third one (scenario #9) that is marked as correct in the AIF-ω
distribution, but that is actually due to a mistake that our attempt to verify it in Isabelle has
revealed. We discuss this example in more detail in the appendix. This illustrates our main point
that there can be surprises when one tries to verify in Isabelle the results of automated tools.

For all our examples, verification times for all examples, using the unsafe check (i.e., making full
use of Isabelle’s code generator), are below 30s. This makes this configuration ideal for interactive
development, e.g., while refining a protocol specification. In contrast, the verification using only
Isabelle’s simplifier can take more than 12 hours for our example protocols. Thus, in most cases
this configuration will be used in “batch-mode” after the protocol has been checked using the
configuration employing the code generator. For the most protocols, NBE provides a good middle-
ground, bringing the verification times down to under a minute for most examples, and below 30min
for all examples except for TLS_auth_simp.

Furthermore, the improved coverage check introduced in section 6 significantly reduces the safe
verification time for TLS_auth_simp in safe mode from 12 hours to less than 4 1/2 hours. For
NBE, it reduces the runtime for TLS_auth_simp from over 8 hours to less than 3 minutes. For the
configuration fully relying on code-generation (unsafe), the improvements are minor (from 27sec to
19sec). Note that this coverage check can also increase the verification times (e.g., for the composed
keyserver examples). Further work is required to develop a heuristic helping users to decide, which
check to try first. At this point in time, we recommend users of PSPSP to use the unsafe checking
during interactive verification sessions and switch to safe using the regular coverage check for the
final (batch-mode) verification. If this batch-mode check takes very long (e.g., more than a few
hours), it is worthwhile to check if the improved coverage check (Receive) is faster.

Table 2 shows the running times for an example of a protocol composition, implementing a
TLS-based single sign-on. Note that the format of the table differs from Table 1: we report the
running times for the three different verification checks (Safe, NBE, and Unsafe) on three separate
lines. For each of these checks, we report the running time for the initialization and the fixed
point computation (as well as its size) for each sub-protocol (i.e., TLS and SSO). These aspects
are the same for all three verification checks, as their implementation does not make use of the
optimizations provided by the code generator. Next, we report the running times (as in Table 1 for
both coverage checks) for individual verification of the two sub-protocols. The final column reports
the running time for the proof that the composition of the two sub-protocols is secure. Here, “-
- : - - : - -” denotes that the check takes more than 12 hours. Notably, the security verification of
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Verification

Initialization Fixed Point (TLS) Fixed Point (SSO) TLS SSO
Check Trans. Setup Comp. |FP| |TI| Comp. |FP| |TI| Default Receive Default Receive Composition

Safe Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:10:56 00:10:06 - - : - - : - - - - : - - : - - - - : - - : - -
NBE Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:00:58 00:00:43 07:28:57 01:48:07 00:00:12
Unsafe Check 00:00:13 00:00:24 00:00:04 25 16 00:07:09 202 38 00:00:15 00:00:14 00:00:10 00:00:07 00:00:05

Table 2: Runtime Measurements (Time Format: hh:mm:ss) for the Composed Protocol
TLS12_SSO.

the individual protocols takes significantly longer (for instance, several hours for SSO for the NBE
check, the safe check does take more than 12 hours), while the proof that the composition of the
two protocol is secure, only takes a few seconds. Furthermore, note TLS used in this composition
case study focuses only on the core of TLS: the key exchange. In contrast, TLS_auth_simp in
Table 1 also includes the password authentication and the transmission of some dummy data. This
explains the difference in running times (and fixed-point sizes) between these two versions of TLS.

8 Isabelle/PSPSP
We implemented our approach on top of the Isabelle framework [40], resulting in a tool called
Isabelle/PSPSP [29], which is now part of the Archive of Formal Proofs (AFP).11 This includes a
formalization of the protocol model in Isabelle/HOL, a data type package that provides a domain
specific language (called trac) for specifying security protocols, and fully automated proof support.

8.1 The Architecture of Isabelle/PSPSP
For our implementation of Isabelle/PSPSP, we make use of the fact that Isabelle is not only an
interactive theorem prover; it also provides an extensible framework for developing formal method
tools [43].

Figure 1 shows an overview of the Isabelle architecture, highlighting in green the additions
provided by Isabelle/PSPSP. In particular:

• Protocol Formalization: PSPSP is built on, and re-uses, our stateful protocol formalization
(and its typing results) formalized in Isabelle/HOL. This part is available as a stand-alone
AFP entry [28], consisting of ca. 20, 000 lines of code. The formalization presented in this
paper, formalizing the presented method for the automated verification of security protocols,
adds another 25, 000 lines of code [29]. Note that these formalizations (proofs, definitions)
are reusable, i.e., independent of any concrete security protocol.

• Automated Proof Support (PSPSP Methods): We developed several proof methods using,
both, Isabelle’s high-level proof development language Eisbach [30] and the Isabelle/ML in-
terface. Isabelle/ML is Isabelle’s programming API that allows one to extend Isabelle using
the SML [37] programming language. We use this, in particular, for computing the abstraction
of the fixed point that builds the back-bone of our automation.

11As part of the AFP, PSPSP will be maintained and, for instance, ported to the latest official release of Isabelle.
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Figure 1: The system architecture of Isabelle and Isabelle/PSPSP.

• Support for trac: To improve the user-friendliness of PSPSP, we defined a trace-based spec-
ification language for security protocols, called trac. By supporting trac as input language,
we allow users to use PSPSP without the need to understand all the details of our protocol
formalization. Actually, users of PSPSP mostly need to understand trac, and our new Isabelle
commands for verifying security protocols. Supporting trac requires a parser for trac (imple-
mented in Isabelle/ML) and implementing an encoder (or datatype package) that translates
trac into the corresponding HOL definitions. Furthermore, the trac datatype package also
proves automatically a number of basic properties that are used within the actual security
proof.

It is noteworthy all our additions have been implemented in a logically safe way, i.e., a bug in our
implementation cannot result in an insecure protocol being successfully verified: any bug could only
result in PSPSP not able to verify a secure protocol.

8.2 Isabelle/PSPSP – A Guided Tour
Figure 2 shows the Isabelle IDE (called Isabelle/jEdit). The upper part of the window is the
input area that works similar to a programming IDE, i.e., supporting auto completion, syntax
highlighting, and automated proof generation and interactive proof development. The lower part
shows the current output (response) with respect to the cursor position. In more detail, Figure 2
shows the specification, and the fully-automated verification of a toy keyserver protocol:

• The protocol is specified using the domain-specific language trac that, e.g., could also be used
by a security protocol model checker (line 9–67). Our implementation automatically translates
this specification into a family of formal HOL definitions. Moreover, basic properties of these
definitions are also already proven automatically (i.e., without any user interaction): for this
simple example, already over 350 theorems are automatically generated.

• Next (line 72) our implementation automatically shows that the protocol satisfies the require-
ment of our model (Technically, this is done by instantiating several Isabelle locales, resulting
in another 1750 theorems “for free.”).
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Figure 2: Using Isabelle/PSPSP for verifying a toy keyserver protocol.
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• In line 73, we compute the fixed point. We can use Isabelle’s value-command (line 74) to
inspect its size.

After these steps, all definitions and auxiliary lemmas for the security proof are available. We can
now perform a fully automated proof (line 75). This top-level command proves automatically a
theorem showing the security of the defined protocol. This successful proof took ca. 41s (see lower
part of the Isabelle/jEdit window.)

8.3 Compositionality
PSPSP is part of a larger Isabelle infrastructure for security protocols that allows also for composi-
tionality [24], i.e., for a result of a form: if two or more protocols are secure in isolation and satisfy
certain requirements, then also their composition is secure, i.e., when they run in parallel sharing
the same network and even some sets. Especially the support for shared sets allows us to consider
also complex interactions between two protocols, for instance where one protocol negotiates keys
and another protocol uses them.

The compositionality framework uses the same specification language (trac) as PSPSP. One can
thus specify a set of component protocols, use PSPSP to prove the security of each of them in
isolation, and use the compositionality framework to check that they fulfill the requirements for
compositionality and then obtain an Isabelle proof that the composed system is secure.

As an example, we have modeled in [24] a composition of TLS 1.2 and SAML Single-Sign-On
(SSO): TLS establishes a secure channel between a client and a server where the client is not yet
authenticated. SSO then uses such a channel between a client and the identity provider to first
authenticate the client to the identity provider (e.g. using a password); the identity provider then
provides a credential for the client that the client can use to authenticate another TLS channel with
a relying party. More in detail, the TLS protocol stores any exchanged keys that a client A has
negotiated with server B in a set clientKeys(A,B) on the client side, and in the set serverKeys(B)
on the server side. The latter set of keys is only parameterized over the agent name B, since A is
not authenticated. Each of these sets reflect the local point of view of each agent, and it is part of
the verification that, for instance, the intruder does not find out a key between two honest agents
A and B. Finally, the SSO protocol can just retrieve and use these keys, both to authenticate
the connection between client and server, as well as between client and identity provider (where
the password is transmitted). The composed protocol is specified in the trac specification language
(see Figure 3, until line 299). We compute the sub-message patterns (SMP) common between both
protocols (lines 305–309, see [24] for more details) and fixed-points (lines 312 and 313) for both
protocols “in isolation”. These are used, to prove the security of each of the two sub-protocols (lines
315–318). Then we prove the security of the composition: we compute the shared secrets (line
321) and then use an automated proof method for the protocol composition proof (lines 323-237).
Finally, we show the security of the composition (lines 329–340) with a simple proof “by auto”.

Note that the run time (recall Table 1 and Table 2) for the TLS component of the composition
is greater than the runtime of the TLS_auth_simp, because it is purely the key-exchange while
all authentication and data-transmission is “outsourced” to the SSO protocol. Thus, in general,
verification can be improved by using compositional reasoning, if one can split a complex system
into smaller components.

The compositionality framework supports strictly more protocols than PSPSP, most importantly
it allows for composed messages in sets. In these cases, one cannot use PSPSP to verify the
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Figure 3: Using Isabelle/PSPSP for verifying the composition of TLS 1.2 and SAML.
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respective components, but of course one can also consider compositions where a subset of the
components is proved by PSPSP and the others are verified manually.

9 Case Study: Logos
We had the opportunity to formally verify with PSPSP a protocol by the Danish company Logos.
This protocol is in the area of reader terminals for a travel card solution, namely to establish a
secure connection between a terminal and the Logos server. The particular challenge here is that
this should work after a terminal has been in storage for years and all public keys of the servers have
been updated in the meantime; we do not want to exclude that an intruder could have obtained old
private keys—after all that is the reason for updating them regularly. Such a protocol, even though
its messages are fairly simple, is obviously a challenge for verification tools (without bounding the
number of sessions) as it requires mutable long-term states at its core. With some simplifications,
we have managed to make a model in PSPSP and found a security flaw, and then verified the
protocol with PSPSP under a minor modification. Logos has applied this modification and has
thus an Isabelle-verified product, one might say, although this should of course be taken with a
grain of salt, given that we only verified a simplified model of the protocol (and in a black-box
model of cryptography).

In order to model the Logos protocol in PSPSP, we need to make some simplifications and
restrictions that are best explained by the enumeration constants:

hw_id = {t1, t2}
epoch = {e1, e2}

Here we have two terminals (hardware-ids) t1 and t2. A restriction to finitely many terminals is
necessary. The server should maintain state for each terminal, namely a set keys(T ) for T : hw_id.
Note that this does not bound the number of sessions each terminal can perform. Second we have
two epochs e1 and e2. We have introduced these epochs since PSPSP has no explicit notion of time
that would allow us, for instance, to reason about whether one event occurred before the other.
This model of epochs means that we split the whole timeline into two distinct epochs, without a
bound on how many transactions can happen in each epoch. In fact, our model will work in almost
the exact same way in both epochs (we explain the exceptions at each transaction below). This
allows us to make a model that is almost oblivious about time except for one fact: that everything
in e1 happens before everything in e2.

First, we define that the intruder can generate public-private key pairs. Note that when no
epochs are mentioned, the rule can uniformly be applied in all epochs:

intruder_key_gen()
new PK
insert PK intruderkeys
send PK , inv(PK ).

For simplicity, we model here only a single public key of the Logos server. The server can at any
time, and in every epoch, generate a new server key and insert it into the set of keys it currently
has. This is an over-approximation, i.e., the server in practice would never have more than one key
at the same time, but of course the abstraction used in PSPSP implies that everything that can
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happen, can happen arbitrarily often.

server_keys_gen(E: epoch)
new PKL
insert PKL server_keys(E)
send PKL.

Note that this can happen in every epoch, but we have parameterized the server keys set over
the epoch, so we can distinguish e1-keys from e2-keys. Like in the keyserver examples before, the
knowledge of the corresponding private key inv(PKL) is implicit for honest agents like the Logos
server.

The fact that all keys could be replaced by new keys we can simply over-approximate by the
following “revocation” rule:

server_keys_revoke(E: epoch,PKL: value)
PKL in server_keys(E)
delete PKL server_keys(E).

When a batch of new terminals is manufactured, they initially have all the same public/private
key pair, and they are just distinguished by their hardware-id. We assume here that batch generation
is only in epoch e1, because with e2 we want to model only what happens long after manufacture.
Before terminals can be manufactured, we first need to create a public/private key pair, and like
for the Logos server, we allow for arbitrary such events and revocation at any point as an over-
approximation of several manufacturing batches that can happen in e1:

batch_keys_gen()
new PK
insert PK batch_keys(e1).

batch_keys_revoke(PK : value)
PK in batch_keys(e1)
delete PK batch_keys(e1).

Again, the corresponding private key inv(PK ) is implicit, since only the manufactured terminals
would have it and are assumed to be honest.

When manufactured, the terminals have also the current public key of the Logos server. They
are required to run a bootstrap protocol with the server in order to establish an individual key, and
this has to happen within 30 days after manufacture, and we assume here that this is still within
epoch e1. (Failure to run it is modeled here by the fact that batch and/or server key can be revoked,
and thus the terminal cannot do any transactions.) In the bootstrap protocol, the terminal creates
a fresh public key pair BKP , the bootstrap key, and inv(BKP) the corresponding private key. For
now even the public key is kept secret between terminal and server:

bootstrap_endpoint_terminal(T: hw_id,PKL: value,PKBatch: value)
PKL in server_keys(e1)
PKBatch in batch_keys(e1)
new BKP
insert BKP bkp(T )
send crypt(PKL, sign(inv(PKBatch), pair(T,BKP))).

Here we have drastically simplified the bilaterally authenticated TLS session between terminal and
server, by encryption of the message with the public key PKL of the server and signing by the
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private key of the entire batch of terminals inv(PKBatch). The terminal remembers its bootstrap
key BKP (and implicitly the private key) in the set bkp(T ). The server receives the public key
BKP in the following transaction and stores it in keys(T ):

bootstrap_endpoint_server(T: hw_id,PKL: value,BKP: value,PKBatch: value)
receive crypt(PKL, sign(inv(PKBatch), pair(T,BKP)))
PKL in server_keys(e1)
PKBatch in batch_keys(e1)
insert BKP keys(T ).

Note again that this bootstrap protocol so far can only be done in epoch e1 as demanded by
the parameters of the server and batch key sets, but it can happen for arbitrary many batches and
updates of the server keys in e1. Now we come to the truststore protocol which a terminal may
execute after many years in storage, so this is possible in both epochs. To initiate, the terminal
says its unique hardware ID and a fresh nonce N :

truststore_endpoint_terminal(E: epoch, T: hw_id)
new N
insert N nonce(E)
send T,N.

For simplicity, we omit that this is also done via TLS: since in general neither can verify the
certificate of the other, this is not much better than plaintext, and so we do not bother with
modeling TLS here. Also, the N is inserted into an epoch-specific set, as the terminal would not
accept an answer in epoch e2 with a nonce from epoch e1.

The server now receives the request, looks up the BKP of the claimed T , and constructs a so-
called truststore message, telling the terminal all current public key certificates. We have simplified
this to the server just telling its own current public key. To this end, the server generates a new
shared key SK which is inserted into a set of current shared keys sk_keys, encrypts it with the
BKP of the terminal and then authenticates the trust-store by MACing it (and the nonce) with
the SK :

truststore_endpoint_server_epoch1(T : hw_id,BKP: value,PK : value, N: value)
receive T,N
BKP in keys(T )
PK in server_keys(e1)
N notin nonce(e2)
new SK
insert SK sk_keys(T, e1)
insert PK witness(T, e1)
send crypt(BKP , sk(SK )),PK , h(SK , N,PK ).

This is the version for the case it is executed in e1. Here we actually make use of the epochs with
the requirement N notin nonce(e2). This is not a check that the server can perform, it simply
models that this transaction cannot happen in e1 with a nonce that was only created in e2. When
this transaction is happening however in e2, we cannot exclude that the nonce was generated in e1
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(e.g., the intruder replaying an old request):

truststore_endpoint_server_epoch2(T : hw_id,BKP: value,PK : value, N: value)
receive T,N
BKP in keys(T )
PK in server_keys(e2)
new SK
insert SK sk_keys(T, e2)
insert PK witness(T, e2)
send crypt(BKP , sk(SK )),PK , h(SK , N,PK ).

To understand this, consider that actually this approach does not have a direct notion of time
built in, and so we cannot directly talk about what has happened before or after. With the epochs
we have artificially introduced a minimal notion of time: we distinguish things that have happened
in e1 and that is before everything that happens in e2. Thus, we simply can exclude, when this
transaction happens in e1 that it can use a nonce of epoch e2—it is simply some information we
encode here into the reasoning of the tool.

To continue the bootstrapping protocol, the terminal receives the truststore message from the
server:

truststore_endpoint_terminal′(T : hw_id,BKP: value,SK : value,PK : value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T ).

Actually, we do not model here further the store of the terminal, but we have authentication goals
as discussed below.

We formulate several goals by specifying again what would be an attack. First, for secrecy
goals: the BKP (both public and private key) are secrets, further the SK and the private key of
the terminal batch:

secrecy_bkp(T: hw_id,BKP: value)
receive BKP
BKP in keys(T )
attack.

secrecy_bkp′(T : hw_id,BKP: value)
receive inv(BKP)
BKP in keys(T )
attack.

secrecy_sk(E: epoch, T: hw_id,SK : value)
receive SK
SK in sk_keys(T,E)
attack.

secrecy_batch_key(E: epoch,PKBatch: value)
receive inv(PKBatch)
PKBatch in batch_keys(E)
attack.

For the receiving of the truststore, we have that it is an attack (non-injective agreement) if the
terminal accepts a truststore that was not sent like this from Logos (in any epoch):

noninjauth_server_keys(T : hw_id,PK : value,SK : value,BKP: value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T )
PK notin witness(T, e1)
PK notin witness(T, e2)
attack.
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The injective aspect now needs the formulation with epochs: it is an attack if the terminal
accepts a message in epoch e2 that the server has indeed said in epoch e1, but not in epoch e2. (It
would be ok, if in both epochs it is said by the server.)

replay_server_keys(T : hw_id,PK : value,SK : value,BKP: value, N: value)
receive crypt(BKP , sk(SK )),PK , h(SK , N,PK )
BKP in bkp(T )
N in nonce(e2)
PK in witness(T, e1)
PK notin witness(T, e2)
attack.

This goal we actually found violated in the first version of the Logos protocol: in this first version
the terminal did not include the nonce N in the truststore protocol (and neither did the server’s
reply of course). This allows for the following replay attack: a terminal gets manufactured, runs
bootstrap and sometime later the truststore protocol with the intruder in the middle, recording
the truststore message from the server. The terminal for some reason goes into storage and then
later in epoch e2 it runs the truststore protocol again, where the intruder just acts as the Logos
server and replies with the old truststore messages from e1, so the terminal is made to accept the
old Logos keys that are long revoked and possibly compromised by the intruder.

We note that this attack is not easy for the intruder to mount, but also not unrealistic, and
invalidating exactly what the protocol should achieve, the reliable update of keys. The fix with the
nonce is not very expensive and in this version all goals of the protocol are satisfied, including the
subsequent server-certification of new keys generated by the terminal which we do not show here.

The PSPSP tool can verify this specification in about a minute.

10 Conclusion and Related Work
The research into automated verification of security protocols resulted in a large number of tools
(e.g., [9, 10, 15, 4, 18]). The implementation of these tools usually focuses on efficiency, often result-
ing in very involved verification algorithms. The question of the correctness of the implementation
is not easy to answer and this is in fact one motivation for research in using LCF-style theorem
provers for verifying protocols (e.g., [38, 25, 13, 6, 5, 7]). While these works provide a high level
of assurance into the correctness of the verification result, they are usually interactive, i.e., the
verification requires a lot of expertise and time.

This trade-off between the trustworthiness of verification tools and the degree of automation
inspired research of combining both approaches [20, 11, 31]. Goubault-Larrecq [20] considers a
setting where the protocol and goal are given as a set S of Horn clauses; the tool output is a set
S∞ of Horn clauses that are in some sense saturated and such that the protocol has an attack iff a
contradiction is derivable. His tool is able to generate proof scripts that can be checked by Coq [8]
from S∞. Meier [31] developed Scyther-proof [32], an extension to the backward-search used by
Scyther [18], which is able to generate proof scripts that can be checked by Isabelle/HOL [36].
Brucker and Mödersheim [11] integrate an external automated tool, OFMC [4], into Isabelle/HOL.
OFMC generates a witness for the correctness of the protocol that is used within an automated
proof tactic of Isabelle.

Our work generalizes on these existing approaches for automatically obtaining proofs in an LCF-
style theorem prover, first and foremost by the support for stateful protocols and thus a significantly
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larger range of protocols—moving away from simple isolated sessions to distributed systems with
databases, or devices that have a long-term storage.

We achieve this by employing the abstraction-based verification technique of AIF [34], but
with an important modification. The method of AIF produces a set of Horn clauses that is then
analyzed with ProVerif [9] (or SPASS[42]), and the same holds true also for several similar methods
for stateful protocol verification, namely StatVerif [3], Set-π [12], AIF-ω [35] and GSVerif [14]. Note
that definite Horn clauses in first-order predicate logic always have a trivial model (interpret all
predicates as true for all arguments), and we are actually interested in the free model (free algebra
for the functions and least model of the predicates). This is achieved in ProVerif (and SPASS)
by checking whether the Horn clauses imply a given attack predicate. If they do, then the attack
predicate is true also in the free model. If they do not, i.e., if the Horn clauses are consistent with
the negation of the attack predicate, then the attack predicate is not true in all models, and in
particular not in the free model since it is the least model. Thus, in a positive verification, the
result from ProVerif is a consistent saturated set of Horn clauses. As first remarked by Goubault-
Larrecq [20], this is not a very promising basis for a proof, as one does not get a derivation of a
formula (the way SPASS for instance is often used in combination with Isabelle) but rather a failure
to conclude a proof goal. The only chance to verify the resulting saturated set of Horn clauses, is
to recompute the saturation and compare. Therefore [20] uses a different idea: showing that the
Horn clauses and the negation of the attack predicate are consistent by trying to find some finite
model and, if found, then using this finite model to generate a proof in Coq that the Horn clauses
are consistent with the negation of the attack predicate.

The limitation of [20] is that it checks the protocol proofs only on the Horn clause level, i.e.,
after a non-trivial abstraction has been applied. In order to obtain Isabelle proofs for the original
unabstracted stateful protocols, we use therefore another approach: rather than Horn clauses, we
directly generate a fixed point of abstract facts that occur in any reachable state. This would in
fact normally not terminate on most protocols due to the intruder deduction; however, we employ
here the typing result we have formalized in Isabelle [26] to ensure that the fixed point is always
finite, and our method is in fact guaranteed to terminate. This fixed point, if it does not contain
the attack predicate, is the core of a correctness proof for the given protocol, namely as an invariant
that the fixed point covers everything that can happen, and we essentially have to check that this
invariant indeed holds for every transition rule of the protocol.

An interesting difference to previous approaches is that we do not rely on an external tool for
the generation of the proof witness, but that it is implemented within Isabelle itself. The reason
is more of a practical than a principle matter: Computing the fixed point in Isabelle is actually
not difficult and—thanks to Isabelle’s code generation—without much of a performance penalty;
however, the fact that we do not rely on an external tool for the generation of the proof witness
reduces the chances of synchronization and update problems (e.g., with new Isabelle versions). In
fact, this work is part of the Archive of Formal Proofs12, a collection of Isabelle proofs that are
kept up to date with each new version of Isabelle. This means that for each protocol that works in
today’s version it is highly likely that the proof works in future versions, because the proofs of all
theorems of our (protocol-independent) Isabelle theory will be updated, and the fixed point and the
checks about it do not have to change. Thus we will also automatically benefit from all advances
of Isabelle.

Another difference to previous approaches is that we do not directly generate proof scripts that
Isabelle has to then check. Rather, we have a fixed set of (protocol-independent) theorems that im-

12See https://www.isa-afp.org.
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ply that any protocol is secure if we have computed a fixed-point representation that gives an upper
bound of what (supposedly) can happen and this representation passes a number of checks. These
checks can either be done by generated code or entirely within Isabelle’s simplifier. Especially with
the generated code we have a substantial performance advantage, while using Isabelle’s simplifier
gives the highest level of assurance since we only rely on the correctness of the Isabelle kernel.
We note that also the generated code is correct “by construction” and thus extremely unlikely to
compute wrong results. Many small practical advantages arise from the integration: We do not
have an overhead of parsing of proof scripts (which can be substantial for a larger fixed point).
By using the internal API of Isabelle, we avoid the need for the Isabelle front-end parser to parse
and type-check the fixed point (as we can directly generate a typed fixed point on the level of the
abstract syntax tree). Parsing and type-checking (on the concrete syntax level) of large generated
theories (as, e.g., ones containing the generated fixed point) is, in fact, slow in Isabelle [11].

Another point is that there exist a number of protocol verification methods and results that use
slightly different models. Here we actually seamlessly integrate a verification method into a rich
Isabelle theory of protocols without any semantic gaps: We provide here a method that is integrated
into a large framework of Isabelle theories for protocols (approximately 25,000 lines of code), in
particular a typing and compositionality result. This allows for instance to prove manually (in the
typed model) the correctness of a protocol, use our automated method to prove the correctness
of a different protocol, and then compose the proof to obtain the correctness of the composition
in an untyped model. This seamless integration of results without semantic gaps between tools
we consider as an important benefit of this approach. Even though many protocol models are not
substantially different from each other, bridging over the small differences can be very hard to do,
especially in a theorem prover that prevents one from glossing over details. Our deep integration
into the existing formalization of security protocols in Isabelle ensures that the same protocol model
(same semantics) is used—which would otherwise require additional work (e.g., to ensure that the
semantics of the protocol specified in a tool such as Scyther-proof is faithfully represented in the
generated Isabelle theory).

It is in general desirable to have proofs that are not only machine-checked but also human-
readable. A reason is that, for instance, mistakes in the specification itself (e.g., a mistake in a
sent message so that it cannot be received by anybody) may lead to trivial security proofs which
a human may notice when trying to understand the proof. Here Scyther-proof has the benefit
that it produces very readable Isar-style proofs; in our case, there is, however, something that
is also accessible: the fixed point that was computed is actually a high-level proof idea that is
often quite readable as well (see for instance our running example). Moreover, the entire set of
protocol-independent theorems are hand-written Isar-style proofs.

Furthermore, our work shares a lot of conceptual similarities with Tamarin [33] which can also
be regarded as a kind of theorem prover. In fact, it was inspired by the mentioned work of Meier [32]
that generates Isabelle proofs from the Scyther tool, but Tamarin is not based on Isabelle and has
rather a specialized proving environment. This in principle shares two very nice features of Isballe:
that there are less limitations in what can be modeled, and that a user can supply proof ideas, but
it also shares the disadvantage of Isabelle: that most of the interesting proofs are not automatic.
There is work on improving this situation, i.e. finding more proofs automatically for Tamarin [17].
In contrast, PSPSP is a complete decision procedure for the class of protocols it supports. Another
main difference is here that PSPSP is entirely formalized in Isabelle, and, as explained, does not
rely on the correctness of any external tools. Also the core of Isabelle is so well studied and used
in so many projects that it can be considered more trust-worthy than the specialized prover of
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Tamarin. On the other hand, Tamarin can support algebraic properties which we cannot at this
point.

Finally, another approach that, like Tamarin, is very much related to performing actual proofs
of security protocols automatically and semi-automatically is CPSA [19, 41]. Also here it might be
possible to make a connection to a theorem prover of Isabelle; however, the approach is even further
away from our approach than Tamarin, because CPSA does not necessarily assume a closed world
of transactions. Rather, it performs an enrich-by-need analysis obtaining all ways to complete a
particular scenario and thereby yielding the strongest security goals a given system would satisfy
(even in the presence of other transactions). We believe it is even more challenging to integrate
this kind of reasoning into a theorem prover like Isabelle, but achievable. We like to investigate this
as future work as it could give interesting ways for an analyst to interact with the proving process
and inject proof ideas.

Acknowledgement. For the purpose of open access, the authors have applied a Creative Com-
mons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this
submission. This work was partially supported by Industriens Fond through the project “Sb3D:
Security-by-Design in Digital Denmark” and the Horizon-Europe project TaRDIS (project number
101093006).

References
[1] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. Typing and compositionality for

security protocols: A generalization to the geometric fragment. In European Symposium on
Research in Computer Security, pages 209–229, 2015.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security protocols - extension to
various security properties. Information and Computation, 239:182–215, 2014.

[3] M. Arapinis, J. Phillips, E. Ritter, and M. D. Ryan. Statverif: Verification of stateful processes.
Journal of Computer Security, 22(5):743–821, 2014.

[4] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security
protocols. International Journal of Information Security, 4(3):181–208, 2005.

[5] G. Bella. Formal Correctness of Security Protocols. Information Security and Cryptography.
Springer, 2007.

[6] G. Bella, D. Butin, and D. Gray. Holistic analysis of mix protocols. In Information Assurance
and Security, pages 338–343, 2011.

[7] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase protocols. Journal of
Automated Reasoning, 36(1-2):5–37, 2006.

[8] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004.

[9] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Computer
Security Foundations Workshop, pages 82–96, 2001.

44



[10] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl. Improvements on the Genet and Klay
technique to automatically verify security protocols. In Automated Verification of Infinite-State
Systems, pages 1–11, 2004.

[11] A. D. Brucker and S. Mödersheim. Integrating automated and interactive protocol verification.
In Formal Aspects in Security and Trust, pages 248–262, 2009.

[12] A. Bruni, S. Mödersheim, F. Nielson, and H. R. Nielson. Set-π: Set membership π-calculus.
In Computer Security Foundations Symposium, pages 185–198, 2015.

[13] D. F. Butin. Inductive analysis of security protocols in Isabelle/HOL with applications to
electronic voting. PhD thesis, Dublin City University, 2012.

[14] V. Cheval, V. Cortier, and M. Turuani. A little more conversation, a little less action, a lot
more satisfaction: Global states in ProVerif. In Computer Security Foundations Symposium,
pages 344–358, 2018.

[15] Y. Chevalier and L. Vigneron. Automated Unbounded Verification of Security Protocols. In
Computer Aided Verification, pages 325–337, 2002.

[16] R. Chrétien, V. Cortier, A. Dallon, and S. Delaune. Typing messages for free in security
protocols. ACM Transactions on Computational Logic, 21(1):1:1–1:52, 2020.

[17] V. Cortier, S. Delaune, J. Dreier, and E. Klein. Automatic generation of sources lemmas in
TAMARIN: towards automatic proofs of security protocols. Journal of Computer Security,
30(4):573–598, Aug. 2022.

[18] C. Cremers. Scyther: Semantics and verification of security protocols. PhD thesis, Eindhoven
University of Technology, 2006.

[19] S. F. Doghmi, J. D. Guttman, and F. J. Thayer. Searching for shapes in cryptographic pro-
tocols. In Tools and Algorithms for the Construction and Analysis of Systems, pages 523–537,
2007.

[20] J. Goubault-Larrecq. Towards producing formally checkable security proofs, automatically. In
Computer Security Foundations Symposium, pages 224–238, 2008.

[21] F. Haftmann and L. Bulwahn. Code generation from Isabelle/HOL theories, 2020.

[22] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security protocols.
Journal of Computer Security, 11(2):217–244, 2003.

[23] A. Hess, S. Mödersheim, and A. Brucker. Stateful protocol composition. In European Sympo-
sium on Research in Computer Security, pages 427–446, 2018.

[24] A. Hess, S. Mödersheim, and A. Brucker. Stateful Protocol Composition in Isabelle/HOL.
ACM Transactions on Privacy and Security, 26(3):1–36, 2023.

[25] A. V. Hess and S. Mödersheim. Formalizing and proving a typing result for security protocols
in Isabelle/HOL. In Computer Security Foundations Symposium, pages 451–463, 2017.

45



[26] A. V. Hess and S. Mödersheim. A typing result for stateful protocols. In Computer Security
Foundations Symposium, pages 374–388, 2018.

[27] A. V. Hess, S. Mödersheim, A. D. Brucker, and A. Schlichtkrull. Performing security proofs of
stateful protocols. In 34th IEEE Computer Security Foundations Symposium (CSF), volume 1,
pages 143–158. IEEE, 2021.

[28] A. V. Hess, S. Mödersheim, and A. D. Brucker. Stateful protocol composition and typing.
Archive of Formal Proofs, April 2020. https://isa-afp.org/entries/Stateful_Protocol_
Composition_and_Typing.html, Formal proof development.

[29] A. V. Hess, S. Mödersheim, A. D. Brucker, and A. Schlichtkrull. Automated stateful protocol
verification. Archive of Formal Proofs, Apr. 2020. http://isa-afp.org/entries/Automated_
Stateful_Protocol_Verification.html, Formal proof development.

[30] D. Matichuk, T. Murray, and M. Wenzel. Eisbach: A proof method language for isabelle.
Journal of Automated Reasoning, 56(3):261–282, Mar. 2016.

[31] S. Meier, C. Cremers, and D. A. Basin. Efficient construction of machine-checked symbolic
protocol security proofs. Journal of Computer Security, 21(1):41–87, 2013.

[32] S. Meier, C. J. F. Cremers, and D. A. Basin. Strong invariants for the efficient construction
of machine-checked protocol security proofs. In Computer Security Foundations Symposium,
pages 231–245, 2010.

[33] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for the symbolic
analysis of security protocols. In Computer Aided Verification, pages 696–701, 2013.

[34] S. Mödersheim. Abstraction by set-membership: verifying security protocols and web services
with databases. In Computer and Communications Security, pages 351–360, 2010.

[35] S. Mödersheim and A. Bruni. AIF-ω: Set-based protocol abstraction with countable families.
In Principles of Security and Trust, pages 233–253, 2016.

[36] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science. Springer, 2002.

[37] L. C. Paulson. ML for the working programmer (2nd ed.). Cambridge University Press, USA,
1996.

[38] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Com-
puter Security, 6(1-2):85–128, 1998.

[39] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Transactions on Infor-
mation and System Security, 2(3):332–351, 1999.

[40] L. C. Paulson, T. Nipkow, and M. Wenzel. From LCF to isabelle/hol. Formal Aspects Comput.,
31(6):675–698, 2019.

[41] P. D. Rowe, J. D. Guttman, and M. D. Liskov. Measuring protocol strength with security
goals. International Journal of Information Security, 15(6):575–596, 2016.

46

https://isa-afp.org/entries/Stateful_Protocol_Composition_and_Typing.html
https://isa-afp.org/entries/Stateful_Protocol_Composition_and_Typing.html
http://isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html
http://isa-afp.org/entries/Automated_Stateful_Protocol_Verification.html


[42] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS
version 3.5. In Conference on Automated Deduction, pages 140–145, 2009.

[43] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar framework. In
K. Schneider and J. Brandt, editors, TPHOLs 2007, number 4732, pages 352–367. 2007.

A problem with the AIF-ω specification 09-lost_key_att_countered.aifom

When we tried to model this specification from the AIF-ω distribution, which is classified as secure
by the AIF-ω tool, we failed to prove it secure with our approach in Isabelle, and in fact, our
fixed-point generation was generating the attack constant. Going back to the AIF-ω verification we
noticed that there was a problem with the public functions, in this case symmetric encryption and
hashing. They were declared as public in the AIF-ω specification, but the intruder seemed unable
to make use of them and get to the attack we had obtained.

In fact the problem was that AIF-ω does not generate intruder rules for the function symbols
that are declared as public, so unless the user explicitly states rules like “if the intruder knows x
then he also knows h(x))”, the function symbol is like a private one that the intruder cannot apply
himself. When we add appropriate rules for all public function symbols to the specification, also
AIF-ω finds the attack.

One could argue that this is a problem of the specification (the modeler was in fact aware of
this behavior), however, it can be considered a bug of AIF-ω, since the keyword “public” for a
function symbol at least suggests that the composition rule would be automatically included. In
this sense, our Isabelle verification has revealed a mistake, in particular one that has led to an
erroneous “verification” of a flawed protocol by an automated tool. In fact, the attack is not a false
positive (i.e., the original specification also has an attack).
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