
Automata for Service Contracts ?

Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

{basile,degano,giangi}@di.unipi.it
Dipartimento di Informatica, Università di Pisa, Italy

Abstract. A novel approach to the formal description of service con-
tracts is presented in terms of automata. We focus on the basic security
property of guaranteeing that in the multi-party composition of princi-
pals each individual gets his requests satisfied, so that the overall com-
position reaches its goal. Depending on whether requests are satisfied
synchronous or asynchronous, we construct an orchestrator that at static
time either yields composed services enjoying the required properties or
detects the individuals responsible for possible violations. To do that we
resort to techniques from Control Theory and Operational Research.

1 Introduction

In the Service Oriented Computing paradigm, and in the Cloud as well, services
are offered, composed and invoked by different individuals, possibly malicious.
Many security issues then arise, e.g. on the usage of resources, the guarantees on
the results provided, the respect of the users’ privacy, the correctness of the way
services interact with the customer and among them. Indeed, APIs for service
management, orchestration and monitoring are integral part of the security of
service-based systems. For instance, business processes can exploit these APIs
to dynamically include add-on services to manage the relationships between the
business process and its environment. Hence, weak programming methodologies
can expose an organization to several security threats pertaining to confidential-
ity, integrity, availability, and accountability. Also, the secure orchestration of
services becomes more problematic in the age of cloud computing when organi-
zations are dependent on the 24/7 availability of services obtained by assembling
together a variety of heterogeneous services. Below, we study a model to describe
and prescribe when a group of services will safely cooperate for solving a task.

Several proposals have been put forward in the literature, among which we
only mention a few of those in the framework of the λ-calculus [7, 12, 6], of
process calculi [16, 17, 1], of non-standard logics [10, 3]. In section 2 we provide
a comparison between the mentioned proposals and our model. A basic no-
tion common to these approaches is that of contract, i.e. the interfaces pub-
lished by services. Of course, this notion differs under many aspects in the
various proposals. For us, a contract specifies what a service is going to of-
fer and what in turn it requires. Two or more services can then compose and

? This work has been partially supported by the MIUR project Security Horizons and
IST-FP7-FET open-IP project ASCENS



2 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

cooperate to achieve a common goal. The composition however may fail, be-
cause the contracts involved do not agree. For example, my contract says that
“I give you a glass of wine and then I wait to be paid 5e” — as a regular ex-
pression: wine.five, where an over-lined action denotes an offer. Your contract
instead says that “You will drink a glass of wine and then you either pay 5e or
10¢” — as a regular expression wine.(five + ten). The composition of the two
contracts succeeds if you pay me 5e, while it fails if you dislike my wine and
give me 10¢, only. Circular contracts are a special case [5, 4]: they arise when all
the participants start by asking something, so exposing themselves to the risk of
not getting back anything, if a partner is dishonest. A typical example is: “Alice
gives Bob a toy if Bob gives her a bike”, and “Bob gives Alice a bike if she gives
back a toy”. Circular contracts have been studied within Propositional Contract
Logic, an extension of intuitionistic logic, proposed in [10]. Some models for a
significant fragment of Propositional Contract Logic have been studied, based on
suitably extended process algebras [11, 8], Event Structures [5] and Petri Nets [4].

We represent contracts, possibly circular, as a special kind of finite state au-
tomata, called Contract Automata (CA), endowed with composition operators.
The “hostelry” contract discussed above is depicted in Figure 1. More precisely,
we assume to have offers (over-lined), and requests (represented as non over-
lined offers, disjoint from them), just as in I/O [21] and Interface Automata [2].
Then, the alphabet of a CA consists of tuples, each element of which records the
activity of a single participant in the contract. In a tuple there is either a single
offer (or a single request), or there is a pair of request-offer that match in pair;
all the other elements of the tuple contain the null symbol −, meaning that the
corresponding individuals stay idle.

Contract Automata can be composed, by making the cartesian product of
their states and of the labels of the joined transitions, with the additional possi-
bility of labels recording matching request-offer — actually, we have two different
operations of composition: we will come back on them later on. An additional
requirement we pose on the execution of a contract, i.e. of the run of the cor-
responding composed automaton, is that each participant has to complete all
its activities and reach a state, designed to be final. Since our automata can
obviously have loops, we have then to suitably take care of the ways these loops
are taken in executions.

Consider again the example of drinking wine above. A word, i.e. a sequence
of interactions between the involved services, accepted by the compositions of
the two contracts is (wine, wine)(five, five), while the following word is also
accepted by the contract automaton but it is not in agreement (see below):
σ = (wine, wine)(−, ten)(five,−). Note that the tuples contain enough infor-
mation to single out why a word leads to failure. More importantly, we can detect
which (sub-)contract or individual, i.e. which (sub-)service made a wrong move.
In the second trace of the oversimplified example above, the customer does not
pay the due price to the innkeeper, and is therefore liable.

Besides describing contracts as automata, our main results concern the defi-
nition of:



Automata for Service Contracts 3

q01start q11

q21

wine

five

q02start q12 q22

q32

wine

five

ten

q01, q02start q11, q12

q21, q32

q11, q22 q21, q32
(wine,wine)

(five, five)

(−, ten) (five,−)

Fig. 1. On the first row from left to right we have A1,A2, on the second row A3

1. new, natural ways of composing contracts involving multiple parties, in ac-
cordance with two orchestration policies discussed below, and following the
lines of component-based software engineering [21, 2];

2. properties of CA that guarantee a group of contracts to agree under all
circumstances (agreement or, in a more liberal fashion weak agreement). We
also define when they agree in some specific cases but not always (they admit
agreement or weak agreement). The definition of these and other properties
becomes here natural, because of our language based approach;

3. static techniques to detect which individual in a contract is liable, i.e. the
one that is responsible for leading a composition to a failing, insecure state.
While finding the individuals liable for a violation of agreement is not hard
(inspecting the automaton plus a little calculation suffice), things become
much more intricate when we consider weak agreement, that turns out to
be context-sensitive, in language-theoretic terms. We attack here this last
problem in a novel manner by resorting to optimization techniques borrowed
from Operational Research;

4. an orchestrator that composes services so as to enforce the properties men-
tioned in item 2. For agreement we can define a (most permissive) controller,
which is again a CA, in the style of Control Theory [14]. For weak agreement
instead the controller is much harder to define.

Composition of contracts As anticipated, we have two ways of composing
services. The first one, denoted by ⊗, considers the case when a service S joins a
group of services already clustered as a single orchestrated service S′. In this case
S can only accept the still available offers (requests, respectively) of S′ and vice
versa. In other words, there is no interaction of S with the individual components
of the orchestration S′, but only with S′ as a whole. E.g., suppose that a thirsty
fellow, gets in the inn, wants to drink and also offers to pay the other customer’s



4 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

q01start q11
toy

q02start q12
toy

q03start q13
toy

q01, q02, q03start q11, q12, q03

q01, q02, q13 q11, q12, q13

(toy, toy,−)

(−,−, toy) (−,−, toy)

(toy, toy,−)

q01, q02, q03start q11, q02, q13

q01, q12, q03 q11, q12, q13

(toy,−, toy)

(−, toy,−) (toy,−, toy)

(−, toy,−)

q01, q02, q03start q11, q12, q03

q11, q02, q13 q11, q12, q13

(toy, toy,−)

(toy,−, toy) (−,−, toy)

(−, toy,−)

Fig. 2. From left to right, starting from the first row the contract automata of Alice,
Bob and Jill, the contract automata (Alice⊗Bob)⊗ Jill, (Alice⊗ Jill)⊗Bob. On the
third row the contract automaton Alice�Bob� Jill.

glass of wine: wine.five.five. The (automaton representing the) composition of
the three parties will accept also the following word (compare it with the word σ
above): σ′ = (wine, wine,−)(−, ten,−)(−,−, wine)(five,−, five)(−,−, five).
Its intended meaning is that the first customer drinks, pays 10¢, the thirsty guy
asks for wine and pays twice 5e without getting anything — the innkeeper does
not complain. The point is that the last customer has no means to break the
business activity represented by the handshake (wine, wine) between the first
one and the innkeeper.

This is not the case with the second operation of composition, �, that puts
instead the components of S at the same level of those of S′. Any matching
request-offer (−, ...,−, a, ..., a, ...,−, ...) of either contracts can be split, and its
offer a and request a are re-combined with a corresponding matching request or
offer. Back to the example above, we will now have, e.g., the following sequence:
σ′′ = (wine,−, wine)(−, wine,−)(−, ten,−)(five,−, five)(−,−, five), quench-
ing the thirsty fellow and still making the innkeeper happy. We believe that
this second operation of composition is essential to model business processes in
dynamically changing environments.



Automata for Service Contracts 5

Example 1. To clarify the two operations of composition we turn to consider
a different example. Figure 2 illustrates a children’s playground contract [11].
Alice, Bob and Jill bring their old toys and play a toy swap. Alice offers a toy
while Bob and Jill perform the same request for the toy of Alice. In the product
(Alice⊗Bob)⊗Jill the toy is assigned to Bob who first enters in the composition
with Alice, no matter if Jill performs the same move. Equally, in the product
(Alice⊗Jill)⊗Bob the toy is assigned to Jill. In the last row we have the product
A1 � (A2 �A3) = (A1 �A2) �A3 = A1 ⊗A2 ⊗A3 which represents dynamic
orchestration: no matter who between Jill or Bob enters the composition with
Alice first, the toy will be assigned to the first participant who makes the move.

Agreement and Weak Agreement We focus again on the hostelry example,
the two last words σ′ and σ′′ have the property that they contain a request wine
not fulfilled. This is enough to qualify them as modelling business interactions
not in agreement. Instead, the single word (wine, wine)(five, five)(−, five) ac-
cepted by the composition of the innkeeper and the thirsty guy contains no
pending requests, and so we say that the two contracts are in agreement, in spite
of the presence of an additional payment. Also, call safe a CA accepting only
words that lead to an agreement.

Example 2. Let A denote the language of all the possible strings in agreement,
and let L (A) denote in the usual way the language of the contract automaton
A. The contract automaton A3 of Figure 1 admits agreement since L (A3)∩A =
(wine, wine)(five, five). The contract automaton Alice⊗Bob of Figure 2 is safe
since L (Alice⊗Bob) = (toy, toy) ⊆ A.

Suppose now that a Fairy Godmother magics.five replaces the thirsty fellow
in the threefold composition of the hostelry contract (of either kind). We will have
the following (wine, wine,−)(−, ten,−)(five,−,−)(−,−,magics)(−,−, five),
among other accepted words. All requests are fulfilled now, but not through
a handshake: this is an example of weak agreement. This is a typical behaviour
in loosely-coupled organizations, in which the components perform their task
asynchronously. As done above, a CA only accepting words in weak agreement
is called weakly safe.

Example 3. Consider the simple scenario of the playground swap where Alice
and Bob want to share their bike and toy. Both do not trust each other, and
before providing their offers they first require the corresponding requests. This
is a common scenario in contracts for service oriented computing, where each
participant first requires the satisfaction of its requests before providing the
corresponding offers. The regular expressions for the contract automata are:
Alice = toy.bike,Bob = bike.toy. The composition of contracts is: Alice⊗Bob =
(toy,−)(bike, bike)(−, toy) + (−, bike)(toy, toy)(bike,−). In both possible be-
haviours the participants fail on exchanging both the bike and the toy, hence
L (Alice ⊗ Bob) ∩ A = ∅ and the composition does not admit agreement. The
circularity in the requests/offers is solved by weakening the notion of agreement,



6 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

allowing a request to be performed on credit if in the future the corresponding
offer will take place. Let W denote the set of all the strings in weak agreement.
We have L (Alice⊗Bob) ⊆W, hence the composition is weakly safe.

Checking (agreement and) safety is easily done in linear time by verifying
whether all the arcs in (a path from the initial to a final state of) the given au-
tomaton are labeled by offers or by matching activities. It turns out that compos-
ing two safe/weakly safe automata with ⊗ is indeed safe/weakly safe, while their
composition through � is an automaton that admits words in agreement/weak
agreement, but also others in which some requests are left unsatisfied.

Example 4. Let A1 = toy + bike⊗ toy + bike and A2 = toy. We have that both
contracts are safe but A1 �A2 is not, because (−, toy, toy)(bike,−,−) ∈ L (A).

Controller and Liability We now move to consider a notion of controller for
contracts, i.e. a mechanism that constrains composition to yield safe and weakly
safe automata, only. In both cases we took advantage of some techniques bor-
rowed from Control Theory [14]. As for safety, we construct a CA accepting (all
and only) words in agreement, the intersection of which with the CA in hand
guarantees to obtain a safe automaton. There is however a subtle point: there
might be some offers or some matchings that prevent later on a request to be
matched by an offer. One has therefore to detect those individual components
that cause this unwanted behaviour, and that are therefore liable. The controller
will then prune the controlled CA by removing the liable transitions (and that
part of the automaton reachable through them, only). Although in a highly dis-
tributed setting one cannot assume to have a controller enforcing also malicious
individuals a good behaviour, the design of a safe controlled automaton may
help in synthetising the skeleton of the entire business process.

Example 5. In Figure 3 we have a simple selling scenario between two con-
tract automata Alice and Bob. In this case Bob is willing to pay only the
toy. For computing the controller KA all the request transitions are removed,
i.e. ((q21, q22), (−, pay), (q21, q32)). After that all the hanged transitions1 are re-
moved and, after cleaning the automaton from all the unreachable states, the KA
is obtained. We have that the set of liable participants is {1, 2}, hence both Alice
and Bob are potentially liable if the match transition with label (bike, bike) is
performed. Indeed this behaviour is not prescribed by the agreement. Note that
if we would consider as liable transitions only the requests, then the set of liable
participants becomes erroneously {2}, since the participant 1 is also responsible
of the divergence from the agreement.

We now introduce further properties that characterise the coordination as-
pects of contracts. We say that two contracts are collaborative if some requests
of one meet the offers of the other, and are competitive if both have an offer that
satisfies the same request.

1 The hanged transitions are those which are never taken in a run of the automaton
for recognizing a word.



Automata for Service Contracts 7

q01, q02start q11, q12 q21, q22

q41, q42 q51, q52

q21, q32
(sell, sell) (bike, bike)

(toy, toy)

(−, pay)

(cancel, cancel)

(pay, pay)

q01, q02start q11, q12

q41, q42 q51, q52

(sell, sell)

(toy, toy)
(cancel, cancel)

(pay, pay)

Fig. 3. Starting from the first row: A,KA

q1start q2

resa/resb

sig
q′1start q′2

sig

resa/resb

q1, q
′
1start q2, q

′
2

(sig, sig)

(resa,−)/(resb,−) (−, resa)/(−, resb)

Fig. 4. From left to right: A1,A2, below: A1 ⊗A2

Example 6. In Figure 2 we have that Alice,Bob⊗ Jill is a pair of collaborative
contracts which is not competitive, indeed there is a match on the toy action
but no participant interferes in this match. In example 4 the pair A1,A2 is
competitive since A2 interferes with A1 on the toy offer.

It is easy to see that (any) composition of two non-collaborative unsafe con-
tract is unsafe, and that safety is only preserved under the composition � of non-
competitive contracts. Things become more complicated as soon as we consider
weak agreement, because the language of such words is proved to be context-
sensitive, and not context-free.

Example 7. Let A1, A2, A1 ⊗ A2 be the automata depicted in Figure 4: A1

produces two types of resources with the offers resa, resb and terminates with
the request sig. The contractA2 starts by sending the signal sig and then collects
all the resources produced by A1



8 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

q1start q2 q3 q4
b

a

a a

Fig. 5. A simple automaton. All words in weak agreement require the loop to be taken
more than twice.

~q0start ~q1

~q2 ~q3 ~q4

~q5
(user, user)

(pass, pass)

(no, no)

(ok, ok)

(pass, pass)

(update,−)
(−, update)

Fig. 6. A simple service of authentication

Then we have that S = W ∩ L (A1 ⊗ A2) 6= ∅ which is not a context-free
language. Indeed let L = {(resa,−)∗(resb,−)∗(sig, sig)(−, resa)∗(−, resb)∗}.
We have that S ∩ L is not context-free (apply the pumping lemma), and since
L is regular S is not context-free.

Still the notion is decidable, but finding at static time, e.g., the liable individ-
uals becomes quite hard, mainly because CA have loops. Assume that our CA
has, among other activities different from a, a, a single loop containing an offer
a (by one individual), followed by two requests a outside the loop (by another);
a simple example is in Figure 5. Clearly, it admits a word in weak agreement,
provided that the loop is taken at least twice. In the general case, one has a
constraint system, the solutions of which will tell us how many times a loop has
to be taken for guaranteeing that there is (at least) a word in weak agreement.
It has the form of a system of bilinear Diophantine equations, that can be solved
by optimization techniques. We are currently working on a more tractable pre-
sentation of this problem, and we feel that it can be solved in (high) polynomial
time, due to the structure of the underlying regular automata.

Example 8. The contract automaton A depicted in Figure 6 represents a simple
service of authentication. If the password is wrong the user can try again or
update the account. Before storing the updated password, the service checks if
the client will actually use the new data or if it will need a new update, i.e.
it failed to enter the new data. In the first case, after the client is logged the
update will be stored permanently.

Let c1 = {(~q0, (pass, pass), ~q3), (~q3, (no, no), ~q2), (~q2, (update,−), ~q1)} and let
c2 = {(~q3, (no, no), ~q2), (~q2, (pass, pass), ~q3)} be the two shortest cycles of the



Automata for Service Contracts 9

automaton, in that no other sub-cycles are strictly included in c1, c2. One has
to determine how many times, say xc1 and xc2 , the cycles c1, c2 must be walked
through a run for recognizing a word in weak agreement. Since here we have
a run accepting a word in weak agreement without using c1, c2, a solution is
xc1 = 0, xc2 = 0. As a matter of fact all the solutions must satisfy the inequalities
xc1 ≤ 1, xc2 ≥ 0.

Weak safety is analogous to safety, and there are results on when it is pre-
served under compositions ⊗ and �, similar to those mentioned above.

2 Conclusions and related work

We formally described service contracts as a novel class of automata. Briefly, the
benefits of our approach are:

– a compositional model for orchestration/choreographies of services;
– two composition operators of automata, reflecting one when a participant

joins an existing orchestration without a global reconfiguration, while the
other requires a global re-orchestration;

– different notions of proper composition of contracts, namely agreement and
weak agreement, and safety and weak safety;

– a notion of liability and procedures to check it, for the different properties
of contract composition;

– the concepts of collaborative and competitive contract automata, and the
properties of their composition;

– an unexpected connection with results from Control Theory, Optimization
Research;

– a model that may help analysing incomplete contract automata and synthe-
sising missing services so to reach an orchestration that ensures agreement.

Related work The problem of formalizing contracts for service oriented com-
puting, specifying and verifying the properties of a good composition has been
addressed in literature using many different formalisms.

In [16, 1] behavioural contracts are expressed via suitable process algebras,
where the interactions between services are modeled via I/O channels. Two dif-
ferent choice operators, namely internal and external choice, describe how two
services interact. The internal choice requires the other party to be able to syn-
chronize, via external choice, with all the possible branches. In our formalism
the internal choice can be represented as a branching of requests. If one of these
requests is not fulfilled, then the system is not able to synchronize with this
internal action. This approach is extended to a multi party version by exploit-
ing the π-calculus in [17]. The above papers focus on formalising the notion
of progress of interactions. In our model we consider stronger properties: with
agreement/weak agreement we require that all the requests of the contracts are
satisfied, while for the property of progress it suffices that a subset of contracts
meets their requests to be able to continue their interactions.



10 Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari

An extension of Intuitionistic Logic called Propositional Contract Logic (PCL)
[10, 3] has been proposed for modeling contracts with circular offers/requests. A
new operator called contractual implication (�) is introduced for dealing with
actions taken on credit. Intuitively, the contractual implication models actions
taken on credit if in the future the obligations will be honoured. Our notion of
weak agreement considers all the possible compositions of contracts where an
agreement is reached only if the actions are taken on credit. We are developing
a decision procedure to check if a contract automaton admits weak agreement.
In the worst case this problem is NP-Hard (it can be reduced to an optimization
problem of a linear integer system), but in practice it seems to be tractable.

In [8, 9] a participant may behave dishonestly, and processes and contracts
are two separate entities, unlike ours. A process can fulfill its duty by obeying
its contract or it becomes culpable otherwise — and become honest again by
performing later on the prescribed actions.

We also do not assume participants to be honest, and our notion of liability
is different than culpability. It is inspired by Control Theory [14] and expressed
in language-theoretic terms. Possible misbehaviours occur in the composed con-
tract automaton far before they become obvious. Hence computing at static
time the set of all the possible liable participants is a non trivial task. Again,
modeling weak agreement as an optimization problem helps in detecting liable
participants, as well.

Session types are studied, among others, in [15, 19] where global types repre-
sent a formal specification of a choreography of services in terms of their interac-
tions. The projection of a safe global type to its components yields safe local type,
which are terms of a process algebra similar to [16]. From given safe local types,
in [20] a choreography is synthesized, as a safe global type. In [18] local types
are proved to correspond to communicating machines (CM) [13], that are finite
state automata similar to ours. The main difference between the two is that CM
interact through FIFO buffers, hence a participant can receive an input only if it
was previously enqueued, while Contract Automata can offer/request on credit.
This flexible communication mechanism allows us to model interactions with cir-
cularity features. Additionally, local types are roughly our principal automata,
while global types result from our composition operators.

The I/O and the Interface Automata [21, 2] have been introduced in the field
of Component Based Software Engineering and are quite similar to Contract
Automata. However, our operators of composition track each participant differ-
ently than the above. Moreover we do not allow input enabled operations and
non-linear behaviour (i.e. broadcasting offers to every possible request).

References

1. Acciai, L., Boreale, M., Zavattaro, G.: Behavioural contracts with request-response
operations. Sci. Comput. Program. 78(2), 248–267 (2013)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE.
pp. 109–120. ACM (2001)



Automata for Service Contracts 11

3. Bartoletti, M., Cimoli, T., Giamberardino, P.D., Zunino, R.: Contract agreements
via logic. In: Carbone, M., Lanese, I., Lluch-Lafuente, A., Sokolova, A. (eds.) ICE.
EPTCS, vol. 131, pp. 5–19 (2013)

4. Bartoletti, M., Cimoli, T., Pinna, G.M.: Lending petri nets and contracts. In:
Arbab, F., Sirjani, M. (eds.) FSEN. Lecture Notes in Computer Science, vol. 8161,
pp. 66–82. Springer (2013)

5. Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection. In:
Basin, D.A., Mitchell, J.C. (eds.) POST. Lecture Notes in Computer Science, vol.
7796, pp. 186–205. Springer (2013)

6. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composi-
tion. Journal of Computer Security 17(5), 799–837 (2009)

7. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Call-by-contract for service
discovery, orchestration and recovery. In: Wirsing, M., Hölzl, M.M. (eds.) Results
of the SENSORIA Project, Lecture Notes in Computer Science, vol. 6582, pp.
232–261. Springer (2011)

8. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in co2. Sci.
Ann. Comp. Sci. 22(1), 5–60 (2012)

9. Bartoletti, M., Tuosto, E., Zunino, R.: On the realizability of contracts in dishonest
systems. In: Sirjani, M. (ed.) COORDINATION. LNCS, vol. 7274, pp. 245–260.
Springer (2012)

10. Bartoletti, M., Zunino, R.: A logic for contracts. In: Cherubini, A., Coppo, M.,
Persiano, G. (eds.) ICTCS. pp. 34–37 (2009)

11. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS. pp. 332–
341. IEEE Computer Society (2010)

12. Basile, D., Degano, P., Ferrari, G.L.: Secure and unfailing services. In: Malyshkin,
V. (ed.) PaCT. Lecture Notes in Computer Science, vol. 7979, pp. 167–181.
Springer (2013)

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

14. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

15. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

16. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5) (2009)

17. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Za-
vattaro, G. (eds.) CONCUR. LNCS, vol. 5710, pp. 211–228. Springer (2009)

18. Deniélou, P.M., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP (2). Lecture Notes in Computer
Science, vol. 7966, pp. 174–186. Springer (2013)

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL. pp. 273–284. ACM (2008)

20. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR. Lecture Notes in Computer Science,
vol. 7454, pp. 225–239. Springer (2012)

21. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Schneider, F.B. (ed.) PODC. pp. 137–151. ACM (1987)


