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Abstract

In contract-oriented systems, distributed agents may advertise and stipulate contracts,
and interact via contract-based sessions. However, differently to most other approaches
to distributed agents, they are not assumed to always keep their promises. The honesty
property [4] characterises those agents who always respect their contracts, in all possible
execution contexts. This property is quite strong, because it requires that an agent is
capable of fulfilling her obligations also when the context plays against her. We discuss
some work in progress about weaker notions of honesty (which however still guarantee
safe interactions among agents), and their relation with different cases of inter-session
dependencies. Our final goal is a theory for blame shifting, allowing to determine when a
(not-strictly-honest) agent can blame other (dishonest) agents for her contractual violations.

1 Introduction

Contract-oriented computing is a software design paradigm where the interaction between
clients and services is disciplined through contracts [5, 3]. Contract-oriented services start their
life-cycle by advertising contracts which specify their required and offered behaviour. When
compliant contracts are found, a session is created among the respective services, which may
then start interacting to fulfil their contracts. Differently from other design paradigms (e.g.
those based on the session types discipline [8]), services are not assumed to be honest, in that
they might not respect the promises made. This may happen either unintentionally (because of
errors in the service specification), or because of malicious behaviour.

Dishonest behaviour is assumed to be automatically detected and sanctioned by the service
infrastructure. This gives rise to a new kind of attacks, that exploit possible discrepancies
between the promised and the actual behaviour. If a service does not behave as promised,
an attacker can induce it to a situation where the service is sanctioned, while the attacker
is reckoned honest. A crucial problem is then how to avoid that a service results definitively
culpable of a contract violation, despite of the honest intentions of its developer.

Our investigation about honesty started in [4], where we formalised this property, and showed
it undecidable. This led us to the problem of devising safe, computable approximations of
honesty, which were proposed both in the form of a type system [2] and of a model checking
technique [1].

Although honesty guarantees nice interactions among participants — e.g. a system composed
by honest participants enjoys progress — and although its computable approximations can, in
many relevant cases, correctly classify processes as honest or dishonest, writing honest processes
is a hard task. Indeed, an honest agent is required to fulfil her obligations also in an adversarial
context which plays against her.

For instance, consider a scenario with the following dramatis personae:

A, an apple broker
B, a buyer
M, a malevolent farmer
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Suppose that B wants to buy an apple from A, who in turns needs to obtain a batch of apples
from M. A possible (informal) way of specifying the behaviour of A is the following:

1. advertise the contract c = “I get e1, and then I give 1 apple”;
2. when the contract c is stipulated, get e1 from B;
3. advertise the contract c′ = “I pay e100, and then I get 100Kg of apples”;
4. when the contract c′ is stipulated, pay e100 to M, and then receive 100Kg of apples;
5. finally, give 1 apple to B.

Such transaction goes perfectly smooth when the participant M is honest. However, when
M is dishonest (e.g. if he grabs the money and runs away), the apple broker may incur in a
situation where he should give one apple to A, but it cannot. Therefore, we would classify A as
dishonest.

The above scenario highlights that the honesty property is quite strong: to be honest, a
participant should be able to fulfil her obligations without the help of the context. For instance,
to make our apple broker honest, one could modify her contract to include a “refund” option to
protect against cases like the one above. However, such escape options might not be always
possible, hence it could be interesting to find weaker notions of honesty which still guarantee
“safe” interactions.

In this paper we present some work in progress of our investigation about this topic. We
start by giving some background about contract-oriented systems: in § 2 we present a contract
model and the calculus of contracting processes CO2, while in § 3 we formalise honesty. The new
material is contained in § 4 and § 5. In § 4 we introduce the weak honesty property: roughly, a
process is weakly honest if it behaves honestly provided that the other partners behave honestly.
In § 5 we study session dependencies, aiming at establishing causal dependencies among contract
violations. For instance, in the example above there exists a dependency between M and A, in
the sense that A is culpable in her transaction with B because M is culpable in the transaction
with A; or, in other words, A would have behaved honestly with B, if only M were honest with
A. In this situation, it would be reasonable to say that A can shift the blame on M. In the
conclusions (§ 6) we sketch how weak honesty and session dependencies may constitute the
building blocks for a theory of blame shifting.

2 Contract-oriented systems

The formalisation of contract-oriented systems relies on two basic ingredients:

• a model of contracts, which specify the promised agent behaviour.
• a model of processes, which specify the actual agent behaviour. Processes may exploit the

primitives defined by the contract model, e.g. to check compliance between contracts, to
make a contract evolve upon an action, to query the current state of a contract, etc.

Ideally a general theory of honesty should abstract as much as possible from the actual
choices for the two models. However, different instances of the models may give rise to different
notions of honesty — in the same way as different process calculi may require different notions
of observational equivalences. Continuing the parallel with process calculi, where a variety of
different observational equivalences may be relevant for a single process calculus (e.g. [9] reports
a multitude of different notions of bisimulation), it is reasonable as well that even by fixing the
choice of the contract/process models, many relevant notions of honesty exist.

Therefore, some loss in generality is needed in order to give any theory of honesty. In this
paper we focus on behavioural contracts similar to those introduced in [6], and on processes
specified in the calculus CO2 [3], which has primitives for advertising contracts, for opening
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sessions between agents with compliant contracts, for doing contractual actions, and for querying
contracts. We expect that the basic notions given in § 4 will at least provide useful intuitions
about how to adapt the theory when considering different contract/process models.

2.1 Contracts

Contracts are modelled in a variant of CCS, inspired by [6] and refined in [4]. Here we provide
only the main definitions and results, and we refer to [1] for the full technical details.

We assume a set of participants, ranged over A,B, . . ., and a set of atoms a, b, . . ., that
represent the actions performed by participants. We use an involution ā, as in CCS.

We distinguish between (unilateral) contracts c, which model the promised behaviour of a
single participant, and bilateral contracts γ, which combine the contracts of two participants.

Definition 2.1 (Contracts). Unilateral contracts are defined by the following grammar:

c, d ::=
⊕
i∈I

ai ;ci
∣∣ ∑

i∈I
ai .ci

∣∣ ready a.c
∣∣ rec X . c

∣∣ X

where (i) the index set I is finite; (ii) the ready prefix may appear at the top-level, only; and
(iii) recursion is guarded.

Bilateral contracts are terms of the form A says c | B says d, where A 6= B and at most one
occurrence of ready is present.

An internal sum
⊕

i∈I ai;ci requires a participant A to choose and perform one of the actions
ai, and then to behave according to its continuation ci. Dually, an external sum

∑
i∈I ai .ci

requires A to offer B a choice among all the branches. If B chooses ai, then A must continue
according to ci.

The behaviour of bilateral contracts is given in terms of a labelled transition relation. Rule
[IntExt] regulates the interaction between a participant A making an internal choice, and B
offering an external choice:

A says (ā;c⊕ c′) | B says (a.d+ d′)
A says a−−−−−→→ A says c | B says ready a.d [IntExt]

If A chooses the branch a in her internal sum, then B is committed to the corresponding branch
ā in his external sum. This is modelled by marking the selected branch with ready ā, and by
discarding the other branches. Rule [Rdy] allows B to perform the marked branch:

A says c | B says ready ā. d
B says ā−−−−−→→ A says c | B says d [Rdy]

The previous rules do not define the behaviour of a bilateral contract in case an internal
choice is not matched by any action in the external choice of the partner. To guarantee that a
bilateral contract can keep evolving (until one of the participants wants to exit), we introduce
the notion of compliance.

Two contracts are compliant if, whenever a participant A wants to choose a branch in
an internal sum, then participant B always offers A the opportunity to do it. To formalise
compliance, we first define a partial function rdy from bilateral contracts to sets of atoms.
Intuitively, if the unilateral contracts in γ do not agree on the first step, then rdy(γ) is undefined
(i.e. equal to ⊥). Otherwise, rdy(γ) contains the atoms which could be fired in the first step.

Definition 2.2 (Compliance). Let the partial function rdy be defined as:
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rdy
(
A says

⊕
i∈I

ai ;ci | B says
∑
j∈J

bj .cj
)

= {ai}i∈I
if {ai}i∈I ⊆ {b̄j}j∈J

and (I = ∅ =⇒ J = ∅)

rdy(A says ready a.c | B says d) = {a}

Then, the compliance relation ./ between unilateral contracts is the largest relation such that,
whenever c ./ d:

(1) rdy(A says c | B says d) 6= ⊥
(2) A says c | B says d

µ−→→ A says c′ | B says d′ =⇒ c′ ./ d′

Example 2.3. Let γ = A says c | B says d, where c = a ;c1 ⊕ b ;c2 and d = ā .d1 + c̄ .d2. If
the participant A internally chooses to perform a, then γ will take a transition to A says c1 |
B says ready ā.d1. Suppose instead that A chooses to perform b, which is not offered by B in his

external choice. In this case, γ 6 A says b−−−−−→→. We have that rdy(γ) = ⊥, which does not respect item
(1) of Def. 2.2. Therefore, c and d are not compliant.

We now tackle the problem of determining who is expected to make the next step for the
fulfilment of a bilateral contract. We call a participant A culpable in γ if she is expected to
perform some actions so to make γ progress.

Definition 2.4 (Culpability). A participant A is culpable in γ (A ˙ȧγ in symbols) iff γ
A says a−−−−−→→

for some a. When A is not culpable in γ we write A ˙ ˙̀ γ.

Theorem 2.5 below establishes that only one participant may be culpable in a bilateral
contract. Also, the only contract without culpable participants is A says 0 | B says 0, which
represents a successfully terminated interaction.

Theorem 2.5. Let γ = A says c | B says d, with c ./ d. If γ −→→∗ γ′, then either γ′ = A says 0 |
B says 0, or there exist a unique culpable in γ′.

The following theorem states that a participant is always able to recover from culpability by
performing some of her duties. This requires at most two steps.

Theorem 2.6 (Contractual exculpation). Let γ = A says c | B says d. For all γ′ such that
γ −→→∗ γ′, we have that:

(1) γ′ 6−→→ =⇒ A ˙ ˙̀ γ′ and B ˙ ˙̀ γ′

(2) A ˙ȧγ′ =⇒ ∀γ′′.γ′ −→→ γ′′ =⇒

{
A ˙ ˙̀ γ′′, or

∀γ′′′.γ′′ −→→ γ′′′ =⇒ A ˙ ˙̀ γ′′′

2.2 A Calculus of Contracting Processes

We now embed the contracts of § 2.1 in the process calculus CO2 [5, 4, 3, 2]. Let Var and Nam
be disjoint sets of, respectively, session variables (ranged over by x, y, . . .) and session names
(ranged over by s, t, . . .). Let u, v, . . . range over Var ∪Nam.

A latent contract {↓x c}A represents a contract c signed by A but not stipulated yet. The
variable x will be instantiated to a fresh session name upon stipulation. Unlike in previous
versions of CO2, here we also allow for latent sets of contracts {↓u1

c1, . . . , ↓uk
ck}A, to be

stipulated atomically. We let C,C ′, . . . range over latent sets of contracts.
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(u)A[P ] ≡ A[(u)P ] Z | 0 ≡ Z Z | Z′ ≡ Z′ | Z (Z | Z′) | Z′′ ≡ Z | (Z′ | Z′′)

Z | (u)Z′ ≡ (u)(Z | Z′) if u 6∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u 6∈ fv(Z) ∪ fn(Z)

Figure 1: Structural congruence for CO2 (Z range over processes, systems, or latent contracts)

Definition 2.7 (CO2 syntax). The syntax of CO2 is defined as follows:

π ::= τ
∣∣ tell C

∣∣ dou a
∣∣ asku φ (Prefixes)

P ::=
∑
i πi.Pi

∣∣ P | P ∣∣ (~u)P
∣∣ X(~u) (Processes)

S ::= 0
∣∣ A[P ]

∣∣ C ∣∣ s[γ]
∣∣ S | S ∣∣ (~u)S (Systems)

Processes specify the behaviour of participants. A process can be a prefix-guarded finite
sum

∑
i πi.Pi, a parallel composition P | Q, a delimited process (~u)P , or a constant X(~u).

We write 0 for
∑
∅ P and π1.Q1 + P for

∑
i∈I∪{1} πi.Qi provided that P =

∑
i∈I πi.Qi and

1 6∈ I. We omit trailing occurrences of 0. We stipulate that each X has a unique defining

equation X(u1, . . . , uj)
def
= P such that fv(P ) ⊆ {u1, . . . , uj} ⊆ Var, and each occurrence of

process identifiers in P is prefix-guarded.
Prefixes include the silent action τ , contract advertisement tell C, action execution dou a,

and contract query asku φ. In each prefix π 6= τ , the identifier u refers to the target session
involved in the execution of π. As in [4], we leave the relation γ ` φ unspecified (it could be
interpreted e.g. as satisfaction of LTL formulae, as done in [1]). We also assume that any tell C
inside participant A[· · ·] is signed by A.

A system is composed of agents (i.e., named processes) A[P ], sessions s[γ], sets of latent
contracts C, and delimited systems (~u)S. Delimitation (~u) binds session variables and names,
both in processes and systems. Free variables and names are defined as usual, and they are
denoted by fv( ) and fn( ). A system/process is closed when it has no free variables. Each
participant may have at most one process in a system, i.e. we forbid systems of the form
(~u)(A[P ] | A[Q] | · · · ). We denote with K a special participant name (which plays the role of
contract broker) such that, in each system (~u)(A[P ] | · · · ), A 6= K. A system is A-free when it
does not contain latent contracts of A, nor contracts of A stipulated in a session.

The semantics of CO2 is formalised by a reduction relation on systems (Fig. 2). This relies
on a structural congruence, which is the smallest relation satisfying the laws in 1. Such laws are
mostly standard — we just point out that (~u)A[(~v)P ] ≡ (~u,~v)A[P ] allows to move delimitations
between CO2 systems and processes. In order to define honesty in § 3, here we decorate

transitions with labels, by writing
A : π−−−→ for a reduction where participant A fires prefix π.

Rule [Tau] just fires a τ prefix. Rule [Tell] advertises a latent set of contracts C. Rule [Fuse]

inspect latent contracts, which are stipulated when compliant pairs are found through the
· Bσ · relation (see Def. 2.8 below). Upon stipulation, one or more new sessions among the
stipulating parties are created. Rule [Do] allows a participant A to perform an action in the
session s containing γ (which, accordingly, evolves to γ′). Rule [Ask] allows A to proceed only if
the contract γ at session s satisfies the property φ. The last three rules are mostly standard.
In rule [Del] the label π fired in the premise becomes a τ in the consequence, when π contains

the delimited name/variable. For instance, (x)A[tell ↓x c.P ]
A: τ−−−→ (x) (A[P ] | {↓x c}A). Here,

it would make little sense to have the label A : tell ↓x c, as the delimited variable x may be
α-converted.
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A[τ . P + P ′ | Q]
A : τ−−−→ A[P | Q] [Tau]

A[tell C . P + P ′ | Q]
A : tell C−−−−−→ A[P | Q] | C [Tell]

K Bσ S′ ranσ ∩ fn(S) = ∅
(domσ)(K | S)

K : τ−−−→ (ranσ)(S′ | Sσ)
[Fuse]

γ
A says a−−−−−→→ γ′

A[dos a . P + P ′ | Q] | s[γ]
A : dos a−−−−−→ A[P | Q] | s[γ′]

[Do]

γ ` φ
A[asks φ . P + P ′ | Q] | s[γ]

A : asks φ−−−−−→ A[P | Q] | s[γ]
[Ask]

X(~u)
def
= P A[P{~v/~u} | Q] | S A : π−−−→ S′

A[X(~v) | Q] | S A : π−−−→ S′
[Def]

S
A : π−−−→ S′

(u)S
A : delu(π)−−−−−−−→ (u)S′

[Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

S
A : π−−−→ S′

S | S′′ A : π−−−→ S′ | S′′
[Par]

Figure 2: Reduction semantics of CO2.

Definition 2.8 (Stipulation). The relation C1 | · · · | Ck Bσ s1[γ1] | · · · | sn[γn] holds iff:

1. for all i ∈ 1..k, Ci =
{
↓xi,1

ci,1, . . . , ↓xi,mi
ci,mi

}
Bi

, and the variables xi,j are pairwise

distinct;
2. for all i ∈ 1..k, let Di = {(Bi, xi,h, ci,h) | h ∈ 1..mi}. The set

⋃
iDi is partitioned into

a set of n subsets Mj = {(Aj , xj , cj), (Bj , yj , dj)} such that, for all j ∈ 1..n, Aj 6= Bj,
cj ./ dj, and γj = Aj says cj | Bj says dj;

3. σ = {s1/x1,y1 , · · · , sn/xn,yn} maps session variables to pairwise distinct session names
s1, . . . , sn.

Example 2.9. Consider the contracts:

c = ā;0 c′ = b̄;0
d = a.0 d′ = b.0

and the CO2 system S = (x, y, z) (CA | CB | CC | S0), where:

CA = {↓x c, ↓y c′}A CB = {↓z d}B CC = {↓w d′}C

Furthermore, let σ = {s/x,z , t/y,w}, γAB = A says c | B says d and γAC = A says c′ | C says d′.
Then, according to Def. 2.8 we have that

CA | CB | CC Bσ s[γAB] | t[γAC]

In fact:

1. CA, CB and CC contain pairwise distinct variables;
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2. letting DA = {(A, x, c) , (A, y, d)}, DB = {(B, z, c′)} and DC = {(C, w, d′)}, we can
partition the set DA ∪DB ∪DC into the subsets MAB = {(A, x, c) , (B, z, c′)} and MAC =
{(A, y, c′) , (C, w, d′)}, where c ./ d and c′ ./ d′.

3. σ maps session variables x, z, y, w to pairwise distinct session names s, t.

Therefore, by rule [Fuse]:

S
K : τ−−−→ (s) (s[γAB] | t[γAC] | S0σ)

Example 2.10. Consider the following system:

S = A[(x)X(x)] | B[(y)Y (y)]]

X(x)
def
= tell {↓x a;0}A . dox a

Y (y)
def
= tell {↓y a.0}B . doy ā

A possible execution of S is the following:

S
B : tell {↓y ā}B−−−−−−−−→ A[(x)X(x)] | (y)

(
B[doy ā] | {↓y ā.0}B

)
(1)

A : tell {↓xa}A−−−−−−−−→ (x, y)
(
A[dox a] | B[doy ā] | {↓x a;0}A | {↓y ā.0}B

)
(2)

K : τ−−−→ (s)
(
A[dos a] | B[dos ā] | s[A says a;0 | B says ā.0]

)
(3)

A : dos a−−−−−→ (s) (A[0] | B[dos ā] | s[A says 0 | B says ready ā.0]) (4)

Transitions (1) and (2) above are obtained by applying rules [Tell], [Par], and [Def]. Transition (3)

is obtained by rule [Fuse]. Finally, transition (4) is obtained by rule [Do], since γ
A says a−−−−−→→ γ′.

3 Honesty

A remarkable feature of CO2 is that it allows for writing dishonest agents which do not keep
their promises. Intuitively, a participant is honest if she always fulfils her contractual obligations,
in all possible contexts. As remarked in § 1, this notion is crucial in contract-oriented systems,
since honest participants will never be liable in case of other participants misbehaviour.

Definition 3.1 (Execution context). An execution context E is a CO2 system with at most one
hole •, with the form (~u)(• | S) for some ~u, S. We write ELSM for E{S/•}. We denote by E the
set of all execution contexts; we define its subset EΠ indexed by a set of processes Π as follows:

EΠ = {E ∈ E | ∀~u,A, P . E ≡ (~u) (• | A[P ] | · · · ) =⇒ P ∈ Π}

Furthermore, we say that:

• E is an execution context for A[P ] iff E ≡ (~u) (• | S) and S 6≡ (~v)(A[Q] | · · · ) for all Q.
• E is A-initial iff E contains no latent contracts nor active sessions involving A — i.e., for

all ~u, s, c: (i) E ≡ (~u) (s[A says c | · · ·] | · · · ) =⇒ c = 0; and, (ii) E 6≡ (~u) ({· · · }A | · · · ).

From now on, when writing “A[P ] in E”, we will imply that E is an execution context for
A[P ]. When quantifying over evaluation contexts, we will also imply the well-formedness of
the CO2 system resulting from the application of the context to a given system: for example,
with “∀E . ELA[P ] | s[· · ·]M . . .” we are implicitly ruling out those E such that E ≡ (~u)(A[· · ·] | · · · )
and E ≡ (~u)(• | s[· · ·] | · · · ). We assume that the structural congruence relation on systems is
extended to contexts.
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Definition 3.2 (Culpability). For a participant A and a context E, we say that:

• A is culpable at s in E iff there exist E ′, a such that E ≡ s[γ] | E ′ and γ
A says a−−−−−→→.

• A is culpable in E iff there exist s,u,E ′ such that E ≡ (u)E ′ and A is culpable at s in E ′.

Definition 3.3 (Honesty). Let E be a context for A[P ], with fv(P ) = ∅. We say that:

• A[P ] is honest at s in E iff:

– if A is culpable at s in E, then ELA[P ]M→∗ A : dos−−−−−−→, and

– ELA[P ]M→ E ′LA[P ′]M =⇒ A[P ′] is honest at s in E ′

• A[P ] is honest in E iff

– E ≡ (s′)E ′ =⇒ ∀s . A[P ] is honest at s in E ′, and

– ELA[P ]M→ E ′LA[P ′]M =⇒ A[P ′] is honest in E ′

We define the set H of honest processes as:

H = {P | ∀ A-initial E . A[P ] is honest in E}

Note that, for all processes P belonging to H, we have fv(P ) = ∅ (i.e., all session variables
appearing in P are delimited).

Example 3.4 ((Dis)honest processes). Consider the following process:

PA
def
= (x, y) tell {↓x a.0}A . tell {↓y b;0}A . dox a . doy b

The process PA might apparently look honest, although it is not. In fact, consider the context:

E = • | B[PB] | C[PC]

PB = (z) (tell {↓z b̄.0}B . doz b̄)

PC = (w) (tell {↓w ā;0}C .0)

If we reduce ELA[PA]M by performing all the tell actions, we obtain:

S = (s, t) ( A[dot a . dos b] | B[dos b̄] | C[0] |
t[A says a.0 | C says ā;0] | s[A says b;0 | B says b̄.0] )

Here, S cannot reduce further: A is stuck, waiting for ā from C, which (dishonestly) avoids to
do the required internal choice. So, PA is dishonest, because it does not perform the promised b.

The process PA can be “honestified” by executing its actions on x and y in parallel. Let:

P ′A = (x, y) tell {↓x a.0}A . tell {↓y b;0}A . (dox a | doy b)

For instance, we have that ELA[P ′A]M can reduce to:

S′ = (s, t) ( A[dot a] | B[dos b̄] | C[0] |
t[A says a.0 | C says ā;0] | s[A says 0 | B says ready b̄.0] )

i.e., A overcomes its duties on session s. Indeed, it is easy to convince oneself that P ′A is always
ready to do the needed actions on both sessions, in all possible contexts where A[P ′A] is put.
Therefore, P ′A is honest.

The following result (established in [4]), states that honesty in CO2 is undecidable.

Theorem 3.5. H is not recursive. H is recursively enumerable but not recursive.
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4 On Weak Honesty

As noted in the previous section, the honesty property is quite strong, because it requires that a
process P can exculpate itself even in those (dishonest) contexts where the other participants
avoid to do the expected actions.

This suggests a possible variant of honesty, where a process P is only required to behave
correctly provided that also the others behave correctly. More formally, we require that P is
honest in the honest contexts only (i.e. those contexts in EH). We call the processes belonging
to this new class weakly honest.

Definition 4.1 (Weak honesty). We define the set W of weakly honest processes as:

W = {P | ∀ A-initial E ∈ EH . A[P ] is honest in E}

Example 4.2. The process PA from Ex. 3.4 is not weakly honest. Consider e.g. the context:

E = • | C[P ′C]

P ′C = (w) (tell {↓w ā;0}C . dow ā)

The context E is clearly honest. However, by reducing ELA[PA]M we reach the state:

S = (s, x) ( A[dox a . dos b] | C[0] | t[A says a.0 | C says ā;0] )

where A is stuck, and has no chance to exculpate herself. Therefore, PA is not weakly honest.

The problem here is that there is no guarantee that the contract on x is always stipulated.
We can fix this by making PA advertise both contracts in a single tell. This is done as follows:

QA = (x, y) tell {↓x a.0 , ↓y b;0} . dox a . doy b

The process QA is weakly honest. However, it is not honest: in fact, in a context where the
other participant in session x does not perform its a action, A[QA] will not be ready to fulfil its
b action on session y.

Note that if P ∈ H then P ∈ W: in fact, if A[P ] can advance in all contexts, then in
particular it can also advance in the honest ones. We have then proved the following lemma.

Lemma 4.3. H (W.

Example 4.4 (Deadlock). Consider the process QA from Ex. 4.2, and let:

QB = (w, z) tell
{
↓w b.0 , ↓z a;0

}
. dow b . doz a

Both processes QA and QB are weakly honest. However, the system S = A[QA] | B[QB] reaches a
deadlock after the latent contracts are stipulated, because each participant is waiting the other
one for making the first move. Therefore, a system populated by weakly honest processes does
not guarantee progress.

In Def. 4.1 we have characterised weakly honest processes as those which are honest in all
contexts belonging to EH. By generalising this procedure, we obtain a way to construct other
classes of processes: choose some class C of processes, and then define the class:

{P | ∀ A-initial E ∈ EC . A[P ] is honest in E}

In particular, one may argue whether the class of processes which behave honestly in any weakly
honest context is strictly between H and W. Quite surprisingly, Theorem 4.5 below says that
such class coincides with that of honest processes.
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Theorem 4.5. {P | ∀ A-initial E ∈ EW . A[P ] is honest in E} = H.

The intuition behind Theorem 4.5 is that, given an agent A[P ] and any A-initial context E ,
the latter can be rewritten into a context Ẽ only composed by weakly honest participants, such
that Ẽ interacts with by A[P ] “in the same way” as E does (such rewriting exploits the deadlock
issue mentioned in Ex. 4.4). Hence, in order to be honest in Ẽ ∈ EW , P also needs to be honest
in E — and thus it follows that P ∈ H.

As for honesty, the weak honesty property is not decidable.

Theorem 4.6. W is not recursive. W is recursively enumerable but not recursive.

5 Session dependencies

In this section, we discuss the concept of session dependencies. Let us consider a CO2 agent A[P ]
involved in two sessions s, t: in order to perform its contractual duties on s, A may first need to
perform other actions on t; this, in turn, may require the other involved participant to cooperate
(i.e., actually perform her duties in t). Our first goal is to formalise causal dependencies among
sessions. This is done below in Def. 5.4. We then exploit dependencies to define finer-grained
notions of culpability (Def. 5.9). This allows e.g. to single out an agent which is the “terminal”
culpable in a chain of dependencies.

Intuitively, knowing the exact dependencies will provide us with more information than weak
honesty, allowing participants to shift the blame for contract violations. For instance, consider a
system with just two sessions s and t, where A is culpable at t and B is culpable at s. If there is
a dependency from t to s (but not vice versa), then A can shift the blame to B.

In order to formalize of session dependencies, we first need to introduce some technical
machinery. We start with the set of processes which are honest at a given session s, where they
fulfil a given contract c.

Definition 5.1 (Honest processes realizing c at s). Given a contract c and a session s, we
define the set of processes:

Hs,c =
{
P | ∀E ≡ (~u)

(
s[A says c | · · ·] | • | · · ·

)
. A[P ] is honest at s in E

}
Note that, when considering a session name s which is not free in E (i.e., s does not appear

in E , or s ∈ ~u in Definition 5.1), then A[P ] is trivially honest at s in E — and therefore, for all
c, P ∈ Hs,c.

The predicate H(A, s, E) below means that, in the context E , the partner of A at session s is
honest at s.

Definition 5.2 (Honest context wrt. session s of A). We define the predicate H(A, s, E) as
follows:

H(A, s, E) ⇐⇒ ∃~u, c, P,B . E ≡ (~u)
(
s[A says · · · | B says c] | B[P ] | · · ·

)
∧ s 6∈ ~u ∧ P ∈ Hs,c

Definition 5.3 (Free sessions of A in E). fn(A, E) = {s | E ≡ s[A says · · · | · · · ] | · · ·}.

Definition 5.4 below formalizes the dependency between a session s and a set of sessions
t1, . . . , tn. Given a system S, s ≺S t1, . . . , tn intuitively means that, if S reduces along sessions
t1, . . . , tn reaching a state S′, then S′ will eventually reduce through s. Therefore, if a participant
A is culpable at s in S, it will be able to perform its contractual duties after t1, . . . , tn advance.
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Definition 5.4 (Session dependencies). We write s ≺S T iff:

1. A is culpable at s in S,
2. S ≡ (~u) (A[P ] | SA | · · · ), where SA is a parallel composition of sessions of A with

fn(P ) ⊆ fn(SA),
3. T ∩ ~u = ∅,
4. T ⊆ fn(A, SA)

5. T is a minimal set such that, for all S̃ = (~u) (A[P ] | SA | · · ·) with H
(
A, t, S̃

)
for all

t ∈ T :

S̃
6=A : dos−−−−−−−→∗ S̃′ =⇒ S̃′ −→∗ A : dos−−−−−−→

We write s ≺∗S t when:

∃t1, . . . , tm . s ≺S {t1, · · · } ∧ t1 ≺S {t2, · · · } ∧ . . . ∧ tm ≺S {t, · · · }

Roughly, in order to determine that s depends on t1, . . . , tn, Definition 5.4 considers the
agent A[P ] currently culpable at s in S, and inserts it in a “cooperating system” S̃ containing
(some of) the sessions she is involved in (SA), together with other agents that are honest at
these sessions. If S̃ reduces, eventually allowing A to perform a dos action, then we know that
there may be a causal relation between the reduction along (some of) the sessions in S̃, and the
avancement of A at s; the minimality requirement of item 5 allows to restrict this dependency
to a more precise set t1, . . . , tn.

If A is culpable at s in S, session dependencies will result in three main cases (which are not
mutually exclusive):

• if s ≺S ∅, then no other session in S needs to advance before A[P ] can perform its
contractual duties at s;

• if s ≺S T and s ≺S T ′, then either the sessions in T or T ′ need to advance, in order for A
to advance at s;

• 6 ∃T such that s ≺S T , then A[P ] is unable to perform its contractual duties at s, even in
a cooperating context.

It is worth emphasizing that, when s ≺S t1, . . . , tn with A culpable at s:

1. A may be or not be culpable at any of t1, . . . , tn in S. However, her advancement at these
sessions always requires the cooperation of other agents, before she can also advance at
s. For instance, consider A[P ], with P = dot1 a . dot1 b . dos a. A may be culpable at t1,
e.g. because her contract therein is c = a;b.0 — and therefore, she has to perform the first
step. Then, it will be the other participant’s turn to execute b, before A can execute dos a.
If the other participant’s cooperation was not required, then the minimality condition of
Definition 5.4 (item 5) would have ruled out the dependency between s and t1;

2. the dependency only refers to the first dos-action of A. After such action is performed,
the dependencies of s may completely change.

Both aspect will be reprised later, in Example 5.15.

Example 5.5 (Deadlocks and dependency loops). Consider the system S = A[QA] | B[QB] from
Example 4.4. We have S →∗ S′ = (s, t)S′0, where:

S′0 = A[dos a . dot b] | B[dot b . dos a] | s[A says a.0 | B says a;0] | t[A says b;0 | B says b.0]

and S′ is deadlocked: in fact, A is culpable at t, and B is culpable at s in S′0 — but neither of
them can advance, because one is waiting for the other to move first. This situation is reflected
in session dependencies: in fact, we have s ≺S′

0
{t} and t ≺S′

0
{s} — i.e., a dependency loop.
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Example 5.6 ( ≺S and minimality). Consider the following system:

S = A[dos a | dot b] | s[A says a.0 | B says a;0] | t[A says b;0 | B says b.0] | B[dot b | dos a]

According to Definition 5.4, we have s ≺S ∅ and t ≺S ∅, with A culpable at t and B culpable
at s. Without the minimality requirement, we could also have s ≺S {t} and t ≺S {s} — i.e.,
seemingly a dependency loop, as found e.g. in the deadlock of Example 5.5. The minimality
condition allows for distinguishing “real” dependency loops (and deadlocks).

A negative result about session dependencies is that they are not decidable. This is obtained
by simulating Turing machines, similarly to [4].

Lemma 5.7. Session dependencies are undecidable.

5.1 Session dependencies hypergraph

The session dependency relations in a system S naturally induce a directed hypergraph [7],
whose nodes are the (free) sessions in S. For easier readability, in Definition 5.8 below we denote
each node with both the session name, and the name of the participant who is culpable therein.

Definition 5.8 (Session dependency hypergraph). For all S, we define the session dependency
(directed) hypergraph G(S) = (N,E) where:

• N = {〈A :s〉 | A is culpable at s in S};
• ({〈A :s〉} , {〈B1 : t1〉, . . . , 〈Bn : tn〉}) ∈ E iff {〈A :s〉, 〈B1 : t1〉, . . . , 〈Bn : tn〉} ⊆ N and
s ≺S {t1, . . . , tn}.

We write conn(G(S)) for the set of connected pairs in G(S). With a slight abuse of notation, we
write v ∈ G(S) when v ∈ N and (v, V ′) ∈ G(S) when (v, V ′) ∈ E.

Note that the hypergraph arcs may also connect a node to an empty set of nodes: for
example, if in a system S we have s ≺S ∅ with A culpable at s, then (〈A :s〉, ∅) ∈ G(S).

The session dependency hypergraph allows for a simple (and easy to visualize) definition of
the dependencies arising in a CO2 system.

Definition 5.9 (Session dependency degrees). Given a system S and a participant A culpable
at s in S, we define the following session dependency degrees (in ascending order):

1. A is innocent at s in S iff 〈A :s〉 6∈ G(S);
2. A is buck-passer at s in S iff ∃v . (〈A : s〉, {v, · · · }) ∈ G(S) and (v, 〈A : s〉) 6∈

conn(G(S));
3. A is dependently culpable at s in S iff there exists (〈A :s〉, V ) ∈ G(S), with V 6= ∅;
4. A is terminally culpable at s in S iff there is no (〈A :s〉, ·) ∈ G(S).

Intuitively, item 2 of Definition 5.9 says that A’s advancement at s depends on someone
else’s advancement at another session — and since there is t s.t. s ≺S t ∧ t 6≺∗S s, A is involved
in at least one dependency path that is not a loop. Item 3 says that A’s advancement at s
depends on some other participant advancing at another session — but loops are not ruled out.
Item 4 says that A will be unable to fulfil her contractual duties at s, and her culpability does
not depend on any other session.

Lemma 5.10 (Dependency degree implications). For all A, s and S, we have:

• A culpable at s in S ⇐= A dependently culpable at s in S ⇐= A buck-passer at s in S;
• A culpable at s in S ⇐= A terminally culpable at s in S;
• A terminally culpable at s in S =⇒ A not dependently culpable at s in S.
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5.2 Session dependency examples

In this section we illustrate session dependencies (and their hypergraph) with some examples.
We also show how session dependencies evolve along the reductions of the system on which they
are computed.

For the rest of the examples, let us consider the system:

S = A[PA] | B[PB] | C[PC] | s[A says cs | B says ds]
| t1[A says ct1 | C says dt1 ] | t2[A says ct2 | C says dt2 ]

where:
cs = b;b;E ct1 = a.a.E ct2 = a.a.E
ds = b.b.E dt1 = a;a;E dt2 = a;a;E

and A is culpable at s, and C is culpable at t1 and t2.

Example 5.11 (Reducing the cardinality of hyperarcs (I)). Let:

PA = dot1 a . dot2 a . dos b

In order to eventually reduce along s, A[PA] sequentially depends on both t1 and t2. Therefore,
G(S) features a hyperarc connecting s to both t1 and t2. When t2 advances, such hyperarc will
only point to t1. Note that A becomes culpable at t2.

〈A :s〉

〈C : t1〉

〈C : t2〉

C : dot2 a
−−−−−→ 〈A :s〉

〈C : t1〉

〈A : t2〉

Example 5.12 (Reducing the cardinality of hyperarcs (II)). Let:

PA = τ . dot1 a . dos b + τ . dot2 a . dos b

In order to eventually reduce along s, A[PA] depends on both t1 and t2: in fact, if e.g. t1 is stuck,
and the top-level choice commits to the corresponding branch, then no action will be performed
on s. The same holds for t2. Therefore, G(S) features a hyperarc connecting s to both t1 and t2.
After one of the top-level branches is chosen, the cardinality of such hyperarc decreases.

〈A :s〉

〈C : t1〉

〈C : t2〉

A : τ−−−→ (first branch) 〈A :s〉

〈C : t1〉

〈C : t2〉

Example 5.13 (Generating new hyperarcs). Let:

PA = τ . dot1 a . dos b + τ . 0

PA is dishonest: if the top-level choice commits to the second branch, then A will be persistently
culpable at s. Therefore, s has no dependencies, and G(S) has no hyperarcs originating from s —

but if S
A : τ−−−→ S′ by committing to the first branch, then G(S′) will feature an arc connecting s

to t1.
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〈A :s〉

〈C : t1〉

〈C : t2〉

A : τ−−−→ (first branch) 〈A :s〉

〈C : t1〉

〈C : t2〉

Example 5.14 (Multiple hyperarcs and empty dependencies). Let:

PA = dot1 a . dos b + dot2 a . dos b

The advancement of A on s depends on the advancement of either t1 or t2. Therefore, G(S)
features two distinct hyperarcs. After S riduces along either t1 or t2, the cardinality of the
corresponding hyperarc decreases, and we obtain an hyperarc pointing from s to an empty set of
nodes: A can now advance at s, without depending on other sessions.

〈A :s〉

〈C : t1〉

〈C : t2〉

A : dos t1−−−−−→ 〈A :s〉 ∅

〈C : t1〉

〈C : t2〉

Example 5.15 (System and dependency graph evolution). Let:

PA = dot1 a . dot2 a . dos b . dot1 a . dot2 a . dos b

We show the session dependencies hypergraph corresponding to the evolution of S.

Initially, s depends on t1, t2 — and therefore we have an hyperarc from the former to the
latter. After t1 advances, its cardinality is reduced, since now s only depends on t2. Note that A
becomes culpable at t1.

〈A :s〉

〈C : t1〉

〈C : t2〉

C : dot1 a
−−−−−→ 〈A :s〉

〈A : t1〉

〈C : t2〉
When A performs its contractual duties at t1, C becomes culpable therein — but the overall

shape of the hypergraph does not change.

A : dot1 a
−−−−−→ 〈A :s〉

〈C : t1〉

〈C : t2〉
It is now C’s turn to advance at t2. This event makes the hyperarc cardinality reduce further,

thus obtaining an empty hyperarc originating from s: A can now advance at s, without depending
on other sessions. Note, however, that A becomes culpable at t2.
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C : dot2 a
−−−−−→ 〈A :s〉 ∅

〈C : t1〉

〈A : t2〉
When A performs its contractual duties at t2, C becomes culpable therein — but the overall

shape of the hypergraph does not change.

A : dot2 a
−−−−−→ 〈A :s〉 ∅

〈C : t1〉

〈C : t2〉
When A advances at s, the shape of the graph completely changes. According to its contract,

A is still culpable at s, and the dependencies for executing the next step are computed on the
remaining part of PA (i.e., dot1 a . dot2 a . dos b).

A : dos b−−−−−→ 〈A :s〉

〈C : t1〉

〈C : t2〉

. . .

6 Conclusions: towards blame shifting

We have discussed some work in progress about a theory of honesty and its variants in contract-
oriented systems. The theory builds upon two basic notions, i.e. honesty and weak honesty. The
classes H (Definition 3.3) and W (Definition 4.1) represent two extremes in a (hypothetical)
taxonomy of classes of honesty. At the first extreme, there is a rather strict class H of processes,
which always manage to respect their contracts without the help of the context. Systems of
honest participants guarantee some nice properties, e.g. no agent is permanently culpable, and
the overall system enjoys progress. However, this comes at a cost. In practice, honest processes
either realize their contracts by operating independently on the respective sessions, or they
exploit “escape options” in contracts to overcome the dependance from the context. At the other
extreme, we have a larger class W of processes, which are more realistically implementable, and
still enjoy some decent properties. However (unlike honesty), weak honesty does not guarantee
progress, e.g. a system of weakly honest participants might get stuck in a deadlock.

We conjecture that some relevant relations exist between (weak) honesty and dependency
hypergraphs, and thus with the culpability degrees of Definition 5.9. For honesty, it seems that
a process P is in H iff, in each reduct of an execution context in which A[P ] is put, if A is
culpable at s then it can always exculpate herself — and therefore, the dependency hypergraph
has an edge connecting s to the empty set. Instead, for weak honesty it seems that a process P
is in W iff, in each reduct of an execution context in which A[P ] is put, if A is culpable at s then
she can either exculpate “by herself” (i.e., the dependency hypergraph has an edge from s to the
empty set) or she is dependently culpable (i.e., there is an edge from s to some other session).

The dependent culpability of weakly honest processes may be a useful property in some
scenarios (in the spirit of “company in distress makes sorrow less”). However, dependent
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culpability is not “strong enough” to guarantee that a weakly honest agent will always shift
the blame in a meaningful way. Suppose, for example, that A[P ] and B[Q] are weakly honest,
and A becomes culpable at some s because B is culpable at some t; a limitation of dependent
culpability is that it does not consider dependency loops among violations: therefore, due to the
possibility of deadlocks in systems of weakly honest processes, B may be culpable at t because A
is culpable at s. A reasonable requirement for “proper” blame shifting is that it must happen in
a non-circular way: ideally, A should find some other agent(s) to blame, who in turn will not
blame her.

Such non-circularity could be guaranteed for a hypothetical class of processes, say “buck-
passer processes” that, when culpable at s, will either exculpate themselves or be buck-passers
at s (Definition 5.9). However, we conjecture that such hypothetical class cannot be expressed
with the contract model we used in this paper. The main issue is that the absence of blame
loops can only be obtained by restricting not just the “locality” of an agent in the dependency
hypergraph (i.e., the sessions she creates along her reductions, and their dependencies towards
other sessions), but also the global topology of the hypergraph itself (i.e., the way other agents
create ad interleave their sessions). Finding the less invasive way to address this problem is part
of our future work.
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