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Abstract. We introduce the Open-source Fixed-point Model Checker
OFMC for symbolic security protocol analysis, which extends the On-
the-fly Model Checker (the previous OFMC). The native input language
of OFMC is the AVISPA Intermediate Format IF. OFMC also supports
AnB, a new Alice-and-Bob-style language that extends previous similar
languages with support for algebraic properties of cryptographic opera-
tors and with a simple notation for different kinds of channels that can
be used both as assumptions and as protocol goals. AnB specifications
are automatically translated to IF.
OFMC performs both protocol falsification and bounded session ver-
ification by exploring, in a demand-driven way, the transition system
resulting from an IF specification. OFMC’s effectiveness is due to the
integration of a number of symbolic, constraint-based techniques, which
are correct and terminating. The two major techniques are the lazy in-
truder, which is a symbolic representation of the intruder, and constraint
differentiation, which is a general search-reduction technique that inte-
grates the lazy intruder with ideas from partial-order reduction. More-
over, OFMC allows one to analyze security protocols with respect to an
algebraic theory of the employed cryptographic operators, which can be
specified as part of the input. We also sketch the ongoing integration of
fixed-point-based techniques for protocol verification for an unbounded
number of sessions.

1 Introduction

The automated analysis of security protocols is a field in the intersection of for-
mal methods and IT security that has been intensively studied during the last 20
years, e.g. [1,2,4,5,6,13,15,18,20,21,24,25,27,29,37,43,49,51,53,59,61,62,63]. The
Open Source Fixed-point Model Checker OFMC, the successor of the On-the-
Fly Model-Checker [12,54,58], is a freely available3 tool that integrates the most
successful techniques of this field. In this paper, we summarize its main modeling
and verification techniques, pointing to the corresponding publications where the
formal details and proofs can be found.
3 OFMC is available at www.avantssar.eu together with the other back-ends of the

AVISPA Tool and of the AVANTSSAR Platform.

www.avantssar.eu


The “native” input language of OFMC is the AVISPA Intermediate For-
mat IF [7,12,54], which describes a security protocol as an infinite-state tran-
sition system using set-rewriting. OFMC also supports a simple and intuitive
Alice-and-Bob-style language: AnB [56,57]. AnB specifications are automatically
translated to IF—this translation defines a formal semantics for AnB in terms of
IF. With respect to previous similar languages, AnB supports the specification
of protocols that can only be executed correctly when taking the algebraic prop-
erties of cryptographic operators into account. For instance, protocols based on
the Diffie-Hellman key exchange only make sense in a model where gxy ≈ gyx.

Moreover, AnB allows one to specify properties of channels used for the
transmission of protocol messages, namely authentic, confidential and secure
channels [57]. We can specify channels both

– as assumptions, i.e. when a protocol relies on channels with particular prop-
erties for the transmission of some of its messages, and

– as goals, i.e. when a protocol is supposed to establish a certain kind of chan-
nel.

This gives rise to an interesting question: given that we have verified that a
protocol P2 provides its goals under the assumption of a particular kind of chan-
nel, can we then replace the assumed channel with an arbitrary protocol P1

that provides such a channel? In general, the answer is negative, while we have
proved in [57] that under certain restrictions such a compositionality result is
possible. We also have generalized all our results to channels where agents may
be identified by pseudonyms rather than by their real names.

OFMC performs both protocol falsification (i.e. detecting attacks) and boun-
ded session verification by exploring, in a demand-driven way, the transition
system resulting from an IF specification. OFMC’s effectiveness is due to the in-
tegration of a number of symbolic, constraint-based techniques, which are correct
and terminating. The two major techniques are the

– lazy intruder [12], which is a symbolic representation of the intruder, and
– constraint differentiation [58], which is a general search-reduction technique

that integrates the lazy intruder with ideas from partial-order reduction.

Both techniques significantly reduce the search space associated to a given pro-
tocol specification without excluding attacks (or introducing new ones).

Moreover, OFMC allows one to analyze security protocols with respect to an
algebraic theory of the employed cryptographic operators, which can be speci-
fied as part of the input [11]. We also sketch the ongoing integration of fixed-
point-based techniques for protocol verification for an unbounded number of
sessions [55].

We proceed as follows. In Section 2, we summarize the input languages
AnB and IF, introducing a running example, and describe our standard pro-
tocol model in the presence of an active intruder. In Section 3, we introduce
the constraint-based analysis techniques, and we then summarize our ongoing
work on integrating over-approximation techniques in Section 4. In Section 5,
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Protocol : Authenticated Diffie-Hellman key exchange

Types :

Agent A, B ;

Number g , X , Y , Msg ;

Knowledge :

A : A, B , g ;

B : B , g ;

Actions :

A •→ B : exp(g , X )

B •→ A : exp(g , Y )

A → B : {|A, Msg |}exp(exp(g,X ),Y )

Goals :

A •→• B : Msg

Fig. 1. AnB specification of an authenticated Diffie-Hellman key exchange.

we report on experimental results and focus on a major example protocol that
we have analyzed with OFMC. We conclude, in Section 6, with an outlook on
future work.

2 Input Languages and Modeling

In this section, we discuss the specification languages on which OFMC is based
and how one can employ them to model security protocols and their properties.
We first present AnB (Section 2.1) and then the AVISPA Intermediate Format
IF (Section 2.2), to which AnB is internally translated (Section 2.3).

2.1 AnB

A simple and intuitive way to describe security protocols is to use the Alice
and Bob notation, which describes how messages are exchanged between honest
agents acting in the different protocol roles. This popular notation is usually used
informally, but there are several formal protocol specification languages based
on the Alice and Bob notation, e.g. [7,32,46,49,52,56]. We give an overview of
the most advanced one here, called AnB [56,57].

The novel features of AnB are its support for protocols that require algebraic
properties for the protocol execution, as well as a notion of several types of
communication channels that can be used both as assumptions and as goals
of a protocol. AnB is one of the specification languages that OFMC accepts
as input. The semantics of AnB is formally defined by translation to the more
low-level specification language AVISPA Intermediate Format IF [7]. IF is more
expressive than AnB, but harder to use. It is, however, well suited for formal
analysis tools such as OFMC and the other back-ends of the AVISPA Tool [5].
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Fig. 1 shows a simple example protocol in AnB; we will use this proto-
col, which is based on the Diffie-Hellman key exchange, as a running example
throughout the paper. An AnB specification comprises of 5 sections. We first
state the name of the protocol and then declare the type of each identifier of the
protocol specification; this is needed in the translation to IF, although OFMC
can optionally ignore the types during analysis so to detect type-flaw attacks. We
distinguish two kinds of identifiers, using a naming convention similar to Prolog:
identifiers starting with an upper-case letter are called protocol variables and are
instantiated during the protocol execution, whereas identifiers starting with a
lower-case letter represent global constants and functions. Protocol variables of
type Agent are called roles. In our example, we have the roles A and B, which
get instantiated by arbitrary agents when executing the protocol. The numbers
g, X, and Y are the group and the random exponents used in the Diffie-Hellman
key exchange.

The next section of an AnB specification describes the initial knowledge
attached to each role. We require that all variables that occur in the initial
knowledge section are of type Agent. They will later be instantiated arbitrarily
with agent names. The initial knowledge is essential for the semantics, as the
way honest agents can construct the messages of the protocol depends on it.
Variables that do not occur in the initial knowledge of any role represent values
that are freshly created by the agent who first uses them.4 In the example, X
and Msg are created by A and Y is created by B.

The core of the specification is the list of exchanged messages, which describes
the ideal protocol run without interference from the intruder. Every action in
the list is of the form A→ B : M , meaning that the agent in the role A sends the
message M to the agent in the role B. Additionally, we employ the “bullet” (“•”)
notation from [50] to denote that we have a channel that ensures the identity of
the respective end-point. This gives rise to the following four kinds of channels.

– Insecure channel : A → B : M represents an insecure channel from A to B.
Insecure channels are controlled by the intruder, i.e. he can read all messages
and insert messages under any sender name.

– Authentic channel : A •→B : M represents an authentic channel from A to
B. This means that B can rely on that fact that A has sent the message M
and that A’s intention was to send it to B. There is, however, no guarantee
of confidentiality, i.e. anybody may see M .

– Confidential channel : A→•B : M . This means that A can rely on that fact
that only B can see the message M . There is, however, no guarantee of
authenticity, i.e. anybody could have sent M .

– Secure Channel : A •→•B : M . This is a channel that is both authentic and
confidential.

The behavior of channels is described more formally in Section 2.4.

4 As a consequence, all long-term keys in the initial knowledge need to be represented
as functions of agent names; for instance, one may use sk(A, B) as the shared key
of A and B.
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In the running example, A and B generate random values X and Y and
exchange the Diffie-Hellman half keys exp(g,X) and exp(g, Y ) over authentic
channels; we omit the modulus in our notation for simplicity. The final message
is a pair (denoted simply by “,”) consisting of A’s name and a payload message
Msg (modeled as a random number). The pair is encrypted symmetrically using
the new, agreed-upon Diffie-Hellman key exp(exp(g,X), Y ), where we use {| · |}·
to denote symmetric encryption.

Readers unfamiliar with the Diffie-Hellman key exchange may wonder how
A can actually construct this key. In fact, this is one of the main problems of
previous Alice-and-Bob-style languages: the interpretation of protocols that are
based on algebraic properties of the employed cryptographic operators. In AnB,
this problem is solved generically with respect to arbitrary algebraic theories.5

In this example, A knows X, which she generated herself, and exp(g, Y ), which
she received from B. She can thus generate exp(exp(g, Y ), X), which is equal to
exp(exp(g,X), Y ) under the laws of exponentiation. The equations characteriz-
ing exponentiation are thus critical, since if we do not take them into account,
then the protocol cannot even be “executed”: it is unclear what an honest A
should do to form the final message of the protocol. We return to this in more
detail below. We assume throughout the paper a given algebraic theory defined
by a set of equations and we interpret terms in the quotient algebra induced by
these equations (see [10], for instance): intuitively, two terms are equal, denoted
by s ≈ t, iff this is a consequence of the algebraic equations.

In the final section of an AnB specification, we specify the goals that the
protocol is supposed to achieve, in this case the goal that the payload message
is transmitted over a secure channel from A to B. We may thus rephrase this
protocol and its goal as follows: the Diffie-Hellman key exchange allows us to
obtain a secure channel out of authentic channels. We have a similar setup in
TLS/SSL, for instance, but we have selected the Diffie-Hellman example for
brevity.

2.2 IF

We now give an overview of the AVISPA Intermediate Format IF [7], the “native”
language of OFMC, and then sketch how AnB is translated into IF. IF can be
considered as a kind of assembly language, because it is a low-level technical
language. While it is not simple for human users to specify complex protocols in
such a language, it is well-suited for automated tools as it describes the behavior
of honest and dishonest agents unambiguously.

An IF specification P = (I,R,G) consists of an initial state I, a set R of
rules that induces a transition relation on states, and a set G of “attack rules”
(i.e. goals) that specify which states count as attack states. The verification
question is then whether an attack state is reachable from an initial state: as
expected, a protocol is called safe when no attack state is reachable from the
initial state using the transition relation. The transition system induced by I

5 The implementation currently supports exponentiation and exclusive or.
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and R usually has an infinite number of states and the verification question is
in general undecidable [35,36].

Terms and States In IF, we distinguish two kinds of terms. First, we have
message terms as we have them in AnB, with the same convention that constants
start with a lower-case letter and variables with an upper-case letter.6 On top
of that, we have facts, which are built using distinguished function symbols and
have message terms as arguments. For instance, iknows(m) denotes the fact that
the intruder knows the message m, and stateR(m1, . . . ,mk) is the fact that an
agent has reached a local state of its execution that is characterized by the list
of messages m1, . . . ,mk; this list usually consists of the agent’s initial knowledge
as well as previously sent and received messages. The additional parameter R
represents the protocol role that the agent is playing (we denote all roles with
calligraphic letters). Despite the upper-case convention, the role names like R
are constants. Such constants do not appear in the AnB specification, where we
have variables like A and B to denote the roles. In IF states, however, these
variables will be instantiated with concrete agent names like a and b. In order to
specify the role names, we thus need to distinguish in IF between variables that
will hold the concrete agent names and constant identifiers for the roles that will
not be instantiated. We will later introduce further fact symbols.

An IF state is a set of facts, separated by dots (“.”). We call a term ground
when it does not contain variables, and an IF state is ground when all of its terms
are. The transition system defined by an IF specification consists of only ground
states: the initial state is ground and transitions (as we will define them below)
cannot introduce variables. Later on, however, we will also consider symbolic
techniques that deal with non-ground states.

Initialization In general, the security of a protocol should be defined based on
an arbitrary number of agents who can execute an arbitrary number of sessions
in any role of the protocol in parallel. Often, however, we consider only a fixed,
bounded number of sessions, which implies also a bound on the number of agents
who can participate. We can specify this directly, by concrete initial local states
of honest agents, e.g. writing

stateA(a, 0, id17)

to represent an honest agent a playing role A at the beginning of the protocol
execution (step 0), and with a unique identifier (to allow for several parallel
sessions). We will later also allow that instead of the constant a, we may have a
variable A (of type Agent) that can be instantiated by any agent name. This en-
ables us to specify abstractly a number of sessions without enumerating concrete
instances.
6 In the concrete syntax of IF, some notation like {|m|}k is replaced by prefix symbols

such as scrypt(k, m), but, for readability, we will use the pretty notation in this paper
anyway.
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The initial state also contains the initial knowledge of the intruder in form
of iknows(m) facts for every “public” information m such as public keys, public
constants, and also usually the names of all agents. Moreover, the intruder should
be able to participate in sessions like any other agent, and therefore may have
appropriate keys, e.g. public and private keys as well as symmetric keys shared
with other agents.

Transition Rules We consider here IF transition rules of the following form:7

L | EQ =[V ]⇒ R

where L and R are sets of facts, EQ is a set of equations on terms, and V is a
list of variables that do not occur in L or EQ; moreover, R may only contain
variables that also occur in L, EQ or V . The semantics of this rule is defined by
the state transitions it allows: we can get from a state S to a state S′ with this
rule iff there is a substitution σ of all rule variables such that

– Lσ ⊆ S,
– S′ = (S \ Lσ) ∪Rσ,
– V σ are fresh constants (that do not appear in S), and
– all equations of EQ are satisfied under σ.

All equalities between terms/facts are modulo the considered algebra. The con-
ditions on the variables ensure that S′ is ground whenever S is.

As an example, consider the rule:

iknows({|M |}K).iknows(K)⇒ iknows(M).iknows({|M |}K).iknows(K) .

This allows the intruder to deduce the plaintext M of a symmetrically encrypted
message {|M |}K whenever he knows the corresponding key K. Observe that the
left-hand side facts are repeated on the right-hand side as otherwise the matched
instances would get removed during the transition and thus the intruder would
“forget” the encrypted message and the key, which, of course, we do not want.
As it is safe to assume that the intruder never forgets any message, we allow
the simplification that the iknows(·) facts are persistent, i.e. no iknows(·) fact
gets removed during transitions so we do not explicitly need to repeat it on the
right-hand side. Thus, we can simplify the previous rule to

iknows({|M |}K).iknows(K)⇒ iknows(M) .

Moreover, we can describe the corresponding symmetric encryption rule of the
intruder simply as:

iknows(M).iknows(K)⇒ iknows({|M |}K) .

7 We have here simplified the form of the rules for the ease of presentation; in [7,54]
rules may contain further conditions about the inequality of terms and negative
facts, which we do not need for the examples in this paper.
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This rule alone produces an infinite state transition system, because the
intruder can arbitrarily encrypt messages he knows ad infinitum. It is thus a
particular challenge to analyze protocols in the presence of such an infinitary
intruder model without excluding attacks. Note that the IF does not prescribe
an intruder model—the user may specify any set of such rules—but the analysis
techniques we will introduce later constrain the class of intruder models that can
be considered.

The IF allows us to specify a wide variety of intruder models by giving a set of
intruder deduction rules (in the style of Dolev and Yao [34]) that formalize how
he can compose and decompose messages, as in the above example transitions.
We slightly generalize standard intruder models in which the intruder acts only
under one identity i: in our model, the intruder may have several names that he
controls, in the sense that he has the necessary long-term keys to actually work
under a particular name. This reflects a large number of situations, like an honest
agent who has been compromised and whose long-term keys have been learned
by the intruder, or when there are several dishonest agents who all collaborate.
This worst case of a collaboration of all dishonest agents is simply modeled by
one intruder who acts under different identities. We thus simply assume that
dishonest(A) holds for any dishonest agent name A in the initial state (i.e. only
for A = i in the classical intruder model). In general, we can allow IF rules that
model the compromise of an agent A or the creation of a new dishonest identity
A, where we have the predicate dishonest(A) on the right-hand side. We also have
a predicate honest(A) and we ensure that for every agent A either honest(A) or
dishonest(A) holds.

Goals We describe the goals of a protocol by attack states, i.e. states that violate
the goals, which are in turn described by attack rules. That is, in IF we describe
attack states by means of rules without a right-hand side: a state at which the
attack rule can fire is thus an attack state.

We give an example for the common secrecy goal. To that end, assume that
the transition rules contain the fact secret(M,B) whenever an honest agent A
generates a messageM that is supposed to be secret with another, not necessarily
honest, agent B. Thus, it is an attack if the intruder finds out M but B is honest:

secret(M,B).iknows(M).honest(B)

We can define other standard goals like authentication in a similar way; see [57]
for an overview.

2.3 From AnB to IF

The core of the translation from AnB to IF, i.e. the AnB semantics, is to define
a “program” for each role of the protocol. This is described in IF by rules of the
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form

stateR(m0, . . . ,mk).iknows(mk+1)
=[V ]⇒
stateR(m0, . . . ,mk+2, V ).iknows(mk+2)

where m0 is the initial knowledge of role R, m1, . . . ,mk is the sequence of mes-
sages that R has sent and received so far, mk+1 is the message that R receives in
this transition, mk+2 is the message that R replies with, and V is the set of fresh
variables in mk+2. This rule is applicable whenever an agent playing the role R
is in an appropriate state and receives an appropriate message from the intruder.
This reflects an optimization for the case of insecure channels: we can identify
intruder and network for insecure channels (that are controlled by the intruder,
see [54] for a soundness proof). If8 we apply the rule, then the agent creates the
new variables V and sends the outgoing message mk+2 to the “network”, and
also updates its local state by the received message and the sent one, and by the
fresh variables. In the case of the first or the last message of the protocol, the
incoming or outgoing message is omitted in the rule.

Example 1. According to this schema, the IF transition rules of A for the AnB
example in Fig. 1 are as follows—ignoring the authentic channels for now:

stateA(A,B, g)
=[X]⇒
stateA(A,B, g, exp(g,X), X).iknows(exp(g,X))

stateA(A,B, g, exp(g,X), X).iknows(exp(g, Y ))
=[Msg ]⇒
stateA(. . .).iknows({|A,Msg |}exp(exp(g,X),Y ))

ut

This demonstrates the weak points of this naive schema (that reflects the
state-of-the art in the previous Alice-and-Bob-style languages): in the second
transition, A will accept only messages of the form exp(g, Y ), while in reality,
nobody can check this for an unknown Y . In fact, A should accept any incoming
message GY here and build the Diffie-Hellman key for the outgoing message as
exp(GY,X). We now sketch how such a translation is computed in general, in
particular the appropriate check of incoming messages and the correct construc-
tion of outgoing messages.

Two Views The above example shows that agents are often unable to check
that messages have exactly the structure that the protocol demands. To reason
about this correctly, our translation from AnB to IF represents all messages from
two kinds of views md, where m is the format that the message is supposed to
8 There is nothing that forces us to execute such a rule when it is enabled.
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have according to the protocol (the first view) and d is what is visible to the
agent in question (the second view). For the second view, we introduce a new
set of variables X1,X2, . . .; these variables are used to label (parts of) messages
of which the agent cannot see the structure. For instance, when in our running
example A receives the second message from B, her knowledge looks like this:

AX1 , BX2 , gX3 , exp(g,X)exp(X3,X4), XX4 , exp(g, Y )X5 .

A can see the structure of the half key exp(g,X) because she has constructed
it herself, while she cannot see the same for exp(g, Y ); here her view is just
a variable X5. We define appropriate deduction rules on such labeled terms so
that, in our example, A can generate the full key exp(exp(g,X), Y ) as follows:

exp(g, Y )X5 XX4

exp(exp(g, Y ), X)exp(X5,X4)

exp(exp(g,X), Y )exp(X5,X4)

The root label exp(X5,X4) exactly describes how A obtains the key from the
components of her knowledge.

More generally, whenever an agent should generate an outgoing message m
according to the protocol, the AnB translator checks that md can be deduced
from the agent’s knowledge at that point for some derivation d. Then, d is
the term of the outgoing message in the IF transition rule that the translator
produces.9 If there is no such derivation, then the translation rejects the protocol
as “not executable”: the agent cannot generate the outgoing message from its
knowledge, which means that there is an error in the AnB specification.

Checking Messages We now define how agents can check the messages they
receive. The idea is to ask whether an agent can derive from its knowledge, in
two distinct ways, two terms that are supposed to be the same according to the
protocol, i.e. deduce md1 and md2 with d1 6≈ d2. Each such pair d1 and d2 of
derivations represents a possible check that the agent can perform on messages,
namely constructing the derivations and checking that the results are indeed
the same. An example is that an agent receives a hash value h(m)X1 in some
message where it does not know the hashed message m and thus cannot check
the structure. Now say that, in a later transition, the agent receives mX2 . He
can then check that X1 ≈ h(X2), i.e. that applying the hash function h to the
message X2 gives the same as X1.

More generally, we integrate such checks into the transition rules of honest
agents, e.g. in the hash example we have a transition rule like this:

stateR(X1, . . .).iknows(X2) | X1 = h(X2)⇒ . . .

9 Indeed, there are usually several different derivations for the same message m; the
semantics, however, ensures that they are all equivalent derivations, so the choice of
the derivation does not influence the rule meaning as explained in [56].
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There are in general infinitely many such possible checks; for instance, in
the above example, one may similarly check h(X1) ≈ h(h(X2)) and so forth.
Moreover, the message deduction problem is in general undecidable. Still, [56]
shows that for an example theory that includes exponentiation, exclusive or,
and other standard operators, we can decide message deduction and compute a
finite sufficient set of checks for a given knowledge. Sufficient here means that
the same set of incoming messages are accepted with the reduced finite set of
checks. For a more detailed discussion on what an agent can recognize, such as
the correct decryption of messages, we refer the reader to [56].

To summarize, the rules for A in our running example look as follows, where,
for readability, we use instead of Xi the more intuitive variables from the AnB
specification and replace constants wherever possible:

stateA(A,B, g)
=[X]⇒
stateA(A,B, g, exp(g,X), X).iknows(exp(g,X))

stateA(A,B, g, exp(g,X), X).iknows(GY )
=[Msg ]⇒
stateA(. . .).iknows({|A,Msg |}exp(GY ,X))

2.4 Channels

Much effort has been recently devoted to the composition of protocols, e.g.
[3,26,30,31,40,41] to name a few works. We often have vertical composition of
protocols, i.e. one protocol is run on top of another. For instance, we may have
a banking service that runs over a “secure channel” that is provided by another
protocol such as TLS or the authenticated Diffie-Hellman key exchange of our
running example. It is desirable not to verify the entire composed system as a
whole, but to verify the components individually, for instance, verify that TLS
indeed provides a secure channel and that the banking service satisfies its goals
when run over a secure channel. This compositional reasoning approach has sev-
eral advantages over the monolithic verification approach. First, the smaller sys-
tem components are usually easier to verify. Second, we have a greater reusability
of verification results, as we can exchange TLS with any other protocol that pro-
vides a secure channel without repeating the analysis of the application protocol.
Similarly, we can use TLS for other applications that rely on a secure channel
without repeating the analysis of TLS anymore.

Thus, the notion of channel can provide a useful interface for a modular
presentation and compositional verification of protocols and services. To that
end, we need to define what it means that a protocol provides a channel with
particular properties as a goal, and what the assumption of such a channel in a
protocol means.

Channels as Assumptions We now sketch our model of channels as assump-
tions. Actually, we give two models, an abstract and a more concrete one, and
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then prove them equivalent, so that we can use them interchangeably and the
analysis methods can pick the one that suits them best.

The first model is called the cryptographic channel model CCM. The idea
is that we can realize the channel properties by cryptographic means. We just
give the example of authentic channels: we encode an authentic message M
from A to B as {atag, B,M}inv(ak(A)). Here, {·}· denotes asymmetric encryption,
(ak(A), inv(ak(A))) is a dedicated public/private-key pair for realizing authentic
channels, and atag is a special tag to distinguish this encoding from other digital
signatures. ak(A) is public for every agent A, and the intruder initially knows
inv(ak(A)) of every dishonest agent A.

The name of the intended recipient is included in the signed part of the
message and is thus part of the authenticated information. This does not prevent
other agents from reading the message, but makes clear for whom the message is
meant.10 This is just one of many possible ways to ensure authentic channels; one
may similarly use MACs, for instance. The encoding of other channels similarly
uses cryptography to ensure the channel properties.

To illustrate this encoding, the rules of A in the running example now become:

stateA(A,B, ak(A), inv(ak(A)), ak(B), g)
=[X]⇒
stateA(A,B, ak(A), inv(ak(A)), ak(B), g, exp(g,X), X).
iknows({atag, B, exp(g,X)}inv(ak(A)))

stateA(A,B, ak(A), inv(ak(A)), ak(B), g, exp(g,X), X).
iknows({atag, A,GY }inv(ak(B)))
=[Msg ]⇒
stateA(. . .).iknows({|A,Msg |}exp(GY ,X))

We now present the second model of channels as assumptions, the Ideal Chan-
nel Model ICM, in which we use special persistent fact symbols for messages on
different kinds of channels. The rules of A in our running example, for instance,
are expressed as follows:

stateA(A,B, g)
=[X]⇒
stateA(A,B, g, exp(g,X), X).athChA,B(exp(g,X))

stateA(A,B, g, exp(g,X), X).athChB,A(GY )
=[Msg ]⇒
stateA(. . .).iknows({|A,Msg |}exp(GY ,X))

athChA,B(M) represents a message M that was sent by agent A on an authentic
channel and meant for agent B. The behavior of the channels with respect to

10 We need this to ensure the correspondence with the standard definition of authentic
channels where it counts as an attack if b thinks that a message was sent by a to b
while a actually meant to send it to somebody else.
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Protocol : Authentic channel

Types :

Agent A′, B ′;

Number Msg ′;

Function pk ;

Knowledge :

A′ : A′, B ′, pk(A′), inv(pk(A′));

B ′ : B ′, pk(A′);

Actions :

A′ → B ′ : {B ′, Msg ′}inv(pk(A′))

Goals :

A′ •→ B ′ : Msg ′

Fig. 2. AnB specification of a protocol realizing an authentic channel.

the intruder is then defined by rules such as:

iknows(B).iknows(M).dishonest(A)⇒ athChA,B(M)
athChA,B(M)⇒ iknows(M)

The first rule expresses that the intruder can send messages on an authentic
channel to any agent B but only under the name of a dishonest agent A.11 The
second rule expresses that the intruder can receive any message on an authentic
channel. There are similar rules for the abilities of the intruder on the other
kinds of channels.

As shown in [57], the two models are equivalent (under certain conditions).
Thus, the CCM is a correct realization of the ICM and we can use both models
interchangeably.

Channels as Goals The goals of a protocol can be specified using the different
kinds of channels as in our running example where we have specified the secure
transmission of a payload message Msg as a goal. These goal definitions are close
to standard ones of security protocols, e.g. [7,48,54]. For authentication goals,
we use auxiliary events, as we have done before for secrecy goals. This allows us
to express goals in a protocol-independent way.

Compositionality The study of compositionality with respect to channels has
revealed several subtle details about what must be required of a channel (imply-
ing, for instance, the inclusion of the intended recipient on an authentic channel).

11 The intruder knows all agent names by assumption, but we need iknows(B) on the
left-hand side because IF requires all variables that appear on the right-hand side
to be already present on the left.
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Protocol : Authenticated Diffie-Hellman key exchange, version 2

Types :

Agent A, B ;

Number g , X , Y , Msg ;

Function pk ;

Knowledge :

A : A, B , g , pk(A), inv(pk(A));

B : B , g , pk(A);

Actions :

A → B : {B , exp(g , X )}inv(pk(A))

B •→ A : exp(g , Y )

A → B : {|A, Msg |}exp(exp(g,X ),Y )

Goals :

A •→• B : Msg

Fig. 3. AnB specification of the authenticated Diffie-Hellman key exchange, com-
posed with the realization of an authentic channel.

As an example, consider the protocol in Fig. 2 as a way to realize an authentic
channel, as it is assumed in our running example of the authenticated Diffie-
Hellman key exchange; pk(A′) and inv(pk(A′)) are the public and the private
key of A′, respectively. We can thus, for instance, implement the first authentic
channel of the running example by the protocol of Fig. 2 to obtain the protocol
shown in Fig. 3.

In [57], we give suitable definitions and conditions to obtain the desired com-
positionality results, namely that an assumed channel can be realized by any
protocol that provides it as a goal.

Pseudonymous Channels We have generalized all the above models and
results to include channels where agents may alternatively be identified by
pseudonyms rather than by their real names. Pseudonymous channels are created
by techniques like purpose-built keys (PBK) or TLS without client authentica-
tion: we have something similar to a secure channel except that one end is not
identified by its real name but by some pseudonym, which is usually related to
an unauthenticated public-key; see, e.g., [19,33,42,47]. In the case of authentic
channels, this concept has often been referred to as sender invariance: the re-
ceiver can be sure that several messages come from the same source, whose real
identity is not known or not guaranteed. However, there is more to it.

First, pseudonymous channels, both as assumptions and as goals, should not
be defined as entirely new concepts unrelated to the previous channels. Rather,
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Protocol : Diffie-Hellman key exchange without client authentication

Types :

Agent A, B ;

Number g , X , Y , Msg ;

Knowledge :

A : A, B , g ;

B : B , g ;

Actions :

A → B : exp(g , X )

B •→ A : exp(g , Y )

A → B : {|A, Msg |}exp(exp(g,X ),Y )

Goals :

[A] •→• B : Msg

Fig. 4. AnB specification of the Diffie-Hellman key exchange without client au-
thentication.

we define them as variants of the standard channels discussed above where one
(or both) ends are identified by a pseudonym rather than the real name.12

Second, the concept of pseudonymous channels is useful to model a number of
scenarios. The most common one is probably the above mentioned TLS without
client authentication as it is common in the Internet: it is in a sense weaker
than a standard secure channel, but (assuming the server’s public key is properly
authenticated) it is sufficient for submitting a client’s password over this channel
to achieve full authentication. We thus want to use such a channel both as a goal
for protocols like TLS where only one side is authenticated, and as an assumption
in high-level protocols that use such a channel for a login, for instance.

In AnB, we write [A]ψ to denote the identity of an agent A that is not
identified by its real name A but by some pseudonym ψ, e.g. we write [A]ψ •→B :
M for an authentic channel. We also allow that the specification of ψ is omitted,
and write only [A] •→B, when the role uses only one pseudonym in the entire
session (which is the case for most protocols). The omitted variant is a short-cut
for a pseudonym that A freshly generates when it first uses a pseudonymous
channel.

Example 2. The protocol in Fig. 4 establishes a secure channel between an unau-
thenticated A, which uses its Diffie-Hellman half key exp(g,X) as a pseudonym,
and an authenticated B (just as in the case of TLS). Such a channel is good
enough for a login protocol in which a client A transmits her user name and
password, and thereby authenticates herself to a server B. ut
12 One may even argue that real names are also just a kind of pseudonym, so there is

no difference at all. In our model, the difference between real names and pseudonyms
is that we assume that real names uniquely identify agents and do not change over
time, while pseudonyms may be arbitrarily created by any agent. As a consequence,
every agent (including the intruder) can act under several identities.
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3 Constraint-Based Model Checking

In the previous section, we have discussed the modeling of protocols and their
properties, and thereby set up a challenging task for automated verification. We
now discuss how OFMC addresses this challenge.

3.1 The Lazy Intruder

The naive exploration of the search space generated by such a specification
including a Dolev-Yao-style intruder is not feasible, due to a large or even infinite
number of messages that the intruder can construct and send from a given set of
known messages. One of the core ideas in OFMC (and, similarly, in several other
approaches, e.g. [1,2,17,18,22,23,25,37,43,53]) is to avoid this naive enumeration
by using a symbolic, constraint-based approach, which allows us to significantly
reduce the search space without excluding attacks (and without introducing new
ones).

Let us illustrate this with an example. Assume that in order to carry out an
attack, the intruder needs to send to an honest agent a a message that has the
form {N}pk(a) for some number N encrypted with a’s public key pk(a). This
can be satisfied in several different ways. First, the intruder can take any term
t that he knows and encrypt it with a’s public key and send {t}pk(a). Alterna-
tively, he can send instead any message of the form {·}pk(a) that he knows (even
though he cannot decrypt it). Using constraints, however, we do not explore
all these possibilities directly, but rather work with the symbolic term {N}pk(a)

(i.e. leaving the variable N) and impose the constraint from({ {N}pk(a) }; IK )
where IK is the set of messages known to the intruder at this point (the current
intruder knowledge). This constraint means that, whatever N is, the intruder
must be able to construct the term {N}pk(a) from the knowledge IK . We thus
base the protocol analysis on a constraint satisfaction problem. This is done in
a demand-driven way, i.e. we postpone the substitution of variables as long as
possible during search. For this reason, we call the technique the lazy intruder.

In general, a constraint has the form

from(T ; IK )

where T and IK are both sets of message terms with variables. The models of
such a constraint are those interpretations I of the variables such that T I can be
generated from IK I using the rules of the intruder to construct and deconstruct
messages.

The lazy intruder technique uses the notion of simple constraint, i.e. a con-
straint in which all terms to be generated are variables. This simple form is
always satisfiable as the intruder can always generate some message. The idea
is to reduce a given constraint to an equivalent set of simple constraints. Here,
“equivalent” refers to the set of models of a constraint, i.e. the satisfying inter-
pretations of the variables. We thus formulate, for a given intruder model, a set
of constraint reduction rules that are correct (in the sense that they maintain
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the set of models) and terminating (meaning that we arrive, after finitely many
steps, at a finite set of simple constraint sets).

The constraint reduction rules of the lazy intruder are of three kinds:

– generation rules that describe how the intruder can compose messages from
known ones,

– analysis rules that describe how he can decompose messages,
– and finally there is a unification rule that expresses that the intruder can

use unifiable messages from his knowledge to fulfill the constraint.

A set of such rules is given in [12,58], where all the details of the formal constraint
reduction are spelled out. Here, we focus only on the main ideas by means of an
example.

Example 3. To understand the way the lazy intruder works, let us now consider
the non-authenticated Diffie-Hellman key exchange, where the half keys are sent
on insecure channels. Consider the following abstract execution trace, where we
first ignore the question of whether the intruder can generate any acceptable
message and we just use variables for messages sent by the intruder:

1. a→ i(b) : exp(g, x)
2. i(b)→ a : M1

3. a→ i(b) : {|msg |}exp(M1,x)

secret(msg , b)

Here, the agent a sends her Diffie-Hellman half key exp(g, x) to an agent b,
but the message is intercepted by the intruder, which we display as i(b).13 The
intruder then replies by sending some message M1 that a parses as the Diffie-
Hellman half key from b. She thus sends the payload message msg symmetrically
encrypted with the resulting Diffie-Hellman full key exp(M1, x). She also declares
the payload as a secret with b. We want now to check whether the intruder can
find out this secret, assuming the initial intruder knowledge IK 0 = {g}. This is
formalized by the following constraint set:

from({M1}; IK 1) where IK 1 = IK 0 ∪ {exp(g, x)}
from({msg}; IK 2) where IK 2 = IK 1 ∪ {{|msg |}exp(M1,x)}

We will now describe only one sequence of reduction steps that leads to the
solution of the constraint set, while the actual constraint reduction procedure
considers also other reduction sequences, which in this case lead to a dead end
(i.e. to unsatisfiable constraints). We follow the path that the intruder success-
fully decrypts the encrypted message in IK 2. This adds a new constraint that
he can indeed generate the key exp(M1, x) and we add the cleartext msg to the
intruder knowledge IK 2 in the second constraint. The new constraint set after

13 Actually, due to our identification of intruder and network for insecure channels, the
intruder intercepts every message transmitted on such channels.
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this step of the constraint reduction procedure looks a follows:

from({M1}; IK 1)
from({msg}; IK 2 ∪ {msg})
from({exp(M1, x)}; IK 2)

Obviously, the second constraint can now be solved (by applying the unification
rule) and removed from the constraint set. We next turn to the key-generation
constraint. Observe that the intruder cannot directly compose this message as he
does not know a’s secret value x, but there is a way to compose this term if M1

has the form exp(M2,M3) for two new variables M2 and M3. The resulting form
of the key exp(exp(M2,M3), x) is equivalent to exp(exp(M2, x),M3) according
to the algebraic properties of exponentiation:

from({exp(M2,M3)}; IK 1)
from({exp(exp(M2, x),M3)}; IK 2)

This latter representation can indeed be composed, i.e. by an application of a
generation rule we get:

from({exp(M2,M3)}; IK 1)
from({exp(M2, x),M3}; IK 2)

Now we can unify the term exp(M2, x) with a’s half key, i.e. setting M2 = g we
obtain:

from({exp(g,M3)}; IK 1)
from({M3}; IK 2)

Finally, since IK 1 contains g we can generate the term in the first constraint,
leaving a set of simple constraints:

from({M3}; IK 1)
from({M3}; IK 2)

Thus, the intruder can perform the attack for any value M3 that he knows. ut

3.2 Algebraic Reasoning

The above example briefly touched the subject of algebraic reasoning. Now we
give an overview of what OFMC supports and how. In fact, as part of the pa-
rameters of OFMC, one can specify an algebraic theory that defines the (cryp-
tographic) operators and their algebraic properties.

Finite Theories To begin with, we allow finite theories, i.e. theories under
which every term has a finite equivalence class. The exponentiation property
that exp(exp(G,X), Y ) ≈ exp(exp(G, Y ), X) is an example, because, intuitively,
there are only finitely many re-arrangements of exponents in any term. Note that
unification for finite theories is in general already an undecidable problem; thus,

18



we cannot handle such specifications without any restrictions. The approach of
OFMC is to limit the number of instantiations of a variable in the form that we
had in Example 3. The fact that we only bound the handling of variables (and
not the terms that can be substituted) directly ensures that for many theories
(like the exponentiation example) the restriction is without loss of generality,
i.e. no solutions are excluded. In the example of exponentiation, we have to
specify the following hint for OFMC in the theory file:14

topdec(exp,exp(T1,T2))=
[T1,T2]
if T1==exp(Z1,Z2){
[exp(Z1,T2),Z2]}

This specifies the possible solutions of the unification problem exp(·, ·) ≈
exp(T1, T2), i.e. the different ways to compose the term exp(T1, T2) using exp as a
top-level symbol. (Composition with other symbols does not yield an exponentia-
tion-term in our algebraic theory.) The first solution is the standard “syntactical”
solution, i.e. an exponentiation of the subterms; this is possible for any operator.
Second, if (recursively) T1 can be unified exp(Z1, Z2), then there is also an alter-
native composition using subterms exp(Z1, T2) and Z2; this is exactly the case
used in the above example. Note that this describes a recursive procedure, as
composition/decomposition of the term T1 may give rise to further such checks
for exp-decompositions. In the case that the given term is a variable, this recur-
sion can be repeated arbitrarily, but we bound this in OFMC, however, for the
exponentiation case, this bounding is without loss of solutions. More generally,
the topdec-specifications, like the one above, give a skeleton for a unification
algorithm modulo the described theory. Namely, a recursive structure to find all
solutions, and one can either bound the instantiation (sacrificing completeness
in general) or leave it unbounded (sacrificing termination).

Cancellation Theories Many algebraic properties are of the form {|{|m|}k|}k ≈
m, which intuitively expresses that “decryption and encryption cancel each other
out”. The characteristic is that the right-hand side of each equation is either a
subterm of the left-hand side or a constant. This underlying orientation of the
rules gives rise to a system of rewrite rules that simplifies given message terms.
We interpret these rewrite rules modulo the finite theory we have considered
before and require that the resulting rewrite relation is convergent and termi-
nating, so that every term has a unique normal form (modulo the finite theory).
When using symbolic terms, however, this implies several potential termination
problems. As before, to enforce termination, we consider here a bound on the
instantiation of variables, which in many cases is not a restriction. The key idea
is to analyze the given intruder knowledge as far as possible using cancellations.

14 OFMC requires that the specification of the algebraic theory contains such hints
in order to guide the analysis procedure. A similar requirement holds also for the
cancellation theories discussed below.
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Formally, we say that the intruder knowledge is completely analyzed iff the nor-
mal form of every deducible term is either contained in the intruder knowledge, or
can be composed from it (without cancellation). Thus, in a completely analyzed
knowledge, we do not need to consider any more analysis steps or cancellation
properties, but only composition and unification. In the case of the lazy intruder,
due to the variables in the intruder knowledge, this notion is always related to
a set of constraints on these variables.

Example 4. As an example, consider IK 2 from Example 3, which is related to
the constraint from(M1; IK 1) due to the variable M1 in IK 2. This knowledge
is not completely analyzed, because the key-term for the encrypted message
is derivable, so the intruder can compose the term {|{|msg |}exp(M1,x)|}exp(M1,x)

and thus obtain msg , which cannot be obtained by composition alone (without
the cancellation property). After the addition of msg to IK 2, it is completely
analyzed. ut

3.3 Symbolic sessions

Most protocol analysis tools allow the user only to specify a concrete analysis
scenario consisting of different protocol sessions executed in parallel, such as
“Alice wants to talk to Bob and in parallel to the intruder” (of course, Alice does
not know which communication partners are honest and which are not). Such
a manual specification is, however, cumbersome, especially since the number of
scenarios to analyze for a given number of sessions grows exponentially.

OFMC, in contrast, also allows the user to simply specify the number of
sessions that the user wishes to analyze, and covers all instantiations of the
agents in these sessions. This is not only more convenient but also more efficient,
since the enumeration of all scenarios is completely avoided. The trick is to
use the lazy intruder technique to instantiate agent names whenever necessary.
More precisely, we consider an initial state with variables for all agent names
(possibly with constraints like A 6= B or A 6= i). The lazy intruder starts with
the constraint from({A1, . . . , An}; IK 0) where Ai are agent names of the initial
state and IK 0 is the initial intruder knowledge. We assume that all agent names
are public knowledge that the intruder initially knows.15 This approach reflects
that “the intruder chooses the sessions” according to what may help him perform
an attack, so instantiation is integrated into the protocol analysis. Since this is
done lazily, the names are instantiated only when this matters for an attack. In
general, we get attacks with variables for agent names; these attacks thus work
for arbitrary agents.

3.4 Constraint Differentiation

The lazy intruder drastically reduces the size of the search tree generated during
protocol analysis, providing an effective solution to the problem of the prolific
15 We specify this by a dedicated intruder rule, so we do not need to enumerate this set

in the intruder knowledge and can even consider an unbounded number of agents.
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intruder, who can compose and send messages at will. However, the lazy intruder
does not address the problem resulting from the large number of interleavings
possible due to parallel protocol executions. In standard model-checking ap-
proaches for concurrent systems, the interleaving problem is often handled using
partial-order reduction (POR), a technique that reduces the number of inter-
leavings that need to be considered by exploiting independencies between the
possible transitions [60]. One might expect that the lazy intruder could be di-
rectly combined with partial-order reduction. However, this combination is not
effective as the different transitions of the lazy intruder rarely lead to the same
(symbolic) successor state and therefore there is practically no independence of
transitions that can be exploited by POR.

The constraint differentiation technique [58] effectively integrates the lazy in-
truder and ideas from POR by using independence information from the symbolic
transition system when reducing constraints. Constraint differentiation works by
introducing a new kind of constraint. However, existing constraint-based meth-
ods for the various symbolic intruder approaches [1,2,17,18,22,23,25,37,43,53] do
not need to be individually updated for constraint differentiation since we have
defined our technique in a generic way, namely as a transformation to “differenti-
ate” a given symbolic intruder approach (that already is correct and terminating
for a particular intruder model).

We again make use of an example to illustrate the main ideas. Assume that
when the agent a receives a message of the form {|a,X|}k, it replies with {|X|}k′ ,
for a key k′. Let us call this transition θ1. Assume further that there is another
agent b waiting for a message of the form {|b, Z|}k′ to which it replies with {|Z|}k′ .
Let us call this transition θ2. These two transitions can be performed in either
order, although they will produce different constraints: if θ1 is followed by θ2,
then we have the constraints

from({ {|a,X|}k }; IK )
from({ {|b, Z|}k′ }; IK ∪ { {|X|}k′ })

while if θ2 is followed by θ1, then we have

from({ {|b, Z|}k′ }; IK )
from({ {|a,X|}k }; IK ∪ { {|Z|}k′ })

These two sets of constraints represent overlapping but different sets of solutions,
due to the different intruder knowledges. The main idea of constraint differentia-
tion is to exploit this overlap by restricting the solutions of one of the constraint
sets, say the first one, to the solutions not covered by other one. To that end, we
introduce a new kind of constraint that is capable of expressing this difference.
For instance, the constraints of the execution “θ1 followed by θ2” may in some
cases be replaced by the following constraints:

from({ {|a,X|}k }; IK )
D-from({ {|b, Z|}k′ }; IK ; { {|X|}k′ })

More generally, we introduce D-from constraints of the form

D-from(T ; IK ; NIK ) ,
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where, intuitively, NIK represents new messages that are not in IK ; the acro-
nym stands for new intruder knowledge. The constraint formalizes that the set
of terms T must be generated by the intruder using the knowledge in the set
IK ∪NIK , but we are only interested in solutions that employ new information
in NIK and hence we exclude all solutions of from(T ; IK ).

Assume now that the key k′ cannot be generated from IK . Then the only way
to satisfy the D-from constraint is to unify {|X|}k′ and {|b, Z|}k′ , i.e. X 7→ b, Z.
In particular, the D-from constraint forbids using other messages encrypted with
k′ that occur in IK , if any.

In combination with other constraints, this can rule out the entire interleav-
ing. For instance, if {|a, n|}k ∈ IK and from IK we cannot derive any other
message encrypted with k, then the only solution allowed by the first constraint
is X = n. Therefore X and b, Z do not unify and the resulting constraints are
unsatisfiable. This shows how constraint differentiation can either limit the pos-
sible solutions for one execution order or even rule out a particular execution
order.

4 The Fixed-Point Module

In recent years, several techniques and tools have been developed that ad-
dress the problem of protocol verification with an unbounded number of ses-
sions by employing over-approximation techniques, e.g. [13,15,16,38,39]. Over-
approximation means that one considers a model that allows strictly more traces
or reachable states than the original model. This can induce attacks that are false
positives, i.e. attacks that work only in the over-approximated model, but not in
the original model. For falsification (i.e. detecting attacks) this is problematic,
as the “real” attacks may be buried under false positives. On the other hand,
for verification (i.e. trying to prove a protocol correct) over-approximation does
make sense: given a precise model and an over-approximation of it, proving that
the over-approximation is safe is often much easier than in the original model
and, if successful, implies that the original model is safe as well.

We have implemented a prototype of a new module for OFMC that is based
on such over-approximation ideas. The result of a verification in this module is a
fixed-point of facts that can ever occur in any reachable state, and we thus call
it the fixed-point module. This module complements the “classical” OFMC: we
analyze a protocol first in the classical setting with a bounded number of sessions
which may yield an attack. Otherwise, if the protocol is safe for a given number of
sessions, then we complete the verification by using the new fixed-point module.

Due to the subtlety of protocol models, it is often not immediate that the
considered model is actually an over-approximation of the original model. This
is, however, the crucial assumption of the entire approach. Therefore, we have
investigated the relationships between several such models in [55]. There, we have
shown that for a large class of protocols we indeed have an over-approximation
relationship which allows us to conclude that the approach behind the fixed-point
module is indeed sound.
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We now discuss in more detail two kinds of over-approximation that we use
in OFMC’s fixed-point module.

4.1 Data Abstraction

A common form of abstraction in many verification tools (not only in protocol
verification) is based on the idea of abstract interpretation [28]. We refer to this as
data abstraction, because we map the infinite set of (fresh) data to finitely many
equivalence classes; we then consider the abstract equivalence classes instead of
the concrete data.

For instance, in our running example, we can abstract all the exponents
that an honest agent a freshly generates in all sessions of the protocol into one
that we denote by exponent(a). As a result, if the intruder cannot manipulate
any of the half keys, two honest agents a and b will end up with the same key
exp(exp(g, exponent(a)), exponent(b)) in every session.

This technique has an important prerequisite: there may not be any negative
comparisons in the rules, e.g. that two half keys must be different, or else the
abstract model would not be an over-approximation of the concrete one. This
limits the class of protocols that can be handled with such methods, but we can
easily check that a given specification meets such conditions.

4.2 Control Abstraction

We also consider another form of over-approximation that was first considered in
planning [14] and that makes sense in combination with data abstraction and its
assumptions: control abstraction. The idea here is that the order in which certain
facts are “reached” does often not matter, and we can rather just consider what
facts occur in any reachable state, in particular which messages the intruder can
ever find out.

The fixed-point that we obtain for the running example under control ab-
straction represents a situation where the intruder has obtained the half key
exp(g, exponent(a)) of each agent a and the exponent exponent(a) of each dishon-
est agent a. Moreover, he has not obtained the full key exp(exp(g, exponent(a)),
exponent(b)) of any pair of honest agents a and b. Finally, in every local state of
an honest agent a that has negotiated a full key for communication with another
honest agent b, this full key is exp(exp(g, exponent(a)), exponent(b)).

This concludes our brief exposition of the fixed-point module of OFMC and
we now consider some experimental results.

5 Experimental Results

We have applied OFMC to a large number of industrial-strength protocols in-
cluding all the protocols in the AVISPA Library [9], which contains about 70
real-world protocols such as SET, IKE v.2, Kerberos in different variants, TLS,
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and H.530. Detailed experiments with running times and comparisons with other
tools can be found in [8,12,54,58].

As a concrete example, we summarize here our analysis of the H.530 proto-
col [44], a protocol developed by Siemens and proposed as an Internet standard
for multimedia communications. We have modeled the protocol in its full com-
plexity and OFMC detected a replay attack serious enough that Siemens revised
the protocol [45].

5.1 The H.530 Protocol

The H.530 protocol [44,45] provides mutual authentication and key agreement
in mobile roaming scenarios in multimedia communication. H.530 is deployed
as follows: a mobile terminal (MT ) wants to establish a secure connection and
negotiate a Diffie-Hellman key with the gatekeeper (VGK ) of a visited domain.
As they do not know each other in advance, the authentication is performed
using a trusted authentication facility AuF within the home domain of the MT .

Fig. 5 shows the message exchange of H.530 in AnB notation (slightly sim-
plified). There is initially a shared key between the mobile terminal MT and its
home server AuF , denoted by sk(MT ,AuF ), as well as a shared key between
the visited gatekeeper VGK and AuF , denoted by sk(VGK ,AuF ). In the first
message, MT sends out a request that contains a fresh Diffie-Hellman half key
exp(g,X). This message, like all the following ones, is “MACed” (Message Au-
thentication Code): a hash value of the message using a keyed hash function is
added to the message. A keyed hash function is like a normal hash function, but
has as an extra parameter a symmetric key, so that only participants who know
the key can construct—or check—the hash value.16

Since the first message from MT is MACed using the key sk(MT ,AuF ), the
receiver VGK can read the Diffie-Hellman half key and the name of MT (at
least what it seems to be), but cannot check the authenticity of the messages. In
the second message, VGK forwards this request to AuF , including his own fresh
Diffie-Hellman half key exp(g, Y ) which is XOR-ed to the half key from MT .

After having checked that all MACs are “adding up”, the AuF answers in
the third message with an acknowledgment, which contains both half keys and
the name of the participants. As in message 2, we have two nested MACs, the
outer one with sk(VGK ,AuF ) and the inner one with sk(MT ,AuF ). Observe,
however, that this time the inner one is without a copy of the cleartext. That
is exactly the weakness of the protocol that we will describe below. The last
two messages between MT and VGK are MACed using the new Diffie-Hellman
key of MT and VGK , proving that both can construct the key. Note that MT

16 Our model of a MAC is based on using a simple implementation using an unkeyed
hash function: the key is concatenated together with the message to hash. We do
not need to discuss the cryptographic requirements and implications of such an
implementation, since in our model the MAC has exactly the properties we want:
one can build a MAC iff one knows the key and the MACed message, and one cannot
recover from a MAC the MACed message (even if one knows the key).
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1. MT → VGK : req(MT , VGK , AuF , exp(g, X))
2. VGK → AuF : mac(sk(VGK , AuF ), (req(MT , VGK , exp(g, X)), VGK , ver(X, Y )))
3. AuF → VGK : mac(sk(VGK , AuF ), (VGK , ack(MT , VGK , AuF , X, Y )))
4. VGK → MT : mac(dhk(X, Y ), (ack(MT , VGK , AuF , X, Y ), exp(g, Y )))
5. MT → VGK : mac(dhk(X, Y ), (MT , VGK ))

where mac(K, M) = (M, f(K, M))
dhk(X, Y ) = exp(exp(g, X), Y )
ver(X, Y ) = xor(exp(g, X), exp(g, Y ))

req(MT , VGK , AuF , X) = mac(sk(MT , AuF ), (MT , VGK , exp(g, X)))
ack(MT , VGK , AuF , X, Y ) = f(sk(MT , AuF ), (VGK , ver(X, Y )))

Fig. 5. The message exchange of H.530 in AnB notation (slightly simplified).

[Normal session of the protocol (recorded by the intruder)]

1′. i(mt)→ vgk : mt , vgk , auf , exp(g, z), rand
2′. vgk → i(auf ) : mac(sk(vgk , auf ), (mt , vgk , auf , exp(g, z), rand , vgk , ver(z, exp(g, y2))))
3′. i(auf )→ vgk : mac(sk(vgk, auf ), (vgk , ack(mt , vgk , auf , x, y)))
4′. vgk → i(mt) : mac(dhk(z, y2), (ack(mt , vgk , auf , x, y), exp(g, y2)))
5′. i(mt)→ vgk : mac(dhk(z, y2), (mt , vgk))

Fig. 6. An attack on H.530, where rand and z are random values created by the
intruder, and y2 is value created by vgk for Y in the second run of the protocol.

receives the half key from VGK also in cleartext, so that he can build the key
to check the hash value used here.

The specification in OFMC took one work-day17 and after an analysis time
of 1.3 seconds, OFMC reported a replay attack, displayed in Fig. 6, which works
as follows. First the intruder listens to a session between a set of honest agents
mt , vgk , and auf . He uses the recorded messages later to “steal” the identity
of mt , i.e. to pose as mt towards vgk and negotiate a new Diffie-Hellman key
with it. More in detail, in message 1′, vgk can only see the cleartext part of the
message, the intruder can thus insert anything for the keyed hash (denoted by
rand here). Note that the intruder creates a fresh Diffie-Hellman secret z here.
The intruder intercepts message 2′ from vgk to auf and for the reply 3′ from
auf , he replays the message 3 from the previous session, which is based on the
old Diffie-Hellman secrets x and y. Observe that vgk cannot detect this, because
these old values are only contained in the ack part of the message, which is a
keyed hash using sk(mt , auf ). Thus, from vgk ’s point of view, the auf has just
acknowledged the key exchange with mt , namely using the Diffie-Hellman key
dhk(z, y2). This key is known to the intruder, since he created z himself and

17 At the time, OFMC did not support algebraic properties, so a work-around for
Diffie-Hellman had to be implemented and XOR was replaced with concatenation.
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can read exp(g, y2) for instance from the cleartext part of message 2′. Therefore,
he can complete the attack and vgk believes to share the new Diffie-Hellman
key with mt . Due to this attack, Siemens has changed the protocol following
our suggestion to include the Diffie-Hellman half keys in the MAC for VGK in
message 3 [45].

6 Conclusions

We have presented the main features of the Open-source Fixed-point Model
Checker, a state-of-the-art security protocol analysis tool. An ongoing line of
work in the context of the AVANTSSAR project is concerned with extending the
scope of OFMC towards the security analysis of service-oriented architectures. To
that end, we are currently extending the compositional reasoning and abstraction
techniques of OFMC.

Acknowledgments

The work presented in this paper was partially supported by the FP7-ICT-2007-1
Project no. 216471, “AVANTSSAR: Automated Validation of Trust and Security
of Service-oriented Architectures” and the PRIN’07 project “SOFT”. We thank
David Basin, Achim Brucker, Paul Hankes Drielsma, and all the members of the
projects AVISS, AVISPA and AVANTSSAR for very fruitful discussions.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many
more) equational theories. In Proceedings of CSFW’05, pages 62–76. IEEE Com-
puter Society Press, 2005.

2. R. Amadio and D. Lugiez. On the Reachability Problem in Cryptographic Proto-
cols. In Proceedings of CONCUR’00, LNCS 1877, pages 380–394. Springer-Verlag,
2002.

3. S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. Mjølsnes, and S. Radomirović.
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