
Lazy Mobile Intruders?

(Extended Version)

Sebastian Mödersheim, Flemming Nielson, and Hanne Riis Nielson

DTU Compute, Denmark

Tech-Report IMM-TR-2012-013
Revised version January 8, 2013

Abstract. We present a new technique for analyzing platforms that ex-
ecute potentially malicious code, such as web-browsers, mobile phones,
or virtualized infrastructures. Rather than analyzing given code, we ask
what code an intruder could create to break a security goal of the plat-
form. To avoid searching the infinite space of programs that the intruder
could come up with (given some initial knowledge) we adapt the lazy
intruder technique from protocol verification: the code is initially just a
process variable that is getting instantiated in a demand-driven way dur-
ing its execution. We also take into account that by communication, the
malicious code can learn new information that it can use in subsequent
operations, or that we may have several pieces of malicious code that can
exchange information if they “meet”. To formalize both the platform and
the malicious code we use the mobile ambient calculus, since it provides
a small, abstract formalism that models the essence of mobile code. We
provide a decision procedure for security against arbitrary intruder pro-
cesses when the honest processes can only perform a bounded number
of steps and without path constraints in communication. We show that
this problem is NP-complete.

1 Introduction

Mobile Intruder With mobile intruder we summarize the problem of executing
code from an untrusted source in a trusted environment. The most common
example is executing code from untrusted websites in a web browser (e.g., in
Javascript). We trust the web browser and surrounding operating system (at
least in its initial setup), we have a security policy for executing code (e.g.,
on access to cookies in web-browsers), and we want to verify that an intruder
cannot design any piece of code that would upon execution lead to a violation
of our security policy [12]. There are many similar examples where code from an
untrusted source is executed by an honest host such as mobile phones or virtual
infrastructures.

? The research presented in this paper has been partially supported by MT-LAB, a
VKR Centre of Excellence for the Modelling of Information Technology. The authors
thank Luca Viganò and the anonymous reviewers for helpful comments.

Related Problems The mobile intruder problem is in a sense the dual of the
mobile agents problem where “honest” code is executed by an untrusted envi-
ronment [3]. The mobile intruder problem has also similarities with the proof-
carrying-code (PCC) paradigm [17]. In PCC we also want to convince ourselves
that a piece of code that comes from an untrusted source will not violate our
policy. In contrast to PCC, we do not consider a concrete given piece of code,
but verify that our environment securely executes every piece of code. Also, of
course, we do not require code to be equipped with a proof of its security.

The Problem and a Solution The difficulty in verifying a given architecture for
running potentially malicious code lies in the fact that there is an infinite number
of programs that the intruder can come up with (given some initial knowledge).
Even bounding the size of programs (which is hard to justify in general), the
number of choices is vast, so that naively searching this space of programs is
infeasible.

Our key observation is that this problem is very similar to a problem in pro-
tocol verification and that one may use similar verification methods to address
it. The similar problem in protocol verification is that the intruder can at any
point send arbitrary messages to honest agents. Also here, we have an infinite
choice of messages that the intruder can construct from a given knowledge, lead-
ing to an infinitely branching transition relation of the system to analyze. While
in many cases we can bound the choice to a finite one without restriction [4],
the choice is still prohibitively large for a naive exploration.

In order to deal with this problem of large or infinite search spaces caused by
the “prolific” intruder, a popular technique in model checking security protocols
is a constraint-based approach that we call the lazy intruder [13, 15, 18, 7]. In
a state where the intruder knows the set of messages K, he can send to any
agent any term t that he can craft from this knowledge, written K ` t. To avoid
this naive enumeration of choices, the lazy intruder instead makes a symbolic
transition where we represent the sent message by a variable x and record the
constraint K ` x. During the state exploration, variables may be instantiated
and the constraints must then be checked for satisfiability. The search procedure
thus determines the sent message x in a demand-driven, lazy way.

A basic idea is now that code can be seen as a special case of a message and
that we may use the lazy intruder to lazily generate intruder code for us. There
are of course several differences to the problem of intruder-generated message,
because code has a dynamic aspect. For instance the code can in a sense “learn”
messages when it is communicating with other processes and use the learned
messages in subsequent actions. Another aspect is that we want to consider mo-
bility of code, i.e., the code may move to another location and continue execution
there. We may thus consider that code is bundled with its local data and move
together with it, as it is the case for instance on migration operations in vir-
tual infrastructures. As a result, when two pieces of intruder-generate code are
able to communicate with each other, then they can exchange all information
they have gathered. An example is that an intruder-generated piece of code is

able to enter a location, gather some secret information there, and return to the
intruder’s home base with this information.

Contribution The key idea of this paper is to use the lazy intruder for the
malicious mobile code problem: in a nutshell, the code initially written by the
intruder is just a variable x and we explore in a demand driven, lazy way what
this code could look like more concretely in order to achieve an attack.

Like in the original lazy intruder technique, we do not limit the choices of
the intruder, but verify the security for the infinite set of programs the intruder
could conceive. Also, like in the lazy intruder for security protocols, this yields
only a semi-decision procedure for insecurity, because there can be an unbounded
number of interactions between the intruder and the environment; this is pow-
erful enough to simulate Turing machines. However by bounding the number of
steps that honest processes can perform, we obtain a decision procedure. We
show that this problem is NP-complete.

For such a result, we need to use a formalism to model the mobile intruder
code—or several such pieces of code—and the environment where the code is
executed. In this paper we choose the mobile ambient calculus, which is an ex-
tension of common process calculi with a notion of mobility of the processes and
a concept of boundaries around them, the ambients. The reason for this choice
is that we can develop our approach very abstractly and demonstrate how to
deal with each fundamental aspect of mobile code without committing to a
complex formalization of a concrete environment such as a web-browser running
Javascript or the like. In fact, mobile ambients can be regarded as a “minimal”
formalism for mobility. Moreover, it has a well-defined semantics which is nec-
essary to formally prove the correctness of our lazy mobile intruder technique.
We therefore avoid a lot of technical problems that are immaterial to our ideas,
and neither do we tie our approach to one particular application field.

2 The Ground Model

2.1 The Ambient Calculus

We use the ambient calculus as defined by Cardelli and Gordon [9]. There is a
basic version and an extension with communication primitives; we present the
ambient calculus right away with communication and only mention that our
method also works, mutatis mutandis, for the basic ambient calculus. Fig. 1
contains the syntax of the ambient calculus, and Fig. 2 and 3 give the semantics
by defining a structural congruence ≡ and reduction relation→, respectively. In
these figures, we have already omitted some primitives that we do not consider
in this paper, namely replication, name restriction, and path constraints; we
discuss these restrictions in Sec. 2.5.

The ambient calculus is an extension of standard process calculi with the
usual constructs 0 for the inactive process, P | Q for the parallel composition
of processes P and Q, as well as input (x).P—binding the variable x in P—
and output 〈M〉. In addition we have a concept of a process running within

P,Q ::= processes M ::= capabilities
0 inactivity x variable
P | Q composition n name
M [P] ambient in M can enter M
M.P capability action out M can exit M
(x).P input action open M can open M
〈M〉 output action

Fig. 1. Considered fragment of the ambient calculus.

P ≡ P
P ≡ Q
Q ≡ P

P ≡ Q Q ≡ R
P ≡ R

P ≡ Q
P | R ≡ Q | R

P ≡ Q
M [P] ≡M [Q]

P ≡ Q
M.P ≡M.Q

P ≡ Q
(x).P ≡ (x).Q P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R) P | 0 ≡ P

Fig. 2. Structural congruence relation.

a boundary, or ambient, denoted n[P], and this ambient has the name n. For
instance one may model by m[P | v1[R] | v2[Q]] a situation where a process P
is running on a physical machine m together with virtual machines v1 and v2
that host processes R and Q, respectively. The communication rule (4) in Fig. 3
for instance says that processes can communicate when they run in parallel, but
not when they are separated by ambient boundaries. Process can move with the
operations in n and out n according to rules (1) and (2); also one process can
dissolve the boundary n[·] of another parallel running ambient by the action
open n according to rule (3). In all positions where names can be used, we may
also use arbitrary capabilities M , e.g., one may have strange ambient names
like in in n, but this is merely because we do not enforce any typing on the
communication rules, and we will not consider this in examples.

We require that in all processes where two input actions (x).P and (y).P
occur, different variable symbols x 6= y are used. This is not a restriction since
we do not have the replication operator and can therefore make all variables
disjoint initially by α-renaming.

2.2 Transition Relation

The definition of the reduction relation → in Fig. 3 is standard, however there
is a subtlety we want to point out that is significant later when we go to a
symbolic relation ⇒. The point is that, to be completely precise, the symbols
n, m, P , Q, R, P ′, and Q′ in these rules are meta-variables ranging over names

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (1)

m[n[out m.P | Q] | R] → n[P | Q] | m[R] (2)

open n.P | n[Q] → P | Q (3)

(x).P | 〈M〉 → P{x 7→M} (4)

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

P → Q

n[P]→ n[Q]

P → Q

P | R→ Q | R

Fig. 3. Reduction relation of the ambient calculus

and processes, respectively. When applying a rule, these variables are supposed
to be matched with the process they are applied to.

To work with the symbolic approach later more easily, let us reformulate this
and make explicit the matching by interpreting rules as rewriting rules. In this
view, the rules (1)–(4) of Fig. 3 define the essential behavior of the in, out, and
open operators and communication, while the other rules simply tell us to which
subterms of a process the rules may be applied. For instance, the process M.P
does not admit a reduction, even if the subterm P does. We can capture that
by an evaluation context defined as follows:

C[·] ::= context
· empty context
C[·] | P parallel context
M [C[·]] ambient context

We define that each rule r = L→ R of the first four rules of Fig. 3 (where the
processes L and R have free (meta-) variables on the left-hand and right-hand
side) induces a transition relation on closed processes as follows: S →r S

′ holds
iff there is an evaluation context C[·] and a substitution σ for all the variables
of r such that S ≡ C[σ(P)] and S′ := C[σ(R)].1

2.3 Ground Intruder Theory

We now define how the intruder can construct processes from a given knowledge
K, which is simply a set of ground capabilities (i.e. without variables). This
model is defined in the style of Dolev-Yao models of protocol verification as the
least closure of K under the application of some operators. These operators are
encryption and the like for protocol verification, and here they are the follow-
ing constructors of processes and capabilities (written with their arguments for
readability):

Σp = {0 , P | Q , M [P] , M.P , 〈M〉 , in M , out M , open M}
1 One may additionally allow here that S′ can be rewritten modulo ≡ to match the

rules of Fig. 3 precisely, but it is not necessary because when applying further tran-
sition rules, this is done modulo ≡.

K `M M ∈ K (Axiom)
K ` P P ≡ Q

K ` Q (Str.Cong.)

K `V1 T1 . . . K `Vn Tn

K `∪n
i=1Vi f(T1, . . . , Tn)

f ∈ Σp (Public Operation)

K `{x} x
x ∈ V (Use variables)

K `V P

K `V \{x} (x).P
(Input)

Fig. 4. Ground intruder deduction rules.

We here leave out the input (x).P because it is treated by a special rule.
Fig. 4 inductively defines the ground intruder deduction relation K `V T

where K is a set of ground capabilities, T ranges over capabilities and processes,
and V is a set of variables such that V = fv(T) the free variables of T . We
require that the knowledge K of the intruder contains at least one name k0, so
the intruder can always say something. For V = ∅ we also write simply K ` T .
Let V denote the set of all variable symbols. The (Axiom) and (Str.Cong.) express
that the derivable terms contain all elements of the knowledge K and are closed
under structural congruence. The (Public Operation) rule says that derivability
is closed under all the operators from Σp; here the free variables of the resulting
term are the union of the free variables of the subterms. The rule (Use variables)
and (Input) together allow the intruder to generate processes that read an input
and then use it.

As an example, given intruder knowledge K = {in n,m} we can derive for
instance K ` m[(x).in n.out x.〈open m〉].

We use the common term “ground intruder” and later “ground transition
system” from protocol verification, suggesting we work with terms that contain
no variables. However, we allow the intruder to create processes like (x).P where
P may freely contain x, and only require that the intruder processes at the end
of the day are closed terms (without free variables). We may thus correctly call
it “closed intruder” and “closed transition system” but we prefer to stick to the
established terms.

2.4 Security Properties

We are now interested in security questions of the following form: given an honest
process and a position within that process where the intruder can insert some
arbitrary code that he can craft from his knowledge, can he break a security goal
of the honest process? This is made precise by the following definition:

Definition 1. Let us specify security goals via a predicate attack(P) that holds
true for a process P when we consider P to be successfully attacked. We then also
call P an attack state. Let C[·] be an (evaluation) context without free variables
that represents the honest processes and the position where the intruder can

insert code. Let finally K0 be a set of ground capabilities. Then the question we
want to answer is whether there exist processes P0 and P such that K0 ` P0,
C[P0]→∗ P and attack(P).

We generalize this form of security questions as expected to the case where
the intruder can insert several pieces of code P0, . . . , Pk in different locations,
and they are generated from different knowledges K0, . . . ,Kk, respectively.

There are many ways to define security goals for the ambient calculus, and
we have opted here for state-based safety properties rather than observational
equivalences. In fact, the most simple goal is that no intruder process may ever
learn a secret name s. We can thus describe an attack predicate that holds true
for states where a secret s has been leaked to the intruder. To do that, let us
label all output actions 〈M〉 that are part of the intruder generated code with
superscript i like 〈M〉i. We formalize that an intruder-generated process has
learned the secret s in a state S:

leaks(S) iff 〈s〉i v S.

Here v denotes the subterm relation.
Another goal is that the intruder code cannot reach a given position of the

honest platform. This can be reduced to a secrecy goal—at the destination waits
a process that writes out a secret. A more complex goal is containment: a sandbox
may host an intruder code and give that code some secret s to compute with,
but the intruder code should not be able to get s out of the sandbox. This can
again be reduced to secrecy (of another value s′) if outside the sandbox a special
ambient k0[open s.〈s′〉] is waiting. From this ambient an intruder process (who
initially knows the name k0) can obtain secret s′ if it was able to learn s and get
out of the sandbox.

Example 1. As an example let us consider the firewall example from [9]:
Firewall ≡ w[k[out w.in k′.in w] | open k′.open k′′.〈s〉]

The goal is that the firewall can only be entered by an ambient that knows
the three passwords k, k′, and k′′ (in fact having capability open k instead of
k is sufficient). Here the ambient k[·] acts as a pilot that can move out of the
firewall, fetch a client ambient (that needs to authenticate itself) and move it into
the firewall. Suppose we run Firewall | P for some process P that the intruder
generated from knowledge K and define as an attack a state in which leaks
holds. If K includes open k, k′, k′′, then we have an attack, since the intruder can
generate the process P ≡ k′[open k.k′′[(x).〈x〉i]] from K. An attack is reached
as follows:

Firewall | P
→ w[open k′.open k′′.〈s〉] | k[in k′.in w] | P
→ w[open k′.open k′′.〈s〉] | k′[k[in w] | open k.k′′[(x).〈x〉i]]
→ w[open k′.open k′′.〈s〉] | k′[in w | k′′[(x).〈x〉i]]
→ w[open k′.open k′′.〈s〉 | k′[k′′[(x).〈x〉i]]]
→ w[〈s〉 | (x).〈x〉i]
→ w[〈s〉i]

If the knowledge K from which the intruder process is created does not include
open k (or k), k′ and k′′, then no attack is possible. Also containment of the
secret s in the firewall holds.

2.5 The Considered Fragment

For the automation, we have made some restrictions w.r.t. the original ambient
calculus. The replication operator !P ≡ P | !P together with the creation of
new names allows for simulating arbitrary Turing machines and thus prevents a
decision procedure for security. Similar to the lazy intruder in protocol verifica-
tion, we thus bound the steps that honest processes can perform and do this by
simply disallowing the replication operator for honest processes. Without repli-
cation, one of the main reasons for the name restriction operator νn.P is gone,
since we can α-rename all restricted names so that they are unique throughout
the processes. Note that the name restriction is also useful for goals of observa-
tional equivalence, which are essential for privacy goals [1, 2] but which we do
not consider in this paper.

Note that we do not bound the size of processes that the intruder creates: the
derivation relation K ` P allows him to make arbitrary use of all constructors.
It may appear as if the intruder were bounded because K ` P does not include
the replication operator either, but this is not true: an attack always consists of
a finite number of steps (as violation of a safety property) and thus every attack
that can be achieved by an intruder process with replication can be achieved by
one without replication (just by “unrolling” the replication as much as necessary
for the particular attack). The difference between unbounded intruder processes
and bounded honest processes thus stems from the fact that we ask questions
of the form: “can a concrete honest process (of fixed size) be attacked by any
dishonest process (of arbitrary size)?”

We do not need to give the intruder the ability to create arbitrary new
names. The reason is that we have no inequality checks in the ambient calculus,
i.e., no process can check upon receiving a capability n that it is different from
all names it knows (e.g. to prevent replays). Thus, whatever attack works when
the intruder uses different self-created names works similarly with always using
the same intruder name k0 that we give the intruder initially.

Finally, the extension of the mobile ambient calculus with communication
includes so-called path constraints of the form M.M ′ that can be communicated
as messages. Note that this is not ordinary concatenation of messages (which
the symbolic techniques we use can easily handle) but sequences of instructions
and only after the first has been successfully executed, the next one becomes
available, and so the paths cannot be decomposed. Since this includes several
problems that would complicate our method, we have excluded them.

3 Symbolic Ambients

We now introduce the symbolic, constraint-based approach that is at the core
of this paper. To efficiently answer the kind of security questions we formalized

in the previous paragraph, we want to avoid search the space of all processes
that an intruder can come up with. To that end, we use the basic idea of the
symbolic, constraint-based approach of protocol verification, also known as the
lazy intruder [13, 15, 18, 7].

When an agent in a protocol wants to receive a message of the form t—a
term that contains variables—we avoid enumerating the set of all messages that
the intruder can generate and that are instances of t (because this set is often
very large or infinite). Rather we remember the constraint K ` t where K is
the set of messages that the intruder knows at the point when he sends the
instance of t. We then proceed with states that have free variables, namely the
variables of t (and of other messages as they sent and received). The allowed
values for these variables are governed by the constraints. For a fixed number of
agents and sessions, this gives us a symbolic finite-state transition system. An
important ingredient of this symbolic approach is checking satisfiability of the
K ` t constraints. The complexity of the satisfiability problem has been studied
for a variety of algebraic theories of the operators involved, e.g. [10, 11]; in the
easiest theory, the free algebra, the problem is NP-complete [18]. One can check
satisfiability of the constraints on-the-fly and prune the search tree when a state
has unsatisfiable constraints. Thus during the search messages get successively
instantiated with more concrete messages in a demand-driven, lazy way. Hence
the name.

Now we carry over this idea to the ambient calculus and apply it to the
processes that were written by the intruder, i.e. lazily creating the intruder-
generated processes during the search. Recall that in the previous section we
defined security problems as reachability of an attack state from C[P0] where
C[·] is a given honest agent and K0 ` P0 is any intruder process generated from
a given initial knowledge K0. We could thus simply work with a symbolic state
C[x] where x is a variable and we have the constraint K0 ` x.

There are some inconveniences attached to using variables like this for repre-
senting processes. First, with every transition the process changes and we there-
fore need to introduce new variables and relate them to the old ones. Second,
the processes can learn new information by communication with others, so the
available knowledge changes. For these two reasons we follow a more convenient

option and simply represent an intruder generated process by writing K where
K is the knowledge from which it was created. K is a set of capabilities and in-

tuitively K represents any process that can be created from K. If a process

contains two occurrences of K for the same K, they may represent different
processes. K may contain variables because we will also handle the communi-
cation between processes with the lazy intruder technique. We thus extend the

syntax of processes P,Q of Fig. 1 by K , and we consider symbolic security
problems as reachability of a symbolic attack state (defined in Section 3.2) from

an initial state C[K] where C[·] is an honest environment that the intruder
code is running in.

A symbolic process will also be equipped with constraints which have the
following syntax:

φ, ψ ::= constraints
K `M intruder deduction constraint
x = M substitution
φ ∧ ψ conjunction

Intuitively, K ` M means that capability/message M can been generated by
the intruder from knowledge K. In fact, will not use in the symbolic constraints
K ` P for a process P , since we have no construct for sending processes and all

processes the intruder generates are thus covered by the K notation.

Semantics We define the semantics for pairs (S, φ) of symbolic processes and
constraints as a (usually infinite) set of closed processes. An interpretation I is a
mapping from all variables to ground capabilities. We extend this to a morphism
on capabilities, processes, and sets of processes as expected, where I substitutes
only free occurrences of variables. We define the model relation as follows:

I |= K `M iff I(K) ` I(M)
I |= x = M iff I(x) = I(M)
I |= φ ∧ ψ iff I |= φ and I |= ψ

The semantics of (S, φ) is the set of possible instantiation of all variables and

intruder code pieces K with closed processes:

[[P, φ]] = {Q | I |= φ ∧Q ∈ ext(I(P))}
ext(K) = {P | K ` P}

ext(x) = {x}
ext(n) = {n}

ext(f(T1, . . . , Tn)) = {f(T ′1, . . . , T
′
n) | T ′1 ∈ ext(T1) ∧ . . . ∧ T ′n ∈ ext(Tn)}

Here the Ti range over capabilities and processes and f ranges over all construc-
tors of capabilities and processes. Note the case ext(x) can only occur when
processing a subterm of a process where x is bound, so no free variables occur
in any S0 ∈ [[P, φ]].

Lazy Intruder Constraint Reduction A decision procedure for satisfiability
of K ` M constraints can be designed straightforwardly in the style of [15, 7],
since we just need to handle the constructors for capabilities, namely in, out, and
open, and we have no destructors (or algebraic properties). The only subtlety
here is that we have in general several intruder processes that may learn new
capabilities independent of each other and may be unable to exchange with each
other what they learned—a multi-intruder problem. That means we cannot rely
on the well-formedness assumption often used in the lazy intruder for protocol
verification. Suppose the knowledge K in a constraint contains a variable x, then

well-formedness says that there exists an constraint K0 `M0 with K0 ⊆ K and
M0 contains x, i.e., x is part of a term the intruder generated earlier. Without
this assumption, constraint satisfiability is more difficult to check in general [5],
however the main problem is the analysis of knowledge K in constraints. This
is not an issue because we have no analysis rules for the intruder here. For more
details, see the proof of Theorem 1.

3.1 Symbolic Transition Rules

We now define a symbolic transition relation on symbolic processes with con-
straints of the form (S, φ)⇒ (S′, φ∧ψ). Note that the constraints are augmented
in every step, i.e., all previous constraints φ remain and new constraints ψ may
be added.

We first want to lift the standard transition rules on ground processes of
Section 2.2 to the symbolic level. The idea is to replace the rule matching de-
fined above with rule unification. Recall that above we have essentially defined
a transition rule r = L→ R to be applicable to state S if S = C[σ(L)] for some
substitution σ and evaluation context C[·]. For the symbolic level we have that
S may contain free variables that need to be substituted as well.

Definition 2 (Lifting). Let (S, φ) be a symbolic state and r a rule that does
not contain any variables that occur in (S, φ) (which is achieved by α-renaming
the rule variables). Define the lifting of r to the symbolic model by a transition
relation ⇒r on symbolic states as follows: (S, φ)⇒r (S′, φ∧ψ) holds iff there is
an evaluation context C[·] and a term T such that:

– S ≡ C[T];
– σ is a most general unifier of T and L modulo ≡, i.e., σ(T) ≡ σ(L) and for

no generalization τ of σ it holds that τ(T) ≡ τ(L); and
– S′ = σ(C[σ(R)]) and ψ = eq(σ)

where eq(σ) is the formula x1 = t1 ∧ . . . xn = tn if σ = [x1 7→ t1, . . . , xn 7→ tn].

Observe σ may now replace also variables that occur in S and thus σ is applied
also to C[·]. Moreover for a given (S, φ) and rule r there can only be finitely
many most general unifiers σ as discussed in the proof of Theorem 1.

Example 2. Using the in rule, we can now make the following symbolic transi-
tion: (x[P] | y[in z.Q], φ)⇒ (z[P | y[Q]], φ ∧ x = z)

Similarly, also (x[P] | y[in z. K], φ)⇒ (z[P | y[K]], φ∧x = z) is possible

for an intruder generated piece of code K .
So far, however, the rules do not allow us to make an in transition on the

following state: (x[P] | y[K], φ) even if the intruder can generate a process of
the form in z.Q from knowledge K. We will see below how to add appropriate
rules for intruder-generated processes, so that for instance in the above state a
variant of the in-rule is applicable.

It is immediate that the described symbolic transitions are sound (i.e., all
states that are reachable in the symbolic model represent states that are reach-
able in the standard ground model). There are however not yet complete: in the
condition S ≡ C[T] above we restrict the application of rule r to contexts that

exist in S—without instantiating intruder code like K first. Giving a complete
set of rules for intruder processes is the subject of the rest of this subsection.

Intruder-written Code We now come to the very core of the approach: lazily

instantiating a piece of code K that the intruder generated from knowledge
K with a more concrete term in a demand-driven way. This is basically what is
missing after the lifting of the ground rules (Def. 2): when an “abstract” piece

of intruder-written code K prevents the application of a rule that would be

applicable when replacing K with some more concrete process P such that
K ` P . Obviously we would like to identify such situations without enumerating
all processes P that can be generated from K.

In the example x[P] | y[K] we discussed above, we have the following

possibility: if the intruder code marked K were to have the shape in x.Q, we

could apply the in rule and get to the state x[y[K] | P], assuming K ` in x.
Note the residual code (inside y[·] after the move) is again something generated
from knowledge K.

There is a systematic way to obtain all rules that are necessary to achieve
completeness, namely by answering the following question: given a symbolic
process with constraints (S, φ), any ground process S0 ∈ [[S, φ]], and a transition
S0 → S′0 what rule do we need on the symbolic level to perform an analogous
transition? Thus, we want to reach an (S′, φ ∧ ψ) (in zero or more steps) such
that S′0 ∈ [[(S′, φ ∧ ψ)]]. Of course, the rule should also be sound (i.e. all S′0 ∈
[[(S′, φ∧ψ)]] are reachable with ground transition rules from some S0 ∈ [[(S, φ)]]).
Soundness is relatively easy to see, because we need to consider rules only in
isolation. We now systematically derive rules for each case of (S, φ), S0, and
S′0 that can occur and thereby achieve a sound and complete set of symbolic
transition rules.

Recall that by the definition, for a transition from S0 to S′0 with rule r =
L→ R, we need to have an evaluation context C0[·] and a substitution σ of the
rule variables such that S0 = C[σ(L)] and S1 = C[σ(R)].

The symbolic transition rules we have defined above already handle the case
that the symbolic state S has the form S = C ′[T] where σ(C ′[cot]) = C[·] and
σ(L) ≡ σ(T) (as shown in the examples previously) where at a corresponding
position a similar rule (under renaming) can be applied without instantiating
intruder code. This includes the case that a rule variable P of type process is

unified with a piece K of intruder code.
Another case that does not require further work is when the rule match in S0

is for a subterm of intruder-generated code, i.e. that is subsumed by some K
in the symbolic term S. Here we use the fact that intruder deduction is closed
under evaluation: if K ` P and P → P ′, then also K ` P ′.

Therefore all remaining cases that we need to handle are where one or more
proper subterms of the redex σ(L) in S0 are intruder-written code that are not
trivial, i.e. represent a variable in L. We make a case distinction

– by the different transition rules for →, namely (1)–(4),
– and by how S relates to the matching subterm in S0.

In-Rule Let us mark three positions in the in rule which could be intruder-
written code and that are not yet handled:

p1︷ ︸︸ ︷
n[in m.P︸ ︷︷ ︸

p2

| Q] | m[R]︸ ︷︷ ︸
p3

→ m[n[P | Q] | R]

In fact, this notation contains a simplification: for instance looking at po-
sition p2, we could also have the variant that the intruder code is of the form

in m.P | P ′. In such a case, the intruder code piece K in the symbolic state
would not exactly correspond to a subterm of the matched rule, but only after

“splitting” K into K | K . Such a splitting rule would obviously be sound,
but we do not want to include it, and rather perform such splits only in a demand
driven way (as the following cases show)—and to keep the notation simple for
the positions in the rules. So all positions indicated here are considered under
the possibility that the intruder code itself is a parallel composition; note also
we are matching/unifying modulo ≡.

In rule with intruder code at position p1 The first case we consider is when only
at p1 is intruder code, i.e., we have some intruder code running in parallel with
an ambient m[R]; then the intruder code may be able to enter m if it has the
capability in m. As said before, we could have the case that the intruder code
first splits into two parts and only one part enters m while the other part stays
outside. This can be helpful if the intruder code does not have the capability
out m. Since the intruder code can always be trivially 0 if there is nothing to do,
it is not a restriction to make the split, so we avoid giving two rules. We obtain:

K | m[R]⇒ K | m[x[K] | R] and ψ = K ` in m ∧K ` x (5)

Here we denote with ψ the new constraints that should be added to the symbolic
successor state. x is a new variable symbol (that does not occur so far). The
reason for introducing this new symbol x is that a process cannot move without
being surrounded by an ambient n[·] construct; as the n[·] of the normal in rule

has now become part of the K code, we need to say that the intruder himself
created the ambient. As there is no obligation to pick a particular name for that
ambient, we simply leave it open and just require the intruder can construct
it from knowledge K. Note that it would be unsound in general to simplify

the right-hand side to m[K | R] because the intruder cannot get rid of the
surrounding x[·] (even though self-chosen) without another process performing
open x.

To see the soundness of this rule, consider that the intruder code matched
on the left-hand side of the rule should have the form P1 | x[in m.P2] for some
processes P1 and P2 generated from knowledge K. These are then represented

by the two K pieces on the right-hand side of the rule.

In rule with intruder code at position p2 Here, intruder code is running inside
ambient n that runs in parallel with ambient m. The intruder code can move
ambient n into m, if it has the capability in m:

n[K | Q] | m[R]⇒ m[n[K | Q] | R] and ψ = K ` in m (6)

Note that we could have again the situation that the intruder code is a parallel
composition, i.e. of the form in m.P1 | P2. However, then after the move we still
have P1 | P2 and we thus do not make the split explicit, because this case is still

subsumed by K on the right-hand side.

In rule with intruder code at position p3 Now we consider the situation that an
honest ambient n[in m.P | Q] that wants to enter an ambient m that runs in
parallel with intruder code. If the intruder code has name m, it can provide the
ambient that the honest process can then enter:

n[in m.P | Q] | K ⇒ m[n[P | Q] | K] | K and ψ = K ` m (7)

Here we have again an explicit split of the intruder process into two parts. This is
because the concrete intruder process that is partially matched by the left-hand
side may have the form m[R1] | R2, i.e. not entirely running within m, and we
thus need to denote that residual process explicitly on the right-hand side.

In rule with intruder code at several positions If the intruder code is at several
positions of the rule, we get the following situations. Obviously we do not need
to consider the combination (p1) + (p2) because (p2) is a sub-position of (p1).
The case (p1) + (p3) means that we have two intruder processes (in general with

different knowledge) to run in parallel: K | K ′ . We will show below (when
we treat communication) that what they can achieve together is to pool their

knowledge and join to one process K ∪K ′ .
What is left is the combination (p2) + (p3) which means that one intruder

process runs inside an ambient n and that runs in parallel with another intruder
process. This case we can express by the following rule:

n[K |Q] | K ′ ⇒ x[n[K |Q] | K ′] | K ′ and ψ = K ` in x∧K ′ ` x (8)

Note that the two processes that we start with may not have the same knowledge
(here K and K ′). Again, we have an explicit split on the side of the K ′-generated
process into a part that is entered by n[·] and one that remains outside. Also,
again, this rule has a new variable x for the name of the ambient that is entered
by n[·]; this name needs to be part of K ′ while K only needs to have the in x
capability.

This rule is a problem for the termination of our approach. Observe that the
left-hand side ambient n[·] occurs identically as a subterm on the right side; so
the rule “packs in” the n[·] ambient into another x[·] ambient. We will therefore
later show that we can limit the application of this rule without loosing attacks.

Out Rule For the out rule we have two positions of intruder code to consider:

m[

p1︷ ︸︸ ︷
n[out m.P︸ ︷︷ ︸

p2

| Q] | R]→ n[P | Q] | m[R]

Out Rule with intruder code at position p1 Here we have the situation that the
intruder code is within an ambient m and has the capability out m. To move
parts of the code, the intruder must put it within some ambient x (where x is
again a new variable symbol):

m[K | R]⇒ x[K] | m[K | R] and ψ = K ` out m ∧K ` x (9)

Out rule with intruder code at p2 This situation is similar except that the in-
truder code is already contained within an ambient n. We then have:

m[n[K | Q] | R]⇒ n[K | Q] | m[R] and ψ = K ` out m (10)

This subsumes also the case that there is intruder code at both in m and in n
(i.e. also within what is matched as R here).

Open-Rule The open rule has also just two positions for intruder code, the
opening code and the opened code:

open n.P︸ ︷︷ ︸
p1

| n[Q]︸︷︷︸
p2

→ P | Q

The rules for the intruder code at p1 and at p2, respectively are immediate:

K | n[Q]⇒ K | Q and ψ = K ` open n (11)

open n.P | K ⇒ P | K and ψ = K ` n (12)

The case (p1) + (p2) is again the case of two parallel communicating processes
that is treated next.

Communication Rule Again there are two possible positions where intruder
code could reside, namely as the sender or as the receiver:

(x).P︸ ︷︷ ︸
p1

| 〈M〉︸︷︷︸
p2

→ P [x 7→M]

Communication with the intruder receiving The intruder can receive a message
M from an honest process running in parallel:

K | 〈M〉 ⇒ K ∪ {M} (13)

Here the resulting intruder process has the message M simply added to its
knowledge. The idea is that the remaining process can behave like any process
that the intruder could have created, if he initially knew K ∪ {M}. To see that
this is sound, consider that the intruder process would have the form (x).P for
a new variable x that can occur arbitrarily in P . Thus if this process reads M ,
the resulting P [x 7→ M] is is a process that can be generated from knowledge
K ∪ {M} if P was created from knowledge K.

Communication with the intruder sending For the case that intruder code sends
out a message that is received by an honest process, we can be truly lazy :

(x).P | K ⇒ P | K and ψ = K ` x (14)

Here, we do not instantiate the message x that is being received, we simply
add the constraint that x must be something the intruder can generate from
knowledge K. This is in fact the classic case of the lazy intruder—postponing
the choice of a concrete message that the intruder sends to an agent. Since the
intruder knowledge contains at least one name, there is always “something to
say”, but what it is will only be determined if the variable x gets unified later
upon applying some rule (which can render the K ` x constraint unsatisfiable).

Communication with the intruder both sending and receiving Finally we have
the rule that was mentioned above already: when two intruder processes meet
they can exchange their knowledge and work together further on:

K | K ′ ⇒ K ∪K ′ (15)

This is sound because every k ∈ K \ K ′ can be sent from the first to the

second process until we have K | K ∪K ′ and then the second part sub-

sumes the first, so we can simplify it to K ∪K ′ . Observe that this rule can
also be used when we restrict ourselves to the pure ambient calculus without
communication: we then simply have two processes in parallel with capabilities
K and K ′, respectively, and what they can achieve is anything a process with
capabilities K ∪K ′ can achieve (even without communication).

As part of the proof of Theorem 1, we formally show that the set of rules
we gave for the symbolic transition system are sound and complete, i.e., they
represent exactly the reachable states of the original ground transition system.
This proof is found in the extended version of this paper [16], but our systematic
development of the rules (i.e., covering each possible case) in this subsection
serves as a proof sketch for completeness (and the soundness is straightforward
to check for each rule).

3.2 Security Properties in the Symbolic System

Before we can state our main result, we need to formally define the properties
we can check for in the symbolic system. Right now, we limit ourselves to se-
crecy goals as a very basic property, and leave the extension to further security
properties for future work.

In general for any property that we want to check, we need to be able to
express them for both ground and symbolic states, and these definitions for
ground and symbolic states must correspond to each other:

Definition 3. We say that a predicate attack(S0) on closed processes S0 and
a predicate ATTACK(S, φ) on symbolic processes (S, φ) correspond iff for every
(S, φ) it holds that

ATTACK(S, φ) iff exists S0 ∈ [[S, φ]] such that attack(S0)

Recall that the attack predicate for secrecy on the ground level was defined as
leaks(S0) iff 〈s〉i v S0. Define the corresponding predicate on the symbolic level:

LEAKs(S, φ) iff exists K such that K v S and K ` s ∧ φ is satisfiable.

It is immediate that leaks and LEAKs correspond: given any (S, φ) then

LEAKS(S, φ) iff exist K, I. K v S, I |= K ` s ∧ φ
iff exist K, I. K v S, I(K) ` s, I |= φ
iff exist I, C[·]. C[〈s〉i] ∈ ext(I(S))
iff exists S0. S0 ∈ [[S, φ]] and leaks(S0)

3.3 Main Result

We can now use the symbolic transition system that we have developed using the
lazy intruder technique to give a decision procedure for secrecy in our fragment
of the ambient calculus without bounding the intruder.

Theorem 1. The following problem is NP-complete. Given

– a name s,
– a closed process C0[·] (in our the supported fragment),
– and a finite set K of ground capabilities as initial intruder knowledge;

exist P and S0 such that K ` P , C0[P]→∗ S0 and leaks(S0)?

Proof. The proof consists of several parts:

1. We first show that the symbolic transition system is sound and correct in
that it represents the same set as the ground one, i.e.

{S′0 ∈ [[S′, φ′]] | (S, φ)⇒∗ (S′, φ′)} = {S′0 | S0 ∈ [[S, φ]], S0 →∗ S′0} .

The soundness can be proved for each rule individually, while for complete-
ness we show that for every S0 → S′0 we can find a corresponding rule on
the symbolic level.

2. We show that satisfiability of the deduction constraints φ is NP-complete;
from this we further derive that our main problem of attack state reachability
is NP-hard.

3. It follows that there is a P and S0 such that K ` P , C0[P] →∗ S0 and

leaks(S0) iff there is a symbolic state (S′, φ′) such that (C0[K], true) ⇒∗
(S′, φ′) and LEAKs(S′, φ′).

4. We show how to bound the exploration of symbolic state space such that we
find an attack if one is reachable at all and such that the length of traces in
the restricted space is bounded by a polynomial. It follows that the attack
reachability problem is in NP.

Soundness First, we show the soundness of the lifting of every standard rule
r = L→ R to the symbolic approach of Def. 2. Let (S, φ)⇒r (S′, φ∧ψ). Consider

any interpretation I |= φ ∧ ψ. Then I(S) →r I(S′) if we treat all K terms

as normal closed processes. Instantiating these K terms with arbitrary closed
processes P a K we obtain two closed processes S0 ∈ [[S, φ]] and S′0 ∈ [[s′, φ∧ψ]]
such that S0 →r S

′
0. Since we chose an arbitrary interpretation with I |= φ ∧ ψ

and an arbitrary extension of the K , [[S′, φ ∧ ψ]] contains only states that are
indeed reachable from some S0 ∈ [[S, φ]].

For what concerns the other rules, we can reduce them to standard cases by

instantiating the intruder processes K in an appropriate way. For instance,
consider again the rule (5):

K | m[R]⇒ K | m[x[K] | R] and φ = K ` in m ∧K ` x

Consider that we instantiate in the left-hand side of the rule the intruder code
K with the code of the form P1 | x[in m.P2] for some processes P1 and P2.

This requires thatK ` P1 | x[in m.P2], which in turn requires that fromK the in-
truder can derive P1, P2, x and in m. Then we have the process P1 | x[in m.P2] |m[R]
and can apply the symbolic version of the standard in rule to get to the pro-
cess P1 | m[x[P2] | R]. Since P1 and P2 are processes generated from K, we have

K |m[x[K] | R] i.e. the right-hand side of (5) with the additional constraints
K ` in m and K ` x.

Similarly we have the other rules (displaying only the left-hand side with
intruder code instantiated appropriately, and the Pi are intruder-generated pro-
cesses):

(6) n[in m.P1 | Q] | m[R]

(7) n[in m.P | Q] | m[P1] | P2

(8) n[in x.P1 | Q] | x[P2] | P3.

(9) m[x[out m.P1] | P2 | R]

(10) m[n[out m.P1 | Q] | R]

(11) open n.P1 | n[Q]

(12) open n.P | n[P1] | P2

(13) (x).P1 | M where now K `{x} P1, i.e. P1 is a process with a free variable x
that will get instantiated with the capability M . It follows that K ∪ {M} `
P1[x 7→M], hence the result can be written as K ∪ {M} .

(14) Consider the reduction (x).P | 〈M〉 | P1 → P [x 7→ M] | P1. In rule (14) we
have this situation where 〈M〉 | P1 a K is the intruder process; thus K `M .
This can then be represented by the transition

(x).P | K → P | K

where the right-hand side has the constraint K ` x, because according to
the semantics all occurrences of x in P on the right-hand side are then
instantiated with some term M that can be generated from K. Note also
that we required above that for all read operations, the variable names are
disjoint, i.e., in all other processes outside P the variable x does not occur
(where it in general may not be bound to the same term M).

(15) Simply observe that from K ` P1 and K ′ ` P2 follows K ∪K ′ ` P1 | P2.

Completeness We now need to show the following: given a symbolic state
(S, φ), a represented ground state S0 ∈ [[S, φ]], and a transition S0 → S′0, we can
reach a symbolic state that covers S′0: (S, φ)⇒∗ (S′, φ∧ψ) with S′0 ∈ [[S′, φ∧ψ]].

To make notation easier for this proof, let us assume that we replace all

pieces of intruder code K in S be with distinguished variables like P; also let
us extend interpretations to these variables, i.e. such that I(P) = P for a closed
process P a K if K is the intruder knowledge associated with P. Let us thus fix
an interpretation I with S′0 = I(S).

We now have that S′0 ≡ C[σ(L)] and S′0 = C[σ(R)] for some rule L → R,
substitution σ, and evaluation context C[·]. Before we distinguish the cases of
the different rules, let us first consider how the position of the match σ(L) relates
to S:

– Outside all intruder code: a corresponding redex exists in S without in-
stantiating any of the intruder variables P. Formally: S ≡ C1[T] where
I(C1[·]) = C[·] and I(T) = σ(L). Therefore the lifted version of (L→ R) to
the symbolic system (Def. 2) is applicable to (S, φ), covering the transition
to S′0.

– Within intruder code: the redex corresponds in S to a position within an
intruder process P. Formally C[·] = C0[C1[·]] for some contexts C0[·] and
C1[·], S ≡ C2[I(P)]) for some variable P and context C2[·] with I(C2[·]) =
C0[·]. Thus, this is an internal deduction of an intruder process P = I(P)
i.e. S′0 = C0[P ′] for some P → P ′. The idea is that in this case [[S, φ]] also
covers S′ because intruder deduction is closed under →, i.e., from K ` P
and P → P ′ follows K ` P ′. To see this, one simply shows that from K ` L
follows K ` R for every ground rule L → R. For instance, for the in rule,
we have: K ` n[in m.P | Q] | m[R] can only hold true iff from K we can
derive n, m, P , Q, and R. Then also K ` m[n[P | Q] | R]. The only tricky
rule is (4): K ` (x).P | M can only hold if K `{x} P and K `M . Therefore

replace in the proof of K `{x} P all occurrences of x with M to obtain the
proof K ` P{x 7→M}.

– Overlapping with intruder code: in all other cases the redex corresponds in S
to a position that is neither entirely intruder code nor entirely honest code.
(It may however be of the form P | P′.) The rest of the completeness proof
is concerned with these cases.

Let us now focus on the smallest subterm of S that corresponds to the redex,
i.e. S ≡ C1[T] such that σ(L) v I(T). Note that T itself may not be the redex,
e.g. we could have P | m[R] and I(P) = P0 | n[in m.P1] so only part of T (but
not a proper subterm of T) is the redex. We distinguish by the different rules.

In-Rule We have here the situation that I(T) has a subterm of the form
n[in m.P | Q] | m[R] (modulo ≡) while process variables in T prevent the ap-
plication of this rule. We thus have one of the following situations in the current
state S:2

– T ≡ n[P | Q] | m[R] and I(P) = in m.P1 | P2 (where P2 = 0 is possible.)
This case is thus covered by (5).

– T ≡ P | m[R] and I(P) = P0 | n[in m.P1 | P2]. This case is covered by (6).
– T ≡ n[in m.P | Q] | P where I(P) = m[P1] | P2: covered by (7).
– T ≡ P | P′: covered by (15).
– T ≡ n[P | Q] | P′ where I(P) = in x.P1 and I(P′) = x[P2] | P3: this is

covered by the rule (8).

Out Rule Here I(T) w m[n[out m.P | Q]]. We thus have one of the following
situations in the current state S:

– T ≡ m[P | R] and I(P) = n[out m.P0 | P1]: (9) is applicable.
– T ≡ m[n[P | Q] | R] and I(P) = out m.P0 | P1: (10) is applicable.

Open-Rule Here I(T) w open n.P | n[Q]. We thus have one of the following
situations in the current state S:

– T ≡ P | n[Q] and I(P) = P0 | open n.P1: covered by (11).
– T ≡ open n.P | P and I(P) = n[P1] | P2: covered by (12).
– T ≡ P | P′ where I(P) = openn.P1 and I(P′) = n[P2] | P3 is covered by (15).

Communication Rule Here I(T) w (x).P | 〈M〉. We thus have one of the
following situations in the current state S:

– T ≡ P | 〈M〉 and I(P) = (x).P1 | P2 Let K be the knowledge of P, i.e.
I |= K ` P. Thus I(K) `{ x}P1. Therefore I(K ∪ {M}) ` P1{x 7→ I(M)}.
Thus I |= K ∪ {M} ` P1{x 7→M}. Thus, covered by (13).

2 Slight simplification: instead of using new variables n′, m′, P ′, Q′, and R′ for the
subterms of T that correspond to the rule variables n, m, P , Q, respectively, after
the match, we directly use the rule variables.

– T ≡ (x).P | P where I(P) = 〈(〉M) | P1. Since x cannot occur in the rest, and
I |= K `M for the knowledge K of P, let I ′ = I{x 7→M} and let (S′, φ∧ψ)
be the state that results from (14); then I ′(S′) = S′0 and I ′ |= φ ∧ ψ.

– T ≡ P | P′ and I(P) = (x).P1 | P2 and I(P′) = 〈M〉 | P3. Let K be
the knowledge for P and K ′ the knowledge for P′. Then the resulting closed
process P1{x 7→M} | P2 | P3 can be generated from I(K∪K ′), thus covered
by (15).

Constraint Satisfiability is NP-Complete We now turn to the constraints
of the form K ` M that we use in the symbolic approach. It is well-known
that satisfiability of such constraints in protocol verification in an NP-complete
problem [18]. For the lazy mobile intruder, the class of constraints we get is
incomparable to that of protocol verification, as it is in one regard simpler and
in another more general. First, the aspect where it is simpler is that we have
here only constructors on the intruder knowledge, namely in, out, and open
(and the constructors of processes), but no destructors or analysis rules, i.e. the
intruder has no operation to obtain a subterm from a term he knows. Second,
in one aspect our problem is more general because the intruder process may
split into several processes that learn independently and therefore the standard
well-formedness assumption does no longer hold. This assumption says that the
intruder knowledge monotonically grows and variables that occur on the knowl-
edge side of a constraint must originate on the right-hand side of an earlier con-
straint (i.e., one with smaller knowledge). Intuitively, if the intruder knowledge
contains a variable than it represents a choice that the intruder made earlier.
As an example that non-well-formed constraints can arise from lazy mobile in-

truder, consider the process: K | (x).in n.〈x〉 | n[K ′], which can reach the

state K | n[K ′ ∪ {x}] and the constraint K ` x. Here we have a variable

x in the knowledge of a process K ′ ∪ {x} that does not necessarily originate

from a subset of K ′ (if K is not a subset of K ′).

Containment in NP There is a more general result, i.e. that satisfiability a larger
class of non-well-formed constraints is in NP [5, 14]. We anyway briefly sketch
the proof for our class, because it works in a different way that is the basis for
a more efficient implementation.

The idea is to give a simple proof calculus for satisfiability of the constraints
that the lazy mobile intruder can generate. Note that all terms in these con-
straints are solely built from constants (names), variables, and the operators in,
ou, and open. Also we have variable origination: we can order the constraints
such that every variable in a knowledge K of a constraint first occurs in the term
t to generate in an earlier constraint.

The rules of our proof calculus have the form

ψ

φ where ψ |= φ holds (soundness
of the rules). We use them backwards: to show that φ is satisfiable, one possible
proof is to show that ψ is satisfiable.

K ` t ∧ φ
K ` f t ∧ φ (Generate) f ∈ {in, out, open}

σ(φ) ∧ eq(σ)

K ` t ∧ φ (Unify) s ∈ K, t /∈ V, σ ∈ mgu(s, t)

where mgu is the set of most general unifiers of s and t (which is either singleton,
or empty—then the rule is not applicable). Intuitively, the first rule says that for
composing f t, it is sufficient to compose t; and the second rule that whenever
the term t to compose is unifiable with a known term s, nothing is left to do in
any model that is an instance of the unifier σ. The soundness of the rules (i.e.
the assumption implies the conclusion) is straightforward.

Let us call a constraint simple if t ∈ V for every T ` t conjunct. Simple
constraints are always satisfiable (e.g., instantiate all variables with the initially
known name k0). Note neither rule is applicable to a simple constraint.

For completeness we thus show: any satisfiable constraint is either simple or
admits the application of a rule so that the resulting constraint is still satisfiable.
To that end consider a satisfiable constraint φ and a model I |= φ. For every
conjunct T ` t we can label t with a ground derivation of I(t) from I(T). Let
now T ` t be a conjunct of φ where t = f t′. It is straightforward that depending
on the last derivation step for I(t) we can either apply the unify or generate rule
and label the resulting constraints again according to I, i.e., I is still supported
by the resulting constraint.

The length of a derivation is polyniomially bounded: let (k,w) be a measure
where k is the number of variables in a constraint and w is the sum of the weight
of all terms in the constraint (variables and constants having weight 1, and each
operator (in, out, open) increases the weight by 1). Define (k,w) > (k′, w) iff
k > k′ or (k = k′ and w > w′). Then every application of a step reduces the
measure (k,w) (either substituting a variable or reducing terms). The increase
of the second component for every reduction of k is polynomial because we have
only a unary operator. From the calculus we thus obtain a non-deterministic
polyniomal time algorithm for checking satisfiability of the constraints by the
lazy mobile intruder.

NP-hardness NP-hardness of the constraint satisfaction problem is shown by
reduction of satisfiability of Boolean formulae. Let F be Boolean formula with
n variables x1, . . . , xn in conjunctive normal form.

We translate this formula into a lazy mobile intruder constraint as follows.
We first introduce the variables px1, . . . , pxn and nx1, . . . , nxn and the following
constraints for every 1 ≤ i ≤ n:

{t, f} ` pxi ∧ {t, f} ` nxi ∧ {pxi, nxi} ` t ∧ {pxi, nxi} ` f

Here, the names t and f represent true and false, and we thus ensure that each
pxi and nxi is either instantiated with t or f , and that for each i not both
pxi and nxi can be t. Then it is now straightforward to encode each clause

C = L1 ∨ . . .∨Lk, where each literal Lj is either xi or ¬xi for some variable xi.

Let L̂j = pxi if Lj = xi and L̂j = nxi if Lk = ¬xi:

{L̂1, . . . , L̂k} ` t

This ensures that at least one of the l̂i is t in the original choice. The conjunction
of all the constraints produced this way has thus a solution if the original formula
F has. Note that this also holds if every intruder knowledge initially contains
the constant k0.

Reachability NP-hard Note that NP-hardness of the constraint satisfaction
problem does not directly prove the main problem is NP-hard. In fact, we can
show that even without constraint reduction, just by the non-determinism of
ambients, we have NP-hardness. To see that consider again a boolean formula
F = C1 ∧ . . . ∧ Cm in conjunctive normal form and variables x1, . . . , xn. Let us
first introduce names t1, . . . , tn, f1, . . . , fn where ti later shall mean xi is true,
and fi shall mean that xi is false. We translate F into the following process:

(| ni=1w[〈ti〉 | 〈fi〉 | (xi).k0[out w.〈xi〉]]) | {k0} | Ĉ1 | . . . | Ĉm

where Ĉj is the translation of clause Cj = Lj,1 ∨ . . . ∨ Lj,lj :

Cj = w[〈L̂j,1〉 | . . . | 〈L̂j,lj 〉 | (yj).kj−1[out w.yj [〈kj〉]]]

where L̂j,l =

{
tk if Lj,l = xk

fk if Lj,l = ¬xk
.

Now, the first parallel processes non-determinstically choose each xi to be-
come either ti or fi; after the out w, the intruder can thus learn these values
since he can open k0. Next, the Ĉk clauses non-deterministically choose one of
the literals in Ck and instantiate yk with ti if the chosen literal is positive, or
fi if the chosen literal is negative. Among the possible instantiations of yk is a
value that the intruder knows iff the instantiations of the xi makes one of the
literals true, and thus also the clause Ck. Now the process forms an ambient
of name kj−1 that moves out of the w ambient; this ambient then has the form
kj−1[yj [〈kj〉]]. Thus, if the intruder knows kj−1 and yj , he can obtain kj . Initially
he knows k0, therefore he can get successively all the ki iff the xi form a satisfying
solution (and each Ĉk chooses an appropriate literal for yj as explained above).
Thus there is a reachable state in which the intruder learns the last name km
iff F is satisfiable. Thus, even for an intruder who does not move and who only
passively listens, the problem is NP-hard.

Termination The symbolic transition system we have described is finitely
branching, i.e., every state has finitely many successor states. For this, note that
unification modulo ≡ is finitary (there is a finite set of most general unifiers in
each case). For this, recall that parallel composition is associative, commutative

and has a neutral element, for which unification is known to be finitary [6]. It
is straightforward to extend this to a finitary unification algorithm for ≡, since
the other constructs like n[·] can be treated as free symbols.

However, the symbolic transition system it can still have infinite depth, i.e. it
contains infinite traces of the form (S1, φ1)→ (S2, φ2)→ In order to obtain
a decision procedure, we need to show that we can safely stop at a depth bound
D, i.e., if there no attack states within depth D, then there are none at all.
Showing that D is polynomial in the size of the problem implies that the entire
problem is in NP.

For a given problem instance, let N be the maximum number of steps honest
processes can make (e.g. in n.m[(x).open x] has N = 3). Let l be the number of
locations n[·] in the initial honest process. We prove that the depth D we need
to consider can be bounded by O(k ·N · l). In fact, rather than giving a precise
depth it is more convenient to define when we can stop searching and show that
this is bounded by O(N · l2).

We first consider all the symbolic rules that create a new ambient x[·],
namely (5),(8), and (9). Observe that in any (even infinite) trace at most N
times any such x[·] can be entered, exited, or opened by an honest agent per-
forming in M , out M , or open M and unifying M with x. Note that in several
cases the intruder needs to build such a structure for moving his own code. If we
thus look at where in a symbolic trace these variables x can get instantiated, it
can be at most N times caused by an honest agent; also the intruder can enter,
exit, or open its own code. Thus, analogous transitions would also work if all
the variables x that are not instantiated by the honest agents were instantiated
with a name k0 that is contained in the initial intruder knowledge. This means,
we could basically make the same transitions, but the choice of some intruder
names would be k0. Obviously that makes no difference to the LEAKs predicate,
but other attack predicates may be affected. Moreover, the k0[·] ambients only
help the intruder for moving in or out of an ambient, i.e. all other occurrences
of k0[·] are redundant and one can find a simpler leak without them.

With this observation we can tame the effects of rule (8): we can limit it to
N applications in any trace, because all other occurrences can only be necessary
for a transition where the intruder needs to surround code by a new ambient in
order to move in or out of somewhere, i.e., what is already covered by the rules
(5) and (9).

These rules (5) and (9) are also somewhat problematic because of the po-
tentially unbounded creation of new ambients. Let us therefore look at the case
that an intruder ambient enters (and similar, exits) another ambient that already

contains intruder code. The first case is K | m[K ′ | R]. The rule (5) would

create the state S = K | m[x[K] | K ′ | R] with constraints K ` x, in m.
Using open and communicate instantiating x with k0 (that is also in K ′), we

can get to the state S′ = K | m[K ∪K ′ | R]. Since K ∪K ′ ⊇ K, this still
entails the state S and it is thus no restriction to go right to S′, i.e. define a new

rule

K | m[K ′ | R]⇒ K | m[K ∪K ′ | R] and φ = K ` in m

and to say that the original (5) cannot be applied if this one can. Note that in
this variant, only the intruder knowledge inside the m ambient is increased.

A similar case is we have in the state K | m[y[K ′] | R] with a vari-

able y. In this case our (5) rule gives S = K | m[x[K] | y[K ′] | R]
and K ` in m, x. Here the procedure is more complicated: with (9) we get

to the term K | m[x[K] | z[K ′] | y[K ′] | R], with (6), (11), and (15)

we get K | m[x[K ∪K ′] | y[K ′] | R] and again with the same rules to

S′ = K | m[y[K ∪K ′] | R]. Again S′ subsumes the state S. We can thus
further have the rule

K | m[x[K ′] | R]⇒ K | m[x[K ∪K ′] | R] and φ = K ` in m

that is applied instead of (5) whenever possible, just monotonically increasing

the knowledge at K ′ .
Similarly for the out rules we thus have two special rules (with similar justi-

fications) that must be taken instead of (9) whenever possible:

m[K | R] | K ′ ⇒ m[K | R] | K ∪K ′ and K ` out m
m[K | R] | x[K ′]⇒ m[K | R] | x[K ∪K ′] and K ` out m

Note that this four new rules can always be applied greedily: it never hurts to
increase the intruder knowledge (i.e. the semantics of a symbolic state increases).
Moreover the application of these greedy rules is limited, since there are only l
locations of honest agents, and at most the same number created by the intruder,
and the intruder knowledge at each location can hold at most o ≤ N capabilities
(that can be communicated by honest processes).

The rules (7), (11), (12), (13), and (14) as well as the lifting of the standard
rules (Def. 2) can be applied at most N times in total since they “consume” an
action of an honest process. The only rules that can still potentially be applied
infinitely many times are rules (6) and (10). However as they are just restruc-
turing the process, not removing or introducing constructs, these two rules can
be applied in a sequence only a l times before repetition occurs (i.e. a state that
could be reached with at most l transitions).

Since we can bound all transitions except (6) and (10) by O(N · l), and we
may have up to l steps in between each of them, we arrive O(N · l2).

3.4 Examples

Let us reconsider the firewall example from before, and see how a lazy intruder
process would find the attack. In contrast to the original specification, we leave

open how the intruder process P exactly works, and rather specify that it is
some process generated from the initial knowledge K = {in k, k′, k′′}:

(Firewall | K , true)

⇒ (w[open k′.open k′′.〈s〉] | k[in k′.in w] | K , true) by rule (2)

⇒ (w[open k′.open k′′.〈s〉] | k′[k[in w] | K] | K ,φ1) by rule (7)

⇒ (w[open k′.open k′′.〈s〉] | k′[in w | K] | K ,φ2) by rule (11)

⇒ (w[open k′.open k′′.〈s〉 | k′[K]] | K ,φ2) by rule (1)

⇒ (w[open k′′.〈s〉 | K] | K ,φ2) by rule (3)

⇒ (w[〈s〉 | K] | K ,φ3) by rule (12)

⇒ (w[K ∪ {s}] | K ,φ3) by rule (13)

where we have collected the constraints φ1 = K ` k′, φ2 = φ1 ∧ K ` open w,
and φ3 = φ2 ∧ K ` k′′. These constraints are satisfiable. This corresponds to
the attack we had described on the ground model, only here we found it lazily
during the search, rather than specifying the process up front. Another difference

to the original trace is that we have an intruder process K remaining at the
outermost level the entire time. This reflects that the intruder process could be
a parallel composition of two parts only one of which enters the firewall—the
position outside the does not have to be “given up” by the intruder.

In the case that learning the secret s alone is not the goal, but to get it
out of the firewall. Indeed we can apply rule (11) to the last reached state to

get (K ∪ {s} | K ,K ` open w ∧ φ3). (Further, using the (15) rule, the two

intruder processes can merge again, yielding K ∪ {s} .) The new constraint

K ` open w however is not satisfiable, so this symbolic state has an empty
semantics (no attack is realizable in this way) and can be discarded from the
search. In fact, there is no reachable symbolic state with satisfiable constraints
where the secret s is in an intruder process that is not below w[·].

Ambient in the Middle The previous example has basically identified how an
honest client (authenticating itself by the knowledge of the keys k, k′, and k′′)
is supposed to behave, namely Client ≡ k′[open k.k′′[C0]] for some process C0.
We now consider the case that such an honest client and firewall execute in the
presence of an intruder process K:

(Firewall | Client | K , true)

⇒ (Firewall | k′[open k.k′′[C0] | x[K]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k[in k′.in w] | k′[open k.k′′[C0] | x[K]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k′[k[in w] | open k.k′′[C0] | x[K]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k′[in w | k′′[C0] | x[K]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉 | k′[k′′[C0] | x[K]]] | K ,φ1)

⇒ (w[open k′′.〈s〉 | k′′[C0] | x[K]] | K ,φ1)

⇒ (w[〈s〉 | k′′[C0] | K] | K ,φ2)

where φ1 = K ` in k′ ∧ K ` x and φ2 = K ` in k′ ∧ K ` k′′. Note that in

the one but last step we apply the open action to the intruder ambient x[K]
(unifying x = k0). Thus, the intruder can inject code into the firewall (without
being isolated by x[·], and so he can obtain s) if he knows only in k′ and k′′.
The open k capability is not needed, since this is done by the client after the
intruder has infected it.

A Communication Example As an example where capabilities are communicated

consider the process n1[K1 | n2[in n3.〈in n4〉]] | n5[n4[K2 | 〈out n5〉]] where

K1 = {n3, open n2} and K2 = {open n1}. Let the goal be that there is no
intruder process who will know both open n1 and open n2. The lazy mobile
ambient technique finds an attack as follows:

(n1[K1 | n3[K1 | n2[〈in n4〉]]] | n5[n4[K2 | 〈out n5〉]], true)
⇒ (n1[K1 | n3[K1 | 〈in n4〉]] | n5[n4[K2 | 〈out n5〉]], φ1) by rule (11)

⇒ (n1[K1 | n3[K1 ∪ {in n4}]] | n5[n4[K2 | 〈out n5〉]], φ1) by rule (13)

⇒ (n1[K1 | K1 ∪ {in n4}] | n5[n4[K2 | 〈out n5〉]], φ2) by rule (11)

⇒ (n1[K1 ∪ {in n4}] | n5[n4[K2 | 〈out n5〉]], φ2) by rule (15)

⇒ (n1[K1 ∪ {in n4}] | n4[K2] | n5[0], φ2) by rule (2)

⇒ (n4[K2 | n1[K1 ∪ {in n4}]] | n5[0], φ3) by rule (6)

⇒ (n4[K2 | K1 ∪ {in n4}] | n5[0], φ4) by rule (11)

⇒ (n4[K2 ∪K1 ∪ {in n4}] | n5[0], φ4) by rule (15)

where we the following satisfiable constraints: φ1 = K1 ` open n2, φ2 = φ1∧K1 `
open n3, φ3 = φ2∧K1∪{in m4} ` in m4, and φ4 = φ3∧K2 ` open n1. We have
reached a state where an intruder process knows both open n1 and open n2.

4 Conclusions

We have transferred the symbolic lazy intruder technique from protocol verifica-
tion to a different problem: an intruder who creates malicious code for execution
on some honest platform. This gives us an efficient method to check whether the
platform achieves its security goals for any intruder code, because we avoid the
naive search of the space of possible programs that the intruder can come up
with. Instead we determine this code in a demand-driven, lazy way.

Our approach is closest to a model-checking technique. In contrast to static
analysis approaches, it works without over-approximation, but requires a bound-
ing of the number of steps that honest agents can perform. The symbolic nature
however allows to work without any bound on the size of programs that the
intruder can generate. This is similar to the original use of the lazy intruder in
protocol verification [13, 15, 18, 7].

We have used a fragment of the mobile ambient calculus with communication
as a small and succinct formalism to model both the platform and the mobile

code [9]. We have omitted the replication operator in order to bound honest pro-
cesses (though not the intruder). We have omitted the path constraints because
they induce considerable complications for our approach and leave their integra-
tion for future work. We also plan to consider the extension of boxed ambients
introduced by Bugliesi et al. [8] which add interesting means for access control
and communication. Moreover it is possible to extend the ambient calculus and
our method to support cryptographic operators (like encryption and signing) in
the communication of processes.

We believe that the approach we have presented here is generally applicable
to the formal analysis of platforms that host mobile code. The key elements can
be summarized as follows. First, the code can be lazily developed by exploring
at each step which operations can be performed next and what data is needed.
This data is handled lazily as well. Second, the intruder code has a notion of
knowledge that it can use in further operations and communications, and every
received message adds to this knowledge. Third, the code may be able to move to
other locations; two pieces of intruder code that meet then pool their knowledge.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In ACM symposium on principles of programming languages, pages 104–115, 2001.

2. M. Abadi and C. Fournet. Private Authentication. Theoretical Computer Science,
322(3):427 – 476, 2004.

3. J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security
for mobile code. In IEEE Symposium on Security and Privacy, pages 2–11, 2001.

4. M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In
FSTTCS, pages 376–387, 2007.

5. T. Avanesov, Y. Chevalier, M. Rusinowitch, and M. Turuani. Intruder deducibility
constraints with negation. CoRR, abs/1207.4871, 2012.

6. F. Baader. Unification in commutative theories, hilbert’s basis theorem, and
gröbner bases. J. ACM, 40(3):477–503, 1993.

7. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for
security protocols. International Journal of Information Security, 4(3):181–208,
2005.

8. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: The
calculus of boxed ambients. ACM Trans. Program. Lang. Syst., 26(1):57–124, 2004.

9. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

10. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In
FST TCS’03, LNCS 2914, pages 124–135, 2003.

11. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen. Symbolic protocol analysis
for monoidal equational theories. Inf. Comput., 206(2-4):312–351, 2008.

12. T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Browser model for security analysis of
browser-based protocols. In ESORICS, pages 489–508, 2005.

13. A. Huima. Efficient infinite-state analysis of security protocols. In Proc. FLOC’99
Workshop on Formal Methods and Security Protocols, 1999.

14. A. Kassem, P. Lafourcade, Y. Lakhnech, and S. Mödersheim. Multiple independent
lazy intruders. In HotSpot 2013, 2013. To Appear.

15. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proceedings of CCS’01, pages 166–175. ACM Press,
2001.

16. S. Mödersheim, F. Nielson, and H. R. Nielson. Lazy mobile intruders (ex-
tended version). Technical Report IMM-TR-2012-13, DTU Informatics, 2012.
imm.dtu.dk/ samo.

17. G. C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.
18. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of

sessions, composed keys is NP-complete. Theor. Comput. Sci., 1-3(299):451–475,
2003.

