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Abstract. This paper defines the “ultimate” formal semantics for Alice
and Bob notation, i.e., what actions the honest agents have to perform,
in the presence of an arbitrary set of cryptographic operators and their
algebraic theory. Despite its generality, this semantics is mathematically
simpler than any previous attempt. For practical applicability, we intro-
duce the language SPS and an automatic translation to robust real-world
implementations and corresponding formal models, and we prove this
translation correct with respect to the semantics.

1 Introduction

Alice-and-Bob notation is a simple and succinct way to specify security pro-
tocols: one only needs to describe what messages are exchanged between the
protocol agents in an unattacked protocol run. However, it has turned out to be
surprisingly subtle to define a formal semantics for such a notation, i.e., defin-
ing an inference system for how agents should compose, decompose and check
the messages they send and receive. Such a semantics is necessary in order to
automatically generate formal models and implementations from Alice-and-Bob
specifications. However, even modeling messages in the free algebra, defining the
semantics has proved far from trivial [11–13, 20, 22, 23]. To make matters worse,
many modern protocols rely, for instance, on the Diffie-Hellman key agreement
where the algebraic properties of modular exponentiation are necessarily part
of the operational semantics, since the key exchange would be non-executable
in the free algebra. For practical purposes, one can augment the semantics with
support for just this special example like [28], but a general and mathematically
succinct and rigorous theory is desirable.

We give in this work a semantics for an arbitrary set of operators and their
algebraic properties. Despite this generality, the semantics is a much more suc-
cinct and mathematically simple definition than all the previous works (it fits on
half a page) because it is based on a few general and uniform principles to de-
fine the behavior of the participants. This semantics was inspired by the similar
works of [24, 14], which we further simplify considerably. Our semantics is also
subsuming the previous works in the free algebra and limited algebraic reason-
ing, as they are instances of our semantics for a particular choice of operators



and algebraic properties (although this is not easy to show as explained below).
We thus see our semantics as one of our main contributions since, from a math-
ematical point of view, a simple general principle that subsumes the complex
definitions of many special cases is the most desirable property of a definition.3

This simple mathematical semantics however cannot be directly used as a
translator from Alice-and-Bob notation to formal models or implementations
since it entails an infinite representation and several of the underlying algebraic
problems are in fact not recursive in general. We thus consider a particular set of
operators and their algebraic properties that supports a large class of protocols,
including modular exponentiation and multiplication. This low-level semantics is
much more complex than the mathematical high-level one but it is computable,
and we formally prove that the low-level semantics is a correct implementation of
the high-level one. We believe it is in fact representative for the theories for which
the semantics has been given in past papers, and also clarifies subtle details of
the behavior of operators that were left implicit previously. The division into a
simple mathematical high-level semantics as a “gold standard” and a low-level
“implementable” semantics not only allows for a reasonable correctness criterion
of the low-level semantics, but is in our opinion a major advantage over previous
works that are a blending between mathematical and technical aspects.

To make our work applicable in practice, we have designed the Security Pro-
tocol Specification language SPS as a variant of existing Alice-and-Bob languages
that contains many novel features valuable in practice. In particular, our notion
of formats allows to integrate the particular way of structuring messages of
real-world protocols like TLS, rather than academic toy implementations; at the
same time, we can use a sound abstraction of these formats in the formal veri-
fication. We have implemented the low-level semantics in a translator that can
generate both formal models in the input languages of popular security protocol
analysis tools (e.g., Applied π calculus in the syntax of ProVerif [10] or ASLAN
for AVANTSSAR [5]) and implementations in JavaScript for the execution en-
vironment of the FutureID project (www.futureid.eu). We have demonstrated
practical feasibility with a number of major and minor case studies, including
TLS and the EAC/PACE protocols used in the German eID card.

We proceed as follows: we give the syntax of SPS in Section 2 and an extension
of strands in Section 3. We define the semantics of SPS in Section 4 and discuss
the connections from SPS to implementations and formal models in Section 5.
In Section 6, we discuss related and future work, and conclude the paper.

2 SPS Syntax

In this section, we briefly introduce the syntax of SPS, which we will illustrate
by referring to the example protocol specification in SPS given in Listing 1.1,
in which two agents A and B use a symmetric key shk(A, B) to establish a fresh
Diffie-Hellman key and securely exchange a Payload message.

3 We have learned that from Pierpaolo Degano, who is renowned for his ability to
explain complex things in a simple way.

2



1 Types:

2 Agent A,B;

3 Number g;

4 Mappings:

5 shk: Agent ,Agent -> SymmetricKey;

6 Formats:

7 f1(Agent , Agent , Msg);

8 f2(Number);

9 Knowledge:

10 A: A, B, shk(A,B), g;

11 B: B, A, shk(A,B), g;

12 Actions:

13 A: Number X

14 A -> B : scrypt(shk(A,B), f1(A,B,exp(g,X)))

15 B: Number Y

16 B -> A : scrypt(shk(A,B), f1(B,A,exp(g,Y)))

17 A: Number Payload

18 A -> B : scrypt(exp(exp(g,Y),X), f2(Payload))

19 Goals:

20 Payload secret of A,B

Listing 1.1. Example protocol specification in SPS

We give the syntax of SPS in EBNF, where we set all meta-symbols in blue
and write Xs (for a non-terminal symbol X) to denote a comma-separated list
X(,X)∗ of X elements; Const and Func are alphanumeric strings starting with
a lower-case letter (e.g., g and scrypt in the example) and Var is an alphanu-
meric string starting with an upper-case letter (e.g., X in the example).

SPS ::= Types : (Type Idents; )∗

Mappings : (Func : Types→ Type; )∗

Formats : (Func(Types); )∗

Knowledge : (Role : Msgs; )∗ [where Role 6= Role ( & Role 6= Role )∗]
Actions : ( Role Channel Role : Msg | Role : Type Var)∗

Goals : ( Role authenticates Role on Msg | Msg secret of Roles )∗

Msg ::= Const | Var | Func(Msgs)
Ident ::= Const | Var | Func
Role ::= Const | Var
Type ::= Agent | Number | PublicKey | PrivateKey | SymmetricKey | Bool | Msg

Channel ::= [ • ]→ [ • ]

We begin our explanation with the atomic elements: constants (Const) and
variables (Var). One may think of the variables as parameters of a protocol
description that must be instantiated for a concrete execution of the protocol;
in our example, the variables A and B shall be instantiated with concrete agent
names such as a, b or the intruder p4, whereas X and Y should be instantiated
with random numbers that are freshly chosen by A and B, respectively.

In the Types section, all constants and variables are declared with one of
the pre-defined types, where the type Msg subsumes all types. By default, the
interpretation of SPS is untyped, i.e., types are used only by the SPS translator to
check that the user did not specify any ill-typed terms. The types can however be
used to generate a more restrictive typed model and under certain conditions this

4 SPS actually uses the constant i, but in this paper we write p in honor of our
“favorite intruder”.
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restriction is without loss of attacks [4]. The type Agent has a special relevance:
constants and variables of this type we call roles, and the symbol Role in the
above grammar must only be used for identifiers of type Agent. (This is an
additional check we cannot directly express in a context-free grammar.)

While the semantics of Alice-and-Bob style languages that we give in the
next section is generic for an arbitrary set of function symbols and their algebraic
properties, the concrete implementation of SPS is for a set of fixed cryptographic
function symbols. These are asymmetric and symmetric encryption (crypt and
scrypt), digital signatures (sign), hash and keyed-hash functions (hash and
mac), and modular exponentiation (exp) and multiplication (mult). There are
of course corresponding operations for decryption and verification, but these
are not part of an SPS specification; instead, their use is derived by the SPS
translator according to the semantics in the next section.

In the Mappings section, one can specify a special kind of function symbols.
These do not represent any actual operation that honest agents or the intruder
can perform, but are used to describe pre-existing setup of long-term keys. In our
example, the mapping shk assigns to every pair of agents a unique value of type
symmetric key; this is the easiest way to define shared keys for agents—including
the intruder who will then share keys shk(p, A) and shk(A, p) with every other
agent A. Public key infrastructures can be modeled in a similar way.

In the Formats section, one can specify a third kind of function symbols called
formats. They abstractly represent how the concrete implementation structures
the clear-text part of a message, such as XML-tags or explicit message-length
fields. A format thus basically represents a concatenation of information, but
in contrast to a plain concatenation operator as in other formal languages, the
abstract format function symbols allow us later to generate implementations
with real-world formats such as TLS. In the example, we have two formats: f1
is used to exchange the Diffie-Hellman half-keys together with the agent names,
and f2 indicates the transmission of the Payload message. For simplicity, we
model a payload message using a fresh random number Payload, representing
a placeholder for an arbitrary message (depending on the concrete application);
alternatively, this could be modeled using a mapping (e.g., payload(A, B)) that
A knows initially and sends to B after the key establishment.

The three kinds of function symbols are thus: the cryptographic function
symbols, the mappings and the formats. Except for the mappings, these are
all public: all agents, including the intruder, can apply them to messages they
know. Additionally, formats are transparent : every agent can extract the fields
of a format. We can now build composed messages with these function symbols,
where we assume the additional check that all SPS messages are well-typed (and
are used with the proper arity). As typing is not essential for this paper, we do
not discuss the details of the type expressions.

In the Knowledge section, we specify the initial knowledge of each of the
protocol roles. This is essential as it determines how (and if) honest agents can
execute the protocol. For instance, if in the example we were to omit the item
shk(A, B) in the knowledge of role B, then B could not decrypt the first message
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from A and thus not obtain A’s half key. Moreover, in the next step B would be
unable to build the response message for A. Also, as we will define below, this
specification indirectly determines the initial knowledge of the intruder: if a role
is instantiated with p, then the intruder obtains the corresponding knowledge
(in our case, all shared keys shk(A, B) where A = p or B = p). We require that all
variables in the knowledge section be of type Agent. Finally, one can optionally
forbid some instantiations of the roles, e.g., by the side condition A 6= p or A 6= B.

The Actions section is the core of the specification: it specifies the messages
that are exchanged between the roles. Additionally, we specify here explicitly
when agents freshly create new values. In our example, A first creates the secret
exponent X for the Diffie-Hellman exchange, computes the half-key exp(g, X), in-
serts it into format f1 and encrypts the message with the shared key shk(A, B).
To send this message, A uses the standard insecure channel (denoted with →)
on which the intruder can read, intercept, and insert messages arbitrarily. SPS
also supports a notion of authentic, confidential, and secure channels as in [24],
denoted with •→ ,→• and •→• , respectively. For instance, one may have spec-
ified the exchange of the half-keys without the encryption but using authentic
channels where the intruder can see messages, but not insert messages except
under his real name. This represents the assumption that the messages between
A and B cannot be manipulated by an intruder, e.g., in device pairing of mobile
devices, when A and B meet physically in a public place. The assumptions are
reflected only in the formal model (by restricting the intruder behavior on such
channels), while in the implementation it is the duty of the surrounding software
module to connect a properly secured channel to the protocol module.

In the final Goals section, we specify the goals the protocol aims to achieve.
SPS provides built-in macros for the standard secrecy and authentication goals.
We translate these goals to events (that we discuss later) such as secret(A, B,
Payload), which reflect what is happening in the protocol execution, and at-
tack states are defined as predicates over these events. One can then in general
formulate security goals with respect to such events in a protocol-independent
way (and depending on what support is offered by the protocol analysis tool
considered) rather than referring to the messages of the protocol.

3 Operational Strands

As a preparation for defining the SPS semantics, we first clarify the target lan-
guage, i.e., we define an extension of the popular strands [30] that we call oper-
ational strands. Here we give in a glance the five extensions that we make. A
concrete example is shown in Fig. 1 and explained below and we give the formal
details of operational strands in Appendix A.

First, send and receive steps can be annotated with a channel. Recall that
SPS supports standard insecure channels as well as authentic, confidential and
secure ones. As far as the SPS semantics is concerned, this is only a label on the
channels that are left unchanged. In textual representation, we write send(ch, t)
and receive(ch, t) for sending and receiving a message t over a channel ch.
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Second, we annotate each strand with the initial knowledge of the role, de-
noted by a box above the strand (we define knowledge formally in Definition 2).
In textual representation, we write the annotation with the knowledge M as
M : steps at the beginning of the strand.

Third, recall that the original strand spaces are used to characterize sets of
protocol executions and contain only ground terms. In contrast, we use them
like a “light-weight” process calculus: terms may contain variables (representing
values that are instantiated during the concrete execution) and have the con-
struct fresh X where the variable X will be bound to a fresh value. An important
requirement is that operational strands are closed in the following sense: every
variable must be bound by first occurring in the initial knowledge, in a fresh
operation, in a macro (that we shortly introduce), or in a receive step. A bound
variable must not occur subsequently in a fresh operation (i.e., it cannot be
“re-bound”). In contrast, a bound variable may occur in a subsequent receive
step, meaning simply that the agent expects the same value that the variable
was bound to before.

Fourth, we extend strands with events (predicates over terms) to formulate
security goals in a protocol-independent way. For instance, we may use the event
secret(A, B, Payload) to express that message Payload is regarded as a secret
between protocol roles A and B. Then we can define (independent of the concrete
protocol) a violation of secrecy as a state where the intruder has learned Payload

but is neither A nor B. We do not give here more details on goals, because from
a semantical point of view we just treat the events as if they were messages on a
special channel to a “referee” who decides if the present state is an attack; the
handling of these events is uniform for a wide class of goals [4] and only limited
by the abilities of current verification tools. In textual representation, we will
simply write event(t) where t is a term characterizing the event.

Fifth, we add checks of the form s
.
= t. The meaning is that the agent can

only continue if the terms s and t are equal and aborts otherwise. Also, we
have macros of the form Xi := t, which mean that we consider the same strand
with all occurrences of Xi replaced by t. This is helpful for generating protocol
implementations, because the result of a computation t is stored in a variable
Xi and does not need to be computed again.

A formal definition of operational strands can be given as a process (inter-
acting with a given environment). In Appendix A, we define a semantics as
state-transition systems similar to [15], where a state (S;K;E) consists of a
set S of strands, a set K of messages that the intruder currently knows and
a set E of events that have occurred. For instance, if S contains the strand
send(insec, t).rest , where insec represents an insecure channel, then we can make
the transition to a successor state where t is added to K and the send step is
removed from the given strand.
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4 SPS Semantics

Above we described the SPS syntax for a fixed set of cryptographic operators
(for which we later give a fixed set of algebraic equations). In this section, we give
a semantics that is parametrized over an arbitrary set of operators and algebraic
properties, inspired by [24, 14]. One of the main contributions of our work is to
give this general definition of a semantics for Alice-and-Bob style languages in
a concise, mathematical way that is based on a few simple, general principles.
The semantics is a function from SPS to (operational) strands; this function is
in general not recursive as many of the underlying algebraic reasoning problems
are not. The value of this general definition is its simplicity and uniformity: this
is in fact the best mathematical argument why to define a concept in a particular
way and not differently. In the next section, we then show that we can actually
implement this semantics for the operators of SPS; in fact, we define a “low-level”
semantics that is a computable function from SPS to strands (that is however
so complicated that we give only an overview in this paper) and prove that it
coincides with the general “high-level” semantics.

4.1 Message model

We define messages as algebraic terms and use the words message and term
interchangeably. We distinguish two kinds of messages: the protocol messages
that appear in an SPS specification and labels, which are the messages that
the resulting strands are built from. It is necessary to make this distinction as
the SPS specification reflects the ideal protocol run, while the semantics reflects
the actual actions and checks that an honest agent performs in the run of the
protocol. For this reason, we will also distinguish between two kinds of variables:
protocol variables and label variables.

Definition 1. A message model is a four-tuple (Σ,V,L,≈). Σ is a countable
set of function symbols, all denoted by lower-case letters, where: Σ0 ⊆ Σ is a
countable set of constants, Σp ⊆ Σ is a finite set of public operators such as
public-key encryption, and Σm ⊆ Σ is a finite set of mappings (or private oper-
ators), disjoint from Σp, e.g., mapping from public to private keys. We assume
a global public constant > ∈ Σp ∩Σ0. V is a countable set of protocol variables.
L = {X1,X2,X3 . . .} is a countable set of label variables disjoint from Σ and
V . ≈ is a congruence relation over ground terms over Σ (i.e., terms without
variables), which are denoted by TΣ. A term is thus a constant, a variable, or
an application of a function (of Σ) on a term, and we write TΣ(A) for the set
of terms over signature Σ and variables from set A.

As we define in a deduction relation below, the public operators in Σp are
those functions that every agent and the intruder can apply to messages they
know, i.e., the cryptographic operators (including operators for decryption that
do not occur in the SPS specification) and the non-cryptographic formats. In
contrast, the mappings in Σm are private, like shk in our example protocol.
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Table 1. Example of an equational theory ≈

(1) dscrypt(k , scrypt(k ,m)) ≈ m (2) vscrypt(k , scrypt(k ,m)) ≈ >
(3) dcrypt(inv(k), crypt(k ,m)) ≈ m (4) vcrypt(inv(k), crypt(k ,m)) ≈ >
(5) open(sign(k ,m)) ≈ m (6) vsign(k , sign(inv(k),m)) ≈ >

For every f ∈ Σf with arity n and for every i ∈ {1, . . . , n}
(7) geti,f(f(t1, . . . , tn)) ≈ ti (8) verifyf(f(t1, . . . , tn)) ≈ >
(9) exp(exp(t1, t2), t3)) ≈ exp(t1, mult(t2, t3)) (10) mult(t1, t2) ≈ mult(t2, t1)

(11) mult(t1, mult(t2, t3)) ≈ mult(mult(t1, t2), t3)

Example 1. As a concrete example of a message model that is representative for
a large class of security protocols, let Σp contain all operators of the equations
in Table 1, where ≈ is the least congruence relation satisfying the equations. For
instance, scrypt represents symmetric encryption, dscrypt is the corresponding
decryption operator and vscrypt is a verifier : given a term t and a key k, it tells
us whether t is a valid symmetric encryption with key k. This models the fact
that most symmetric ciphers include measures to detect when the decryption
fails (e.g., when it is actually not an encrypted message or the given key is not
correct) and in concrete implementations this verification will be part of the
call to dscrypt. We emphasize that our message model explicitly describes such
fine details that most security protocol analysis tools silently assume; we could
similarly define a set of primitives that do not allow verification and the semantics
will accordingly define which verifications honest agents can and cannot do.

Similarly, the operators crypt, dcrypt and vcrypt formalize asymmetric
encryption, and sign, open and vsign formalize digital signatures.

Let Σf ⊆ Σp be a set of formats declared in an SPS specification. Then, for
each format f ∈ Σf of arity n, geti,f ∈ Σp is a an extraction function for the
i-th field of the format (for all 1 ≤ i ≤ n) and verifyf ∈ Σp is a verifier to
check that a given message has format f.

Moreover, we have exp and mult for modular exponentiation and multipli-
cation as needed in many Diffie-Hellman-based protocols. As is often done, we
omit the modulus for ease of notation. Σp also contains hash and mac represent-
ing hash and keyed hash functions, respectively (hash and mac do not appear in
Table 1 since they have no algebraic properties).

Finally, a typical set of mappings could be: shk : Agent×Agent→ SymmetricKey

to denote a shared key of two agents, pk : Agent → PublicKey for the public
key of an agent, and inv : PublicKey → PrivateKey for the private key cor-
responding to a given public key. Although pk is typically publicly available, it
should not be a public operator as it does not correspond to a computation that
honest agents or the intruder can perform (rather the initial distribution of keys
should be specified in the knowledge section of SPS). �

Definition 2. A labeled message tl consists of a protocol message t ∈ TΣ(V )
and a label l ∈ TΣp

(L). A knowledge is a substitution of the form M = [X1 7→
t1, . . . ,Xn 7→ tn], where Xi ∈ L and ti ∈ TΣ(V ). We call the set {X1, . . . ,Xn}
the domain of M and write |M | = n for the length of M . We may also refer to
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M as a set of entries and write, e.g., M ∪{Xj 7→ tj} to add a new entry (where
Xj is not in the domain of M).

Intuitively, the label variables represent memory locations of an honest agent.
A label l is composed from label variables and public operators, and reflects what
actions an honest agent has performed on elements of its knowledge. A labeled
message tl expresses that an honest agent performed the actions of l to obtain
what the SPS specification represents by term t. For instance, we represent
the initial knowledge of A in Listing 1.1 by [X1 7→ A, X2 7→ B, X3 7→ shk(A, B),
X4 7→ g] to express that A stores her name and B’s name in her memory locations
X1 and X2, a key shared with B in X3, and the group g in X4.

4.2 Message Derivation and Checking

We now define how honest agents can derive terms from their knowledge. This is
in the style of Dolev-Yao deduction relations, but extended to labeled messages
to keep track of the operations that have been applied. The relation has the form
M ` tl where M is a knowledge and tl a labeled term.5

Definition 3. ` is the least relation that satisfies the following rules:

M ` tXi

Ax ,
[Xi 7→ t ] ∈M

M ` tl
M ` sm

Eq ,
s ≈ t, l ≈ m

M ` tl11 . . . M ` tlnn
M ` f (t1, . . . , tn)f (l1,...,ln)

Cmp ,
f ∈ Σp

The rule Ax expresses that an agent can deduce any message that it has in
its knowledge, Eq expresses that deduction is closed under equivalence in ≈ (on
terms and their labels), and Cmp allows agents to apply any public operator to
deducible terms. For example, under the theory of Table 1, from M = [X1 7→
k,X2 7→ X,X3 7→ scrypt(k, exp(g, Y))] we can deduce exp(exp(g, X), Y) as follows:

M ` XX2
Ax

M ` kX1
Ax

M ` scrypt(k, exp(g, Y))X3
Ax

M ` dscrypt(k, scrypt(k, exp(g, Y)))dscrypt(X1,X3)
Cmp

M ` exp(g, Y)dscrypt(X1,X3)
Eq

M ` exp(exp(g, Y), X)exp(dscrypt(X1,X3),X2)
Cmp

M ` exp(exp(g, X), Y)exp(dscrypt(X1,X3),X2)
Eq

This tells us that the “recipe” to generate exp(exp(g, X), Y) fromM is exp(dscrypt(X1,
X3),X2), which are the actual operations that the agent has to perform.

Based on the deduction relation, we define what checks an honest agent can
perform on messages in his knowledge, e.g., whether a message can be success-
fully decrypted. We use the symbol

.
= to talk about equations on terms of the

5 One may employ an entirely different model for the intruder (e.g., a cryptographic
one); using a Dolev-Yao style deduction for honest agents is simply the semantic
decision that they perform only standard public operations (that would be part of
a crypto API), but no operations that would amount to cryptographic attacks.
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A : X1 7→ A, X2 7→
B, X3 7→ shk(A, B),
X4 7→ g

B : X1 7→ A, X2 7→
B, X3 7→ shk(A, B),
X4 7→ g

fresh X

◦
scrypt(shk(A,B),f1(A,B,exp(g,X)))// ◦

fresh Y

◦ oo
scrypt(shk(A,B),f1(B,A,exp(g,Y)))

◦

fresh Payload

◦
scrypt(exp(exp(g,X),Y),f2(Payload))// ◦

secret(A, B, Payload) secret(A, B, Payload)

A : X1 7→ A, X2 7→ B,
X3 7→ shk(A, B), X4 7→ g

fresh X5

◦
scrypt(X3,f1(X1,X2,exp(X4,X5)))//

◦ oo
X6

vscrypt(X3,X6)
.
= >

X7 := dscrypt(X3,X6)
verifyf1(X7)

.
= >

X8 := get1,f1(X7)
X9 := get2,f1(X7)
X10 := get3,f1(X7)
X8

.
= X2

X9
.
= X1

fresh X11

◦
scrypt(exp(X10,X5),f2(X11))//

secret(X1,X2,X11)

Fig. 1. (a) Example protocol (b) Operational strand of A

labeling level and define
.
=-equations as follows: an interpretation I is a total

mapping from L to TΣ(V ) that we extend to a function from TΣ(V ∪L) to TΣ(V )
as expected; then we define I |= s

.
= t iff I(s) ≈ I(t), and extend this to (finite

or infinite) conjunctions of equations as expected. We define φ |= ψ iff I |= φ
implies I |= ψ for every interpretation I; and φ ≡ ψ iff both φ |= ψ and ψ |= φ.

Definition 4. We define a complete set of checks ccs(M) for a knowledge M
as follows: ccs(M) =

∧
{l1

.
= l2 | ∃ m ∈ TΣ(V ).M ` ml1 ∧M ` ml2}.

ccs(M) yields an infinite conjunction of checks that an agent can perform
on his knowledge. Intuitively, M ` ml1 and M ` ml2 expresses that, according
to the SPS specification, computing l1 and l2 should yield the same result m,
and the agent can thus check that they actually do. For instance, consider M =
[X1 7→ k,X2 7→ hash(m),X3 7→ scrypt(k,m)]. Amongst others, ccs(M) then
entails the checks φ = vscrypt(X1,X3)=̇> ∧ hash(dscrypt(X1,X3))

.
= X2, i.e.,

the agent A can verify that X3 is an encryption and that X2 is the hash of the
content of the encrypted message X3. Note that there are many more equations
(e.g., X1

.
= X1) and for every equation s

.
= t, we also have h(s)

.
= h(t) for every

unary public operator h. However, it holds that ccs(M) ≡ φ, i.e., ccs(M) is
logically equivalent to φ and thus all other checks are redundant.
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4.3 High-level Semantics

We define the semantics of SPS specifications by translation to operational
strands. Fig. 1(a) shows our example protocol in the style of message sequence
charts. The first step towards an operational semantics is to split the protocol
into different strands, one for each role, as indicated in Fig. 1(a) by the dotted
line. We refer to the resulting strands as plain strands. Each plain strand shows
how the protocol looks like from the point of view of that role in an ideal protocol
run: what messages it is supposed to send and what messages it receives. The
second step towards the operational semantics is to identify the precise set of
actions, i.e., how messages are composed or decomposed, and what checks need
to be performed on received messages. Fig. 1(b) shows how this operational de-
scription looks like for role A of the example (role B is very similar). In fact, one
of the main problems that we solve in this work is to define the mapping from
(a) to (b) in general and how to implement it for the example theory.

Now we put it all together to define the high-level semantics by the function
[[·]]H (with initial case [[·]]H0), which translates from plain strands (the SPS repre-
sentation) to operational strands (the actual actions of agents). In a nutshell, we
use the labeled deduction M ` tl to define how an agent composes an outgoing
message (or event), and we use the ccs function whenever an agent receives a
new message, formalizing the set of checks that the agent can perform at this
point. Note that this is an infinite conjunction and we later show how to obtain
an equivalent finite conjunction for the example theory.

Definition 5. [[·]]H translates from plain to operational strands as follows:
[[M : strand ]]H0 = M : ccs(M).[[strand ]]H(M)
[[receive(ch, t).rest ]]H(M) = receive(ch,X|M |+1).ccs(M ∪ [X|M |+1 7→ t]).

[[rest ]]H(M ∪ [X|M |+1 7→ t])
[[send(ch, t).rest ]]H(M) = send(ch, l).[[rest ]]H(M) where M ` tl for some label l
[[event(t).rest ]]H(M) = event(l).[[rest ]]H(M) where M ` tl for some label l
[[fresh X.rest ]]H(M) = fresh X|M |+1.[[rest ]]H(M ∪ {X|M |+1 7→ X})
[[0]]H(M) = 0

The first rule initializes the translation, by computing the checks that can
be made on the initial knowledge of the strands. The second rule says that each
received message is associated with a new label variable X|M |+1 in the agent’s
knowledge and afterwards we use ccs to generate all checks that the agent can
perform on the augmented knowledge. The third rule is for sending the SPS
protocol message t. (The following event rule is similar and thus we don’t discuss
it.) The relation M ` tl would thus hold for a label l, i.e., a concrete sequence of
actions or “recipe”, that would yield the term t from the current knowledge M .
The fifth rule translates the construct fresh X: here we simply pick a new label
variable X|M |+1 that will store the fresh value in the translated strand, and bind
it in the knowledge to the protocol variable X. The final rule is straightforward.

Now consider an agent A who has the knowledge M = [X1 7→ X,X2 7→
exp(g, Y)], i.e., the agent’s own Diffie-Hellman secret and the Diffie-Hellman half-
key (supposedly) received from the other agent. For A, the recipe to generate
the key t = exp(exp(g, Y), X) is l = exp(X2,X1), but A has (in our model) no
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means of checking that X2 has indeed been created by an exponentiation and
would accept any “garbage” term for X2. The operational semantics thus tells
us that the agent (no matter what X2 actually is) uses exp(X2,X1) to generate
what shall be used as an encryption key for the payload message.

Given M and t, there is in general not a unique l such that M ` tl. First, let
us consider the case that there is no such l. In this case, the agent has no means
(within the deduction relation) to obtain the term t from its current knowledge.
We thus say the protocol is non-executable and its semantics is undefined. This
is an important sanity check on SPS specifications, namely that the user has not
accidentally specified a protocol that does not work—which may easily happen
in other formal languages like Applied π and which can only be discovered by
thorough checking of the model by a knowledgeable user.

Second, if there is a label l, then there will typically be infinitely many of them
(trivially by performing redundant encryptions and decryptions). Our semantics
does not prescribe which of the labels has to be taken (and the implementation
below will take in some sense the simplest one). A key insight is that this does not
make the semantics ambiguous: if M ` tl1 and M ` tl2 then ccs(M) |= l1

.
= l2.

Thus, since we always perform the checks on the knowledge after each received
message, we know that the choice of labels does not make a difference.

As an example, observe that the operational strand we have given in Fig. 1(b)
for our example protocol is correct according to this semantics (when resolving
the X := t macros): all outgoing messages have an appropriate label (for which
M ` tl holds), and all checks s

.
= t do indeed logically follow from ccs(M) for

the respective M . In fact, we claim that the checks are logically equivalent to
ccs(M), i.e., all other checks are redundant; it is part of the results of the next
section to prove that and derive the given checks automatically.

We emphasize the succinctness of the definitions: Definitions 2–5 together
fit on half a page and yet we define the semantics for an arbitrary set of cryp-
tographic operators and algebraic properties. We believe that this is the best
argument that the semantics of Alice-and-Bob notation should be defined this
way—deriving from simple, general, uniform principles. However, this simple
semantics cannot be directly used as a translator from Alice-and-Bob notation
to formal models or implementations as it entails an infinite representation and
several of the underlying algebraic problems are in fact not recursive in general.

Theorem 1 For a given strand S, the problem to compute a finite representa-
tion of [[S]]H , if it exists, is not recursive.

Proof Sketch. It is immediate that ` is in general an undecidable relation (take
an undecidable ≈). Similarly, the relation {(M, s, t) | ccs(M) |= s

.
= t} is un-

decidable. It follows that for given a knowledge M , the problem to compute a
finite conjunction φ, such that φ ≡ ccs(M), if one exists, is not recursive. ut

4.4 Implementing the Semantics

We can however give a more low-level, procedural semantics (that is actually
computable) for a special theory and prove that it correctly implements the
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high-level semantics. More specifically, we now sketch how to actually compute
the semantics for the example theory in Table 1 and where we additionally
require that the SPS specification (and thus the plain strands) does not contain
any destructors or verifiers.

Theorem 2 For our example theory in Table 1, for every strand S in which no
destructors or verifiers occur, [[S]]H can be finitely represented and it is recursive.

Implementation/Constructive Proof. First we split the problem into a construc-
tor and a destructor/verifier part (note they are not independent, e.g., in order
to decrypt a message one may need to first compose a key). We also split the
example theory into (i) equations C that describe destructors and verifiers (the
first 8 equations in the Table 1) and (ii) equations F that just “rearrange” the
term (the remaining equations). We then use equations C as rewrite rules and
apply them modulo F (working on F -equivalence classes); the resulting rewrite
relation →C/F is convergent and we consider only normalized terms.

We define two functions, composeM (t) and analyze(M,ϕ). First, composeM (t)
implements the “constructor” part of the ` relation: find all labels l such that
M ` tl when using only constructors of Σp (no destructors and verifiers) and
using only equations from F . Note that the set of such labels l is always fi-
nite. Second, analyze(M,ϕ) starts with a knowledge M and a set of checks ϕ
that have already been performed (so they do not need to be checked again).
It computes a pair (M ′, ϕ′). Here, M ′ is analyzed, i.e., we have added to M
all subterms that can be obtained by applying destructors and normalizing the
result; for this purpose, analyze calls the compose function to compose decryp-
tion keys when necessary. Also, for each decryption, the analysis will produce
as part of ϕ′ a new macro Xi := l where Xi is the label variable in the aug-
mented knowledge that holds the result of the decryption and l is the recipe for
obtaining it. Similarly, for each such decomposition step, we have a check from
the respective verifier that is also added to ϕ′. Further, analyze will check for
every term whether there is a different way to of compose it (using again the
compose function) and generate the equality. Finally, for all pairs of terms where
the root operator is mult (and analogously for exp), we must check if the least
common multiple can be generated from each of them. For instance, knowing
[X1 7→ ab,X2 7→ ac,X3 7→ b,X4 7→ c], we can derive the check X1X4

.
= X2X3.

We then show that for an analyzed knowledge, every derivable term can be
derived using only compose and the checks resulting from analyze are equivalent
to those of ccs. The full details of compose and analyze including the proofs can
be found in Appendix B. Based on this, we obtain the following computable
low-level semantics that mirrors the structure of the high-level semantics:
[[M : strand ]]L0(∅,>) = M : ϕ.[[strand ]]L(M ′, ϕ) where (M ′, ϕ) = analyze(M,>)
[[receive(ch, t).rest ]]L(M,ϕ) = receive(ch,X|M |+1).ϕ′.[[rest ]]L(M ′, (ϕ ∧ ϕ′))

where (M ′, ϕ ∧ ϕ′) = analyze(M ∪ [X|M |+1 7→ t], ϕ)
[[send(ch, t).rest ]]L(M,ϕ) = send(ch, l).[[rest ]]L(M,ϕ) where l ∈ composeM (t)
[[event(t).rest ]]L(M,ϕ) = event(l).[[rest]]L(M,ϕ) where l ∈ composeM (t)
[[fresh X.rest]]L(M,ϕ) = fresh X|M |+1.[[rest]]L(M ∪ {X|M |+1 7→ X}, ϕ)
[[0]]L(M,ϕ) = 0 ut
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5 Translations from Operational Strands

We now come to the “last mile” of the translation: to translate operational
strands into an actual implementation and into a formal model for automated
verification. Fig. 5.2 shows this translation for the role A of our example in
Fig. 1(b); the implementation language is JavaScript and the formal language is
Applied π.6 The close correspondence between these two translations allow us to
argue that there is no discrepancy between formal model and implementation,
if the functions symbols have the corresponding meaning—but that is indeed
subtle. Comparing the translation with the input strand of Fig. 1(b), there are
only two significant differences: all the explicit verifiers of the strands are removed
and the implementation does not contain events; besides that, the translation
is mainly adapting to the syntax of the target language. For this reason, we do
not give here a formal definition of the translation functions (they can be found
in Appendix C), but only discuss the necessary surrounding definitions and the
subtleties in the meaning of the target languages.

5.1 Experimental Results

The translator has been implemented as part of the FutureID project and is
available at [3]. In the project, we have considered several real world case studies
such as the TLS handshake [16] as one of the most widely used protocols, the
protocols EAC and PACE [19] that are used by the German eID card, and 30
smaller protocols. In particular, for our main case studies TLS, EAC and PACE,
we did implement the precise message formats of the standards [18]. As part of
FutureID, an execution environment has been defined that invokes the JavaScript
code with suitable values for the parameters [17]. For the formal verification, we
have used our case studies to check that ProVerif finds the known attacks in the
small examples and verifies all other protocols. The entire test suite runs in less
that 11 seconds on a 2.67 GHz machine.

5.2 JavaScript Translation

Crypto API. We of course rely on the execution environment to have suitable im-
plementations of the cryptographic primitives, e.g., the exp operator will in fact
be mapped to elliptic curve cryptography. We assume that the call dscrypt(k ,m)
will fail (aborting execution) if m is not a message encrypted with key k .This
is why we do not include verifier checks in this translation. For simplicity, we
omitted the optional annotation of primitives with the precise algorithm and key
length (that is only necessary when using different ones in the same protocol).

6 One may argue that JavaScript is not suitable for implementing security protocols,
but in fact, using systematic mechanisms such as our formats, we can produce robust
implementations that do not suffer from type flaw attacks for instance. It is relatively
easy to adapt to other languages like Java or the AVANTSSAR Platform [5], e.g.,
for using the tool OFMC, for which we have implemented a connector.
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function proc_A(X1,X2 ,X3,X4,ch){

Number X5 = genNumber ();

ch.send(scrypt(X3,new f1(X1,X2,

exp(X4 ,X5)).encode ()));

var X6 = ch.receive ();

var X7 = dscrypt(X3 , X6);

f1 X7a = new f1(X7);

var X8 = X7a.get1();

var X9 = X7a.get2();

var X10 = X7a.get3();

if(X8 != X2) error ();

if(X9 != X1) error ();

Number X11 = genNumber ();

ch.send(scrypt(exp(X10 ,X5),

new f2(X11).encode ()));

}

let proc_A(x1 ,x2,x3,x4:bitstring ,ch:Chann)=

new x5:bitstring;

out(ch ,scrypt(x3,f1(x1,x2,

exp(x4 ,x5))));

in(ch,x6:bitstring);

let x7:bitstring = dscrypt(x3 ,x6) in

let x8:bitstring = f1get1(x7) in

let x9:bitstring = f1get2(x7) in

let x10:bitstring = f1get3(x7) in

if(x8 = x2) then

if(x9 = x1) then

new x11:bitstring;

out(ch ,scrypt(exp(x10 ,x5),

f2(x11)));

event secret(x1,x2 ,x11);

0.

Fig. 2. Translation to JavaScript and Applied π Calculus of role A of the example

Formats. Similar to the cryptographic operators, we also rely on an implementa-
tion of non-cryptographic operators: for each format declared in the specification,
we require a Java class that basically contains a parser and a pretty printer for
that format (a.k.a. serialization/deserialization). For the example format f1 the
class f1 must have three member variables of type byte string to represent the
three fields of the form (as raw data). It must have two constructors: the first
takes three strings as input and just stores them in the member variables (cf. the
first new f1 in the example), the second takes a single string and tries to parse it
as format f1, and this may fail (cf. the second new f1 in the example). Further,
we have the geti() functions to obtain the i-th field and encode() to output a
string. For a a more detailed discussion of formats and TLS see [26].

5.3 Applied π Translation

Algebraic Properties. Let us start with the most subtle problem: the algebraic
properties of the cryptographic and non-cryptographic operators. We can express
cancelation, e.g., reduc forall m, k : bitstring; dscrypt(k, scrypt(k, m)) = m.
(and the translator will automatically generate corresponding rules for the get-
functions of the declared formats). However, during the verification process of
ProVerif, where processes get translated into Horn clauses, these destructors get
encoded into pattern matching—in the Horn clauses occur no destructors or veri-
fiers. This transformation corresponds to an implicit verifier: in our example, the
let x7 clause will fail if the message x6 is not a of the form scrypt(x3, ·). Thus,
also the ProVerif translation does not have verifiers. While this is expressing the
algebraic theory we want at this point, directly formulating the equations for exp
and mult, ProVerif will not terminate. For standard Diffie-Hellman, it is sound
to restrict ourselves to the following equation that works with ProVerif [21, 25]:

equation forall x, y : bitstring; exp(exp(g, x), y) = exp(exp(g, y), x).

15



The translator can only give a warning when the SPS specification is outside the
fragment for which the soundness result holds.

Process Instantiation. We formulate the most general possible instantiation of
the protocol: every role can be played by any agent, including the intruder, and
we want to allow for any number of sessions of the protocol in parallel. It is not
trivial to specify this manually, but the SPS compiler offers a systematic way
to generate the instantiation. Recall that the initial knowledge of each role in
the SPS specification can only contain variables of type Agent and long-term
keys have to be specified using functions like shk. This allows us to instantiate
the knowledge for any value of the role variables. For our example, we have the
following specification (where the free name pub represents an insecure channel):

1 process

2 !new x:bitstring;out(pub ,x)|

3 !in(pub ,(b:bitstring));proc_A(x,b,shk(x,b),g,pub)|

4 out(pub ,(p,b,shk(p,b),g))|

5 !in(ch ,(a:bitstring));proc_B(a,x,shk(a,x),g,pub)|

6 out(pub ,(a,p,shk(a,p),g))

The first replication operator generates an unbounded number of honest
agent names (in variable x) that are broadcast on pub. Then we generate an
unbounded number of instances of proc A for each x and each name b that
we receive from the public channel (thus, the intruder can choose who will play
role B). We also output on pub the initial knowledge that the intruder needs for
playing role A under his real name p. The last two lines are similar for role B.

6 Conclusions and Related Work

The formal definition of languages based on the Alice-and-Bob notation requires
one to identify the concrete set of actions that honest agents have to perform,
which is relevant both for a formal model for verification and for generating im-
plementations. Previous works have proposed fairly involved deduction systems
for this purpose and there is no (even informal) justification why these systems
would be suitable definitions. Our high-level semantics [[·]]H , inspired by [24,
14], gives a mathematically succinct and uniform definition of Alice-and-Bob
notation following a few general principles, and at the same time it supports an
arbitrary set of operators and algebraic properties. The succinctness and gener-
ality is, in our opinion, a strong argument for this semantics as a standard. As
[[·]]H entails problems that are not recursively computable in general, we defined
the low-level semantics [[·]]L for a particular theory and proved its correctness
with respect to [[·]]H . While [[·]]L is similar (and similarly involved) as previous
definitions of semantics for the Alice-and-Bob notation [22, 23, 13, 12, 20], we are
the first to give a complete formal treatment of the key algebraic properties for
destructors, verifies, exponentiation and multiplication.

With respect to other implementation generators like [31, 28], our key im-
provements are as follows. First, we give a uniform way to generate both formal
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models and implementation from the operational strands, ensuring a one-to-
one correspondence between them. Second, replacing the abstract concatenation
operator from formal models with formats allows us to generate code for any
real-world structuring mechanism like XML formats or TLS-style messages. The
only work that provides similar features is [7], which however starts at the π
calculus level, comparable to the output of our low-level semantics. In reference
to works that consider the verification of the actual implementation source code
like [8], we agree with [9] that the converse problem, i.e., turning formal models
into code like in this paper, is harder. However, in the case of SPS this extra
effort takes a large part of the burden off the user, i.e., SPS carries the task
of formally verifiable implementations to a higher level of abstraction without
suffering from flaws that are abstracted away in the formal model.

Finally, we point out a strong similarity between our notion of knowledge
and the notion of frames in Applied π calculus [2]. We allow ourselves minor
deviations from the frame concept, in particular not using name restrictions;
instead, constants are by default not public in our setting. This makes the treat-
ment in this paper easier but does not fundamentally change the concept (or
its expressive power). For what concerns existing decision results for frames, the
deduction relation ` has been studied, e.g., in [1]. It is known that deduction is
decidable for convergent subterm theories (like our equations (1)–(8)) and that
disjoint associate-commutative operators as in (9)-(11) can easily be combined
with it. Many results consider the static equivalence of frames which is interest-
ing for privacy properties, namely whether the intruder is able to distinguish two
frames (“knowledges”). In the SPS semantics, we have a substantially different
problem to solve: we have only one knowledge M (and it is the knowledge of
an honest agent) and we need to finitely characterize ccs(M), i.e., what checks
the agent can make on M to ensure that all received messages have the required
shape. This indeed has some similar traits to static equivalence: also here, one
has to check pairs of recipes (albeit with respect to two frames). Despite this
similarity, the problems are so different that it seems not directly possible to re-
use decision procedures for static equivalence for computing ccs(M). Moreover,
our exp/mult theory is not yet supported in static equivalence results. A further
investigation and generalization, namely with inverses for mult, is part of our
ongoing research.
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A Operational Strands

A.1 The Syntax of Operational Strands

The syntax of operational strands is a slight extension of the well-known strand
spaces:

Strand ::= Knowledge: ( send(Channel,Msg). | receive(Channel,Msg).
| event(Msg). | Msg

.
= Msg. | Var:=Msg. | fresh Var. )∗ 0

Note that in plain strands, no equalities occur. The non-terminals Channel,
Msg, and Var are as in the SPS syntax. Knowledge, typically denoted by
M in concrete strands, stands for a knowledge as defined in Definition 2, i.e., a
substitution from label variables to protocol terms. We may omit this knowledge
prefix of an operational strand when not relevant, as it is mainly used as an
annotation in the semantics of SPS.

We define the free variables of an operational strand as follows:

fv(M : rest) = fv(rest) \ dom(M)

fv(send(ch, t).rest) = fv(ch) ∪ fv(t) ∪ fv(rest)
fv(receive(ch, t).rest) = (fv(rest) \ fv(t)) ∪ fv(ch)

fv(event(t).rest) = fv(t) ∪ fv(rest)
fv(s

.
= t.rest) = fv(s) ∪ fv(t) ∪ fv(rest)

fv(x := t.rest) = (fv(rest) \ {x}) ∪ fv(t)
fv(fresh x.rest) = fv(rest) \ {x}

fv(0) = ∅

fv(x) = {x}
fv(f(t1, . . . , tn)) = fv(t1) ∪ . . . ∪ fv(tn)

We require that all operational strands are closed, i.e., all variables, before being
“used”, are bound by occurring in the knowledge, in a received message, or
in a fresh step. Further, a bound variable cannot occur in a fresh step (e.g.,
fresh x.fresh x.0 is not allowed) or a macro (e.g., x := x cannot occur in a
strand, since then x is bound earlier, violating that it cannot be re-bound, or
x is a free variable of the strand). When a bound variable occurs in a receive
step, it is not “re-bound”, i.e., receive(ch, x).receive(ch, x).rest by the following
semantics will be equivalent to receive(ch, x).receive(ch, y).x

.
= y.rest .

A.2 The Semantics of Operational Strands

Similar to [15], we define the semantics of operational strands as an infinite-
state transition system, where a state (S;K;E) consists of (1) a set S of closed
strands, (i.e., every variable occurs first in a receive message, in a macro, or in
a creation of a fresh value), (2) a set K of messages (the intruder knowledge),
and (3) a set E of events that have occurred. This transition system is defined
by an initial state and a transition relation.
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The initial state Recall that in an SPS specification, only variables of type
agent may be used in a knowledge declaration; therefore the co-domain of the
knowledge M of each operational strand of the protocol will only contain such
agent-typed variables. The first step in defining the semantics is to consider all
possible instantiations of these agent variables with concrete agent names; and
create infinitely many copies of these operational strands to model an unbounded
number of sessions between any agents.

Let therefore S = {s1, · · · , sk} be the set of operational strands of a protocol,
one for each role of the protocol. Let us further denote by Ri the name of
the role (i.e., a constant or variable of type agent) that is described by the
operational strand si, Mi be the knowledge of si and stepsi be the steps of si,
i.e., si = Mi : stepsi. Let Ag be a countably infinite set of constants of type
Agent, including p denoting the intruder, and let VA be the set of all variables
that occur in the Mi (and are thus of type Agent in every SPS translation). Let
Subs be the set of substitutions from VA to Ag . Thus Subs represents all possible
instantiations of the roles of the protocol with concrete agent names. When the
SPS knowledge declarations contains some inequalities, such as A 6= p or A 6= B,
then this set Subs is accordingly restricted.

Even though a knowledge itself is a substitution (cf. Definition 2), we now
define what it means to apply a substitution (from Subs) to it. Let σ ∈ Subs and
M = [X1 7→ t1, · · · ,Xl 7→ tl] be a knowledge. Then, we define σ(M) = [X1 7→
σ(t1), · · · ,Xl 7→ σ(tl)]. The initial state of the transition system is (S0;K0; ∅)
where:

S0 =
⋃k
i=1{σ(Mi)(stepsi.finished(n)) | σ ∈ Subs, σ(Ri) 6= p, n ∈ N}

K0 =
⋃k
i=1{σ(ul(Mi)) | σ ∈ Subs, σ(Ri) = p} ∪Ag

Here we use a new event finished(n) (for each n ∈ N) to create a countable number
of unique operational strands for each instance σ ∈ Subs. Note that we apply the
instantiation σ first to the knowledge of the role, and the so instantiated knowl-
edge to the entire operational strand. For instance, for the trivial operational
strand [X1 7→ A,X2 7→ B,X3 7→ sk(A, B)] : fresh X4.send(insec, scrypt(X3,X4)
and the instance σ = [A 7→ a, B 7→ p], we get the countably many operational
strands [X1 7→ a,X2 7→ p,X3 7→ sk(a, p)] : fresh X4.send(insec, scrypt(sk(a, p),
X4)).finished(n).0 for each n ∈ N. All remaining variables in the instantiated
operational strands represent freshly created values and (parts of) received mes-
sages.

Note that here we have created only the instances for the honest agents (be-
cause of the side condition σ(Ri) 6= p); this is so since the behavior of the honest
agents is subsumed by the abilities of the intruder when given the appropriate
knowledge of the role in all instances where he plays the role.7 With K0 we

7 In fact, we define here the semantics of operational strands using a standard Dolev-
Yao style intruder deduction relation; stronger models could be employed, we just
require that the intruder can at least perform the actions that honest agents can,
i.e., encryption and decryption with known keys and the like.
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therefore define the initial knowledge that the intruder needs to play in all roles
under his real name. Here we model the intruder knowledge simply as a set of
messages (rather than a substitution M as for honest agents) as for the standard
Dolev-Yao intruder deduction, we do not need labels (and we do not consider
notions like behavorial equivalence here). Accordingly, let `′ denote the stan-
dard unlabeled intruder deduction on unlabeled messages, and the ul function
mapping from a knowledge to a set of terms by discarding the labels. Thus,
ul([X1 7→ t1, · · · ,Xn 7→ tn]) = {t1, · · · , tn} and ul(M) `′ t iff M ` tl for some l.

The transition relation The transition relation =⇒ is defined as the least relation
closed under the following rules:

T1 ({send(insec, t).rest} ∪ S;K;E) =⇒ ({rest} ∪ S;K ∪ {t};E)
T2 ({receive(insec, t).rest} ∪ S;K;E) =⇒ ({σ(rest)} ∪ S;K;E)

for any substitution σ such that K `′ σ(t)
T3 ({event(t).rest} ∪ S;K;E) =⇒ ({rest} ∪ S;K;E ∪ {event(t)})
T4 ({s=̇t.rest} ∪ S;K;E) =⇒ ({rest} ∪ S;K;E) if s ≈ t
T5 ({fresh Xi.rest} ∪ S;K;E) =⇒ ({σ(rest)} ∪ S;K;E)

where σ = [Xi 7→ c] and c is a fresh constant
T6 ({Xi := t.rest} ∪ S ; K ; E ) =⇒ ({σ(rest)} ∪ S;K;E)

where σ = [Xi 7→ t]
T7 ({0} ∪ S;K;E) =⇒ (S;K;E)

The rules T1 and T2 handle the sending and receiving over an insecure
channel: we add every sent message t to the intruder knowledge; for an agent
who wants to receive a message of the form t (note that t may contain variables
that are bound in this step), the intruder can use any instance σ(t) that he
can derive from his knowledge and we apply σ to the rest of the strand, i.e.,
instantiating all variables that have been bound in this step. We have only
discussed the standard case of insecure channels here, other kinds of channels
can be defined as in the ideal channel model of [27].

Note that the following invariants holds over all transitions: the intruder
knowledge is a set of ground terms, all strands are closed, and all terms that the
intruder can derive and send are thus also ground.

The other rules should be self-explanatory.
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B Message Composition and Decomposition

In this section, we define the procedures for message composition and decom-
position (compose and analyze respectively), but we first need some necessary
definitions. First, we need to distinguish in the public operations between con-
structors and destructors.

Definition 6. Let Σd = {dscrypt, vscrypt, dcrypt, vcrypt, open, vsign, get·,
verify·} be the destructors, where, abusing notation, we include get· and verify·
for all formats. All other public operators Σc = Σp \Σd are called constructors.

Let us also denote by ≈F the least congruence relation that satisfies proper-
ties (9)-(11) in Table 1 that address modular exponentiation and multiplication.
Since we have here no destructors for exp and mult, ≈F is a finite theory; i.e.,
for any term t, the equivalence class of t under ≈F is finite (and moreover, uni-
fication is finitary, i.e., we can find finitely many most general unifiers for every
pair of terms). We also define `C as a restriction of ` (Definition 3) where ≈
is replaced with ≈F and restricting Σp to Σc. Thus, `C is the “compositional”
part of the ` relation that allows only composing terms and application of ≈F
(which never “decomposes” terms).

B.1 Message Composition

We now define the compositional part of message deduction, i.e., computing `C ,
realized by the function composeM (t) that computes all labels for generating the
term t from knowledge M using only `C .

Definition 7. Let M be a knowledge and t ∈ TΣA
(V ).

composeM (t) = {Xi | ∃t′. [Xi 7→ t′] ∈M ∧ t ≈F t′} ∪
{f(l1, . . . , ln) | ∃t1, . . . , tn. t ≈F f(t1, . . . , tn) ∧ f ∈ Σc ∧

l1 ∈ composeM (t1) ∧ . . . ∧ ln ∈ composeM (tn)} .

The first part of composeM checks whether the term t is directly contained
in the knowledge modulo ≈F , and returns corresponding label variables if so.
The second part computes all ways to recursively compose t from its direct
subterms (modulo ≈F ). For instance, for M = [X1 7→ c,X2 7→ hash(c)] we
have composeM (hash(c)) = {X2, hash(X1)}, and for M = [X1 7→ a · b,X2 7→
c,X3 7→ a · c,X4 7→ b] (writing a · b for mult(a, b)), we have composeM (a · b · c) =
{X1 · X2,X3 · X4}.

The composeM function does not involve any decomposition steps or generate
checks—for this we define an analysis procedure in the next subsection. The
interface between the two procedures is the notion of an analyzed knowledge (in
which every possible analysis step has already been done). We define this notion
succinctly by requiring that every term that can be derived from M using ` can
also be derived using `C , i.e., analysis steps do not yield any further messages:
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Definition 8. We say a knowledge M is analyzed iff

{t ∈ TΣA
(V ) | ∃ l. M ` tl} = {t ∈ TΣA

(V ) | ∃ l. M `C tl}.

For an analyzed knowledge M , composeM is in fact correct:

Theorem 3 The composeM function terminates and is sound in the sense that
l ∈ composeM (t) implies M ` tl. Moreover, if M is analyzed and neither M nor
t contain symbols from Σd , then composeM is also complete in the sense that
M ` tl implies l′ ∈ composeM (t) for some label l′ with ccs(M) |= l

.
= l′.

Proof. For termination, consider the tree of recursive calls that composeM (t)
can invoke. The tree is finitely branching since ≈F is a finite theory (every
term has a finite equivalence class). Suppose the tree has infinite depth, and let
t1, t2, t3, . . . be the terms in the recursive calls. Then there are terms t′1, t

′
2, t
′
3, . . .

such that ti ≈F t′i A ti+1 for all i ≥ 1. Then there are contexts C1[·], C2[·], . . .
and Ci[x] 6= x such that t1 ≈F C1[t2] ≈F C1[C2[t3]] ≈F . . . and thus t1 has an
infinite equivalence class modulo ≈F , which is absurd, so the tree also has finite
depth.

Soundness is immediate.
For completeness, consider M ` tl, where M is analyzed and M and t do not

contain any symbols from Σd . Since M is analyzed, we also have M `C tl
′

for
some l′, and thus ccs(M) |= l

.
= l′. Due to `C , l′ cannot contain any symbol from

Σd either (while l can). Consider now the proof tree for M `C tl
′
: leaf nodes are

axioms and inner nodes are either composition steps with f ∈ Σc or algebraic
equivalences modulo ≈F . It is straightforward to map them into corresponding
steps of composeM (t) to yield label l′.

B.2 Message Decomposition and Checks

To compute an analyzed knowledge and the checks that one can perform on it,
we define the procedure analyze that takes as input a pair (M,ϕ) of a knowledge
and a (finite) conjunction of equations and yields a saturated extension (M ∪
M ′, ϕ ∧ ϕ′) of (M,ϕ). The notion of saturated means that M ∪M ′ is analyzed
and that ϕ ∧ ϕ′ is equivalent to ccs(M ∪M ′). Note that this algorithm works
incrementally, so when augmenting M with a received message in the generation
of operational strands, we do not need to start the analysis from scratch. Also, we
assume that we never add redundant checks, i.e., ones that are already entailed
by previous checks.

Table 2 summarizes the procedure analyze(M,ϕ). The table is divided into
two parts: the upper part represents the first phase of the algorithm, saturating
M with derivable subterms, whereas the lower part represents the second phase
saturating ϕ with additional equations.

Phase 1. Here we check for every entry in M whether it can be analyzed,
i.e., if it has one of the forms of column 1 (the head symbol being scrypt, crypt,
sign, or a format) and that has not yet been marked as analyzed (initially no
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1. Term of the form 2. Condition 3. Derive 4. Check 5. Recipe

Xi 7→ scrypt(k,m) l ∈ composeM (k) Xi′ 7→ m vscrypt(l,Xi)
.
= > Xi′ := dscrypt(l,Xi)

Xi 7→ crypt(k,m) l ∈ composeM (inv(k)) Xi′ 7→ m vcrypt(l,Xi)
.
= > Xi′ := dcrypt(l,Xi)

Xi 7→ sign(inv(k),m) l ∈ composeM (k) Xi′ 7→ m vsign(l,Xi)
.
= > Xi′ := open(l,Xi)

Xi 7→ f(t1, . . . , tn) (true) Xi′1
7→ t1 . . . verifyf(Xi)

.
= > Xi′1

:= get1,f(Xi) . . .

for some f ∈ Σf Xi′n 7→ tn Xi′n := getn,f(Xi)

1. Term of the form (i 6= j) 2. Condition (where td
sd

= shorten( t1·...·tn
s1·...·sm

)) 3. Check

Xi 7→ t {l1, . . . , ln} = composeM (t) l1
.
= l2

.
= . . .

.
= ln

Xi 7→ inv(k) l ∈ composeM (k) vcrypt(Xi, crypt(l,>))=̇>
Xi 7→ t1 · . . . · tn ltd ∈ composeM (td) ltd · Xj=̇lsd · Xi

Xj 7→ s1 · . . . · sm lsd ∈ composeM(sd)

Xi 7→ exp(A, t1 · . . . · tn) ltd ∈ composeM(td) exp(Xj , ltd)=̇exp(Xi, lsd)
Xj 7→ exp(A, s1 · . . . · sm) lsd ∈ composeM(sd)

Xi 7→ exp(A, t1 · . . . · tn) ltd ∈ composeM(td) exp(lA,Xj · ltd)=̇exp(Xi, lsd)
Xj 7→ s1 · . . . · sm lA ∈ composeM(A)

lsd ∈ composeM(sd)

Table 2. Tabular overview of analyze(M,ϕ)

term is). We then check according to column 2 whether the necessary decryption
key can be derived. For this, we use the composeM procedure yielding a label l
if the key is available; if there are several labels, we simply pick one. We then
mark the entry Xi 7→ . . . as analyzed, choose a new label variable X ′i and add
the analyzed message to the knowledge M according to column 3. Further, we
add the condition of column 4 and the recipe of column 5 to φ. (We treat the
recipe here like an equation for simplicity.) We repeat this until no more analysis
step can be performed. (Note: whenever new terms are added to M , encrypted
messages that have not been marked as analyzed need to be checked again.)

Phase 2. We now consider every entry of M once and check for all alternative
ways to generate it according to the first row in the lower part of the table. If
we find more than one such label, we add the respective checks to φ. The second
row is to check if a private key fits to its corresponding public key if it is known.8

Next, we have rules for products and exponents (last three rows of the lower
table). Here we consider any pair of entries in M where the head symbol is exp
or mult (according to the form of column 1), again writing · for multiplication.
Here, we require a match such that none of the si and ti is itself a product. We
then consider the fraction (t1 · . . . · tn)/(s1 · . . . ·sm) and shorten it, i.e., removing
common factors in enumerator and denominator. Let td/sd be remaining prod-
ucts after shortening. If all the ti or all the si are shortened away (i.e., td = 1

8 This check is actually quite academic, as the agent has either generated the key pair
itself (and thus knows by construction that they form a key pair) or it has received
it from a key server, e.g., in identity-based encryption (but then needs to trust that
server anyway). However, without this check the correctness theorem and its proof
would require a more complicated formulation.
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or tsd = 1) we do not apply this rule (as it is already covered by the first row,
saving us from introducing 1 into the algebraic theory). We now try to compose
the products td and sd according to column 2. If there is at least one label for
each (if there are several, again we pick one), then we add to φ the condition of
column 3.

Example 2. We compute analyze(M,>) for the knowledge M = [X1 7→ y,
X2 7→ scrypt(exp(exp(g, y), x), n),X3 7→ scrypt(k, exp(g, x)),X4 7→ k,X5 7→
hash(n)].

For phase 1, entries X1, X4, and X5 do not match any entry in the first column
(they cannot possibly be decrypted). For X2, we have composeM (exp(exp(g, y), x)) =
∅, i.e., the decryption key is not (yet) available. However, we can decrypt X3 since
composeM (k) = {X4}. We thus add X6 7→ exp(g, x) to the knowledge, and to
φ the check vscrypt(X4,X3)

.
= > and the recipe X6 := dscrypt(X4, X3). We

mark X3 as analyzed, and check again the unanalyzed X2. This time (for the up-
dated M) we have composeM (exp(exp(g, y), x)) = {exp(X6,X1)}, and thus add
X7 7→ n to the knowledge, and to φ the check vscrypt(exp(X6,X1),X2)

.
= > and

recipe X7 := dscrypt(exp(X6,X1),X2). Since neither X6 and X7 can be further
analyzed, phase 1 is finished. For phase 2, we can of course re-construct the en-
cryptions, e.g., scrypt(X4,X6)

.
= X3 but that is already implied by the equation

X6 := dscrypt(X4,X3) and we do not add redundant checks. The only new check
is for X5, since composeM (hash(n)) = {X5, hash(X7)} yields X5

.
= hash(X7).

As another example for equational reasoning, analyze([X1 7→ a · b · c,X2 7→
a · c · d,X3 7→ b,X4 7→ d],>) yields the check X1 · X4=̇X2 · X3. ut

Theorem 4 For a knowledge M with no symbols in Σd and a finite conjunction
φ of equations, analyze(M,φ) terminates with a result (M ′, φ′) such that {t |M `
tl} = {t |M ′ ` tl} (soundness), analyzed(M ′) (completeness) and φ′ ≡ ccs(M ′)
(correctness of checks).

Proof. Soundness is immediate, as we merely add derivable messages to the
knowledge.

Termination: The newly added terms of M ′ are always subterms of some
term in M , so the M ′ component must eventually reach a fixed point. Adding
new equations to φ′ is bounded by pairs of entries of M ′ and the finiteness of
composeM .

Completeness: We first show that M ′ is analyzed, i.e., we have to show that
for any term t ∈ TΣA

(V ) with M ′ ` tl, we also have M ′ `C tl
′

for some l′

(i.e., using only constructors of Σc and equivalence in ≈F ). For this, we con-
sider the proof tree for M ′ ` t. Intermediate nodes may well contain destruc-
tors, but we can exclude so-called garbage terms, namely terms that are not
≈-equivalent to any term in TΣA

(V ). For instance, dscrypt(c, c) is garbage
(while dscrypt(k, scrypt(k,m)) ≈ m is not). Suppose the proof contains a
node with a garbage term s, then there must be a construction in the proof
to remove s (since the final term must be in TΣA

(V )), for instance construct-
ing dscrypt(s, scrypt(s,m)) ≈ m eliminates garbage s, but in all such cases,
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all occurrences of s must have been composed, so there exists a simpler proof
without garbage.

We thus first show the following: for any M ′ ` tl where t is not garbage we
have M ′ `C sk for some s ≈ t and some label k. This is shown by induction
over the proof tree of M ′ ` tl. For Ax and Eq the proof is immediate as well
as for Cmp with f ∈ Σc . For f ∈ Σd , consider the term t0 being analyzed. By
induction M ′ `C sk00 for some s0 ≈ t0, so this is (modulo ≈F ) either composed
or an axiom. If it is composed, then the intruder decomposes a term he has
composed himself and this proof can be simplified. If it is an axiom, then the
intruder applies decomposition to a term in his knowledge, and analyze has
already added the resulting term t (modulo ≈) to M ′.

Note we have only proved that for M ′ ` tl (where t is not garbage) there is
M ′ `C sk for some s ≈ t. We have to show that M ′ `C tl

′
for some l′, but only

for t ∈ TΣA
(V ), i.e., without destructors. We claim that in this case we have

s ≈F t (and thus follows M ′ `C tk as `C is closed under ≈F ). This claim follows
from the fact that our destructor equations (1)–(8) can be read as rewrite rules
(from left to right) that are convergent modulo ≈F , and thus terms that do not
contain constructors are in normal form modulo ≈F . The idea for proving this
convergence is that the rewriting rules have disjoint symbols from the equations
in ≈F (so they cannot conflict) and we can prove convergence for the rewrite
rules using the critical pair method, see e.g. [6].

Correctness of Checks: Now for φ′ ≡ ccs(M). The soundness (ccs(M) =⇒
φ) is obvious by checking that each step in analyze adds only sound equations.
The completeness we prove again indirectly, i.e., suppose we have a term t and
two derivation proofs M ` tl and M ` tl′ such that l

.
= l′ is not implied by φ′.

Suppose in either of the derivation trees for l and l′ appears a composition step
with a destructor. Suppose the message being decomposed is tl11 and the result
of decomposing is tl00 . Again assume that there are no decompositions in the
subtrees. One possible case is the analysis of inv which is covered by the sixth
case in analyze (Table 2). In all other cases, analyze(M,φ) must have added t0
under some new label Xi to M ′ and φ′ must entail Xi

.
= l0 (and a constraint

about verifiability of l1). Let us thus replace the derivation tl00 with tXi
0 : this

changes a subterm in labels l and l′, but for these changed labels still l
.
= l′ does

not follow from φ′. In this way we can step by step eliminate all analysis steps
and thus have two trees without analysis for tl and tl

′
such that l

.
= l′ is not

implied by φ′.

Now we consider the case that either of the two trees (say for l′) is an ap-
plication of only axiom and equality steps, thus l′ = Xi for some variable Xi.
Then M ′ contains [Xi 7→ t] for a term that can be composed in a different way
using only constructors and ≈F , i.e., l ∈ composeM (t) and thus φ′ must contain
l
.
= l′, contradicting the assumption. Otherwise it must be two trees consisting

of composition steps. We can exclude composition with any operator but exp

or mult since otherwise we can simply go to one of the subterms. If it is exp or
mult, then it has the form of adding factors to initially known exp or mult terms.
Again we can exclude adding the same factor in both trees (since otherwise we
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can reduce again to a simpler case). The remaining case is however covered by
our check rules for exp and mult, again showing that l ≈ l′ must by entailed by
φ′.
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C Translating to Applied-π Calculus

Here, we present [[·]]π that translates an operational strand to an applied-π cal-
culus process. We use the syntax provided in [29]. Note that the semantics of
operational strands is actually similar to a process calculus and this translation
to it is mainly a matter of pretty-printing, yet some details that we explain
shortly. We define [[]]π as follows (+ denotes string concatenation):

[[M:strand ]]π = let proc +own(strand)+ “(”+ par(M )+“)=” + [[strand]]π
where: own(strand) is the name of the agent that owns the strand strand ,
and par(M ) is a list of the process parameters derived from its initial knowledge M

[[send(ch, l).rest ]]π = “out(”+ ch + “,”+ l+ “);”+ [[rest ]]π
[[receive(ch, l).rest ]]π = “in(”+ ch + “,”+ l+ “);”+ [[rest ]]π
[[fresh l.rest ]]π = “new ” + l+ “:bitstring;”+ [[rest]]π
[[x := t.rest ]]π = “let ”+ x+ “=”+ t+ “in ”+ [[rest ]]π
[[t
.
= >.rest ]]π = [[rest]]π

[[s
.
= t.rest ]]π = “if(”+ s+ “=”+ t “) then ” + [[rest ]]π

[[event(t).rest ]]π = “event(t);” + [[rest ]]π
[[0]]π = “0.”

The first rule declares the agent’s process; by giving it a name and parametrize
it over the initial knowledge of the agent. For example, Let MA : strandA be
the strand shown in our example in Figure 1(b), then own(strandA) = A, and
par(M A) = x1, x2, x3, x4 : bitstring, so the process will be proc A as shown
in the first line of the second column of Figure 5.2. The second and the third
rules deal with the sending and receiving of messages over a channel ch. The
forth rule deals with the creation of a fresh value, and the fifth rule covers
the macro case of a strand and how it is translated in applied π code. The
sixth and the seventh rules deal with the checks. Note that in the case of a
check that one of its sides is the true value >, we simply ignore such case
since this check is implicitly performed by the next destruction step. For ex-
ample, consider the translation of Figure 1(b), we ignore vscrypt(X3,X6)

.
= >

as it is followed by X7 := dscrypt(X3,X6), which according to the property
(reduc forall m, k : bitstring; dscrypt(k, scrypt(k, m)) = m.) will not be de-
crypted X6 unless it is a valid encrypted message and X3 is a valid encryption
key. The eighth rule pretty-prints the event event(t) in the process and the last
rule ends the strand.
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