
Sufficient Conditions for
Vertical Composition of Security Protocols∗

(Extended Version)
DTU Compute Technical Report-2014-07

Sebastian Mödersheim
DTU Compute

Lyngby, Denmark
samo@imm.dtu.dk

Luca Viganò
Department of Informatics
King’s College London, UK
luca.vigano@kcl.ac.uk

ABSTRACT
Vertical composition of security protocols means that an ap-
plication protocol (e.g., a banking service) runs over a chan-
nel established by another protocol (e.g., a secure channel
provided by TLS). This naturally gives rise to a composi-
tionality question: given a secure protocol P1 that provides
a certain kind of channel as a goal and another secure proto-
col P2 that assumes this kind of channel, can we then derive
that their vertical composition P2[P1] is secure? It is well
known that protocol composition can lead to attacks even
when the individual protocols are all secure in isolation. In
this paper, we formalize seven easy-to-check static condi-
tions that support a large class of channels and applications
and that we prove to be sufficient for vertical security pro-
tocol composition.

1. INTRODUCTION
It is preferable to verify the security of a protocol like

TLS in isolation: independent of what other protocols may
later be used on the same network, and independent of what
application protocols one later wants to use the TLS chan-
nels for. One should prefer to verify small or medium-size
protocols in isolation because:

∗The work presented in this paper was partially supported
by the EU FP7 Projects no. 318424, “FutureID: Shaping the
Future of Electronic Identity” (futureid.eu), and no. 257876,
“SPaCIoS: Secure Provision and Consumption in the Inter-
net of Services”, and by the PRIN 2010-2011 Project “Secu-
rity Horizons”. Much of this work was carried out while Luca
Viganò was at the Dipartimento di Informatica, Università
di Verona, Italy. This report extends the paper “Sufficient
Conditions for Vertical Composition of Security Protocols”
appearing in the proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security (ASI-
ACCS 2014), held in Kyoto, Japan, June 4–6, 2014.

1. The composition of several protocols immediately leads
to very complex systems that are infeasible for formal
verification, be it manual or automated.

2. One should not have to repeat a security proof of all
existing protocols whenever a new protocol is added to
a system.

3. One should strive for general and reusable results, e.g.,
that TLS provides a secure channel no matter what
application it is used for. Similarly, the verification of
an application protocol that relies on a secure chan-
nel should be completely independent of how (i.e., by
which other protocol) that channel is actually realized.

In general, however, the composition of secure protocols may
lead to attacks even when the individual protocols are all
secure in isolation. Compositional reasoning thus aims at
identifying conditions for security protocols that are suffi-
cient to prove a statement of the form: whenever secure
protocols (that satisfy the conditions) are composed, then
also their composition is secure.

There are several results for the parallel composition of
security protocols (e.g., [12, 13]), i.e., when two or more pro-
tocols are used (independently) on the same network. The
general idea is here that the message formats of the involved
protocols need to be sufficiently different, so that message
parts of one protocol cannot be accidentally mistaken for
message parts of another protocol, to avoid any risk that
confusions could be exploited by an intruder. Note that, in
general, such conditions are sufficient for compositionality1

but not necessary: some protocols with confusable proto-
col formats may still be sound to compose when confusions
cannot be exploited by an intruder.

Another line of work concerns sequential protocol com-
position (e.g., [11, 13, 15, 19, 21]), where the result of one
protocol, e.g., a shared session key, becomes input to a sec-
ond, subsequent secure channel protocol. One may interpret
TLS as an example of sequential composition where the TLS
handshake protocol establishes a pair of symmetric keys and
the TLS transport protocol uses them to encrypt messages
of an application protocol. A disadvantage of this view is
that we must consider the agglomeration of TLS transport
with the application protocol, while we would rather like to

1In this paper, we use the terms compositionality and com-
posability interchangeably.

have a clear-cut dividing line between channel protocol and
application protocol, as is common in the layered Internet.

For such a view of layered protocols we will use the term
vertical protocol composition, in contrast to sequential and
parallel composition that we refer to as horizontal composi-
tions. Maurer et al. [26] (but see also the more recent [24,
25]) have initiated an idea to capture very different means
of communication, based on cryptography, protocols, and
non-technical means (e.g., trust relationships or humans who
know each other) with a notion of channels that may build
on each other. For instance, a banking service may run
over a secure channel that is provided by another protocol
such as TLS. Another example is Diffie-Hellman that allows
two agents A and B to establish secure channels with each
other, provided that they already have authentic channels;
how exactly these channels are realized does not matter for
Diffie-Hellman.

In [33], we used the concepts that Maurer et al. had pre-
sented informally in [26] and gave a formal definition in a
transition-system model for security protocols. In particu-
lar, channels can be both assumptions of a protocol (e.g., the
authentic channels in Diffie-Hellman) and goals of a protocol
(e.g., that Diffie-Hellman establishes secure channels).2 This
naturally gives rise to a compositionality question: given a
secure protocol P1 that provides a certain kind of channel
as a goal (e.g., TLS) and another secure protocol P2 that
assumes this kind of channel (e.g., a banking service), is it
then possible to derive that their vertical composition P2[P1]
(e.g., a banking service over TLS) is secure?

We can distinguish two aspects for the potential failure of
such a composition:

1. In [33], we considered what we call the logical aspect:
a mismatch between the behavior of a channel as an
assumption and as a goal.

2. But there is also a static aspect: an interference be-
tween the message formats (when message parts of P1

could be confused with message parts of P2).

In [33], we proved only the logical aspect of the composi-
tionality question for our notion of channels, while for the
static aspect we simply assumed that the composed proto-
cols do not interfere with each other. In fact, this assump-
tion is a semantical condition that involves the set of all
concrete runs of the composed protocols—as opposed to a
simple syntactic check on the protocols. We suggested there
that this could maybe be solved similar to existing disjoint-
ness notions in parallel protocol composition, but left this
complex problem open.

Contributions.
This open problem of how to deal with the static aspect

of vertical protocol composition turns out to be intricate for
two main reasons. First, in contrast to all horizontal compo-
sition types, the vertical composition has to deal with mes-
sages that are composed from the channel protocol P1 and
the application protocol P2, because the payload messages
of P2 are embedded into message-templates of P1 that are
used for transferring messages with the desired properties.
Second, we have that the channel protocol is parameterized

2In fact, later papers [24, 25] have more formal notions of
channels as well, but very remote from transition systems.

over a payload message.3 We want to be able to use stan-
dard existing verification methods to verify P1, especially
independent of payload messages of a particular P2. This is
in fact why we call this problem the static aspect: we want
to see this independent of the dynamic behavior of P2 using
a form of abstract interpretation for the payload.

The contributions of this paper are therefore:

• The definition of a precise interface for the abstract
payload in a “pure”P1 that is suitable for all standard
protocol verification methods. This further gives rise
to the notion of static vertical composition PP2

1 , where
“statically” all possible payloads of a protocol P2 are
inserted into P1 and this serves as an interface to the
results of [33].

• We give a set of seven syntactic conditions on the pro-
tocols P1 and P2 that are easy to check statically. In a
nutshell, they require the disjointness of the message
formats of P1 and P2, and that the payloads of P2 are
embedded into P1 under a unique context to define a
sharp borderline. These conditions and the other mi-
nor conditions are satisfied by a large class of protocols
in practice.

• We show that the seven conditions are sufficient for
static vertical composition, i.e., if protocols P1 and P2

are secure in isolation (which is established using any
classical method) and they satisfy the seven conditions,

then also PP2
1 ‖ P2 is secure, where ‖ denotes parallel

composition. That in turn is sufficient for the result
in [33] to infer that P2[P1] is secure.

• We formally show that we can also support negative
conditions (that are useful for advanced protocols and
goals) in the application protocol (not in the channel
protocol, however, due to abstract interpretation).

• Finally, we discuss how to extend the result to chan-
nel protocols that support more than one channel type
and to an arbitrary number of message transmissions,
and discuss this for a TLS-based example. These re-
sults are left informal though, since the general vertical
protocol composition framework of [33] needs to be ex-
tended to this end.

In Appendix B, we provide a proof of concept of our condi-
tions by considering a concrete example of vertical protocol
composition.

Related Work.
Like the previous results in horizontal protocol composi-

tion (see [2, 14, 17, 18] in addition to the works already
cited above), our result requires disjoint message formats of
the different protocols involved to avoid confusions. Ver-
tical protocol composition, however, makes a difference in
that the several layers of a protocol stack can be verified
independently, even though messages of the composed pro-
tocols are themselves composed from the different layers.

3As we describe in more detail below, the fact that the pay-
load is used as a placeholder for data from an arbitrary pro-
tocol makes this a complex problem that cannot be solved
simply by requiring the two protocols to be disjoint (which
is the typical solution for other kinds of compositionality).

For instance, in contrast to [11], we can consider an applica-
tion protocol completely independent from a transport layer
(such as TLS).

The work most similar to ours is [16], which also con-
siders vertical protocol composition. The difference is that
[16] supports only one particular kind of channel protocol,
namely one that establishes a pair of symmetric keys (one for
each communication direction) and then encrypts all mes-
sages of the application protocol with the key for the respec-
tive direction. In contrast, our results in the present paper
are compatible with many channel types (for which the logi-
cal connection between channels as assumptions and as goals
has to be proved like in [33]) and the transmission over the
channel is not limited to symmetric encryption but may be
any realization of the desired channel type. Despite being
less general in this respect, [16] allows for arbitrary stacks
where the same protocol may occur several times, which is
here excluded due to disjointness.

Vertical protocol composition is conceptually close to the
view of many cryptographers such as [24, 25, 26] and the
Universal Composability (UC) framework [9]. The original
UC has however very restrictive assumptions that forbid its
application to many practical compositions, e.g., that dif-
ferent protocols use the same key-material. Recent exten-
sions and modifications of UC have improved the situation
drastically [22]. A detailed comparison is difficult here be-
cause the UC-works, and similarly the other cryptographic
approaches, are rooted in the cryptographic world based on
the indistinguishability of an ideal and a real system, while
our approach is based on trace-based protocol semantics and
properties (and treats cryptography as black boxes). Works
are emerging that bridge the gap between the cryptographic
and the symbolic world, but this is beyond the scope of
our paper. Rather, we are interested in obtaining results
that can be immediately applied with the established proto-
col verification approaches and we formalize sufficient con-
ditions that are both easy to check and satisfied by many
protocols in practice.

Organization.
Section 2 contains some formal preliminaries. To ease the

reading, we first (Section 3) discuss our compositionality
theorem that shows that the seven conditions that we for-
malize in this paper are sufficient for static vertical compo-
sition and then (Section 4) describe the conditions and illus-
trate the role that they play in the theorem. In Section 5,
we discuss extensions of our compositionality result, and we
then conclude in Section 6. In the appendix, we give the full
proof of our compositionality result and consider a concrete
and large example of vertical protocol composition.

2. PRELIMINARIES: PROTOCOL MESSA-
GES AND TRANSITION SYSTEM

2.1 Messages
Following the line of black-box cryptography models, we

employ a term algebra to model the messages that partici-
pants exchange. Let Σ be a countable signature and V be a
countable set of variable symbols disjoint from Σ. The sig-
nature is partitioned into the set Σ0 of constants and the set
Σp of “public” operations. As a convention, we denote vari-
ables with upper-case letters and constants with lower-case

letters. We use standard notions about terms such as ground
(without variables), atomic, etc. We write TΣ to denote the
set of ground terms and TΣ(V) to denote all terms.

The constants represent agents, keys, nonces, and the like.
The function symbols of Σp represent operations on mes-
sages that every agent can perform. In this paper, we use the
following function symbols: {m}k represents the asymmet-
ric encryption of message m with a public or private key k;
{|m|}k represents the symmetric encryption of m with sym-
metric key k (we assume that this primitive includes also
integrity protection such as a MAC); and [m1, . . . ,mn]n,
for every n ≥ 2, represents the concatenation of n messages
m1, . . . ,mn (we use this family of operators to abstract from
the details of structuring messages in the implementation).

We also use a set of meta-symbols Σm that we refer to
as mappings. We use them to specify mappings that do not
necessarily correspond to operations that agents can per-
form on messages, e.g., pubk(s) and privk(s) represent the
public and private keys resulting from a seed s. Moreover,
pk(A) may represent the seed for the public key of agent
A to model a fixed public-key infrastructure. Most impor-
tantly, we use the mapping payload(A,B) to denote an ab-
stract payload message that A wants to send to B (we will
make precise the details of payload messages below). For-
mally, these mappings are injective functions on Σ0 (rather
than function symbols of the term algebra). As a conse-
quence, the expression payload(A,B) represents a constant
of Σ0, and is thus regarded as atomic.

2.2 Transition system (ASLan)
For concreteness, as a formal protocol specification lan-

guage, we use here the AVANTSSAR Specification Language
ASLan [6, 4] but all our results carry over to other protocol
formalisms such as strands, the applied π calculus, and so
on. ASLan is (i) expressive enough that many high-level lan-
guages (e.g., BPMN or Alice-and-Bob-style languages such
as the one we will consider in the following for channels and
composition) can be translated to it, and (ii) amenable to
formal analysis (e.g., with the AVANTSSAR Platform [4]).

ASLan provides the user with an expressive language for
specifying security protocols and their properties, based on
set rewriting. At its core, ASLan describes a state-transition
system, where states are sets of facts (i.e., predicates that
express something that holds true in a give state) sepa-
rated by dots (“.”). These facts model the state of honest
agents, the knowledge of the intruder, communication chan-
nels, and goal-relevant information. Transitions are specified
as rewriting rules over sets of facts. We give here one exam-
ple of an ASLan transition rule, pointing to the references
for more details. Consider the following message exchange
(that is part of the protocol P1 that we will consider in Fig-
ure 1 below)

A→ B : {{[p, A,B, payload(A,B)]4}privk(pk(A))}pubk(pk(B))

in which A first signs4 with its private key a payload, along
with information on sender and receiver that is needed to
achieve a secure channel. The tag p signals that this concate-
nation contains the payload transmission. A then encrypts
the message with B’s public key.

4For simplicity, we model signing by asymmetric encryption
with a private key. If one wishes to distinguish signing and
encryption, one may of course use instead a dedicated oper-
ator like sign(privk(pk(A)),M) and all results hold similarly.

This message exchange is formalized by two ASLan rules,
one for the sender and one for the receiver. One way to
model the sender’s transition is as follows:

stateA,P1
(A, step1 ,SID , B) ⇒

stateA,P1 (A, step2 ,SID , B).
iknows({{[p, A,B, payload(A,B)]4}privk(pk(A))}pubk(pk(B)))

where stateA,P1(. . .) formalizes the local state of an honest
agent in role A of protocol P1. Here we have chosen to
model this state as consisting of the agent’s name A, its step
number in the protocol execution, a session identifier SID ,
and the name of the intended communication partner B. A,
B and SID are here variables that allow for matching against
arbitrary concrete facts. In contrast, step1 is a constant, i.e.,
this rule can only be applied to an agent that is currently
in this stage of the protocol execution. On the right-hand
side of the rule, there is the updated state of the honest
agent and a message that the agent sends out. Since we
assume that the intruder can read all messages that are sent
on insecure channels, we immediately add this message to
the intruder knowledge, as formalized by the fact iknows(·).
The local state of an honest agent does not necessarily carry
all the knowledge of the agent (like payload(A,B)) but it
is sufficient that it contains all those variables on which the
terms depend that the agent is supposed to send and receive.

It is standard to define what the intruder can deduce
(e.g., encryption and decryption with known keys) by rules
on iknows(·) facts to obtain a Dolev-Yao-style model. We
usually also allow that the intruder may completely control
several “compromised”agents (including knowing their long-
term secrets). We use the predicate dishonest(·) that holds
true for every agent under the intruder’s control (from the
initial state on), and the predicate honest(·) that holds for
all other agents.

We describe the goals of a protocol by attack states, i.e.,
states that violate the goals, which are in turn described by
attack rules: a state at which the attack rule can fire is thus
an attack state. For instance, we can formulate a secrecy
goal as follows. We add the fact secret(M, {A,B}) to the
right-hand side of an honest agent rule, whenever a message
M is supposed to be a secret between A and B, and then give
the following attack rule, which expresses that, whenever the
fact secret(M, {A,B}) holds for two honest agents A and B,
and the intruder has learned the message, then we can derive
the fact attack:

secret(M, {A,B}).iknows(M).honest(A).honest(B)⇒ attack (1)

Definition 1. (Secure protocol) We say that a protocol is
secure when no attack state is reachable.

Note that our focus, like in most security papers, is on
safety properties and they can always be expressed as reach-
ability problems. There are a few papers that also consider
liveness (e.g., [5]), but this generally also requires fairness
assumptions on the channels as otherwise an intruder could
simply block communication indefinitely. We leave for fu-
ture work the investigation if such resilient channels can be
combined with our approach.

3. CHANNELS AND COMPOSITION
The most common type of security protocol composition

is running two protocols in parallel over the same network,
which is easy to define for many protocol formalisms. For

instance, in a strand notation, we simply consider the union
of the strands of the two protocols. Similarly, in ASLan
we will simply consider the union of the rules of the two
protocols (as well as the unions of initial states and goal
rules).

There is, however, a subtlety about this in ASLan due
to its expressiveness. Recall that in the previous example
of a transition rule in ASLan we have noted explicitly the
protocol in the name of the state fact. If we did instead
use the same fact stateA in several protocols and build the
union, then we might obtain executions that do not make
much sense. So, in general, we assume that the state facts
of different protocols are disjoint to avoid this kind of col-
lisions. For other facts it can, however, make sense to use
the same predicate in several protocols. Obviously, iknows(·)
and attack shall be shared by protocols, but one may also
formalize a database of an agent A as the set of messages
msg for which a fact db(A,msg) holds. This database can
then be “shared” across different protocols that A partic-
ipates in. As this makes composition much more difficult,
we will exclude this by assuming the following notion of pro-
tocol independence:

Definition 2. (Execution independence of two protocols)
We say that two protocols P1 and P2 are execution indepen-
dent if they are formulated over disjoint sets of facts, except
for iknows(·) and attack.

Execution independence is neither necessary nor sufficient
for parallel compositionality (or other composition types),
but it only simplifies the problem: we reduce ourselves to
protocols that can interfere with each other only in terms of
exchanged messages.

Three further remarks are in order. First, note that execu-
tion independence does not exclude protocols where agents
for instance maintain protocol-specific databases over sev-
eral protocol sessions, it only excludes that a database can
be shared over several protocols. Second, note that for secu-
rity goals we also have protocol-specific facts, e.g., secretP1 ,
but that is not a restriction and even helps to identify in
which protocol the goals were violated. Finally, note that
the definition of execution independence is trivial for strands
and the applied π calculus: they cannot express dependent
protocols in this sense.

Definition 3. (Parallel Composition P1 ‖ P2 and Com-
posability) For two execution independent protocols P1 and
P2 specified in ASLan, we define their parallel composition
as the union of the initial states, transition rules, and goal
rules, respectively. We denote the resulting ASLan specifi-
cation with P1 ‖ P2.

We say that P1 and P2 are composable in parallel if the
following holds: if P1 and P2 are secure in isolation, then
also P1 ‖ P2 is secure.

A similar definition can be given for the composition of
Alice-and-Bob-style protocols modulo their translation to
ASLan.

The main idea to ensure parallel compositionality is that
messages of the composed protocols should have sufficiently
different formats so that no message part of one protocol can
be mistaken for one of another. For simple Alice-and-Bob-
style protocols, this is already sufficient, but in general more
complex situations may occur. For instance, if a web-service
maintains a database of transactions that it was involved

P1 :

A → B : {{[p,A,B, payload(A,B)]4}privk(pk(A))}pubk(pk(B))

A •→• B : payload(A,B)

P2 :

D → C : [N ,C ,D]3
C •→• D : [h(N),M]2

C •→• D : M

P
P2
1 :

A → B : {{[p,A,B,mA,B]4}privk(pk(A))}pubk(pk(B))

A •→• B : mA,B

P2[P1] :

D → C : [N ,C ,D]3
C → D : {{[p,C ,D, [h(N),M]2]4}privk(pk(C))}pubk(pk(D))

C •→• D : M

Figure 1: Abstract channel protocol P1 (top left) and application protocol P2 (top right), their static vertical

composition PP2
1 (bottom left) and their vertical composition P2[P1] (bottom right).

in, and several of the composed protocols involve reading
or writing in this database, then this can result in a “side-
channel” that may break compositionality.

3.1 Channels as Assumptions, Channels as
Goals

Channels may be used both as protocol assumptions (i.e.,
when a protocol relies on channels with particular properties
for the transmission of some of its messages) and as proto-
col goals (i.e., a protocol’s objective is the establishment of
a particular kind of channel). Considering channels as as-
sumptions allows us to enhance the standard insecure com-
munication medium with security guarantees for message
transmission. We can express this, e.g., in an Alice-and-
Bob-style notation, where a secure end-point of a channel is
marked by a bullet, as follows:

• A → B : M represents an insecure channel from A
to B, meaning that the channel is under the complete
control of the intruder.

• A •→B : M represents an authentic channel from A
to B, meaning that B can rely on the fact that A has
sent the message M and A meant to send it to B.

• A→•B : M represents a confidential (or secret) chan-
nel from A to B, meaning that A can rely on the fact
that only B can receive the message M .

• A •→•B : M represents a secure channel, i.e., a chan-
nel that is both authentic and confidential.

These are some examples of channel types, but note that,
in fact, the details of the supported channel types do not
matter for the results of this paper.

In [33], two definitions are given for these channels: a
cryptographic realization of the channels’ behavior (in which
channel properties are ensured by encrypting and signing
messages) and a more abstract characterization (in which
we use predicates to formalize that an incoming or outgoing
message is transmitted on a particular kind of channel).

In [33], we also give a definition of channels as goals, e.g.,
to express that it is the goal of a protocol to authentically
transmit a certain message. This gives rise to a vertical com-
position question: given a channel protocol that provides a
certain kind of channel as a goal and an application protocol
that assumes this kind of channel, is it safe to compose the
two? While [33] tackles the “logical aspect” of this question,
we look in this paper at the“static aspect”, i.e., the potential

problems that arise from inserting the messages of one pro-
tocol into another protocol. In particular, for compositional
reasoning we want to be able to verify channel protocol and
application protocol separately. This means, especially, that
we want to verify the channel protocol for an abstract payload
that is independent of the application that uses the channel
(and this requires more than mere protocol disjointness).

The easiest and most intuitive way to define vertical com-
position is at the level of Alice-and-Bob notation, and we
use here the formal language AnB [29, 33], which can be
automatically translated to ASLan so that we can connect
to and exploit our ASLan formalization of protocols. It is
possible to give corresponding definitions on the ASLan level
as well, but due to the handling of local state facts it would
be technically quite involved and distracting from our main
point.

An AnB specification of a protocol is, in a nutshell, a
description of a protocol as an exchange of messages; the
goal is specified as a result below a horizontal line using the
channel notation about some message terms of the protocol.

Definition 4. (Abstract Channel Protocol) Let κ(A,B)
range over a set of defined channel types (e.g., A •→B : M)
and payload(A,B) be a mapping from pairs of agents to (ab-
stract) payloads. An abstract channel protocol for κ(A,B)
is an AnB specification that has κ(A,B) : payload(A,B)
as a goal. Moreover, we require that every agent A ini-
tially knows payload(A,B) for every communication partner
B (recall the notion of knowledge given in Section 2).

An example of an abstract channel protocol is P1 in Fig-
ure 1. The message exchange was already explained in Sec-
tion 2, and we declare the goal to be the transmission of the
abstract payload over a secure channel.

Definition 5. (Application Protocol) An application pro-
tocol for channel κ(A,B) is an AnB specification that con-
tains as part of its message exchange one step κ(A,B) : t
with some message term t.

An example of an application protocol is P2 in Figure 1,
in which D first sends to C a nonce N , together with both
agent names, as a challenge on an insecure channel, and
then C sends back to D the hashed nonce h(N) paired with
a message M on a secure channel; the goal of this protocol is
the secure transmission of the message M between the two
agents.

3.2 Vertical Protocol Composition

Definition 6. (Vertical Composition P2[P1]) Let P1 be an
abstract channel protocol for κ(A,B) and P2 an application
protocol for κ(C,D).5 The vertical composition P2[P1] is
defined by replacing in P2 the step κ(C,D) : t with the
entire protocol P1 under the replacement [A 7→ C,B 7→
D, payload(A,B) 7→ t].

An example is given in Figure 1, where payload(A,B) 7→
[h(N),M]2.

As already mentioned, we separate the vertical composi-
tion question into a logical aspect (that is already handled
in [33]) and a static aspect. For this, we need two further
definitions related to this composition. We now define the
notion of static vertical composition; it is based on a static
characterization of all the messages that can occur in any
run of the protocol P2 as a payload:

Definition 7. Let P2 be an application protocol and let
κ(C,D) : t be the step that uses an abstract channel κ(C,D)
to transmit message t. Consider the set of all ground terms
t0 that are instance of t in any run of P2 for a fixed pair
(C,D) of agents. We defineMC,D to be an arbitrary super-
set of this set of payload messages.

For the example protocol P2 from Figure 1, the payload
messages sent by an honest agent C has always the form
[h(N),M]2, where N is any message that C has received in
the first step (supposedly from D) and M is a fresh nonce.
We can bound the values that are possible for M since they
are freshly created by C; let us say we have a distinguished
subset MC,D of all constants (for each pair C and D of
agents), from which these are taken. Then the set of all
payload messages that can ever occur here are a subset of
MC,D = {[h(N),M]2 | N ∈ TΣ ∧M ∈ MC,D}. Note that
it is difficult to bound the set of values that variable N can
take: it is (potentially) under the control of the intruder
and basically depends on what he knows at the time, so we
take the largest possible choice, namely, the set TΣ of all
ground terms. (In fact, for dishonest C we usually have to
set MC,D = TΣ as the intruder can send any term from his
knowledge; the case of dishonest C is however uncritical for
the rest.)

This example shows why we do not require MC,D to be
exactly the set of all payload messages that can occur, but
allow any superset. This over-approximation is typical of
static analysis. As a rule of thumb, very large, coarse over-
approximations make computations easier, but also increase
the risk of false positives, i.e., protocols that do not satisfy
our sufficient conditions even though they are composable.
In our case, a coarse over-approximation can lead to false
positives, since we will later assume that the intruder gets
all payloads MC,D whenever the receiver D is dishonest or
secrecy of the payload is not a goal (and C is honest). Sup-
pose we had in the example protocol instead of the hash
h(N) directly the nonce N ; this would mean that the in-
truder knows [N, ·]2 for every N ∈ TΣ, i.e., then with MC,i

he initially knows every term, trivially giving us false posi-
tives. In such a case, we would need to resort to a full-fledged
static-analysis approach—in this example, intuitively, using

5To avoid confusion, we assume here disjoint role names;
but when there is no risk of confusion, later on in the paper,
we will use the same role names in the two protocols.

the fact that the intruder learns only nonces N that he him-
self sent earlier. As the entire approach is already quite
complex, we chose not to consider this complication in this
paper.

Definition 8. (Static Vertical Composition PP2
1) Let P1

be a channel protocol for κ(A,B) and P2 an application
protocol for the channel κ(C,D), and let MC,D be the set
of ground messages that C can transmit over the channel
κ(C,D) in any run of the protocol P2. The static verti-

cal composition PP2
1 is the protocol that results from P1 by

replacing payload(A,B) when it is first sent by A with a
non-deterministically chosen element of MC,D, and all the
following occurrences of payload(A,B) must be the same el-
ement of MC,D.

An example is given in Figure 1, where we write mA,B to
denote an arbitrary message, non-deterministically chosen,
from the set MA,B .

The protocol PP2
1 represents a certain “concretization” of

P1 with “random” payload messages from P2.6 This notion
is valuable because it indeed allows us to divide the compo-
sition problem into two aspects, a logical and a static one:

Definition 9. (Static Vertical Composability) Given an ab-
stract channel protocol P1 and an application protocol P2 as
in the definitions above, we say that P1 and P2 are statically
vertically composable if the following implication holds: if P1

and P2 are secure in isolation, then also PP2
1 ‖ P2 is secure.

These notions are used in [33] to show the following compo-
sitionality result:

Theorem 1 ([33]). If channel protocol P1 and applica-
tion protocol P2 are secure protocols in isolation and they
are both statically vertically composable and composable in
parallel, then P2[P1] is secure.

In this paper, we call this result the logical aspect of the
problem, because it proves that the definitions of channels
as assumption and as goals have “compatible” behavior, and
what remains to show is static vertical composability. It
turns out that the static aspect is in fact quite intricate and
solving this open problem is the main contribution of this
paper: the rest of this paper will concentrate on giving con-
ditions that can be easily checked syntactically and proving
that they are sufficient for a pair of protocols to be statically
vertically composable, i.e., satisfying Definition 9.

As a result, we can check in isolation, with any proto-
col verification method, a channel protocol P1 with abstract
payload as well as an application protocol P2 that uses the
respective channel type. If this channel type is part of the
ones defined in [33] and the sufficient conditions of this paper
are satisfied for P1 and P2, then we can combine Theorem 1
with our Theorem 2 (given below) to infer that P2[P1] is
secure.

3.3 The Static Aspect of Vertical Protocol
Composition

We are now ready for our main result, namely that the
seven conditions that we will define in Section 4 are sufficient

6[33] instead uses the notion P ∗1 , which, however, may be
confusing here as it does not denote the protocol from which
the payloads come.

for static vertical composability, i.e., if P1 and P2 are secure,
then so is PP2

1 ‖ P2. Or, in other words, that we can reduce

an attack against PP2
1 ‖ P2 to an attack against one of the

component protocols.

Theorem 2. Consider two protocols P1 and P2 that sat-
isfy all the seven conditions defined in Section 4. If there is
an attack against PP2

1 ‖ P2, then there is an attack against
P1 or against P2.

Let us give here a proof sketch, postponing the full proof
to Appendix A, and then illustrate the proof by means of
a detailed example, which also provides further motivation
for the conditions themselves, which we will formalize in the
next section.

Proof Sketch. In the proof, we employ the constraint
reduction technique that we refer to as the lazy intruder
(see, e.g., [7, 10, 27, 35]). While this technique is originally
a verification technique (for a bounded number of sessions),
we use it here for a proof argument for our compositionality
result (for an unbounded number of sessions). The key idea
of the lazy intruder is to model “symbolic executions” where
variables in the messages that honest agents receive from
the insecure network (i.e., from the intruder) are left un-
instantiated. We use intruder constraints of the form

IK ` t

where t is a (symbolic) term that an agent is able to receive
and the set IK of messages is the current intruder knowl-
edge. We use the fact that we can check satisfiability of such
constraints using the lazy intruder calculus, and that we can
reduce insecurity to satisfiability of lazy intruder constraints.

We thus assume we are given lazy intruder constraints for
an attack against the composition PP2

1 for any channel pro-
tocol P1 and application protocol P2 that satisfy our seven
conditions. We then show that over all reductions with the
lazy intruder calculus, the seven conditions and some further
invariants are preserved, in particular, that the attack never
requires a confusion between P1 and P2 messages. This is
because the lazy intruder technique never instantiates vari-
ables whose concrete value is irrelevant for the attack (this
is why we call it lazy in the first place); these still admit “ill-
typed” instantiations (confusing P1 and P2), but they always
also admit well-typed instantiations. As a consequence, we
can show that there exists an attack against P1 in isolation
or against P2 in isolation.

3.4 Illustration
We illustrate the proof at hand of a concrete example.

Let us turn again to the example protocols P1, P2, PP2
1

and P2[P1] from Figure 1, and let us now consider a slight
variant of the protocol P1 in which we deliberately insert
an authentication vulnerability. This allows us to illustrate
the different steps in the construction of the proof—that an
attack against P2[P1] can be reduced to an attack against
either P1 or P2. Moreover, it also helps to illustrate and
motivate the conditions that we introduce below.

Note that the message in P1 mentions both the sender and
the intended receiver as part of the signature. Let us now
consider a variant without these two names:

P1 :

A → B : {{[p, payload(A,B)]2}privk(pk(A))}pubk(pk(B))

A •→• B : payload(A,B)

that also gives accordingly the following variants of the com-
positions PP2

1 and P2[P1]:

P
P2
1 :

A → B : {{[p,mA,B]2}privk(pk(A))}pubk(pk(B))

A •→• B : mA,B

P2[P1] :

D → C : [N ,C ,D]3
C → D : {{[p, [h(N),M]2]2}privk(pk(C))}pubk(pk(D))

C •→• D : M

As we already remarked above, it turns out that, for our
proof, a symbolic representation of traces is very useful to
make the arguments about intruder actions concise. This
representation is often used in model checking, sometimes
briefly referred to as the lazy intruder technique, but our
results are of course independent of any such technology. A
symbolic trace of a protocol consists of a sequence of send
and receive actions of the honest agents, in which we have
variables for each subterm of a received message where the
agent is willing to accept an arbitrary value; this variable
can then occur in subsequent sending actions. Although we
do not note it explicitly here, every sent message is directly
added to the intruder knowledge, and every received mes-
sage must be constructed by the intruder. For instance, the
following is one symbolic trace for the protocol P2[P1]:

d sends m1 = [n, c, d]3
c receives m′1 = [N, c,D]3
c sends m′2 = {{[p, [h(N),m]2]2}privk(pk(c))}pubk(pk(D))

d receives m2 = {{[p, [h(n),M]2]2}privk(pk(c))}pubk(pk(d))

where the constants n and m are the concrete nonces that
d and c created for N and M , respectively. When c receives
m′1, every value for nonce N and for the claimed sender D is
possible, and the answer m′2 that c sends depends on these
two variables. In contrast, when d receives m2, it must be
encrypted for d and contain the nonce n sent earlier. A
requirement for such a trace to exist is that the intruder can
indeed construct all the messages that are received, using
what he learned. For this symbolic trace, we thus have the
constraints

IK 0 ∪ {m1} ` m′1 ∧ IK 0 ∪ {m1,m′2} ` m2 ,

Here, IK 0 is the set of initially known messages: it includes
all public constants, i.e., all agent names, public keys, the
private keys of the dishonest agents (like privk(pk(i))), as
well as the payloads for dishonest receivers, i.e., MC,D =
{[h(N),M]2 | N ∈ TΣ,M ∈ MC,D} for honest C and dis-
honest D and where MC,D is the subset of nonces that C
freshly creates for D. Thus, from IK 0 the intruder can de-
rive h(t) for every term t, and he can derive all nonces that
honest agents will create for him, but this does not include
n and m since these are created for honest agents. (How-
ever n is derivable from the first message m1.) Note that the
symbolic representation with the constraints corresponds ex-
actly to the set of ground traces that are possible.

The core of the lazy intruder is a constraint reduction
technique to find (a finite representation of) all solutions of
the constraints. In this case, we have, for instance, the solu-
tion D = d, N = n, M = m that corresponds to one normal
execution of the protocol between two honest agents c and d
with the intruder as a “network node” simply forwarding all

messages. We can, however, also express that the symbolic
trace violates authentication, namely if c and d at the end
do not agree on the concrete values of the (relevant) proto-
col variables, namely whenever M 6= m or D 6= d (the nonce
N itself is not part of any authentication goals). There is
indeed such a solution: D = i, M = m, and N = n. This
means that the intruder started a session with c, playing un-
der his real name in role D and using the nonce n from the
other session with the honest d. The intruder can then de-
crypt the message m′2 (since it is encrypted with his public
key) and re-encrypt it with the public key of d, completing
the attack.

The logical part of the composition problem (i.e., what is
proved in [33]) shows that such an attack on P2[P1] can be

transformed into one on PP2
1 ‖ P2. For our example, the

transformed symbolic attack would look like this (annotat-
ing for each step which of the protocols it belongs to):

P2 : d sends m1 = [n, c, d]3
P2 : c receives m′1 = [N, c,D]3
P2 : c sends on a secure channel c •→•D : [h(N),m]2
PP2

1 : c sends m′2 = {{[p, [h(N),m]2]2}privk(pk(c))}pubk(pk(D))

PP2
1 : d receives m2 = {{[p, X]2}privk(pk(c))}pubk(pk(d))

P2 : D receives on a secure channel c •→•D : [h(N),m]2

Here, the abstract channel of P2 runs in parallel with a cor-
responding step from PP2

1 with exactly the same payload

message (which is possible since in PP2
1 the agent c non-

deterministically picks a message from the set of all payload
messagesMc,D). Also note that d receiving m2 in PP2

1 does
not require a particular form of payload anymore (in con-
trast to the message m2 in the P2[P1] trace).

The intruder deduction constraints for the received mes-
sages are again the same (modulo the said change of m2).
The requirement for the attack is also similar: D 6= d or
X 6= [h(N),m]2, and we have again the attack for the solu-
tion D = i (and X = [h(N),m]2 with N arbitrary).

Now the goal of this paper to show that such a PP2
1 ‖ P2

attack can indeed be reduced to an attack against P1 in
isolation or against P2 in isolation.

To that end, we look at how the lazy intruder technique
would check the satisfiability of the constraints

IK 0 ∪ {m1} ` m′1 ∧ IK 0 ∪ {m1,m′2} ` m2 ∧
(D 6= i ∨M 6= m) .

The point for using the lazy intruder here is that the tech-
nique is complete, i.e., if the constraints have a solution,
then the reduction rules find a solution, and that the lazi-
ness precludes making any instantiations of variables that
are not required for solving the constraints.

One reduction rule is unification: for constraint IK ` t1,
if there is a term t2 ∈ IK that is unifiable with t1 under
the most general unifier σ, then we can solve this constraint
and apply σ to all remaining constraints. However at this
point we are lazy: we do not apply the unification rule if
t1 or t2 is a variable; we do not make a choice when any
value t1 is fine, and do not analyze any value t2 that the
intruder himself created earlier. One of the conditions be-
low (namely, (Καπανεύς)) in fact says that the structure of
all messages and non-atomic submessages in the protocols
P1 and P2 must be sufficiently disjoint; roughly speaking,
P1 stuff cannot be unified with P2 stuff. The exclusion of
atomic submessages (i.e., variables and constants) is neces-
sary because a random nonce does not indicate whether it

“belongs” to P1 or P2. Thus, in any unification step of the
lazy intruder, t1 and t2 can only be unifiable if they belong
to the same protocol. In the example, neither m1 nor m′1
can be unified with m2 or m′2.

Other intruder operations are analysis of messages in the
knowledge (e.g., in the example the intruder can decrypt
m′2), as well as generating terms on the sender side (in
the example, the intruder can generate m2 by encrypting
with pubk(pk(d)) the message obtained from decryptingm′2).
More generally, this allows us to show that each constraint
for generating a PP2

1 message can be solved without using
any P2 messages in the knowledge and vice versa. Thus, we
can reduce it to a problem of “pure” constraints that con-
tain only messages from one protocol each. That, however,
by the notion of protocol independence (cf. Definition 8, re-
quired below in (Τυδεύς)) means that we can simply split the

constraints into a PP2
1 part and a P2 part, and they repre-

sent an execution in isolation of PP2
1 and of P2, respectively.

Moreover, one of the two executions is then an attack against
the respective protocol. In our case, the two PP2

1 steps of the
trace together with the constraint IK 0 ∪ {m′2} ` m2 alone

entail an attack against PP2
1 : the attack is the solutionD = i

and X = [h(n),m]2.
What remains to show is that this implies also an at-

tack on P1. This follows merely by replacing the payload
[h(n),m]2 in m′2 with the abstract payload payload(c,D).
In fact, as part of the conditions below we will label ev-
ery payload sent by an honest agent with this abstract pay-
load (reflecting the intentions of the agent). Similarly, the
receiver-side payload X is labeled with d’s expectations of a
payload from C for d. The solution C = c and D = i is the
authentication attack. This concludes the illustration of the
proof.

We thus solved the static vertical composition question as
it was left open in [33]. We emphasize once again that the
results are independent both of the verification technique
used for verifying the atomic components and of the formal-
ism employed to model protocols such as rewriting, strands,
or process calculi.

4. THE CONDITIONS
We now finally present our seven conditions on a pair of

protocols that are sufficient for the vertical composition re-
sult (cf. Theorem 2); actually, in some cases, the conditions
are sets of related sub-conditions. For each condition, we
also highlight the specific role it plays in the proof. We label
the conditions with the names of the ῾Επτά ἐπὶ Θήβας [20].

4.1 Structural Properties (Τυδεύς)

The first condition is that P1 is a channel protocol provid-
ing a κ(A,B) channel and P2 is an application protocol rely-
ing on a κ(A,B) channel according to Definitions 4 and 5, so

that the compositions P2[P1] and PP2
1 (Definitions 6 and 8)

are actually defined. Let alsoMA,B be defined with respect
to P2 according to Definition 8. We further assume that P1

and P2 are execution independent (Definition 2).
The execution independence is used in the “splitting step”

of the proof, where we have an execution of PP2
1 and P2

in parallel and where we already know that the intruder
does not need to use messages from either protocol to at-
tack the other. Execution independence then allows us to

conclude that the sub-traces of the respective protocols are
valid traces.

4.2 Constants (῾Ιππομέδων)

We require that the set A of constants of the protocols is
partitioned into 4 pairwise disjoint subsets A = P]S]F]L
where:
• S is the set of secret constants, e.g., long-term private

keys of honest agents, or long-term shared keys shared by
only honest agents; we assume that these are never trans-
ported (they can of course be used for encryption/signing).
• P ⊆M0 is the set of public constants, e.g., agent names,

long-term public keys, long-term private keys of dishonest
agents, long-term shared keys that are shared with a dis-
honest agent; these are part of the initial knowledge M0 of
the intruder.
• F is the set of the fresh constants, i.e., whenever an

agent randomly generates new keys or nonces, they will be
picked uniquely from this set. As is standard, the intruder by
default does not know the fresh constants created by honest
agents, but may learn them from messages that the agents
send. F is further partitioned into the two disjoint subsets
F1 and F2 of fresh constants of P1 and P2, respectively.
• L is the set of abstract payloads (i.e., those denoted

by payload(A,B)). These may only occur in P1, and are

replaced by concrete payloads in PP2
1 and P2[P1]. We discuss

the initial knowledge of the abstract payloads below.
The partitioning of the constants plays a role in proving

that for each message that the intruder has to produce for
protocol P2, he needs only (composed) P2 messages, pub-
lic constants, and fresh constants from F2. (And a similar

property holds for PP2
1 .) If, however, the considered attack

were to use a secret constant from S, then there would be
a simpler attack already (and we would not need to worry
about the construction of further messages with the exposed
secret). The abstract payloads L only come back into the
picture in the final step of the proof, when we reduce the
PP2

1 attack to a P1 attack.

4.3 Disjointness (Καπανεύς)

We require that the message formats are sufficiently differ-
ent to distinguish P1 terms and P2 terms—except for con-
stants (like agent names, nonces, and keys) since constants
(a) may be shared between protocols (e.g., agent names and
keys) and (b) by construction usually cannot be attributed
to a unique protocol, (e.g., nonces).
• The message patterns MP are the terms that represent

messages sent and received by honest agents in the ASLan
protocol description, where we ensure by renaming of vari-
ables that distinct elements of MP have disjoint variables.
Let SMP be the non-atomic subterms of the message pat-
terns (with the same variable renaming). For instance, for
the protocols of Figure 1, MP and SMP are as shown in
Figure 2, where we write A,B,C,D as placeholders for ar-
bitrary agents for the sake of readability. We require mes-
sage patterns not to be atomic:7 MP(Pi) ∩ (V ∪ Σ0) =
∅ for i ∈ {1, 2}; moreover, non-atomic subterms must be
disjoint: SMP(P1) u SMP(P2) = ∅ , where M u N = {σ |
∃m ∈ M,n ∈ N. mσ = nσ} . We exclude atomic message

7Recall that mappings like pk(a) map from atoms to atoms
and thus pk(a) also counts as atomic in the sense of this
definition.

patterns since otherwise we’d have messages for which we
cannot ensure that they are attributed to a unique protocol.
• By the previous item, the following labeling is possible

on all message patterns in the protocol description. Every
non-atomic subterm m is labeled either P1 or P2, in symbols
m : Pi. There is only one unique such labeling because the
spaces of non-atomic subterms of the Pi must be disjoint.
• Next, we can also label the atomic subterms except

public and secret constants in a unique way: we label them
by the label of the next surrounding operator. We will make
one exception from this rule below for the payload (the pay-
load is of type P2 but it is embedded into a P1 context), but,
in order not to break the flow of the argument, we postpone
this a bit.
• We additionally require that the sets of variables used

in the descriptions of P1 and P2 are disjoint, and that fresh
constants are chosen from the disjoint sets Fi. Therefore,
no variable or constant can have an ambiguous labeling.

Forbidding atomic messages in MP may seem like a re-
striction, e.g., we cannot send simply a single nonce N as
message. However, observe that we only require to put that
nonce into a bit of context e.g., [tag,N]2, where tag could
be a constant identifying the protocol, as it is in practice
often done with port numbers.

This condition is used in the proof when we consider how
the lazy intruder constraints of a given attack can be solved.
The message to construct is an instance of a subterm of MP .
It is either non-atomic or atomic. If it is non-atomic (i.e., is
an instance of a term in SMP), then it belongs to a unique
protocol P1 or P2 and unification is only possible with other
SMP messages of that protocol that are in the knowledge of
the intruder. If it is atomic, then it is either a constant (and
handled by arguments provided by the previous condition)
or a variable. Note that the variable is thus labeled by the
last surrounding context. This is in fact the key where the
lazy intruder comes into play: we leave constraints where the
term to generate is just a variable, i.e., any term the intruder
knows will do. However, during other reduction steps, the
variable may get instantiated. In this case, again by this
condition, the instantiated term will have the same label as
the variable (i.e., whether it belongs to P1 or P2). Thus,
at the end of the day, we obtain that all P2 terms can be
constructed using only P2 knowledge and public constants
(and similar for PP2

1 terms).

4.4 Disjointness of Concrete Payloads
(Πολυνείκης)

We require thatMA,B comprise only of ground P2 terms.
Moreover, the concrete sets of payload termsMA,B must be
pairwise disjoint for honest senders, i.e.,MA,B∩MA′,B′ = ∅
whenever A and A′ are honest and (A 6= A′ or B 6= B′).8

This does not imply that honest agents or the intruder can
recognize from a payload who is (the claimed) A and B.

This condition allows us to unambiguously label every
concrete payload with its original sender (even when the
message has been forwarded and manipulated by the in-
truder) and the intended recipient. This labeling makes sev-
eral constructions in the proof easier as we explain below.

To see that this condition is actually feasible, consider for
instance the concrete example of MA,B in Section 3.2.

8This could be achieved by inserting a constant into the
payload chosen from a set XA,B of a family of disjoint sets
XA,B .

MP(P1) = { {{[p, A,B, payload(A,B)]4}privk(pk(A))}pubk(pk(B)), {{[p, A1, B1, X1]4}privk(pk(A1))}pubk(pk(B1)) }
SMP(P1) = MP(P1) ∪ { {[p, A2, B2, payload(A2, B2)]4}privk(pk(A2)), {[p, A3, B3, X3]4}privk(pk(A3)),

pubk(pk(B4)), [p, A5, B5, payload(A5, B5)]4, [p, A6, B6, X6]4, privk(pk(A7)), p, payload(A8, B8) }
MP(P2) = { [N1, C1, D1]3, [h(N2),M2]2 }

SMP(P2) = MP(P2) ∪ { h(N2) }

Figure 2: MP and SMP for the example protocols of Figure 1.

4.5 Payload Type and Context (᾿Ετέοκλος)

We now make some provisions about the handling of pay-
load messages in the protocols. We begin with an overview
and then give the precise conditions. First, we label those
subterms in the message patterns that represent payloads
sent or received by honest agents. This is, of course, no re-
striction but requires that during the translation from AnB
to ASLan we need to keep track of which subterms of mes-
sages represent payloads, and we thus simply speak of mes-
sages of type Payload (this is made precise below). Second,
we require that these payload subterms when sent or re-
ceived by honest agents are always embedded into a unique
payload context CP [·] that unambiguously signalizes the sub-
term is meant as a payload and so that no other message
parts are accidentally interpreted as payloads (this is also
made precise below). We require that this context is an n-
tuple of the form [m1, . . . ,mn]n where one of the mi is the
payload and the othermi are all constants, e.g., tags or agent
names. For instance, our example abstract channel protocol
P1 in Figure 1 uses the context CP (A,B)[·] = [p, A,B, ·]4.
Note that we here actually allow that contexts may be pa-
rameterized over additional information such as the involved
agents, but for simplicity of notation we only write CP [·]
whenever no confusion arises. Note also that the context
alone does not protect the payload against manipulation or
even reading by other parts, as this depends on the goal
of the channel protocol. Moreover, we will assume that an
intruder can always create such contexts.

The precise requirements about the labeling and the oc-
currence of contexts are as follows:

1. (CP [·] identifies payload.) In P1 and PP2
1 terms: For

every term CP [m] it holds that m is typed Payload, and
all Payload-typed messages m occur as CP [m]. More-

over, in PP2
1 such a message m is a concrete payload

from P2 and is thus labeled as belonging to P2, while
in P1, we have abstract payloads that are labeled P1.

2. (CP [·] has blank-or-concrete payloads): each payload
that occurs under CP [·] (i.e., in all P1 messages) is
either ground or a variable. The ground case repre-
sents an honest agent sending a concrete payload from
MA,B , and we thus additionally label it spayload(A,B).
The variable case means that an agent receives a pay-
load, and we thus label it rpayload(A,B) (where B is
the name of the receiver and A is the supposed sender).
The fact that we here allow only a variable means that
the channel protocol P1 is “blind” for the structure of
the payload messages from P2, and thus any value is
accepted. We also require that if a variable occurs as
payload under CP [·], then all other occurrences of that
variable are also under CP [·].

3. (Payloads in P2.) In P2 terms, the message m that is
transmitted as payload over the κ(A,B)-channel is of
type Payload and every ground instantiation mI must
be a member of MA,B . Similarly to the labeling for

PP2
1 in the previous item, m is either ground and la-

beled spayload(A,B), or it is a symbolic term (not nec-
essarily a variable) and labeled rpayload(A,B).

4. (CP [·] cannot be confused in P1.) {t} u {CP [s] | s ∈
TΣ(V)} = ∅ for any t ∈ SMP(P1) where t 6= CP [t′] for
any term t′.9 By (Καπανεύς), it also follows that CP [·]
is disjoint from P2-typed message parts as it belongs
to P1.

This assumption ensures that every subterm m of a PP2
1

term that is of type Payload is either a variable or ground.
If it is a variable it is labeled rpayload(A,B), whereas if
it is ground, then m ∈ MA,B for some uniquely deter-
mined A and B and this is indicated by the appropriate
label spayload(A,B). This property is preserved over all
constraint reductions in the proof. In particular, we cannot
unify payload with non-payload subterms. Note that when
we unify a concrete payload with a variable (as respective
subterms of a message), the variable will be replaced with
the concrete ground payload and will be again labeled with
an spayload(A,B) term. This is even true if the variable was
labeled with rpayload(A′, B′); this may then be the source
of the attack, but observe that when the goal did not in-
clude authentication, it may be not be an attack in itself.
Finally, the labels give us the argument for the final step
of the proof, when we have isolated a PP2

1 attack and want
to transform it to a P1 attack: then we can replace every
concrete payload m labeled spayload(A,B) simply with the
abstract payload(A,B) and obtain a valid P1 attack.

4.6 Abstract Payloads (Παρθενοπα̂ιος)

In the channel protocol P1 with abstract payload(A,B),
we require that the intruder knows initially

{payload(A,B) | dishonest(A) ∨ dishonest(B)}

if the channel-type κ(A,B) includes secrecy (i.e., if it is
A→•B or A •→•B, which we can denote by secrecy ∈
κ(A,B)); otherwise, the intruder initially knows all pay-
loads {payload(A,B)}. With this, we assume that the in-
truder may “in the worst case” know all payloads that are
not explicitly secret (even though he may not find out the

actual payload in a concrete run of P2[P1] or PP2
1). This is

essential for the soundness of the payload abstraction in the
sense that when a concrete payload is known (and this fact
is not yet a violation of a secrecy goal), then the intruder
knows also the corresponding abstract payload.

9This is not a consequence of the fact that t 6= CP [t′] for
any t′ as t may contain variables.

This condition is thus used in the last step of the proof
when we transform a PP2

1 attack into a P1 attack and thus
replace concrete payloads with abstract payloads: if the at-
tack includes that the intruder can produce a concrete pay-
load m labeled spayload(A,B), then either we already had
earlier a secrecy violation (thus there exists a shorter at-
tack) or it is one of the public payloads, and the intruder
thus knows payload(A,B).

4.7 Properties of Concrete Payloads (Ἀμφιάραος)

For the concrete payloads, we similarly require that all
payloads that are not explicitly secret are included in the
initial intruder knowledge of PP2

1 and P2, i.e., initially the
intruder knowledge M0 contains at least:⋃

honest(A) ∧ (dishonest(B) ∨ secrecy 6∈ κ(A,B))MA,B .

Moreover, all the other—secret—payloads (when A and B
are honest and κ(A,B) entails secrecy) must be considered
as secrets in P1 and P2 (and thus they are also secrets in

PP2
1). This can be expressed in ASLan for instance by

adding the fact secret(M, {A,B}) in every transition where
an honest agent sends a payload M labeled spayload(A,B)
or receives a payload M labeled rpayload(A,B) and using
the general attack rule (1).10

This condition is, of course, similar to the previous one on
abstract payloads. We use it in the proof in two ways: as al-
ready explained before, whenever in the attack the intruder
uses a payload that is supposed to be secret, we already
have a simpler attack to reduce to. Conversely, whenever
the intruder uses a payload that is not supposed to be se-
cret, then this is already part of the initial knowledge. This
is the closing stone in the proof, because the payloads are
the only non-atomic submessages shared between the two
protocols PP2

1 and P2, and having these always in the ini-

tial knowledge (when not secret) allows us thus to solve PP2
1

constraints using only PP2
1 messages and P2 constraints only

using P2 messages.

Discussion.
We like to point out that most of the conditions imposed

here actually are, in a sense, in line with the prudent engi-
neering principles of security protocols of Abadi and Need-
ham [1].

• Execution independence in (Τυδεύς): we have a gen-
eral notion of security protocols that may have databa-
ses; for simplicity, we do not deal with the interac-
tions that can arise from different protocols sharing
a database. In fact, one may argue that it is pru-
dent engineering that channel and application proto-
cols should indeed not have a shared database, but
rather separate data-spaces except long-term keys.

• (῾Ιππομέδων): it should be consistent over all protocols
which items are secrets and which are not. (The other
aspects of this condition are modeling aspects.)

• (Καπανεύς) corresponds to the central prudent engi-
neering principle that every message should clearly in-
dicate what it means, hence, it should not be a mere

10Pedantically, to fulfill the condition of protocol indepen-
dence, we should use two distinct facts secretP1 and secretP2

for secrecy in the respective subprotocols.

collection of data but rather have enough identifiers so
that the meaning of each piece of data is unique.

• (Πολυνείκης) similarly requires that the payloads are
unique for honest sender/receiver pairs (even though
the names do not need to be recognizable). This con-
dition is indeed a restriction that does not necessarily
follow from prudent engineering and that many proto-
cols in practice may not adhere to; we will thus try to
lift in future work.

• (᾿Ετέοκλος) is again in line with the paradigm that
every message should say what it means, and in this
case the integration of two protocols that results from
inserting a message in a transport protocol should have
a clear distinction between “letter and envelope”, so to
speak.

• (Παρθενοπα̂ιος) is actually not directly a requirement
on the design of the channel protocol, but that it should
satisfy its goals even under the assumption that all
payloads are known whenever they are not explicitly
secret from the intruder (even though the intruder in
practice may sometimes not know all non-secret pay-
loads). In fact, we believe that this is again in the
spirit of prudent engineering.

• (Ἀμφιάραος) is the analogon of the previous property
for the channel protocol.

5. EXTENSION TO MORE MESSAGES
As we remarked above, our seven conditions appear com-

plex because they are formulated at a deep technical level,
but they actually reflect realistic static properties that are
satisfied by many protocols and that are easy syntactical
checks. Now, we want, however, to discuss what are the
limitations of the composability result so far and how we
can extend it to the case of more messages for what con-
cerns both the static aspect and the logical aspect of vertical
protocol composition.

We return to this in more detail in Appendix A.4, in which
we consider more formally the extension of our composabil-
ity result with more messages (as well as with constraints
that represent the negation of a substitution).

The composability result of [33] refers to only one sin-
gle payload message of the application protocol being trans-
mitted over the channel provided by the channel protocol.
There are two reasons why this is a limitation. First, if the
channel protocol is complex (and consisting of many steps),
it is not desirable to execute this entire protocol for every
message transmission of an application protocol. Second,
disjointness conditions would not even allow repeated appli-
cations of the composability result, i.e., P2[P1[P1]] when we
have two messages in P2 that should be transmitted over a
channel provided by P1.

Our conjecture is that there is no insurmountable obsta-
cle to allowing the definition of a channel protocol for more
than one message transmission. One obvious way to go is to
generalize the channel protocol to the transmission of several
payload messages payload1(A1, B1), . . . , payloadk(Ak, Bk) for
a fixed number k of transmissions (the endpoints of the
channels may differ); these transmissions would be over k
different channel types κi(Ai, Bi); they would be reflected
by k disjoint contexts Ci

P [·], and the application protocol

can then transmit k messages with associated concrete pay-
load message sets Mi

A,B (for 1 ≤ i ≤ k). These payload
message sets would have to be disjoint unless κi(Ai, Bi) =
κj(Aj , Bj). The respective extensions of the definitions and
proofs are notationally involved, but conceptually simple, so
we avoided them here.

More generally, we also like to allow the transmission of an
unbounded number of messages over a channel. The most
prominent examples for this are, of course, secure channel
protocols like TLS that establish a pair of symmetric keys
(one for client-to-server transmissions, and one for server-to-
client; see also [15]). We discuss an example based on TLS
in more detail in Appendix B; this includes a suitable nota-
tion for the transmission protocol(s), i.e., how payload mes-
sages are handled. Note that we are here focussing only on
the channel’s transmission properties for the single messages
such as authentication and secrecy, not for their relationship
such as their ordering, completeness or replay protection.

Again, there is no fundamental problem in extending our
static vertical composition result for arbitrary message trans-
missions as long as, again, the message spaces Mi

Ai,Bi
for

the different used channel types are disjoint. In particular,
observe that we require honest receivers in the channel pro-
tocol to accept any payload that is embedded into the proper
context; thus, the abstraction of the payload in the pure Pi

works, independent of whether there is just one concrete
payload message per session or many of them.

We also conjecture that the principles of vertical protocol
composition of [33] can also be extended to arbitrary payload
transmissions. However, we leave it for future work.

6. CONCLUSIONS
We have formalized seven static conditions that are suf-

ficient for vertical protocol composition for a large class of
channels and applications. Our results tell us that we can
check in isolation — with any protocol verification method11

— a channel protocol P1 with abstract payload, as well as
an application protocol P2 that uses the respective channel
type. If this channel type is part of the ones defined in [33]
and the sufficient conditions of this paper are satisfied for
P1 and P2, then we can combine Theorems 1 and 2 to infer
that P2[P1] is secure.

As we have already partly mentioned above, there are a
number of interesting directions for future work, in particu-
lar, allowing for negative checks also on the channel proto-
col when considering finer abstractions and formalizing the
extension of our sufficient conditions to the case of more
messages for what concerns both the static aspect and the
logical aspect of vertical protocol composition.

7. ACKNOWLEDGMENTS
The work presented in this paper was partially supported

by the EU FP7 Projects no. 318424, “FutureID: Shaping the
Future of Electronic Identity” (futureid.eu) and no. 257876,
“SPaCIoS: Secure Provision and Consumption in the Inter-
net of Services” (spacios.eu), and by the PRIN 2010-2011
Project “Security Horizons”. Much of this work was carried
out while Luca Viganò was at the Dipartimento di Informat-
ica, Università di Verona, Italy.

11Such as ProVerif [8] or the AVANTSSAR Platform [4],
where for bounded-session tools compositionality only holds
for those bounded sessions.

8. REFERENCES
[1] M. Abadi and R. M. Needham. Prudent engineering

practice for cryptographic protocols. IEEE Trans.
Software Eng., 22(1):6–15, 1996.

[2] S. Andova, C. Cremers, K. Gjøsteen, S. Mauw,
S. Mjølsnes, and S. Radomirović. A framework for
compositional verification of security protocols.
Information and Computation, 206:425–459, 2008.

[3] M. Arapinis and M. Duflot. Bounding messages for
free in security protocols. In Proc. of FST TCS, LNCS
4855, pages 376–387. Springer, 2007.

[4] A. Armando, W. Arsac, T. Avanesov, M. Barletta,
A. Calvi, A. Cappai, R. Carbone, Y. Chevalier,
L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea,
S. Mödersheim, D. von Oheimb, G. Pellegrino, S. E.
Ponta, M. Rocchetto, M. Rusinowitch,
M. Torabi Dashti, M. Turuani, and L. Viganò. The
AVANTSSAR Platform for the Automated Validation
of Trust and Security of Service-Oriented
Architectures. In Proc. of TACAS, LNCS 7214, pages
267–282. Springer, 2012.

[5] A. Armando, R. Carbone, and L. Compagna. LTL
Model Checking for Security Protocols. In Proc. of
CSF 20, pages 385–396. IEEE CS, 2007.

[6] The AVANTSSAR Project: Deliverable 2.3: ASLan
(final version), 2010. Available at www.avantssar.eu.

[7] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A
symbolic model checker for security protocols.
International Journal of Information Security,
4(3):181–208, 2005.

[8] B. Blanchet. From secrecy to authenticity in security
protocols. In Proc. of SAS’02, LNCS 2477, pages
342–359. Springer, 2002.

[9] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. of
FOCS’01, pages 136–145. IEEE CS, 2001.

[10] Y. Chevalier, R. Küsters, M. Rusinowitch, and
M. Turuani. Deciding the security of protocols with
Diffie-Hellman exponentiation and products in
exponents. In Proc. of FST TCS 2003, LNCS 2914,
pages 124–135. Springer, 2003.

[11] S. Ciobâca and V. Cortier. Protocol composition for
arbitrary primitives. In Proc. of CSF 23, pages
322–336. IEEE CS, 2010.

[12] V. Cortier and S. Delaune. Safely composing security
protocols. Form Method Syst Des, 34(1):1–36, 2009.

[13] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic.
Secure protocol composition. In Proc. of FMSE’03,
pages 11 – 23. ACM, 2003.

[14] S. Delaune, S. Kremer, and M. D. Ryan. Composition
of password-based protocols. In Proc. of CSF 21,
pages 239–251. IEEE CS, 2008.

[15] T. Gibson-Robinson and G. Lowe. Analysing
applications layered on unilaterally authenticating
protocols. In Proc. of FAST, LNCS 7140, pages
164–181. Springer, 2011.

[16] T. Groß and S. Mödersheim. Vertical protocol
composition. In Proc. of CSF 24, pages 235–250. IEEE
CS, 2011.

[17] J. D. Guttman. Authentication tests and disjoint
encryption: a design method for security protocols.
Journal of Computer Security, 12(3–4):409–433, 2004.

[18] J. D. Guttman. Cryptographic protocol composition
via the authentication tests. In Proc. of FOSSACS,
LNCS 5504, pages 303–317. Springer, 2009.

[19] J. D. Guttman and F. J. Thayer. Protocol
independence through disjoint encryption. In Proc. of
CSFW 2000, pages 24–34, 2000.

[20] G. O. Hutchinson. Aeschylus. Seven against Thebes.
Clarendon Press, Oxford, 1985.

[21] A. Kamil and G. Lowe. Understanding abstractions of
secure channels. In Formal Aspects in Security and
Trust, pages 50–64, 2011.

[22] R. Küsters and M. Tuengerthal. Composition
Theorems Without Pre-Established Session Identifiers.
In Proc. of CCS 18, pages 41–50. ACM, 2011.

[23] S. Malladi and P. Lafourcade. How to prevent
type-flaw attacks under algebraic properties. In
Security and Rewriting Techniques, 2009.
http://arxiv.org/abs/1003.5385.

[24] U. M. Maurer. Constructive cryptography – A new
paradigm for security definitions and proofs. In
Proc. of TOSCA 2011, LNCS 6993, pages 33–56.
Springer, 2011.

[25] U. M. Maurer and R. Renner. Abstract Cryptography.
In Proc. of ICS, pages 1–21. Tsinghua U.P., 2011.

[26] U. M. Maurer and P. E. Schmid. A calculus for
security bootstrapping in distributed systems.
J. Comp. Sec., 4(1):55–80, 1996.

[27] J. K. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In
Proc. of CCS’01, pages 166–175. ACM, 2001.

[28] S. Mödersheim. Models and Methods for the
Automated Analysis of Security Protocols. PhD Thesis,
ETH Zurich, 2007. ETH Dissertation No. 17013.

[29] S. Mödersheim. Algebraic Properties in Alice and Bob
Notation. In Proc. of Ares’09, 2009.

[30] S. Mödersheim. Abstraction by Set-Membership:
Verifying Security Protocols and Web Services with
Databases. In Proc. of CCS 17, pages 351–360. ACM,
2011.

[31] S. Mödersheim. Diffie-Hellman without Difficulty. In
Proc. of FAST 2011. Springer, 2011. Extended version
technical report IMM-TR-2011-13, DTU Informatics,
2011.

[32] S. Mödersheim. Deciding Security for a Fragment of
ASLan (Extended Version). Technical Report
IMM-TR-2012-06, DTU Informatics, Lyngby,
Denmark, 2012. Available at imm.dtu.dk/~samo.

[33] S. Mödersheim and L. Viganò. Secure pseudonymous
channels. In Proc. of ESORICS 14, LNCS 5789, pages
337–354. Springer, 2009.

[34] S. Mödersheim, L. Viganò, and D. A. Basin.
Constraint differentiation: Search-space reduction for
the constraint-based analysis of security protocols.
Journal of Computer Security, 18(4):575–618, 2010.

[35] M. Rusinowitch and M. Turuani. Protocol insecurity
with a finite number of sessions, composed keys is
NP-complete. Theor. Comput. Sci., 1-3(299):451–475,
2003.

APPENDIX
A. THE SUFFICIENCY OF THE

CONDITIONS
As we anticipated above, in the proof, we employ the con-

straint reduction technique called the lazy intruder. Before
proving the conditions, we thus introduce the lazy intruder
in detail.

A.1 Intruder Deduction
We consider a Dolev-Yao-style intruder model, in which

the intruder controls the insecure channels in the network,
including that he can send messages under an arbitrary iden-
tity. Moreover, he may act, under his real name, as a normal
agent in protocol runs. We generalize this slightly and allow
the intruder to have more than one “real name”, i.e., he may
have several names that he controls, in the sense that he
has the necessary long-term keys to actually work under a
particular name. This reflects a large number of situations,
like an honest agent who has been compromised and whose
long-term keys have been learned by the intruder, or when
there are several dishonest agents who all collaborate. This
worst case of a collaboration of all dishonest agents is simply
modeled by one intruder who acts under different identities.
To that end, we use the predicate dishonest(·) that holds
true for every agent under the intruder’s control (from the
initial state on), and the predicate honest(·) that holds for
all other agents.

The intruder can compose terms applying public functions
of Σp to terms that he knows, and he can decompose terms
when he knows the necessary keys. The latter is formal-
ized by a function ana(·) that takes as argument a message
m and returns a set of potential ways to extract informa-
tion from m. Each way to extract information has the form
(K,P) where P (“plaintexts”) is a set of messages that can
be extracted when the messages K (“keys”) are known. In
this paper, we use:

ana(m) =

{({privk(s)}, {p})} m = {p}pubk(s)

{({k}, {p})} m = {|p|}k
{(∅, {p1, . . . , pn})} m = [p1, . . . , pn]n
{({pubk(s)}, {p})} m = sign(privk(s), p)

∅ otherwise

Definition 10. We write IK ` m to denote that the in-
truder can derive the ground message m when knowing the
set of ground messages IK . We define ` as the least relation
that satisfies the following rules:

(D) IK ` m for all m ∈ IK ,

(G) if IK ` t1, . . . , IK ` tn, then also IK ` f(t1, . . . , tn) for
all f ∈ Σn

p ,

(A) if IK ` m and (K,P) ∈ ana(m) and IK ` k for all
k ∈ K, then also IK ` p for all p ∈ P .

All terms are interpreted in the free algebra.

Although this definition is given only for ground m and
IK , in the following we will use the symbol ` in constraints
that contain variables.

A.2 The Lazy Intruder
We now review the constraint reduction technique of [27,

35, 10, 7] that we refer to as the lazy intruder. While

φσ

φ ∧ (IK ` t)
Unify (s, t /∈ V, s ∈ IK , σ ∈ mgu(s, t))

φ ∧ (IK ` t1) ∧ . . . ∧ (IK ` tn)

φ ∧ (IK ` f(t1, . . . , tn))
Generate (f ∈ Σn

P)

(
∧

k∈K IK ` k) ∧Add(P, IK , φ ∧ (IK ` t))
φ ∧ (IK ` t)

Analysis ((K,P) ∈ ana(s), s ∈ IK)

where

Add(P, IK , φ ∧ (IK ′ ` t)) = Add(P, IK , φ) ∧
{
IK ′ ∪ P ` t if IK ′ ⊇ IK

IK ′ ` t otherwise

Add(P, IK , true) = true

Figure 3: The lazy intruder reduction rules.

this technique is originally a verification technique (for a
bounded number of sessions), we use it here for a proof ar-
gument for our compositionality result (without bounding
the number of sessions), quite similar to [3, 23, 31].

The core idea behind the lazy intruder is to avoid the naive
enumeration of the (large or even infinite) number of mes-
sages that the intruder can construct and send from a given
set of known messages. Instead, the lazy intruder technique
uses a symbolic, constraint-based approach and thereby sig-
nificantly reduces the search space without excluding attacks
and without introducing new ones.

Slightly abusing the original idea, we can employ the lazy
intruder technique for proving compositionality results (and
other relative soundness results) in a very convenient way.
In our case, we consider a composed system (two vertically
composed protocols) that satisfies our sufficient conditions
and a symbolic attack trace against this system. We then
can show that, thanks to the conditions, all constraint re-
duction steps would work on the atomic components of the
system in isolation. In other words, the attack does not
necessarily rely on the interaction between the component
protocols, and, intuitively speaking, then the lazy intruder
is too lazy to make use of such interactions. As a result
we know that, if there is an attack, then one of the compo-
nent protocols must have one; vice versa, secure component
protocols that satisfy our sufficient conditions always yield
secure compositions.

We emphasize that the results are independent both of
the verification technique used for verifying the atomic com-
ponents and of the formalism employed to model protocols
such as rewriting, (symbolic) strands, or process calculi. To
abstract from these, we now review the notion of a symbolic
transition system.

A.2.1 Symbolic Transition Systems
As defined in [34], we assume that a protocol can be repre-

sented by a symbolic state transition system. A state repre-
sents the local state of all the honest agents and the knowl-
edge of the intruder. The message terms that occur in the
state may contain variables that represent choices that the
intruder made earlier. The values that these variables can
take are governed by constraints of the form IK ` m, where
IK and m may contain variables. These constraints express
that only interpretations of the variables are allowed under
which the message m can be derived from knowledge IK .

We can derive a symbolic transition system from most
protocol formalisms in a straightforward way. Whenever
we have that an honest agent wants, as its next action, to
send a message m on an insecure network, we simply add
m to the intruder knowledge. Whenever an honest agent

wants to receive a message of the form m on an insecure
network, where m is a term with variables representing sub-
terms where any value is acceptable, then we simply add
the constraint IK ` m where IK is the current intruder
knowledge, and let the agent proceed without instantiat-
ing the variables in m. This also works if the variables
in m are related to other terms in the local state of the
honest agent. Also, we do not forbid agent knowledge that
spans several sessions, such as a data-base that a web-server
may maintain. A complication that we want to leave out
here, however, is negative checks on messages (i.e., checking
that m 6= m′ for some other message m′); we discuss later
(cf. Section A.4) that our results still apply under certain
conditions.

The lazy intruder requires one condition about the sent
and received messages: variables originate only from the in-
truder, i.e., an agent description is closed in the sense that
it only contains variables that are bound by a preceding re-
ceiving step. Thus, all “parameters” of an agent description
(e.g., its name and the names of its peers, or freshly created
values) must be instantiated initially.

Throughout the paper we will thus take for granted that
every protocol trace can be represented by lazy intruder con-
straints. We will also take for granted that successful attacks
can also be represented with the same machinery, i.e., as a
satisfiability problem of lazy intruder constraints. This can
be done, for instance, by means of special protocol roles
whose completion represents an attack.

For simplicity, we thus work directly at the level of con-
straints, in particular formulating several of the sufficient
conditions directly as properties of the lazy intruder con-
straints that the symbolic execution of the protocol pro-
duces. Again, we emphasize that this is a matter of con-
venience, being independent of a protocol specification for-
malism and without precluding any verification technique to
analyze the individual protocols.

A.2.2 Semantics of Constraints
We consider constraints that are conjunctions of IK ` m

statements where both the set of messages IK and the mes-
sage m may contain variables. An interpretation I assigns
a ground term to every variable; we write I(v) to denote
the interpretation of a variable v and extend this notation
to messages, sets of messages, and constraints as expected.
We inductively define the relation I |= φ to formalize that
interpretation I is a model of constraint φ:

I |= IK ` m iff I(IK) ` I(m)

I |= φ ∧ ψ iff I |= φ and I |= ψ

A constraint is satisfiable if it has at least one model.

A.2.3 Constraint Reduction
The core of the lazy intruder is a set of reduction rules,

shown in Figure 3, based on which we can check in finitely
many steps whether a given constraint is satisfiable. Before
we discuss the rules, let us first review the idea of constraint
reduction. The reduction rules work similar to the rules of
a proof calculus in several regards. A rule of the form

φ′

φ

tells us that, in order to show the satisfiability of constraint
φ (the proof goal), it suffices to show the satisfiability of con-
straint φ′ (the sub goal). So we apply the rules in a backward
fashion in the search for a satisfiability proof. This process
succeeds once we find a simple constraint, which is one that
consists only of conjuncts of the form IK ` v where v is a
variable. A simple constraint is obviously satisfiable: the
intruder can choose for each variable an arbitrary message
that he can construct. In fact, the laziness of the intruder
manifests itself exactly here in avoiding the exploration of
choices that do not matter. That is, the substitution of
variables during search is postponed as long as possible, in
a demand-driven (“lazy”) way.

Comparing to a proof calculus, one could call the simple
constraints the “axioms” and we check whether for a given
constraint φ any proof can be constructed using the reduc-
tion rules that has φ as a root and only simple constraints
(“axioms”) as leaves. Soundness of such a calculus of re-
duction rules means that we never obtain a “proof” for an
unsatisfiable constraint, and completeness means that every
satisfiable constraint has a proof. There are further rel-
evant properties such as finiteness of the set of reachable
proof states, and the completeness of certain proof strate-
gies. These play a minor role in this paper because we do
not use the lazy intruder to implement an efficient model
checker, but rather use the existence or non-existence of cer-
tain reduction as a proof argument in the proof of our main
theorems.

Let us now consider the details of the rules in Figure 3.

Unify.
The Unify rule says that one way for the intruder to pro-

duce a term t is to use any term s in his knowledge that
can be unified with t. Here, mgu(s, t) means the set of most
general unifiers between s and t (note that there can be sev-
eral in unification modulo the property of exponentiation).
In case σ is such a unifier, we have solved the constraint
IK ` t and apply σ to the remaining constraint φ to be
solved. We make here also an essential restriction: neither
s nor t shall be variables. If t is a variable, then the con-
straint IK ` t is already simple and should not be reduced
to achieve the laziness. The case that s is a variable is more
involved. Roughly speaking, such a variable will represent a
value chosen by the intruder “earlier” and so whatever it is,
he can also generate the same value from IK already. This
will be made precise below with the notion of well-formed
constraints.

Generate.
The Generate rule tells us that the intruder can generate

the term f(t1, . . . , tn) if f is a public symbol of Σn
P and if

the intruder can generate all the subterms t1, . . . , tn. So this

simply represents the intruder applying a public function
(such as encryption) to a set of terms he already knows.

Analysis.
The Analysis rule represents the intruder trying to de-

compose messages in his knowledge such as decrypting with
known keys. Given the intruder knows a message s from
which he can learn P provided he knows K, we can go to
a new constraint where the knowledge is augmented with
the messages of P and where we have the additional con-
straints that the intruder can generate every k ∈ K. In
fact, in actual implementations this rule must be carefully
implemented to avoid non-termination of the search. For
the same reason as in the case of the Unify rule, we do not
analyze s if it is a variable, because then—the way we use
it—it represents a message created earlier by the intruder.

It is not difficult to show that all rules of the calculus are
sound (see [31] for a proof).

Well-Formedness.
We can define an order on the conjuncts of constraints,

talking about earlier/later constraints. This order is es-
sential for the constraint reduction. The idea is that the
intruder does a sequence of actions during an attack and
his knowledge monotonically grows with every message he
learns. Moreover, variables that occur in messages sent by
honest agents must have appeared in previous messages and
thus represent values that depend on the choice of the in-
truder (though they might not be chosen by the intruder
himself).

Definition 11. We say that a constraint φ is well-formed
if it has the form (modulo reordering conjuncts)

φ =

n∧
i=1

IK i ` ti

such that IK i ⊆ IK j for i ≤ j, expressing that the intruder
never forgets, and vars(IK i) ⊆

⋃i−1
j=1 vars(tj), expressing

that all variables arise from intruder choices.

As shown in, e.g., [7, 27, 28], the calculus is complete on
well-formed constraints.

A.2.4 Lazy Intruder Representation of Attack Traces
As already explained above, we want to use the lazy in-

truder technique as a proof argument of our main result,
although it was originally designed as an automated verifica-
tion technique. Note that while the technique can be a deci-
sion procedure only when the number of sessions is bounded,
our proof argument works for any number of sessions—we
just rely on the fact that attack traces are finite (because we
use standard reachability notions).

The original lazy intruder technique could be formulated
on a non-deterministic Turing machine: starting from the
initial state we “guess” a sequence of rule applications that
may lead to an attack (this sequence may apply the same
rule many times). The last step of the sequence is an attack
rule. Rather than working on ground states however—which
would require to match every iknows(m) fact on the left-hand
side of an IF rule with any of the infinitely many messages
the intruder can generate from his knowledge IK in that
state, we do not instantiate any variables in m and simply
require the constraint IK ` m. (Thus rule matching must

be replaced with rule unification throughout the trace.) Fi-
nally, the machine checks for the guessed solution whether
the conjunction of IK ` m constraints is satisfiable—using
the constraint reduction above. If so, we have found an at-
tack. The machine answers “safe” if no guess of a sequence
of rules leads to an attack.

We now exploit the fact that (even for an unbounded num-
ber of sessions), any attack means there is such a finite se-
quence of symbolic rule application, producing a satisfiable
conjunction of constraints. We show that, when applying
the lazy intruder to these constraints, certain invariants will
hold on every reduction step, e.g. that no P1 variables are
instantiated with P2 terms. Since the lazy intruder is com-
plete, we then know: if there is an attack, then there is an
attack that satisfies certain properties (such as never con-
fusing messages from different protocols).

The formulation of most of our conditions carries over ver-
batim to the lazy intruder constraints produced by the sym-
bolic attack trace; it is an invariant that they will continue
to hold over all reduction steps, with few exceptions: we
only need to reformulate execution independence and (parts
of) (Καπανεύς), (᾿Ετέοκλος) and (Ἀμφιάραος). The changes
and further notions for the constraints are as follows:

• Execution independence: We formulate this using sym-
bolic transitions and intruder constraints as follows.
We say that P1 and P2 are execution independent if
the following property holds. Given a symbolic trace
for the parallel composition of two protocols P1 and
P2, if we project on the events belonging to one of the
two protocols, say P1, and accordingly filter the con-
straints (and the knowledge part of the constraints),
then we obtain a symbolic trace of P1. And if the sym-
bolic trace was an attack against a goal of P1, then so
is the projection.

Observe that this definition says nothing about the sat-
isfiability of the intruder constraints. In general, it may
well be that an attack trace against the parallel com-
position of two execution-independent protocols P1 and
P2 has satisfiable constraints, while the constraints of
the projection to P1 may be unsatisfiable, so the in-
truder actually needs to know messages from P2 to
perform the attack. Therefore, this property of exe-
cution independence alone does not yet give parallel
composability; it only requires that the executability
of the steps of P1 is independent of what steps of P2

have been executed (and vice versa).

• (Καπανεύς):

– Every non-atomic subterm m of the constraints is
labeled either P1 or P2, in symbols m : Pi. There
is only one unique such labeling because the spaces
of non-atomic subterms of the Pi must be disjoint.

– We initially label constraints (IK ` m) : Pi if m :
Pi.

– During constraint reduction, when an analysis step
introduces a new constraint for a key-derivation,
then this constraint is labeled by the protocol from
which the analyzed message stems. Note that, for
instance, in a P1 constraint IK ` m, a message
t ∈ M may be of type P2; thus analyzing t would
produce a P2-type constraint. Note also that we
may reach a key derivation constraint IK ` k where
k is a secret constant; such a constraint cannot be

satisfiable since we already assumed secret long-
term constants are never transported, so the in-
truder cannot obtain them.

– We will also assign a third kind of label special to
some constraints during the reduction: when we
apply the generate rule to a P2 term, we obtain
constraints for its immediate subterms; these sub-
terms can be of type P1; the resulting constraints
are then labeled special. As we will see below, dis-
tinguishing these special constraints from other P2

constraints makes the formulation of the invariants
in the sufficiency proof easier.

• (᾿Ετέοκλος):

– Payload type messages in P1 constraints can also
occur toplevel now.

– (Labeling when unifying messages.) If we unify
a term m1 that is labeled spayload(A,B) with an-
other term m2 during constraint reduction, then af-
ter unification both terms are labeled spayload(A,B).
This labeling is always uniquely determined as the
terms labeled spayload(A,B) must always be ground
and if two terms are labeled spayload(A,B) and
spayload(A′, B′), respectively, then they can only
be unifiable if A = A′ and B = B′, by the proper-
ties we assume (cf. (Πολυνείκης)). Further, we de-
fine that the labeling rpayload(A,B) is dominated
by spayload(A,B), i.e., when unifying terms labeled
for sending and receiving payloads, then the send-
ing payload label “wins”.

We can then reformulate the remark at the end of the
condition as follows. This assumption ensures that ev-
ery subterm m of a P1 term (in the initial constraints)
that is of type Payload is either a variable or ground,
and if ground, then m ∈ MA,B for some uniquely de-
termined A and B and this is indicated by the appro-
priate label spayload(A,B). In the proof, we show that
the constraint reduction would equally work by replac-
ing the concrete m with the abstract payload(A,B).

• (Ἀμφιάραος): in terms of constraints, we define payload
secrecy as follows.

– Consider a lazy intruder trace for P1 and let φ0 be
the corresponding constraints and IK the intruder
knowledge after φ0. If the constraint φ0 ∧ IK `
payload(A,B) is satisfiable, then this trace must
be an attack trace against secrecy in P1.
Thus, if the intruder finds out a secret payload,
this fact alone counts as an attack; we will use this
in the proof in an indirect way: we may assume
that in a given attack, the intruder discovers no se-
cret payload at an intermediate step, because then
a shorter attack exists (cutting off all steps after
discovering the secret payload).

– We make a similar requirement for P2: let again φ0

be the constraint of a lazy intruder trace, this time
of P2, and let IK be the resulting intruder knowl-
edge. Let m ∈ MA,B be a concrete payload that
needs to be secret. If φ0 ∧ IK ` m is satisfiable,
then this trace must be an attack trace against se-
crecy in P2.

A.3 The proof

We now show the main result of this paper, namely that
the conditions are sufficient for static vertical composability.

Theorem 2. Consider two protocols P1 and P2 that satisfy
all the seven conditions defined in Section 4. If there is an
attack against PP2

1 ‖ P2, then there is an attack against P1

or against P2.

Proof. Consider an attack against PP2
1 ‖ P2 in form of a

satisfiable lazy intruder constraint φ. The proof is structured
as follows:

• (Shortest Attack) If the intruder discovers a secret pay-
load at an intermediate step of the attack, then there
is a simpler attack (cutting off all steps after discov-
ering the secret payload). We thus show that we can
assume without loss of generality that no secret pay-
load is derivable in any step of the attack but the final
one.

• (Invariants) We show several invariants, including that
the seven properties are preserved over all reduction
steps.

• (Split into PP2
1 part and P2 part) We show that the

attack can be split into a pure PP2
1 part and a pure P2

part so that both constraints are still satisfiable. At
least one of the two is an attack.

• (Abstraction from PP2
1 to P1) In case the attack is on

PP2
1 , we show how that a corresponding attack exists

on the abstract P1.

Shortest Attack
The requirement (Ἀμφιάραος) allows us to simplify an at-
tack, if the intruder is able to derive a secret payload at
an intermediate stage of the attack (since at that point we
have an attack already). This simplification is necessary in
our proof, because the steps that follow using a particular
concrete secret payload cannot be reflected on the abstract
payload level of P1.

Formally, we will assume that the constraint φ can be
written as φ = φ0 ∧ IK ` m such that from no intruder
knowledge of φ0, in no satisfying interpretation of φ, a secret
payload can be derived. Moreover, if a secret payload can
be derived from IK , then m is one such secret payload. We
can also assume that in the derivation of m from IK we do
not use secret payloads as an intermediate reduction step.

This assumption is not a restriction for the following rea-
son. If φ does not satisfy this property, then we can find
a suitable φ′ that does: cutting off from φ all conjuncts af-
ter reaching an intruder knowledge IK from which a secret
payload m can be derived (and so that this derivation does
not require to derive another secret payload first). Except
for the IK ` m conjunct, this is a valid symbolic trace of
PP2

1 ‖ P2 (and IK the reached intruder knowledge). Fol-
lowing the further parts of the proof, we obtain that φ′ can
be split into a pure P1 or a pure P2 part. By (Ἀμφιάραος),
therefore the IK ` m conjunct is an attack against secrecy
either in P1 or in P2 (depending on which part is used to
derive m here).

By the soundness of the lazy intruder, the property that
no secret payload enters the intruder knowledge remains pre-
served over all constraint reductions: suppose φ0 has no in-
terpretation I such that I |= max(φ0) ` m′ for any secret

payload m′ and for max(φ0) the union of all intruder knowl-
edges in φ0, then this holds over all reductions on φ0.

Invariants
We consider now a reduction of φ to a simple constraint,
which must be possible because φ is satisfiable. As said be-
fore, whenever we have a generate step to a term CP [m],
then the resulting constraint is labeled special . Then, by
our previous assumption, m cannot be a secret payload.
Therefore, either m ∈ IK 0 or m ∈ V by (᾿Ετέοκλος) and
(Ἀμφιάραος). By the invariants shown below, if this m is
a variable, it can only be instantiated to a ground term in
IK 0. Therefore, as soon we have a ground term in a special
constraint (as defined in (Καπανεύς)), we know that it is an
element of IK 0. We therefore do not change the meaning
of φ by just removing that special constraint and forgetting
all steps in the reduction that are performed in the original
reduction of that constraint. We call this the deletion of
redundant constraints.

1. (Instantiation of variables and the unify rule) P1-typed
variables are never instantiated with P2-typed terms
and vice versa. Moreover, the application of a Unify
rule on constraint IK ` m where some m′ ∈ IK is
unified with m, can only occur when m and m′ are both
of type P1 or both of type P2 or both public constants.

2. (Purity of the subterms) P2-typed terms never have
P1-typed subterms; P1-typed terms can have P2-typed
subterms only under a CP [·] context.

3. (Payload invariants) The properties of (᾿Ετέοκλος) are
preserved, especially points (1) and (2)—the other ones
are structural properties or apply to terms of the ab-
stract P1.

4. (Derivation) If constraint IK ` m is of type Pi then m
is either of type Pi or a public constant. If constraint
IK ` m is of type special, then m is of type P2 and
either ground or a variable. If it is ground, then it is
labeled with some spayload(A,B) and is a member of
MA,B getting deleted immediately (by the deletion of
redundant constraints). If it is a variable, then it is
labeled rpayload(A,B).

5. (Payload Label) In all terms of type P1, every occur-
rence of a ground subterm t of type Payload is labeled
with spayload(A,B) for some A and B, such that t ∈
MA,B .

We now show that the lazy intruder reduction rules pre-
serve all these invariants.

Unify Rule.
We first show that an application of the unify rule pre-

serves all invariants, which is the most interesting (and dif-
ficult) case. We use the variables s, t, IK , σ, φ as in the rule.

1 (Instantiation of variables and the unify rule)

– Note that neither s nor t can be variables (by the
form of Unify).

– If t is a constant, then it can only be a public con-
stant (because the secrecy of secret constants has
been ensured statically) by (῾Ιππομέδων). If t is a
public constant, then so must be s, and the invari-
ant holds.

– If t is not a public constant, then it can be only a
composed term (and so must be s). Both s and t
are thus labeled as P1 or P2. Now s and t must
then be labeled either both P1 or both P2 as their
unifiability would otherwise contradict (Καπανεύς).

– If both s and t are labeled P2, then no subterm is
labeled P1, so the unification preserves the invari-
ant.

– If both s and t are labeled P1, then P2-labeled sub-
terms can occur only under CP [·], and no subterms
under CP [·] are labeled P1. Since CP cannot be
unified with any other non-variable subterm of P1

(by (᾿Ετέοκλος)), the unifier σ in question cannot
relate a P1-variable with a P2 term or vice versa.

2 (Purity of the subterms) This follows from the previous
invariant, as P1 variables are instantiated only with P1

terms (and similar for P2).

3 (Payload invariants) For what concerns the identifica-
tion of the payload, if s and t are P1-typed messages,
then the previous invariant already preserves the iden-
tification property for CP [·]. The unification of public
constants or of P2 messages cannot destroy the prop-
erty either.

For what concerns the property of blank-or-concrete
payloads, again, if s and t are P1-typed messages, then
the unifier can only unify either payload-typed vari-
ables with ground terms of type payload or with other
payload-typed variables, so the invariant is preserved.

The black-or-concrete payload property only applies
to terms under CP [·]; and if it is a variable, then by
(᾿Ετέοκλος), this variable can only occur under the
CP [·] context or toplevel. Therefore, applying the Unify
rule to P2 terms can never destroy the blank-or-concrete
property since it explicitly forbids unifying terms s and
t if one of them is a variable.

4 (Derivation) and 5 (Payload Label) are immediate.

Generate Rule.
It is almost immediate to see that all applications of the

generate rule preserve the invariants. We only need to dis-
cuss the case of applying a generate rule to a payload term
(which cannot be a variable for the generate rule to be appli-
cable). In this case, we either have a normal P2-constraint,
and then the generate rule does not create problems, or a
constraint of type special, in which case the message m to
derive is ground (due to clause 2 of (᾿Ετέοκλος) and the fact
that it cannot be a variable) and moreover m ∈ IK 0 because
m cannot be a secret payload: if it were a secret payload,
then a secret payload would be an intermediate step (since
special constraints only arise from opening a CP [·] context
using a generate rule) and this contradicts our assumption
that a secret payload cannot be derived at an intermediate
point already.

Analyze Rule.
Also in this case we have that almost all the invariants are

immediate, and it only remains to be mentioned that when
analyzing a context-term, since CP [·] must be a concatena-
tion at the top level, there is not going to be a key-derivation
constraint in this case. This concludes the proof of the in-
variants, and we can resume the main thread of the proof.

Split into PP2
1 part and P2 part

We now show that we can split a reduction of the constraint
φ into a P1 part and a P2 part, and still have valid reductions
of the respective part of the constraints. More formally, let
φ1 be the P1 constraints of φ and φ2 be the P2 constraints
of φ, where the constraints may contain both P1 and P2

terms on the knowledge side. The case of the “last” conjunct
IK ` m of φ deserves a special treatment: if thism is a secret
payload and the reduction of IK ` m uses the analysis of
a P1 term, then IK ` m shall be considered as part of φ1;
otherwise it is considered as part of φ2.

Considering a sequence of reduction steps that turns φ
into a simple (and satisfiable) constraint, we can split this
reduction into a φ1-part and a φ2-part as expected. We thus
have a reduction for φ1 to a simple constraint and one for
φ2, and they work independently of each other. For the full
independence of the two parts, it now remains to show that
in the reduction of φ1 we never need P2 messages of the
intruder knowledge and vice versa.

Consider a conjunct IK i ` mi of φ1 where mi is not the
secret payload m. A unify step at this point can only be
with a public value of IK 0 ⊆ IK i or a message of PP2

1 . A
generate step, however, may yield a P2 term to generate and
we need to show that we do not need P2 messages for the
remaining constraint reduction. Either the resulting term is
a ground term labeled by spayload(A,B), then this must be
public and thus in IK 0 (because otherwise we have another
secrecy violation within the reduction, which we excluded
before), or it is a variable of type Payload. Again by the
payload invariant, this variable can only be instantiated by
another payload variable, or by a concrete public payload.
Therefore, all those analysis steps in the knowledge IK i of
P2 messages that can only yield public knowledge or other
P2 messages can safely be omitted, and we can thus do with
the PP2

1 and IK 0 part of IK i.
The case that the reduction in φ1 contains an analysis

step of a PP2
1 message yielding the secret payload m cannot

require any P2 messages either and must be the pre-last step
of the reduction anyway, where the last step is a unify.

An even simpler argument holds vice versa, unless of cour-
se the goal is the derivation of the secret payload. In this
case, analysis steps of PP2

1 messages may yield a P2 message,
but then it is either the secret payload m, so this must be
part of φ1 instead, or it is a public payload that is contained
in IK 0. Either way, we thus do not need the PP2

1 messages.
Therefore, by the property of execution independence (Τυδεύς),

there are valid traces of PP2
1 and P2 and the corresponding

intruder constraints are satisfiable. Moreover, one of the two
is an attack trace since either we have a violation of one of
the original goals or one of the two is the derivation of a
secret payload.

Abstraction from PP2
1 to P1

In case we have found an attack against PP2
1 , then by the in-

variant (᾿Ετέοκλος), we know that every occurrence of a sub-
term of type Payload is either a ground term t ∈MA,B that
is labeled spayload(A,B) or a variable labeled rpayload(A,B).
Note that having split the attack into φ1 and φ2, the entire
reduction for φ1 works without considering any P2 terms,
except for those public payloads in IK 0 and the final se-
cret payload m (if it exists) that comes out of the last con-
straint directly as an analysis step. Therefore, all reductions

work if we replace all ground t labeled spayload(A,B) by
payload(A,B) and then form a valid trace of P1 since the
initial knowledge in P1 contains the abstract label for all
public payloads by (Παρθενοπα̂ιος).

A.4 Extension: negation
Expanding on the discussion in Section 5, where we for-

malized the extension of our sufficient conditions to the case
of more messages for what concerns both the static aspect
and the logical aspect of vertical protocol composition, we
now discuss in more detail how we can extend our compos-
ability result to allow for negative checks also on the channel
protocol when considering finer abstractions.

Above, we only considered positive constraints; as argued
by [7], we can express a much larger class of protocols and
goals if we just additionally allow constraints that represent
the negation of a substitution, i.e., that are of the form

∀x1, . . . , xn. y1 6= t1 ∨ . . . ∨ ym 6= tm , (2)

where the variables xi are the “free” variables of the yi
and ti, i.e., those that do not occur in any IK ` m con-
straint. Intuitively, this excludes the substitution σ = [y1 7→
t1, . . . , ym 7→ tm] for any value of the free variables xi.

Allowing such negative conditions is essential for more
complex protocols; examples include participants who main-
tain a database of items they have processed, may use neg-
ative conditions (e.g. a certain item does not yet occur in
the database), or more advanced security goals like in [33].
As shown in [32], the support for negative substitution in
the constraint-based approach allows for a large fragment
of ASLan—basically everything except the Horn clauses of
ASLan. (To support also the Horn clauses in the symbolic
model one additionally needs to allow deduction constraints,
which we do not here; we plan to show in a future version
that we can support them as well.)

The simple idea to support negative substitutions with
the lazy intruder is: once all the IK ` m constraints have
been simplified (i.e., all such m are variables) check that
the inequalities are still satisfiable. To check that the condi-
tion (2) is satisfiable, check whether the unification problem
{(y1, t1), . . . , (ym, tm)}σ has a solution if σ substitutes every
variable of the yi and ti except the xi with a fresh constant.
This reflects that the intruder can generate arbitrarily many
fresh constants himself and use them for the choices he has.
If a unifier for said unification problem exists, then no mat-
ter what the intruder chooses for his variables, we can find a
substitution of the xi so that all the inequalities are violated.
Otherwise, the inequalities are satisfiable.

Inspecting the proof of Theorem 2, we see that almost
everything is compatible with the addition of negated sub-
stitutions. The only problem is in the last part. When
we show how a PP2

1 attack can be reduced to an attack of
the pure P1 protocol, we use abstract interpretation but in-
equalities on terms are not compatible with this: naturally,
we cannot represent all payloads that A may ever send to
B by one single constant payload(A,B) if B can for instance
check that in every session he gets a different payload. But
if the channel protocol P1 does not contain any negative
check on payloads, then the abstraction is actually fine, as
expressed by the following theorem.

Theorem 3. The statement of Theorem 2 also holds when
the symbolic traces induced by the application protocol P2 in-
clude negated substitutions.

Proof. We consider here only the changes in the proof
of Theorem 2 that are required by this extension.

We extend the invariant 2 to cover also the inequalities:
they are all induced by P2 and thus have initially pure P2

terms, and this holds true over all reduction steps, because
all unifications that ever occur are those of the Unify rule,
which preserves the purity of terms. (The satisfiability check
for the inequalities also includes a unification, but this is only
performed for checking, we do not compute with the unified
inequalities.)

Thus, when the reduction is split into a PP2
1 and P2 part,

we can associate all the negative substitutions to the P2 part.
Therefore, in the last section of the proof, where we abstract
the concrete payloads of PP2

1 to the abstract ones of P1, no
negated substitutions need to be considered anymore.

This extension allows us to use at least negative condi-
tions and facts in the application protocol, though not in
the channel protocol. In fact, the application protocol may
even make negative checks on the payloads (e.g., a replay
protection) as long as this does not affect the channel proto-
col (and so the abstraction of the payload there is sound). As
the work on ProVerif and other tools shows (e.g., [8, 30]),
there is hope for also allowing for negative checks on the
channel protocol when considering finer abstractions. We
leave this investigation for future work.

B. A LARGER EXAMPLE
We now discuss a larger example that already makes use of

the extension of Section 5. As protocol P1 we use (a slightly
simplified version of) unauthenticated TLS composed with
a password login to authenticate the client (we later discuss
how TLS and login could be decomposed)

A → B : [clientHello,A,NA]3
B → A : [serverHello,NB]2
B → A : sign(privk(pk(ca)), [cert,B, pubk(pk(B))]3)
A → B : {PMS}pubk(pk(B))

K := prf (PMS ,NA,NB)
KA := clientk(K)
KB := serverk(K)
A → B : {|h(allMsg)|}KA
B → A : {|h(allMsg)|}KB
A → B : {|[login,A,B, pw(A,B)]4 |}KA

Here, clientHello, serverHello, cert, and login are public con-
stants used as tags to identify the meaning of the message.
ca is the (trusted) certificate authority that issued B’s cer-
tificate. prf , h, clientk and serverk are cryptographic one-
way functions used to produce key-material or digests from
the exchanged random nonces PMS (pre-master secret), NA
and NB . allMsg represents the concatenation of all previ-
ously exchanged messages.
KA and KB are shared keys used for the different com-

munication directions (from A to B and from B to A, re-
spectively). From now on, the client can transmit over the
channel payloads to the server as follows:

A → B : {|payload(A,B)|}KA
A •→• B : payload(A,B)

Symmetrically, the server uses:

B → A : {|payload(B,A)|}KB
B •→• A : payload(A,B)

An Application: Online Movie Stream Purchase.
As a simple application protocol P2, we consider the online

movie stream purchase

A •→• B : [orderMovie,MovieID]2
B •→• A : [askConfirm,MovieID,Price,Date,StreamID]5
A •→• B : [confirm,MovieID,Price,Date,StreamID]5

One problem with the given P1 and P2 is that TLS does not
have the required form of contexts for the message transmis-
sion, since we have either {|·|}clientk(K0) or {|·|}serverk(K0) (re-
call that for different channel types likeA •→•B vs. B •→•A
we need two different contexts). In contrast, our paper re-
quired a context that is a concatenation. A slight modifica-
tion of the protocol would satisfy this assumption, namely
{|[clientTag, ·]2|}K0 for the client sending messages and
{|[serverTag, ·]2|}K0 for the server sending messages. (Here
CC

P [·] = [clientTag, ·]2 and CS
P [·] = [serverTag, ·]2.)

In other words, our compositionality result requires that
the channel-identifying context needs to be separated from
protection mechanisms, whereas TLS merges these two as-
pects by using different keys for the direction. Although we
could have formulated our compositionality result in a differ-
ent way and thereby supported exactly the form of TLS, we
chose not to do so to keep the arguments reasonably simple:
otherwise, we would have had to deal in the proofs with the
question of whether the intruder can compose/decompose
the context of the message. We think that it is therefore
more economical (i) to keep the context simply a concate-
nation in our compositionality result, (ii) to show that a
small variant of TLS would satisfy the conditions, and (iii)
to then see in a separate step if this slight modification makes
a difference. For TLS, it is obviously not the case, because
{|[clientTag, ·]2|}K0 can be composed or decomposed by the
intruder if and only if this is the case for {| · |}clientk(K0) (and
similarly for the serverkey).

It is straightforward that the message formats of P1 and
P2 satisfy (Καπανεύς), thanks to the tagging. (And it is not
difficult at all to compute MP(Pi), SMP(Pi), and MA,B .)

Payload Messages of the Movie Purchase.
In contrast to the running example, we have here the more

difficult case of an application protocol where payloads can
contain “foreign” input: A sends a MovieID of a movie it
wants to see to B, and B’s answer contains that MovieID .
Modeling this as an arbitrary nonce, we get into the prob-
lem described after Definition 7: we cannot bound the set
of possible messages here (depending on the other protocols
the intruder may be learning messages from) and taking TΣ

as the domain for the nonces is not compatible with our
sufficient conditions. In this case, the solution is straight-
forward: it is realistic to assume that the set of movie IDs
is a fixed set of public identifiers (the ones that the movie
portal is offering for purchase on its website) and an hon-
est A would only order a movie from that set; even for a
request from a dishonest A, an honest server B would only
answer with the second step, if the received movie ID is a
legal one. So, for the first and second payload message of
the application protocol, we can give very clear bounds that
are realistic in our scenario.

The third message is more difficult, because here the user
replies with whatever he or she has received from the server
as Price, Date, and StreamID . At least for Price and Date
we can again make the restriction to well-defined a priori
fixed sets of public constants (because the user A can check

the “well-formedness” of price and date and not answer to
an unreasonable input).

It is however more tricky to deal with StreamID here, be-
cause a dishonest server B may indeed have sent any term
(not necessarily a pure P2 term). We again have two possi-
bilities. The first is to assume that the server B is honest
in all runs and chooses the stream IDs from a dedicated
set IB,A of constants again (that are only used in P2 as
stream IDs from B for A). This distinction by name is
necessary since the intruder will get all payloads that are
meant for him as a recipient into the initial intruder knowl-
edge by (Ἀμφιάραος), and he should not know the streamIDs
for other honest agents to prevent mistakes here.

A way to also allow at this point a dishonest B without
the final payload message from A containing arbitrary input
as StreamID is to go for a typed model where the intruder
behavior is already restricted to well-formed messages (and
this typed model can be justified again by disjointness con-
ditions [32] so that the intruder can never produce at this
point a StreamID that is not a P2-constant). We leave a
general investigation of such concepts for future work.

Separating the password step.
As described in [33], we can regard the pure unilaterally

authenticated TLS without the login as a protocol that pro-
vides a secure pseudonymous channel, i.e., a secure channel
where the identity of the client A is not authenticated (yet),
while no other agent can read or modify messages on that
channel. We write [A] •→•B and B •→• [A] to denote this
kind of channel. In principle, we could thus see the login
protocol as a separate protocol that builds on such chan-
nels, turning secure pseudonymous channels into standard
secure ones. The login P ′1 would thus be:

[A] •→•B : [login, A,B, pw(A,B)]4

and from there on the client can send messages as follows:

[A] •→•B : payload(A,B)
A •→•B : payload(A,B)

and similarly for the server in the other direction. Hence,
let P0 be TLS without client authentication and without
login; this protocol gives us the channel pair [A] •→•B and
B •→• [A]. The login protocol P ′1 can turn such channels
into standard secure channels, i.e., A •→•B and B •→•A.
The vertical composition of P ′1[P0] (i.e., TLS plus login) then
gives exactly the protocol P1.

There is, however, a slight problem with this again when
we think of the abstract payload in P0: it cannot be simply
payload(A,B) because A is not authenticated—if we tried
to verify P0 like that, then we would get trivial authentica-
tion flaws. We should in this case use a pseudonym as the
endpoint of the channel. In this case, it could be the pre-
master secret PMS that A has created, and then we require
that payload(PMS , B) is known to the intruder iff PMS is
dishonest—defining PMS to be honest iff it was created by
an honest client A for use with an honest server B. The fact
that now the payload abstraction depends on a freshly cre-
ated nonce may seem counter-intuitive, but as far as we can
see there are no formal problems attached to this. In fact,
similar abstraction techniques have been used in ProVerif
and other tools [8, 30].

