
Constraint Differentiation: Search-Space

Reduction for the Constraint-Based Analysis of

Security Protocols

Sebastian Mödersheim1 Luca Viganò2 David Basin3

1 IBM Zurich Research Laboratory, Switzerland, smo@zurich.ibm.com
2 Department of Computer Science, Verona, Italy, luca.vigano@univr.it

3 Department of Computer Science, ETH Zurich, Switzerland, basin@inf.ethz.ch

December 6, 2008

Abstract

We introduce constraint differentiation, a powerful technique for reduc-
ing search when model-checking security protocols using constraint-based
methods. Constraint differentiation works by eliminating certain kinds
of redundancies that arise in the search space when using constraints to
represent and manipulate the messages that may be sent by an active
intruder. We define constraint differentiation in a general way, indepen-
dent of the technical and conceptual details of the underlying constraint-
based method and protocol model. Formally, we prove that constraint
differentiation terminates and is correct, under the assumption that the
original constraint-based approach has these properties. Practically, as
a concrete case study, we have integrated this technique into OFMC, a
state-of-the-art model-checker, and demonstrated its effectiveness by ex-
tensive experimentation. Our results show that constraint differentiation
substantially reduces search and considerably improves the performance
of OFMC, enabling its application to a wider class of problems.

Keywords. Security protocols. Security protocol verification. Constraints.
Model checking. Partial-order reduction.

1 Introduction

Context.

A wide variety of model-checking approaches [9, 11, 16, 18, 19, 21, 29, 30, 32,
35] have been developed to analyze security protocols under the assumption
of perfect (black-box) cryptography. The major challenge faced when building
such model-checking tools is how to handle the enormous search spaces that
arise during protocol analysis. There are two separate problems here that must
be addressed.

1

smo@zurich.ibm.com
luca.vigano@univr.it
basin@inf.ethz.ch

space of constraints:

"Can the terms to be

generated be reduced to

terms the intruder knows?"

Backwards search in theForward search in the

space of symbolic states:

"What states are reachable

from the initial state?"

Figure 1: Two layers of search.

The Prolific Intruder Problem: The standard Dolev-Yao intruder model [20]
defines an infinite set of messages that the intruder can generate from his
“knowledge”, i.e., the messages he has previously seen. This gives rise to
infinite branch-points in the search space where the intruder may send any
of these messages. In some approaches [27, 4], this set may be constrained
to be finite by introducing bounds or type restrictions, but even then the
branching induced by such a restricted Dolev-Yao intruder is typically still
enormous.

The Interleaving Problem: A large number of possible interleavings result
from parallel executions of a protocol by the honest agents and the in-
truder. This gives rise to multiple occurrences of identical (or equivalent)
states in the state space, thereby increasing search.

A number of symbolic, constraint-based approaches have been proposed to
tackle the problem of the prolific intruder [1, 9, 12, 16, 18, 22, 24, 30]. Although
they vary in their details, they have in common a symbolic representation of
the state space, where sets of (ground) states are represented by terms with
variables and constraints on the variables. These constraints describe what
terms an intruder can generate from a given set of known messages according
to the Dolev-Yao model. Moreover, all these approaches use similar reduction
rules and strategies to reduce the constraints into a solved form providing a finite
representation of the infinitely many solutions for the initial constraint set. In
particular, reduction is demand-driven, or lazy, in the sense that the variables
in the constraints are instantiated during reduction only as needed. Therefore,
we will refer to the technique underlying these constraint-based approaches as
the lazy intruder.

Figure 1 shows the structure of the search spaces that arise when using the
lazy intruder technique. The search space is tree-structured and arises in a
standard way (see Section 2.5) from a transition system describing the possible
interactions between agents executing the protocol and the intruder. The states
of the transition system are symbolic, in that they contain variables, whose
instantiations are restricted by the constraints. As illustrated, we can in general
distinguish between two layers of search. The first layer is search in the space
of constraints to find all (symbolic) solutions for a given set of constraints under
the Dolev-Yao model and the second layer builds upon the first, exploring the
symbolic search space to determine if an attack state is reachable. As the figure

2

illustrates, the first kind of search is performed in a backward fashion (“Can
the terms to be generated be reduced to terms the intruder knows?”), while the
second kind is performed in a forward fashion (“What states are reachable from
the initial state?”).

Example 1. Consider a node N of the search tree induced by a protocol, as
illustrated in Figure 2. N represents a state where several agents are waiting to
receive messages. For instance, assume that the agent a expects a message of the
form {|a, x|}k. This message represents the symmetric encryption of the pair a, x
with the key k, where a is the name of the agent and x is a variable that may be
instantiated with any ground term (i.e. one without variables). The agent a will
therefore accept any message that is encrypted with k and where the encrypted
text starts with the name a. The question is now which acceptable messages
can the intruder construct from his current knowledge. First, the intruder can
send any message that he has previously learned and that is of the required
form (even if he does not know k). Second, if he knows k and a, he may choose
any arbitrary message m that he can construct and send {|a,m|}k. Note that,
in general, there are infinitely many possible such messages that the intruder
can send unless we introduce some restrictions such as a bound on the depth of
the term m.

In a näıve approach, the node N of the search tree has one successor for each
acceptable message that the intruder can construct and send to a (plus similar
successors for other waiting agents). In contrast, in the lazy intruder approach,
N has just one symbolic successor for each waiting agent. In this setting, the
agent a receives the symbolic term {|a, x|}k (where x is not instantiated) and the
successor symbolic state contains the constraint that the intruder can construct
{|a, x|}k from the messages he knew at node N . In the second layer of the
search, we now check that the constraints of each reached symbolic state are
indeed satisfiable, that is, the variables can be instantiated in at least one way,
satisfying the constraints. For instance, if the intruder knows neither k nor
any message of the required form, then the example constraint is unsatisfiable.
Therefore the respective successor node of N , and the entire subtree below it,
is pruned.

Observe that the intruder knowledge in the lazy intruder approach may also
contain variables, as the reply of an agent may contain uninstantiated variables
from previously received messages. For example, if the intruder knowledge at
the node N contains the message {|z|}k, for a variable z that appeared in a
previous message, then the solutions for the constraint on the generation of
{|a, x|}k include the unifiers of z and a, x. The constraint reduction procedure
on the second layer then must check whether one of these solutions also satisfies
the remaining constraints, like those on the variable z.

The lazy intruder drastically reduces the size of the resulting search tree
generated during protocol analysis, providing an effective solution to the first
problem: the prolific Dolev-Yao intruder. However, the second problem is not
addressed by the lazy intruder, namely the large number of interleavings possible
due to parallel protocol executions. In standard model-checking approaches for

3

a sends a reply message

can i generate {|a, x|}k
for some x?

i sends {|a, x|}k to a

N

Figure 2: An example of the two layers of search.

concurrent systems, the interleaving problem is often handled using partial-
order reduction (POR), a technique that reduces the number of interleavings
that need to be considered by exploiting independencies between the possible
transitions [34].1 One might expect that the direct combination of the lazy
intruder with partial-order reduction as part of the second layer of the search
(i.e., when searching the symbolic state space) would allow us to simultaneously
address both problems. However, as we will explain below, this combination is
not effective: the different transitions of the lazy intruder rarely lead to the same
(symbolic) successor state and therefore there is practically no independence of
transitions that can be exploited by POR.

Contribution.

In this paper, we present a general reduction technique that we call constraint
differentiation. This technique effectively integrates the lazy intruder and ideas
from POR by using independence information from the second layer (the sym-
bolic transition system) when searching the first layer (the constraint reduction).

Figure 3 illustrates the intuition behind constraint differentiation. Consider
two symbolic states s′ and s′′ that can be reached from some state s by different
interleavings of the same actions, e.g., message exchanges. In practice, we will
see that s′ and s′′ almost never represent the same set of ground states. However,
these sets often have substantial overlap. Constraint differentiation exploits
these overlaps by restricting the constraints of s′′ to those ground states that
are not already covered by s′, that is, the shaded part in Figure 3. The situation
is symmetric of course and we could restrict s′ instead of s′′. But either way,
the idea is the same: constrain the symbolic states so that the ground states
in their intersection are represented by only one of them. In many cases, the
restricted symbolic states have unsatisfiable constraints and therefore represent

1POR has also been suggested for model-checking approaches for security protocols that
use a ground intruder model [17, 23]. However, since they do not address the prolific intruder
problem, even with POR, such approaches have substantially poorer performance and scope
than approaches based on symbolic intruder models.

4

symbolic state space

ground state space

s

s′′s′

Figure 3: The intuition behind constraint differentiation.

the empty set of ground states. When we recognize this, we can eliminate the
respective symbolic state (and all its successors) from the search tree without
losing attacks. Also, even when the restricted symbolic state has satisfiable
constraints, the restriction may allow other states to be removed later during
the search.

Example 2. To illustrate a typical application of constraint differentiation, we
return to our example. Assume that when the agent a receives a message of the
form {|a, x|}k, it replies with {|x|}k′ , for a key k′. Let us call this transition θ1.
Assume further that there is another agent b waiting for a message of the form
{|b, z|}k′ and who replies with {|z|}k′ . Let us call this transition θ2. These two
transitions can be performed in either order, although the resulting symbolic
states will differ, as the intruder may use the reply message of one transition as
input for the other transition. However, we can restrict one of the two executions
to those ground states that are not represented by the other execution.

Consider applying this idea to the execution order where θ1 precedes θ2.
The intruder must then use the outgoing message {|x|}k′ of transition θ1 to
generate the incoming message {|b, z|}k′ of transition θ2. Assume the intruder
does not know k′, then the only way to do this is by unifying x and b, z. In
particular, this forbids using any other message encrypted with k′ that the
intruder knew before. (This is not a restriction, because this solution is already
covered by the alternative execution order where θ1 follows θ2.) Alternatively,
if the intruder initially knows the message {|a, n|}k but does not know any other
message encrypted with k, or the key k itself, then the constraint resulting from
the first transition can only be satisfied with x = n. Therefore x and b, z do not
unify and the resulting constraints are unsatisfiable. This shows how constraint
differentiation can either limit the possible solutions for one execution order or
even rule out a particular execution order.

Constraint differentiation is a general technique that is independent of the
technical and conceptual details of the various lazy intruder approaches and un-
derlying protocol models. The basic prerequisite for constraint differentiation is
a state space where states are represented symbolically using terms with vari-
ables, together with a state-transition function and a goal predicate, formalizing
the search objective. Therefore, for the second layer of search, we abstract away

5

from particular base formalisms and work only with the requirement that the
state space is represented symbolically, in the sense that it can be expressed us-
ing terms with variables, and attacks are formulated as reachability problems.
To this end, we introduce the notion of a symbolic transition system, which
abstracts from the nonessential differences of the different formalisms. For con-
creteness, we also show how our own lazy-intruder [9] as well as those developed
by other researchers can be recast as symbolic transition systems, and can thus
benefit from constraint differentiation.

Our work has both theoretical and practical relevance. Theoretically, our
contribution is the formalization of constraint differentiation as a search reduc-
tion technique integrating the lazy intruder with ideas from POR. We formally
prove that constraint differentiation terminates and is correct, in the sense that
it preserves the set of reachable states so that all state-based properties hold-
ing before reduction (such as the existence of a state representing an attack)
hold after reduction. It follows that constraint differentiation neither excludes
attacks nor introduces new ones.

Our theoretical results have immediate practical applications. As a concrete
example, we have integrated constraint differentiation into our on-the-fly model-
checker OFMC [9], a state-of-the-art tool for security protocol analysis based on
the lazy intruder. This integration leads to dramatic reductions in the size of
the search spaces that must be searched and usually reduces the search time by
several orders of magnitude. This extends the scope of OFMC so that it scales
better when falsifying industrial-strength protocols. Moreover, it enables the use
of OFMC as an effective verification tool (for a bounded number of sessions)
since our reductions make it feasible to exhaustively search the (symbolic) state
space resulting from several parallel executions of the protocol being analyzed.
We have validated these findings by carrying out extensive testing: we have
applied OFMC with and without constraint differentiation to a testsuite of 70
real-world protocols and we provide a detailed report on the results.

Organization.

We proceed as follows. In Section 2, we formalize the lazy intruder and symbolic
transition systems. In Section 3, we integrate constraint differentiation into
this formal setting. We present experimental results in Section 4 and draw
conclusions in Section 5.

Note that this paper supersedes [8], where we originally presented constraint
differentiation specialized to the particular lazy intruder of [9].

2 Constraint-Based Protocol Models

There is a large variety of both protocol models and lazy intruder approaches.
Rather than tailoring constraint differentiation to a particular model and associ-
ated approach, we proceed more abstractly and formalize the core of constraint
differentiation in a general way. This will allow us to focus on the main ideas

6

behind constraint differentiation and to state and prove properties about it in
a way that is independent of minor variations in the underlying formalism. In
fact, constraint differentiation can be applied to any lazy intruder approach that
satisfies a set of basic assumptions that we will identify shortly. As a concrete
example of such approaches, we consider our own lazy intruder from [9] and
also describe how other approaches can be seen as instances of our abstract
presentation in Appendix A.

We introduce the constraint-based model underlying our approach starting
with the first layer of the search, the constraints and their reduction. After-
wards, for the second layer, we introduce symbolic transition systems, which
abstract away the details of the formalism used to represent the symbolic state
space.

2.1 Terms and Messages

As is standard in formal protocol analysis, messages are represented as terms,
where TΣ(V) denotes the set of all terms that can be built using function and
constant symbols from a signature Σ and a set V of variables, disjoint from Σ.
Terms without variables are called ground whereas terms containing variables
are called non-ground or symbolic.

Constraint differentiation is independent of the choice of Σ, which depends
on the particular intruder model considered. As a concrete running example,
we will consider Σex, which contains a set of constant symbols (such as the
name of the intruder, i) and two binary function symbols 〈·, ·〉 and {| · |}·, which
respectively denote concatenation and symmetric encryption.

Many protocol analysis approaches interpret terms in the free algebra, where-
by syntactically different terms represent different messages. For some protocols,
however, it is necessary to consider the algebraic properties of the cryptographic
operators employed. For instance, protocols based on the Diffie-Hellman key-
exchange require for exponentiation that

exp(exp(g, x), y) ≈ exp(exp(g, y), x).

Here we have left the modulus implicit, assuming that exponentiation is always
performed using the same (publicly known) modulus.

We do not focus on any particular algebraic theory in this paper and our
intruder and protocol model will be parameterized by a congruence relation
≈ between terms. The free algebra is the special case where s ≈ t implies
s = t. Usually, the algebraic properties are described by a set of equations
E and we interpret terms in the quotient algebra TΣ/≈E

, i.e., two terms are
interpreted as equal iff that is a consequence of E. As constraint differentiation
is independent of the particular E, in the following we will simply consider an
arbitrary congruence relation ≈.

The notions of atomic and composed message are defined in the usual way as
well as substitution, matching, and unification; see for example [7]. We denote
the application of a substitution σ to a term t by writing tσ and denote the
composition of substitutions σ1 and σ2 by σ1σ2, that is t(σ1σ2) = (tσ1)σ2.

7

The identity substitution id is the substitution with the empty domain, that is,
domain(id) = ∅. Also, as is often done in term rewriting [26], we consider only
substitutions σ with the property vars(range(σ)) ∩ domain(σ) = ∅.

2.2 The Dolev-Yao Intruder

We follow Dolev and Yao [20] and consider an intruder who controls the net-
work, but cannot break cryptography. In particular, the intruder can intercept
messages and analyze them if he possesses the corresponding keys for decryp-
tion, and he can generate messages from his knowledge and send them under
any agent’s name.

The precise definition of the intruder model depends on different choices
such as the set of cryptographic operators that is considered and their algebraic
properties. It is now standard to define the core of the intruder model, that
is, the intruder’s abilities to derive new messages from a given set of messages
M , by an inductively defined closure operator, which we denote by DY(·) (for
Dolev-Yao).

Typically, four kinds of rules are used to define DY(·). The first kind consists
of the axiom that states that the closure contains the given set of messages M :

m ∈ DY(M)
(m ∈M) .

Second, there are rules for composing new terms from existing ones by ap-
plying an operation such as pairing or symmetric encryption:

m1 ∈ DY(M) m2 ∈ DY(M)
〈m1,m2〉 ∈ DY(M)

m1 ∈ DY(M) m2 ∈ DY(M)
{|m1|}m2

∈ DY(M)
.

We can generalize this by introducing the notion of intrudable symbols,
which are symbols representing those constants and functions of Σ that the
intruder can use when composing messages. For instance, symmetric encryption
and pairing should be intrudable, whereas the inverse function ·−1 that maps
public keys to private keys should not be. Moreover, we usually have some
globally-known constants like i (the name of the intruder) that are intrudable,
while most constants are not intrudable (e.g., those representing nonces and
other fresh random numbers created by honest agents). Writing intrudable(f)
for an intrudable function f , we can now give just one rule for composing terms:

t1 ∈ DY(M) . . . tn ∈ DY(M)
f(t1, . . . , tn) ∈ DY(M)

(intrudable(f)) .

Third, there may be rules for decomposing messages, whereby the intruder
can obtain subterms of a known term. For pairing and symmetric encryption,
we have:

〈m1,m2〉 ∈ DY(M)
mi ∈ DY(M)

{|m1|}m2
∈ DY(M) m2 ∈ DY(M)

m1 ∈ DY(M)
.

8

Fourth, unless terms are interpreted in the free algebra, the intruder de-
duction must also be closed under ≈. It is not possible in general to decouple
deduction and algebraic equivalences, so that we cannot simply build the closure
under ≈ after DY(·). Thus, we need the following rule:

t ∈ DY(M)
s ∈ DY(M)

(s ≈ t) .

One can use algebraic properties to model decryption explicitly. For in-
stance,

{|{|m|}k|}k ≈ m

expresses that decryption with the key k of a message m encrypted with k (i.e.,
performing symmetric encryption twice with the same key) yields the original
message m. Using such equations, and given that the decryption operations are
intrudable, the two deduction rules given above for decomposing pairs and sym-
metric encryptions are redundant. However, handling equations is, in practice,
more difficult than working in the free algebra and hence rules are preferred to
equations, whenever possible.

For constraint differentiation, we allow an arbitrary intruder model DY(·),
provided that the following assumptions are met:

1. The closure contains the initial set of messages, i.e., M ⊆ DY(M).

2. The name of the intruder i is an intrudable constant symbol of Σ.

3. DY(·) is closed under the application of intrudable function symbols.

4. DY(·) is closed under ≈.

Note that assumptions 2 and 3 together imply that DY(·) is never empty.
The DY(·) closure operator may be applied to sets of terms that contain vari-

ables. However, the rules of the Dolev-Yao intruder do not instantiate variables,
and thus a derivation of t ∈ DY(IK) for a symbolic term t and a set of symbolic
terms IK means that the derivation of t is possible under every instantiation of
the variables, that is, tσ ∈ DY(IKσ) for all substitutions σ. In contrast, the lazy
intruder approach described below tackles the problem of finding instantiations
of the variables under which a derivation is possible. Therefore, one may say
that variables in DY(·) derivations are implicitly universally quantified, while
they are existentially quantified in the lazy intruder approach.

2.3 The Lazy Intruder

The Dolev-Yao intruder leads to infinite branch-points in the search tree when
one näıvely enumerates all messages that the intruder can send. The lazy in-
truder technique significantly reduces the search tree (without excluding any
potential attacks) by exploiting the fact that the actual value of certain parts of
a message is often irrelevant for the receiver. So, whenever the receiver will not

9

further analyze the value of a particular message part, we can postpone during
the search the decision about which value the intruder actually chooses for this
part by replacing it with a variable and a constraint recording which messages
the intruder may use to generate the message part. We express this information
using constraints of the form from(T ; IK), meaning that T is a set of terms
generated by the intruder from the set of his known messages IK (standing for
“intruder knowledge”).

Definition 1. An atomic from constraint is an expression of the form

• from(T ; IK) where T and IK are finite sets of terms.

An atomic constraint is an expression of the form

• the constant TRUE,

• the constant FALSE, or

• an atomic from constraint.

A constraint is either

• an atomic constraint, or

• the conjunction C1 ∧ C2 of two constraints C1 and C2.

In a constraint from(T ; IK), we refer to T as the term part and to IK as
the intruder-knowledge part of the constraint.

Let C be a constraint and σ be a substitution, where vars(C)∩domain(σ) = ∅.
Then we call the pair (C, σ) a constraint store, which we use to keep track of
the substitutions generated during constraint reduction. A constraint C is called
simple, written simple(C), if

• C = TRUE,

• C = from(T ; IK) and T ⊆ V,

• C = C1 ∧ C2 and C1 and C2 are both simple.

A constraint store (C, σ) is simple iff C is simple.
An interpretation I is a total function from V to TΣ, that is, it assigns a

ground term to each variable. For a term t and an interpretation I, we define

tI =

{
I(t) if t ∈ V ,
f(tI1 , . . . , t

I
n) if t = f(t1, . . . , tn) .

We now define an (over-loaded) entailment relation between an interpreta-
tion on the one side and a constraint, a substitution, or a constraint store on

10

the other side:

I |= TRUE

I 6|= FALSE

I |= from(T ; IK) iff T I ⊆ DY(IK I)
I |= φ ∧ ψ iff I |= φ and I |= ψ

I |= σ iff there is a substitution τ such that xστ ≈ xI

for all x ∈ domain(σ)
I |= (C, σ) iff I |= C and I |= σ

In general, the definition of |= extends to sets S of constraints, substitutions, or
constraint stores as follows:

I |= S iff I |= e for some e ∈ S

A constraint C is satisfiable iff I |= C for some interpretation I. We
overload |= further and also use it for logical entailment and equivalence between
constraints.

φ |= ψ iff I |= φ implies I |= ψ for every I
φ =||= ψ iff φ |= ψ and ψ |= φ

These two definitions also extend, straightforwardly, to sets of constraints, sub-
stitutions, and constraint stores.

We will silently assume throughout the paper that constraints are always
normalized using the following (convergent) set of rewrite rules:

• C ∧ TRUE is rewritten to C,

• C ∧ FALSE is rewritten to FALSE.

Observe that every simple constraint is satisfiable since the intruder can
always generate some message, such as his own name. Now, the core idea of the
lazy intruder is to reduce a given constraint store into an equivalent set of simple
constraint stores. In particular, the resulting set of constraint stores is empty
iff the given constraint store is unsatisfiable. The reduction rules themselves are
of the form

C ′, σ′

C, σ
r (Φ) ,

where (C, σ) and (C ′, σ′) are constraint stores and Φ is a side condition on the
application of r.

Such a rule expresses that (C ′, σ′) can be derived from (C, σ) and therefore
constraint reduction rules are applied bottom-up, which we denote by (C, σ) `r

(C ′, σ′). Note that rules contain rule variables that should not be confused
with the (term) variables in constraints. For instance, in the rule G given in
Definition 2 below, we have rule variables t, t1, . . . , tn, T , IK , C, σ, and τ . When

11

applying rules, we only substitute rule variables, not term variables. Note also
that rule matching is performed modulo the properties of conjunction and sets,
e.g., from({{|m|}k}; . . .) matches from({t} ∪ T ; IK) ∧ C under the substitution
[t 7→ {|m|}k, T 7→ ∅, IK 7→ . . . , C 7→ TRUE].

We need not commit to the formalism used to express and reason about side
conditions, and any logic or theory capable of reasoning about sets of terms and
unifiers would suffice (e.g., higher-order logic or set theory). We will employ,
as standard, the notions of satisfiability and logical equivalence, when speaking
of side conditions. As notation, we write Φ1 ≡ Φ2 to denote that two side-
conditions Φ1 and Φ2 are logically equivalent and have the same set of free
variables. We also extend this to rules: two rules r1 and r2 are equivalent iff for
all constraint stores C and C′, it holds that C `r1 C′ iff C `r2 C′. We say that
the rule r entails the rule r′ iff (C, σ) `r′ (C ′, σ′) implies (C, σ) `r (C ′, σ′) for
all C, C ′, σ, and σ′, i.e., r′ constitutes a special case of r.

For a set of rules R, `R is the union of `r for every r ∈ R. We write `+
R and

`∗R to denote the transitive and reflexive-transitive closure of `R, respectively.
We will assume that for every rule

premise
conclusion

r (Φ)

it is decidable whether a given constraint store matches conclusion and that Φ
is satisfiable under that match. Moreover, for any such match, we assume that
we can compute all instances of vars(premise) \ vars(conclusion) such that Φ
holds. This is necessary in order to compute the set of all constraint stores that
can be reached by applying this rule to a given constraint store.

All existing lazy intruder approaches restrict themselves to a particular class
of constraints, often called well-formed constraints. For instance, one usually
requires that variables only originate from the intruder, that is, one can order
the constraints such that every variable first occurs in the term-part of a con-
straint and that the intruder knowledge is monotonically increasing. Constraint
differentiation is a general technique that is also independent from the particu-
larities of well-formedness, and we will thus only assume that such a notion is
given together with the considered lazy intruder so that

• all reduction rules preserve the well-formedness and

• the lazy intruder is correct and terminating for well-formed constraints.

Rather than committing to a particular variant of the lazy intruder and its
concrete reduction strategies, we give below three schemata for lazy intruder
reduction rules. As will be shown in Appendix A, instances of these schemata
capture the spirit of different lazy intruder approaches.

2.4 Constraint Reduction Rules

We now introduce our abstract formalization of the lazy intruder by defining
three categories of constraint reduction rules. Our rules have side conditions,

12

which constrain the values that can be substituted for the rule’s variables. In
particular, given two side conditions Φ and Ψ with the same set of variables,
we say that Φ implies Ψ iff those values satisfying Φ also satisfy Ψ. We say
that a rule r is an instance of a rule r′ iff r and r′ have identical premises and
conclusions, and the side condition of r implies the side condition of r′. Note
that if r is an instance of r′ then r is entailed by r′, but not vice versa.

Each of the three rule categories is defined by an abstract rule, where the
category consists of the set of instances of that rule.

2.4.1 Generation Rules

Generation rules express that the intruder can compose terms if he knows the
subterms and the composition function is intrudable.

Definition 2. A generation rule has the form

(from({t1, . . . , tn} ∪ T ; IK) ∧ C)τ, στ
from({t} ∪ T ; IK) ∧ C, σ

G (Φ),

where the side condition Φ implies

tτ ≈ f(t1, . . . , tn)τ

for an intrudable symbol f .

As an example, consider the following rule from [9]:

from({t1, t2} ∪ T ; IK) ∧ C, σ
from({{|t1|}t2} ∪ T ; IK) ∧ C, σ

GL
scrypt ,

which expresses that the intruder can generate the symmetric encryption of a
message t2 using a message t1 as the key, provided that he knows t1 and t2.
This rule is equivalent to the rule G with

Φ ≡ t = {|t2|}t1 ∧ n = 2 ∧ τ = id ,

and is thus an instance of G since {| · |}· is an intrudable function symbol.2

2.4.2 Unification Rules

Unification rules express an alternative way for the intruder to generate a term
t of a particular form: he can take any term from his knowledge that can be
unified with t.

2When considering the free algebra, the substitution τ in the generation rules is always the
identity. However, when using equations, the generation steps may require substitutions. For
example, when considering the properties of (modular) exponentiation, one way to generate
the term By is based on the substitution [B 7→ GX] (for two fresh variables G and X), and
generating the subterms Gy and X.

13

Definition 3. A unification rule has the form

(from(T ; {s} ∪ IK) ∧ C)τ, στ
from({t} ∪ T ; {s} ∪ IK) ∧ C, σ

U (Φ) ,

where the side condition Φ implies that sτ ≈ tτ .

As an example, consider the following rule from [9]:

(from(T ; {s} ∪ IK) ∧ C)τ, στ
from({t} ∪ T ; {s} ∪ IK) ∧ C, σ GL

unif (τ = mgu(s, t) ∧ t /∈ V) ,

where mgu(s, t) is the most general unifier (in the free algebra) between s and
t, if it exists; note that in the case of algebraic properties, there may not be a
single most general unifier, but rather a set of most general unifiers. The rule
GL

unif is equivalent to U with

Φ ≡ τ = mgu(s, t) ∧ t /∈ V .

Here we have the restriction that the unified term in the constraint’s term-part
is not a variable. It is this restriction that makes the intruder lazy: if the term
to be generated is a variable, then the intruder can take any term to be t, and
thus the procedure does not need to explore all the possible messages in the
intruder knowledge.

2.4.3 Analysis Rules

Analysis rules express that the intruder can obtain subterms of known terms
under certain conditions. For example, the intruder can obtain the clear-text of
an encrypted message when he knows the decryption key.

Definition 4. An analysis rule has the form

(from({k}; {m?} ∪ IK) ∧ from(T ; {m, r} ∪ IK) ∧ C)τ, στ
from(T ; {m} ∪ IK)} ∧ C, σ

A (Φ) ,

where the side condition Φ implies that rτ ∈ DY({mτ, kτ}). That is, the result
of the analysis is something that can indeed be derived from the message m and
the “key” k. The expression {m?} expresses that the rule schema admits rules
that include m at this position and rules that do not.

As an example, consider the following rule from [9]:

from({k}; IK) ∧ from(T ; {{|r|}k, r} ∪ IK) ∧ C, σ
from(T ; {{|r|}k} ∪ IK) ∧ C, σ

AL
scrypt (r /∈ IK).

This rule describes how the intruder can (attempt to) decrypt a known message
{|r|}k: a new constraint is added, namely that the key k can be generated from
the knowledge IK and the clear-text r is added to the intruder knowledge. Note

14

that the new constraint may be unsatisfiable. If the intruder cannot generate k,
then this analysis step leads to a dead-end path in the reduction search space.
This rule is equivalent to A with

Φ ≡ m = {|r|}k ∧ r /∈ IK ∧ τ = id ,

and where {m?} = {m}, i.e., we include m at this position.
The reason that m is optional is that several existing lazy intruder ap-

proaches [1, 9, 12, 16, 18, 22, 24, 30] make different choices here depending
on their particular reduction strategy (which we do not prescribe here). We will
return to the issue of strategies in more detail in Appendix A. The example rule
AL

scrypt is an analysis rule, where again the substitution τ of the general rule is
trivially the identity in the example, as in the example for the generation rules
above. Similarly, the substitution is only used when considering operators with
algebraic properties.

We can now define what constitutes a correct and terminating reduction
procedure.

Definition 5. For a constraint store (C, σ) and a set of rules R, let

RedR(C, σ) = {(C ′, σ′) | (C, σ) `∗R (C ′, σ′) ∧ simple(C ′)}

be the set of all derivable simple constraints. We also call RedR the reduction
procedure induced by R.

Given a notion of well-formedness, we say that RedR is terminating iff `R

is well-founded on well-formed constraint stores(where a constraint store (C, σ)
is well-formed iff C is). In other words, there is no infinite chain (C1, σ1) `R

(C2, σ2) `R . . ., where C1 is well-formed.
Further, we say that RedR is sound (respectively, complete) iff RedR(C, σ) |=

(C, σ) (respectively, (C, σ) |= RedR(C, σ)) for every well-formed constraint store
(C, σ). RedR is called correct iff it is sound and complete. We will write
RedR(C) as shorthand for RedR(C, id).

For the rest of this paper, we will assume that we are given a set of lazy
intruder rules and a notion of well-formedness such that RedR is correct and
terminating.

2.5 Symbolic Transition Systems

The various implementations of the lazy intruder are based on different for-
malisms representing the second layer of the search, namely the symbolic state
space and its transition relation. For example, [9, 16] use multiset rewriting,
[18, 30] use strand spaces, and [1, 12] use process calculi. Constraint differentia-
tion is not specialized to any of these approaches. It only requires a state space
where states are represented symbolically using terms with variables, together
with a state-transition function and a goal predicate that formalizes the search
objective, i.e., characterizes attacks. Therefore, we define the notion of a sym-
bolic transition system that abstracts away from many of the differences of the
different formalisms proposed.

15

The idea behind the symbolic approaches is to use symbolic states, which are
terms with variables, to represent sets of ground states, i.e., sets of ground terms.
Not all substitutions for variables are allowed and the permissible substitutions
are described by some kind of constraints, in our case from constraints. The
semantics of a particular constraint (i.e., the set of substitutions allowed by the
constraint) can then be extended to a symbolic state s: the semantics of s is
the set of ground terms represented by s. One can then define a state-transition
function as usual, but it must agree with the semantics of each symbolic state
in the sense that equivalent symbolic states have equivalent successors and are
equivalent with respect to the goal predicate, which in our case describes attacks.
Formally:

Definition 6. A symbolic transition system over a countable set Σ of con-
stant and function symbols and a countable set V of variables is a 5-tuple
(G,S,S0, T ,P), where

• G = TΣ is the set of ground states;

• S = TΣ(V) × FC is the set of symbolic states, where FC denotes the set
of all well-formed from constraints;

• S0 ∈ S is the initial symbolic state;

• T : S → 2S is a transition function on symbolic states; and

• P is a predicate on symbolic states.

We also refer to G and S as the spaces of ground states and symbolic states
respectively, and we call P the attack predicate as it will be used to specify
symbolic states representing attacks.

The semantics of a symbolic state s = (t, C) is defined in terms of the
semantics of the constraints:

[[(t, C)]] = {tI | I |= C} .

We straightforwardly extend T , P, and [[·]] to sets of symbolic states. The sym-
bolic transition system must agree with the semantics of the symbolic states in
the following sense: for two sets of symbolic states S1 and S2 with [[S1]] = [[S2]],
we require that [[T (S1)]] = [[T (S2)]] and P(S1) ⇐⇒ P(S2).

The set of reachable symbolic states is the smallest set that contains the
initial symbolic state and is closed under the transition function. A symbolic
transition system is secure iff no reachable symbolic state satisfies the attack
predicate.

Constraint reduction is extended to symbolic states by

RedR(t, C) = {(t′, C ′) | ∃σ. (C ′, σ) ∈ RedR(C) ∧ t′ = tσ} .

Hence, we have that [[RedR(s)]] = [[s]] for every symbolic state s iff RedR is
correct.

16

The other lazy intruder approaches can be easily recast as symbolic tran-
sition systems. For example, in the concrete case of the model underlying the
OFMC tool [9], the ground states in G are sets of facts that express the local
state of agents, the intruder knowledge, and the messages sent on the network
that are not yet received. The symbolic states in S are also sets of facts, but
message terms may contain variables. Hence, a symbolic state represents the
set of ground states that is obtained by applying ground substitutions to the
state’s variables. The transition function on symbolic states T is defined by set
rewrite rules that describe the behavior of the honest agents and add new con-
straints by conjunction to the current constraint when the intruder generates
a new message (note that, by the construction of this transition function, the
constraint conjunction is well-formed in all reachable symbolic states). Finally,
the attack predicate P is used to express state-based properties of symbolic
states. In OFMC, P formulates (the negation of) standard authentication and
secrecy goals. However, in the abstract symbolic transition system above, we
neither need commit to any particular kind of attack nor to a particular for-
malism to specify attacks (any of the other formalisms previously listed, such
as strands, could be used). All that is required is that attacks are formalizable
as reachability problems.

A symbolic transition system gives rise to a search tree where the root node
is the initial state and the children of a node are all states that can be reached
in one transition. For every symbolic state, applying the function RedR yields
a set of semantically equivalent symbolic states with simple constraints. This
can be exploited for reduction since if the constraint C of a symbolic state is
unsatisfiable, then RedR(C) = ∅ by the correctness of RedR. In this case, we
can safely prune the subtree of the search tree node containing the unsatisfiable
constraint. In the next section, we will see that the integration of constraint
differentiation into the symbolic transition system is based on a similar kind of
pruning.

Before considering this integration in detail, let us first observe that the lazy
intruder can be straightforwardly extended with a technique that we call step-
compression, which can significantly reduce the size of the search tree without
excluding any attacks.3 Step-compression is based on the idea that, since the
intruder completely controls the communication network, we can safely assume
that every message from an honest agent is automatically intercepted by the
intruder (who can always play it back into the network) and that every message
that an honest agent receives comes directly from the intruder. This allows us to
restrict the search to transitions where two steps are merged (or “compressed”)
into one: first, the intruder sends a message to an honest agent and second, the
intruder intercepts the agent’s reply. The proof that this does not exclude any
attacks or introduce new ones can be found in [33].

When step-compression is used, the symbolic transition system has the
following property: for every transition from a symbolic state s1 = (t1, C1)

3Note that step-compression is applied in all symbolic approaches that we know of [1, 9,
12, 18, 22, 24, 30], as well as in some non-symbolic approaches, such as [3].

17

Σ Set of symbols such that {i} ∈ Σ.
V Set of variables such that Σ ∩ V = ∅.
TΣ(V) Set of terms with variables in V.
≈ Congruence relation on TΣ(V).
intrudable(·) Predicate in Σ, where intrudable(i).
DY(·) Dolev-Yao closure operator. We assume that for any set M

of terms, DY(M) contains M and is closed under ≈ and
composition with intrudable functions.

well-formed(·) Predicate on both constraints and constraint stores.
R A finite set of lazy intruder rules (i.e., instances of the G,

U , and A rule schemata) such that the following holds:

• For all well-formed constraint stores (C, σ), RedR(C, σ) is
correct (i.e., RedR(C, σ) =||= (C, σ)) and terminating.

• For each side condition of rules in R, the set of rule
matches are computable (i.e., the set of matches of the
rules’ meta-variables with a given constraint store).

• If (C, σ) is well-formed and (C, σ) `∗R (C ′, σ′), then
(C ′, σ′) is also well-formed.

(G,S,S0, T ,P) A symbolic transition system according to Definition 6.

Table 1: Parameters of the abstract lazy intruder approach and our assumptions
about their instances.

to a symbolic state s2 = (t2, C2), the constraints will have the form C2 =
C1 ∧ from({m1}; IK) for some message m1, representing the message the in-
truder sends to an honest agent, and a set of messages IK , representing the
knowledge the intruder can use to generate m1. Also, the intruder knowledge
in s2 is augmented by the agent’s reply. We will make use of this property in
constraint differentiation.

To summarize, we have so far presented an abstract formalization of the
lazy intruder and the symbolic, constraint-based approach, independent from
the concrete intruder model and the protocol model. Roughly speaking, we
assume that we are given an arbitrary instance of this general concept and that
this instance is already correct and terminating with respect to a particular
intruder model and a given notion of well-formedness. We show in the following
section how to apply the constraint differentiation technique to such an instance
and prove the correctness and termination of the integration. Table 1 lists all
the elements that must be instantiated for a concrete lazy intruder approach,
and the properties we assume about this instance.

18

CIKs t

from(m3; IK ∪m2)
from(m1; IK)m2

m4

IK Ct2
s2

IK
m4 from(m3; IK)

Ct3s3

i sends m3 to b and
receives m4 from b

i sends m1 to a and
receives m2 from a

from(m1; IK ∪m4)
from(m3; IK)

IK
m4
m2

C
s4

t4

receives m2 from a
i sends m1 to a and

IK
m2 from(m1; IK)

Ct1s1

i sends m3 to b and
receives m4 from b

Figure 4: An illustration of constraint differentiation for t2 = t4. For each
symbolic state s = (t, C), we display t in the first column, the intruder knowledge
IK in the second column, and the associated constraints C in the third column.

3 Constraint Differentiation

The lazy intruder technique allows one to significantly reduce the size of the
search tree generated by the prolific Dolev-Yao intruder without excluding any
attacks. In particular, our experiments [9] have shown that the search tree
induced by the lazy intruder often has roughly the same size as the tree that
would be searched when considering a passive intruder, i.e., one that listens
to the communication on the network but does not manipulate or generate
any messages. This is the maximal reduction possible since the search tree
of reachable symbolic states must cover all possible executions of the protocol
between honest agents.

However, even when considering only a small number of sessions that can be
executed in parallel, searching the tree that contains all the interleavings of these
sessions may still be infeasible. In model-checking approaches for concurrent
systems, this problem is often handled using partial-order reduction (POR), a
technique that reduces the number of interleavings that need to be considered
by exploiting independencies between the possible transitions [34].

One might expect that the direct combination of the lazy intruder with
partial-order reduction would counter both the problem of the prolific Dolev-Yao
intruder and the large number of interleavings. However, the direct combination
of these two techniques is not effective: the different transitions of the lazy
intruder rarely lead to the same symbolic successor state and therefore there is
practically no independence of transitions that can be exploited by POR. We
address this problem by directly incorporating independence information in the
constraint reduction. The result is a POR-inspired reduction technique that we
call constraint differentiation.

To see why the direct combination of partial-order reduction with the lazy
intruder is not effective, consider the symbolic transition system (with step-
compression) given in Subsection 2.5 which gives rise to a search tree. A direct
application of POR would require identifying situations of the form depicted in
Figure 4. There are two sequences of transitions. In the left one, the intruder i

19

first sends a message m1 to an agent a, receiving the answer m2, and afterwards
he sends a message m3 to an agent b, receiving the answer m4. In the right
sequence, the intruder first talks to b and then to a. The transitions result in the
states s2 = (t2, C2) and s4 = (t4, C4), containing the symbolic terms t2 and t4
and the constraints C2 and C4. We consider the case t2 = t4, which holds when
the transitions are independent in the sense that on ground states the respective
order of operations would lead to the same successor states. In this case, for
every substitution σ, the represented ground states t2σ and t4σ are identical.
However, the constraints, which determine the set of permissible substitutions,
are different due to the fact that the intruder generated the respective messages
from different sets of messages, i.e., with different states of intruder knowledge.
Hence, the direct combination of partial-order reduction with the lazy intruder is
ineffective. Note that this problem is independent of the use of step-compression.
It is easy to show that directly applying POR to a symbolic transition system
without step-compression can only result in reductions that are also achieved
using step-compression.

To see, however, that there are redundancies that we can exploit, observe
that there is an overlap in the set of ground states. This is depicted by the two
symbolic states s2 and s4, as shown by the shaded part in Figure 4. This overlap
represents all those ground states in the semantics of the symbolic states that
do not exploit the intruder’s new knowledge of m2 or m4. The key idea behind
constraint differentiation is that we can use the independence of transitions by
exploiting precisely this overlap. If, for example, we favor the left sequence,
then for the state s4 reached in the right sequence we will only be interested in
solutions that are not already subsumed by s2, that is, those solutions where
the intruder actually uses the message m4 that he learned in the first transition
to generate the message m1 in the second transition.

By exploiting this idea, we can propagate information about independent
transitions obtained in the second search layer, the symbolic transition sys-
tem, to the first layer, the constraint reduction. We exploit the fact that we
only need to consider solutions for a given constraint that are obtained by us-
ing new intruder knowledge. In the example, we could express the fact that
the message m4 needs to be used when creating m1 by using constraints of
the form D-from({m1}; IK ; {m4}), which intuitively has the same meaning as
the constraint from({m1}; IK ∪ {m4}), except that we exclude all solutions of
from({m1}; IK).

Mirroring the development of Section 2, we proceed as follows. First, we for-
malize the new kinds of constraints for constraint differentiation, called D-from
constraints. Second, we define how reduction rules for from constraints are
translated to rules for D-from constraints. Third, we define a constraint reduc-
tion function D-RedR for from and D-from constraints, based on the translated
reduction rules. Fourth, we show that if RedR is correct and terminating for well-
formed from constraints, then so is D-RedR for well-formed from and D-from
constraints. We conclude this section by integrating constraint differentiation
into the second layer of the search as a transformation of the search tree induced
by the symbolic transition system.

20

3.1 Constraint Reduction with Constraint Differentiation

We now formalize D-from constraints and extend related definitions.

Definition 7. An atomic D-from constraint is an expression of the form

D-from(T ; OIK ; NIK) ,

where T , OIK , and NIK are sets of messages. We extend the definition of
atomic constraints (and thus also constraints) from Definition 1 with atomic
D-from constraints.

As terminology, when we refer to constraints we mean the combined use
of from and D-from constraints, and we use from constraints (respectively,
D-from constraints) to refer to constraints where the atomic constraints con-
tain no D-from (respectively, from) constraints.

We extend the models relation to constraints of the form C = D-from(T ; OIK ; NIK)
as follows:

I |= C iff I |= dCe and I 6|= bCc ,

where

dD-from(T ; OIK ; NIK)e = from(T ; OIK ∪NIK)
bD-from(T ; OIK ; NIK)c = from(T ; OIK)

are functions mapping D-from constraints to from constraints. We say that
D-from(T ; OIK ; NIK) is simple iff T ⊆ V and T 6= ∅.

Similarly, the definitions of d·e, b·c, and simple are extended straightfor-
wardly to constraint stores. Also, we have assumed that for from constraints,
we have a notion of well-formedness. We lift this notion to D-from constraints
as follows: the constraint C is well-formed iff dCe is well-formed. Furthermore,
when we write symbolic transition system (Definition 6) we now include systems
whose constraints may also be D-from constraints.

Intuitively, NIK represents new messages that are not in OIK . The acronyms
stand for new and old intruder knowledge, respectively. As we will use them,
these sets will always be disjoint. The constraint D-from(T ; OIK ; NIK) formal-
izes that the set of terms T must be generated by the intruder using the knowl-
edge in the set OIK ∪NIK , but we are only interested in solutions that employ
new information in NIK and hence we exclude all solutions of from(T ; OIK).
The function d·e yields a from constraint by removing the requirement on new
knowledge; therefore C |= dCe. Similarly, {bCc, C} =||= dCe, as b·c returns the
solutions removed from dCe. Note that for a simple constraint C, both dCe and
bCc are simple (and hence satisfiable). Unlike for from constraints, it does not
always hold that every simple D-from constraint C is satisfiable, although this
is usually the case.

21

3.2 D-RedR based on RedR

We now show how to obtain a reduction procedure for D-from constraints, given
a reduction procedure for from constraints. More precisely, we translate reduc-
tion rules for from constraints to rules for D-from constraints. By taking the
union of the original rules and the translated rules, we obtain a new procedure
D-RedR for reducing from and D-from constraints.4 We then show that D-RedR

is correct and terminating, whenever RedR is.
A central feature of our formalization of constraint differentiation is that it

is independent of the details and concrete strategy taken by a particular lazy
intruder implementation. Intuitively, we can understand this as follows. Given a
constraint store (C, σ) with a non-simple C, the procedure D-RedR first checks
which reductions the original procedure RedR would choose when applied to
(dCe, σ). Then, it applies reductions to (C, σ) that are analogous (in a sense
to be made precise later) to those chosen by the original procedure, where it
eliminates those reductions that are not possible with respect to (C, σ). (Note
that (C, σ) |= (dCe, σ).)

To make our construction independent of the details of the particular lazy
intruder approach taken, we require that all approach-specific aspects are for-
malized within the side conditions of the rules. Hence, when transforming the
rules, we must also formalize how their side conditions are translated so that
they are indeed used “analogously” in constraint differentiation. To this end, ob-
serve that the transformed rules work on D-from constraints rather than from
constraints and in D-from constraints the intruder knowledge (previously re-
ferred to by the variable IK) is now split into two parts, OIK and NIK . Recall
that the side conditions describe those values that the rule variables can take.
Therefore the translation of the side conditions affects only those variables that
represent constraints or the intruder knowledge of a constraint. These are the
variables C and IK . We therefore define

〈|Φ|〉 = Φ[C 7→ dCe, IK 7→ OIK ∪NIK] .

We will show in Lemma 1 that this translation of side-conditions ensures that
the translated rules are used (on D-from constraints) in a way analogous to the
original rules (on from constraints).

3.2.1 Generation Rules

Consider a generation rule, which has the form

(from({t1, . . . , tn} ∪ T ; IK) ∧ C)τ, στ
from({t} ∪ T ; IK) ∧ C, σ

G (Φ) ,

where the side condition Φ implies

tτ ≈ f(t1, . . . , tn)τ ,
4Alternatively, it would suffice to only use the new rules and to consider every constraint

of the form from(T ; IK) simply as syntactic sugar for the constraint D-from(T ; ∅; IK).

22

for an intrudable symbol f .
We translate this rule into the following rule

(D-from({t1, . . . , tn} ∪ T ; OIK ; NIK) ∧ C)τ, στ
D-from({t} ∪ T ; OIK ; NIK) ∧ C, σ

DG ((n > 0 ∨ T 6= ∅) ∧ 〈|Φ|〉) .

This translation can be understood as follows. Consider a well-formed con-
straint store (C, σ) and a generation rule r for from constraints that is applicable
to (dCe, σ). The translation of r yields a generation rule for D-from constraints
that is applicable and functions analogously to the original generation rule oper-
ating over from constraints: its application replaces the term t to be generated
with its subterms t1, . . . , tn. Note that applying the d·e function to all D-from
constraints in the DG rule yields the original generation rule for D-from con-
straints with a more restricted side condition. Note also that the rule excludes
the case when the term t to be generated is a constant and there are no other
terms to be generated. By the side condition Φ, this constant must be intrud-
able (e.g., the intruder name i), so, in this case, the reduction fails, since the
intruder cannot use anything from the new intruder knowledge to generate the
term. Hence, this translation represents precisely a situation where constraint
differentiation removes cases of the reduction.

As a concrete example, recall that the rule for generating symmetric encryp-
tions is a generation rule with

Φ ≡ t = {|t2|}t1 ∧ n = 2 ∧ τ = id .

Translating this rule for constraint differentiation yields the DG rule with
the side condition

(n > 0 ∨ T 6= ∅) ∧ 〈|Φ|〉 .

Since Φ does not refer to IK or C, we have 〈|Φ|〉 = Φ, and since n = 2, we can
simplify this entire side condition to just Φ.

3.2.2 Unification Rules

Consider a unification rule, which has the form

(from(T ; {s} ∪ IK) ∧ C)τ, στ
from({t} ∪ T ; {s} ∪ IK) ∧ C, σ

U (Φ) ,

where the side condition Φ implies that sτ ≈ tτ .
This rule is translated into the following two rules for D-from constraints:

(D-from(T ; {s} ∪OIK ; NIK) ∧ C)τ, στ
D-from({t} ∪ T ; {s} ∪OIK ; NIK) ∧ C, σ

DUOIK (T 6= ∅ ∧ 〈|Φ|〉) ,

(from(T ; OIK ∪ {s} ∪NIK) ∧ C)τ, στ
D-from({t} ∪ T ; OIK ; {s} ∪NIK) ∧ C, σ

DUNIK (〈|Φ|〉) .

23

This translation distinguishes two cases. First, DUOIK states that the term
t to be generated can be unified with a term s in the old intruder knowledge
OIK of the constraint, and there is a non-empty set T of remaining terms to
be generated. In this case, we proceed as expected, removing the term t from
the terms to be generated. Thus, the new constraint expresses that some new
knowledge must be used when generating the other terms T . Note that when
T = ∅, that is, when there are no other terms to be generated, the rule cannot
be applied (and thus the reduction fails) since the only term t to be generated
can be generated from the old intruder knowledge alone.

The second case is when the term t can be unified with a term s from the new
intruder knowledge NIK . Thus, the requirement to use the new intruder knowl-
edge is fulfilled and therefore it is not necessary to use additional terms from
the new intruder knowledge when generating the remaining terms T . Hence,
the new constraint is a standard from constraint for the terms T , where the
intruder knowledge contains both the old and the new intruder knowledge.

For instance, the unification rule presented above has the side condition

Φ ≡ t /∈ V ∧ τ = mgu(t, s) .

As Φ does not refer to the constraints C or the intruder knowledge IK , 〈|Φ|〉 = Φ
holds in this example.

3.2.3 Analysis Rules

Consider an analysis rule, which has the form

(from({k}; {m?} ∪ IK) ∧ from(T ; {m, r} ∪ IK) ∧ C)τ, στ
{from(T ; {m} ∪ IK)} ∪ C, σ

A (Φ) ,

where the side condition Φ implies that rτ ∈ DY({mτ, kτ}).
We translate this rule into the following two rules:

(from({k}; {m?} ∪ OIK ∪ NIK) ∧ D-from(T ; {m} ∪ OIK ; {r} ∪ NIK) ∧ C)τ, στ

D-from(T ; {m} ∪ OIK ; NIK) ∧ C, σ
DAOIK (〈|Φ|〉) ,

(from({k}; {m?} ∪ OIK ∪ NIK) ∧ D-from(T ; OIK ; {m, r} ∪ NIK) ∧ C)τ, στ

D-from(T ; OIK ; {m} ∪ NIK) ∧ C, σ
DANIK (〈|Φ|〉) .

This translation again distinguishes two cases for the D-from constraints: the
term m to be analyzed is either part of the old or the new intruder knowledge.
The two cases are handled in a similar way: the key-term k for decryption can
be any term derivable from the old and new intruder knowledge (thus it is a
standard from constraint) and the result r is always added to the new intruder
knowledge.5

5With the rule DAOIK , we may potentially miss some redundancies that could be exploited:
it can happen that a result r is added to the new intruder knowledge that is derivable from the
old intruder knowledge alone, namely when we analyze a term m in the old intruder knowledge
and the key term k can be generated from OIK alone. As will be discussed in Subsection 3.3,
this is not a problem of correctness, but only of efficiency.

24

For example, recall that the rule for analyzing symmetric encryptions is an
analysis rule with

Φ ≡ m = {|r|}k ∧ τ = id .

Again, Φ does not refer to C or IK , thus 〈|Φ|〉 ≡ Φ.

3.2.4 Rule Translation and its Properties

Definition 8. For a reduction rule r for from constraints, we define the trans-
lation tr(r) of r for D-from constraints as follows:

tr(G(Φ)) = {DG((n > 0 ∨ T 6= ∅) ∧ 〈|Φ|〉)}
tr(U (Φ)) = {DUOIK (T 6= ∅ ∧ 〈|Φ|〉),DUNIK (〈|Φ|〉)}
tr(A(Φ)) = {DAOIK (〈|Φ|〉),DANIK (〈|Φ|〉)}

By extension, tr(R) = ∪r∈R tr(r) for a set of rules R.
The derivation relation `D

R is defined as `R∪tr(R). The set of pairs of simple
D-from constraints and substitutions that can be derived from (C, id) is

D-RedR(C, σ) = {(C ′, σ′) | ((C, σ) `D
R (C ′, σ′)) ∧ simple(C ′)} .

We write D-RedR(C) as a shorthand for D-RedR(C, id).

Some remarks on the properties of the rule translation are in order. First,
under d·e, the translated rules are entailed by the original rules in the following
sense:

Lemma 1. Let r =
D, τ

C, σ
〈|Φ|〉 ∧Ψ and r′ =

D′, τ ′

C ′, σ′
Φ be rules such that r ∈

tr(r′). Then the rule dre =
dDe, τ
dCe, σ

〈|Φ|〉 ∧Ψ is entailed by r′.

Proof. For all rules, we have that dCe = C ′[IK 7→ OIK ∪ NIK and dDe =
D′[IK 7→ OIK ∪ NIK] and, moreover, the side conditions are more restrictive
in the translated version. Thus, in all cases, the translated rules are entailed by
the original rules.

The second property is that every rule application of the translated rules
corresponds to a rule application of the original rules:

Lemma 2. (C, σ) `D
R (C ′, σ′) implies (dCe, σ) `R (dC ′e, σ′).

Proof. Let (C, σ) `D
R (C ′, σ′). Thus (C, σ) `r (C ′, σ′) for some rule r ∈ R ∪

tr(R). If r ∈ R, then r does not refer to D-from constraints, thus r can be
applied in the same way to (dCe, σ), yielding (dC ′e, σ′). Otherwise, if r ∈ tr(r′)
for some r′ ∈ R, then r and r′ must have the form as in Lemma 1 and dre is
entailed by r′ (in the sense of Lemma 1). It follows that (dCe, σ) `dre (dC ′e, σ′)
and thus (dCe, σ) `r′ (dC ′e, σ′). Since r′ ∈ R, the claim follows.

This shows a central property of derivations with the translated rules: the
translated rules admit no more derivations than the original rules. Therefore, if
RedR(dCe, σ) terminates and is sound, then D-RedR(C, σ) also terminates and
is sound modulo d·e.

25

Reduction in D-RedR Corresponding reduction in RedR

I |= (C, σ) I |= (dCe, σ)

`
D

`

I
?

|= (C ′, σ′) I |= (dC ′e, σ′)

Figure 5: Schema for the completeness proof.

3.3 Properties of D-RedR

Roughly speaking, in this section, we show the following. Given a set of rules R
such that RedR is correct and terminating for from constraints, then D-RedR is
also correct and terminating for D-from constraints. This is not entirely precise
because C =||= D-RedR(C) does not hold in general.

Consider for example the D-from constraint C = D-from({m}; OIK ; NIK)
with OIK = {k, {|m|}k} and NIK = {m}. Obviously, the intruder can derive
the term m from OIK alone without using NIK , and hence C is unsatisfiable.
However, the rule DUNIK is applicable, yielding the simple (and thus satisfiable)
constraint C ′ = from(∅; OIK∪NIK); so this derivation is not sound with respect
to the semantics of C. However, this derivation is sound with respect to the
semantics of dCe and we show below that, in general, D-RedR is sound in
this regard, as shown in Lemma 2. This is sufficient, since the entire idea
of constraint differentiation is to exploit redundancies in the state space, and
interpretations that satisfy dCe, but not C, are redundant. Thus D-RedR, in
general, also returns redundant solutions. However, this is not a problem of the
correctness of the approach, only of its efficiency: it may miss some redundancies
that could be exploited.

Hence, we show soundness only with respect to the original approach. For
the converse, completeness, we have that all solutions of C are contained in
D-RedR(C).

Theorem 1. Let R be a set of reduction rules for from constraints such that
RedR is correct and terminating (with respect to the considered intruder model
and notion of well-formed constraint), and let C be a well-formed constraint
(consisting of from and D-from constraints). Then D-RedR(C) terminates and

C |= D-RedR(C) |= dCe .

Proof. From Lemma 2, it follows that, whenever (C, σ) `D (C ′, σ′) is a reduction
performed by D-RedR, then (dCe, σ) ` (dC ′e, σ′) is a reduction performed by
RedR. Thus, RedR has at least as many derivations as D-RedR, since the only
reductions of RedR that have no counterpart in D-RedR are those excluded by
the side conditions of the D-RedR rules. Since RedR is correct and terminating
by assumption, D-RedR is terminating and sound with respect to d·e.

26

Proving completeness is more involved and the proof has the following shape
(see also Figure 5). We consider an arbitrary well-formed constraint store (C, σ),
where C is not simple. Moreover, we assume that this constraint store is satis-
fiable and consider one fixed satisfying interpretation I |= (C, σ). This implies
also that I |= (dCe, σ). Since we have assumed the correctness of RedR, there
is a derivation (dCe, σ) `r′ (dC ′e, σ′), with I |= (dC ′e, σ′) for some r′ ∈ R. We
show that in all cases there is a rule r ∈ tr(r) such that (C, σ) `r (C ′, σ′) and
I |= (C ′, σ′) (as indicated by the question mark in the figure). Thus, for ev-
ery solution I, there is a reduction of D-RedR that supports I (unless we have
reached a simple constraint that cannot be further reduced). By induction, we
then have (C, σ) |= D-RedR(C, σ), i.e., completeness.

We distinguish three cases, corresponding to the three rule schemata G , U ,
and A, for the reduction from (dCe, σ) to (dC ′e, σ′). In all cases, we assume
that the side condition Φ of the respective rule (i.e., instance of G , U , or A)
holds for the reduction from (dCe, σ) to (dC ′e, σ′). Since 〈|Φ|〉 is the adaption of
Φ to D-from constraints, 〈|Φ|〉 analogously holds for the reduction from (dCe, σ)
to (dC ′e, σ′). We therefore need not refer to the concrete instances of Φ and
〈|Φ|〉 in the following, and rather consider only the general condition required by
the definition of the rule schemata, e.g., sτ ≈ tτ for the U rule schema.

G For a reduction using a G rule, we must show that DG is applicable:

I |= D-from({t} ∪ T ; OIK ; NIK) ∧ C, σ and
I |= from({t} ∪ T ; OIK ∪NIK) ∧ C, σ and
I |= (from({t1, . . . , tn} ∪ T ; OIK ∪NIK) ∧ C)τ, στ and
tτ ≈ f(t1, . . . , tn)τ and intrudable(f)
implies
(T 6= ∅ ∨ n > 0) and I |= (D-from({t1, . . . , tn} ∪ T ; OIK ; NIK) ∧ C)τ, στ

We can exclude the case that both T = ∅ and n = 0, as otherwise tτ is an
intrudable constant and thus I 6|= D-from({t} ∪ T ; OIK ; NIK), contradicting
the first assumption.

Suppose the second conjunct of the conclusion is false, i.e.

I 6|= (D-from({t1, . . . , tn} ∪ T ; OIK ; NIK) ∧ C)τ, στ .

Then either ti and T cannot be generated from OIK ∪ NIK or they can be
generated from OIK alone. The first possibility contradicts the third assumption
and thus we have

I |= from({t1, . . . , tn} ∪ T ; OIK)τ .

But since tτ ≈ f(t1, . . . , tn)τ and intrudable(f), it holds that I |= τ and thus
tτI ∈ DY({t1, . . . , tn}I). We then also have

I |= from({t} ∪ T ; OIK)τ

and thus
I 6|= D-from({t} ∪ T ; OIK ; NIK)τ ,

contradicting the first assumption.

27

U For a reduction using a U rule, we must show that DUOIK or DUNIK is
applicable. We thus distinguish two cases depending on whether a term in the
OIK or the NIK part is unified.

The NIK case is trivial as the conclusion is part of the assumptions:

I |= D-from({t} ∪ T ; OIK ; {s} ∪NIK) ∧ C, σ and
I |= from({t} ∪ T ; OIK ∪ {s} ∪NIK) ∧ C, σ and
I |= (from(T ; OIK ∪ {s} ∪NIK) ∧ C)τ, στ and
tτ ≈ sτ
implies
I |= (from(T ; OIK ∪ {s} ∪NIK) ∧ C)τ, στ

For the OIK case we show:

I |= D-from({t} ∪ T ; {s} ∪OIK ; NIK) ∧ C, σ and
I |= from({t} ∪ T ; {s} ∪OIK ∪NIK) ∧ C, σ and
I |= (from(T ; {s} ∪OIK ∪NIK) ∧ C)τ, στ and
tτ ≈ sτ ∧ T 6= ∅
implies
T 6= ∅ ∧ I |= (D-from(T ; {s} ∪OIK ; NIK) ∧ C)τ, στ .

Suppose that T = ∅. Then {t} ∪ T can be generated from {s} ∪OIK alone,
contradicting the first assumption.

Suppose I 6|= (D-from(T ; {s} ∪OIK ; NIK) ∧ C)τ, στ . Then, by the assump-
tions, it can have failed only due to the new D-from constraint, i.e.,

I |= from(T ; {s} ∪OIK) .

Since tτ ≈ sτ and I |= τ , we have also

I |= from({t} ∪ T ; {s} ∪OIK)

and therefore
I 6|= D-from({t} ∪ T ; {s} ∪OIK ; NIK) ,

which contradicts the assumption.

A For a reduction using an A rule, we must show that DAOIK or DANIK is
applicable. We thus distinguish whether a term in OIK or NIK is analyzed.

In the case that a term in OIK is analyzed, we show the following:

I |= D-from(T ; {m} ∪OIK ; NIK) ∧ C, σ and
I |= from(T ; {m} ∪OIK ∪NIK) ∧ C, σ and
I |= (from({k}; {m?} ∪OIK ∪NIK) ∧ from(T ; {m, r} ∪OIK ∪NIK) ∧ C)τ, στ and
rτ ∈ DY({mτ, kτ})
implies
I |= (from({k}; {m?} ∪OIK ∪NIK) ∧D-from(T ; {m} ∪OIK ; {r} ∪NIK) ∧ C)τ, στ

Suppose the conclusion is false. Then it follows that either

28

• I 6|= from({k}; {m?} ∪OIK ∪NIK)τ , contradicting the second assump-
tion, or

• I 6|= D-from(T ; {m} ∪OIK ; {r} ∪NIK)τ .

Moreover, since I |= from(T ; {m, r} ∪OIK ∪NIK)τ by the second assumption,
it follows that

I |= from(T ; {m} ∪OIK)τ ,

which implies
I 6|= D-from(T ; {m} ∪OIK ; NIK)τ

and thus, since I |= τ ,

I 6|= D-from(T ; {m} ∪OIK ; NIK) ,

which contradicts the first assumption.
In the case that a term in NIK is analyzed, we show the following:

I |= D-from(T ; OIK ; {m} ∪NIK) ∧ C, σ and
I |= from(T ; {m} ∪OIK ∪NIK) ∧ C, σ and
I |= (from({k}; {m?} ∪OIK ∪NIK) ∧ from(T ; {m, r} ∪OIK ∪NIK) ∧ C)τ, στ and
rτ ∈ DY({mτ, kτ})
implies
I |= (from({k}; {m?} ∪OIK ∪NIK) ∧D-from(T ; OIK ; {m, r} ∪NIK) ∧ C)τ, στ

Again, assuming the conclusion does not hold gives us

I |= from(T ; OIK)τ

and thus
I 6|= D-from(T ; OIK ; {m} ∪NIK)τ .

As I |= τ , this again contradicts the first assumption.
This concludes the completeness proof: for every D-from constraint store

and substitution (C, σ) that has a solution I, we can find a reduction (using
RedR(d·e)) that still supports I. Thus, if RedR is complete for from constraints,
then so is D-RedR for D-from constraints.

This theorem tell us that D-RedR is correct and terminating (under the assump-
tion that this already holds for RedR on well-formed from constraints). Thus,
we can apply D-RedR to reduce the search space without excluding attacks or
introducing new ones. To formalize this reduction of the search space, we in-
tegrate constraint differentiation into the search tree induced by the symbolic
transition system.

29

state
space

ground

symbolic
from(m1; IK ∪m4)
from(m3; IK)

from(m3; IK ∪m2)
from(m1; IK)

from(m3; IK ∪m2)
from(m1; IK)s2

C
s4

C t2
s2

Ct2 Ct2

D-from(m1; IK ; m4)
from(m3; IK)

t2
s′4

Figure 6: Constraint differentiation at work.

3.4 Integrating Constraint Differentiation with Symbolic
Transition Systems

Consider again the tree in Figure 4, which characterizes when constraint dif-
ferentiation is applicable: we exploit the fact that the two symbolic states s2

and s4 of Figure 4 represent overlapping sets of ground states as shown by the
shaded parts in s2 and s4.

Figure 6 merges parts of Figure 3 and Figure 4 to illustrate how constraint
differentiation works: we pick one, say s4, of the overlapping states s2 and s4 in
Figure 4 (where t2 = t4) and replace the from constraint that does not appear
in the other constraint with a D-from constraint. This yields the transformed
state s′4. That is, we use constraint differentiation to restrict the extension of
one of the two symbolic states to those ground states that are not covered by
the other (as illustrated by the shaded part in the set of ground states). The
following theorem shows that s2 and s′4 represent the same ground states as s2

and s4.

Theorem 2. Consider two symbolic states s2 = (t2, C2) and s4 = (t2, C4) with
constraints of the form C2 = C ∧ from({m1}; IK) ∧ from({m3}; IK ∪ {m2})
and C4 = C ∧ from({m3}; IK) ∧ from({m1}; IK ∪ {m4}), for m1, m2, m3, and
m4 messages and C a constraint. Moreover, let C ′4 = C ∧ from({m3}; IK) ∧
D-from({m1}; IK ; {m4}) and s′4 = (t2, C ′4). Then [[s2]] ∪ [[s4]] = [[s2]] ∪ [[s′4]].

Proof. It suffices to show that {C2, C4} =||= {C2, C
′
4}. Since dC ′4e = C4 and

dC ′4e =| C ′4, the =|-direction is trivial. To show {C2, C4} |= {C2, C
′
4}, we show

that for every interpretation I with I |= C4 and I 6|= C2 it holds that I |= C ′4.
So assume I 6|= C ′4. Then, since I |= C4, it must hold that I |= bC4c. Hence,
I |= from({m1}; IK) and, since I |= from({m3}; IK), we have I |= C2, which
contradicts the assumption.

This theorem allows us to transform a search tree by replacing from con-
straints with more restrictive D-from constraints without changing the set of
represented ground states. If under the more restrictive constraint C ′4 the in-
truder could not use any new message from his knowledge, then even if C4 is
satisfiable, C ′4 is unsatisfiable (so that the shaded part of the set of ground

30

states in Figure 6 is also empty), which we can check using D-RedR. This is the
maximal reduction that can be achieved by constraint differentiation: the node
of the state s4 and its subtree can be completely pruned from the search tree
as the intruder could not generate anything “interesting”, i.e., nothing that he
could not have generated before. Note that we can always consider the sym-
metric situation: if performing the restriction on s2 rather than s4 leads to an
unsatisfiable constraint, then we can remove the respective subtree.

When we apply D-RedR to a state that results by replacing from constraints
with D-from constraints, in the best case the constraint conjunction turns out
to be unsatisfiable, so the state (and the respective subtree) can be pruned.
However, it is also possible that after applying D-RedR there still remain simple
D-from constraints (i.e., where the T -part is a set of variables). This means
that it is not yet determined what the intruder will use here and it is possible
that it is some message from NIK . Such a D-from constraint is nonetheless
useful for the reduction, as it constrains the child nodes by excluding certain
solutions: the D-from constraint prevents all later instantiations of the variable
in the T -part if these instantiations do not use some message of the NIK -part.

As an example, consider the differentiated constraint

C1 = D-from({{|M |}k}; {{|m1|}k}; {{|m2|}k}) .

There is only one solution for C1, namely M = m2, while dC1e has additionally
the solution M = m1. Thus, a symbolic state that contains only the constraint
C1 cannot yet be pruned from the search space. Assume now that during further
search (i.e., in a child node) we get the additional constraint

C2 = from(h(M); {{|m1|}k, {|m2|}k, h(m1)}) .

Now C2 has only the solution M = m1. So both C1 and C2 are satisfiable
individually, and dC1e ∧ C2 is also satisfiable with M = m1, but C1 ∧ C2 is
unsatisfiable. Thus we can prune child nodes that contain this constraint, even
though the new constraint C2 is not differentiated. Hence, constraint differen-
tiation may also constrain the successors of differentiated nodes.

3.5 Implementing Constraint Differentiation in OFMC

Theorem 2 describes a sufficient condition for applying constraint differentiation
in a symbolic search tree. Namely, it suffices to identify during search a subtree
that matches the pattern of states s1, . . . , s4 described in the theorem. The
question then is how to detect such patterns efficiently during the search for
reachable symbolic states. Detecting all pattern occurrences can be time con-
suming and thereby mitigate the benefits of constraint differentiation in the first
place. There is thus a trade-off between the time spent in detecting occurrences
of this pattern and the actual reduction achieved.

We now briefly describe how we have dealt with this trade-off when in-
tegrating constraint differentiation into our on-the-fly protocol model-checker
OFMC [9]. We employ a heuristic that may miss some potential applications of

31

Theorem 2 in exchange for better run-time performance. In particular, rather
than checking every pair of states for such an application, our heuristic per-
forms a simple local check on reachable states. Although the heuristic may fail
to prune all those states that can safely be pruned, the correctness of the entire
approach is always maintained.

In OFMC, the transition system is given by a set of transition rules. The
most common kind of rule, called a standard rule, describes how an honest agent
in a particular local state can receive a message, send a reply, update its local
state, and introduce additional facts into the successor state (these additional
facts are, for instance, used to express goal-related information, e.g. that a
certain message is supposed to be a secret between a certain group of agents).
Every transition induced by a standard rule is thus related to a particular honest
agent in one protocol session.

Consider now a symbolic state that allows for two or more transitions related
to different executions of the protocol. (These transitions may relate to the same
honest agent and may be induced by the same transition rule.) Then, neither
transition can disable the other and also the order of the two transitions can
only make a difference in the intruder’s constraints, exactly as in the pattern
described by Theorem 2. It is thus safe to apply the theorem in one of the two
resulting states of the pair of transitions.

Note that OFMC also supports a more general form of transition rules than
the standard rules described above. One can, for example, specify rules that
formalize the relationship between several protocol runs of the same agent. We
do not apply constraint differentiation to a pair of transitions where at least
one is induced by a non-standard rule because, in this case, the rule form alone
does not guarantee that both transitions can be taken in either order and lead
to the same resulting states (modulo the intruder constraints). This restriction
does not reduce the class of protocols that we can consider but only the amount
of redundancies that constraint differentiation can exploit.

4 Experimental Results

Even without constraint differentiation, OFMC is a state-of-the-art tool for
finding protocol flaws, as is documented in [9]. It requires, for example, only
a few seconds to find attacks against all flawed protocols of the Clark-Jacob
library.

OFMC is one of the back-ends of the AVISPA Tool for protocol analysis [6, 2].
Before considering in detail the experiments that we have carried out, note that
the specification language of AVISPA (and thus also OFMC’s) requires one to
specify a concrete scenario under which a protocol should be checked. This
scenario is a set of instantiations of the protocol’s roles with concrete agent
names. OFMC additionally allows for symbolic sessions [9], which is where the
scenario is described using variables (of type agent), representing all possible
concrete scenarios for a given number of sessions.

To illustrate the effects of constraint differentiation, in Figure 7 we show

32

Figure 7: The effect of constraint differentiation on the concrete search tree of
NSL with one symbolic session.

the search tree of OFMC for the Needham-Schroeder-Lowe Public Key protocol
NSL [27] in the case of one symbolic session. Even in such a simple case,
constraint differentiation has a significant effect on the search tree: of the 36
symbolic nodes, the 17 displayed in black can be immediately pruned after
constraint differentiation.

In general, the integration of constraint differentiation into OFMC has sub-
stantially improved its performance and scope. With constraint differentiation,
OFMC scales much better when used to find flaws (falsification) in industrial-
strength protocols. Moreover, constraint differentiation substantially improves
the effectiveness of OFMC as a verification tool. Note, in this regard, that ver-
ifying correct protocols is generally much more complex than falsifying flawed
protocols since flaw detection terminates as soon as an error is detected, while
verification requires that the entire search space is examined.

As concrete examples, we have applied OFMC to a large testsuite of 70
real-world protocols, which are listed in Figure 8. The first 66 are the pro-
tocols of the AVISPA protocol library [5] (we follow the naming conventions
used in the AVISPA library, where further information on the protocols can
be found). The additional 4 examples come from OFMC’s own testsuite and
formalize protocols with algebraically-defined operators. In particular, Crypto
API is a partial model of a hardware security module [36]; Diffie-Hellman se-
cure channels uses device pairing to secure the Diffie-Hellman exchange [13];
Minimal Diffie-Hellman uses an algebraic theory that is simplified, as far as
possible, while retaining protocol executability; SRP (with implicit decryption)
is a more realistic model of the Secure Remote Passwords protocol [37] than the
one contained in AVISPA library.

Figure 8 compares the performance of OFMC on the testsuite with and
without constraint differentiation.6 In 8 cases, the analysis without constraint
differentiation exceeds 1 hour CPU time, which we have set as a time-out. More-
over, without constraint differentiation, the total analysis time for all examples
requires over 10 hours (due to time-out we do not know the precise value), and

6The experiments described here are performed on an IBM Laptop with an Intel T2600
Dual Core Processor (2× 2.16 GHz) and 2GB RAM.

33

Protocol Time/s Time/s
With CD Without CD

ISO1 0.01 0.01
ISO2 0.03 0.12
ISO3 0.01 0.01
ISO4 0.28 1.37

CHAPv2 0.14 34.23
EKE 0.03 0.06

EKE2 0.03 0.15
SPEKE 1.54 104.17

AAAMobileIP 0.10 3.65
IKEv2-CHILD 0.39 25.31

IKEv2-DS 0.07 0.12
IKEv2-DSx 11.87 910.93

IKEv2-MAC 2.25 34.67
IKEv2-MACx 11.03 829.40

TLS 0.18 1.34
Kerberos-Cross-Realm 4.21 25.32
Kerberos-Forwardable 7.76 117.87

Kerberos-PKINIT 2.17 2.54
Kerberos-Ticket-Cache 0.67 2.09

Kerberos-basic 0.71 1.51
Kerberos-preauth 1.96 2.18

LPD-IMSR 0.01 0.12
LPD-MSR 0.01 0.01

CRAM-MD5 0.14 19.14
PBK 0.18 0.85

PBK-fix 0.07 0.73
PBK-fix-weak-auth 1.76 651.71

DHCP-delayed-auth 0.03 0.18
H.530 0.35 0.40

H.530-fix 6.82 341.32
Lipkey-Spkm-known-initiator 0.15 21.17

Lipkey-Spkm-unknown-initiator 4.20 163.68
ASW 0.43 0.71

ASW-abort 2.14 4.53
CTP-non-predictive-fix 0.03 0.04

FairZG 5.10 TO

Protocol Time/s Time/s
With CD Without CD

QoS-NSLP 222.31 TO
SET-purchase 0.51 0.98

SET-purchase-honest-PG 1.34 16.37
TSIG 0.12 3.85

Geopriv 0.17 29.21
Geopriv selfsignatures 0.04 0.07

Geopriv 2 pseudonyms 0.21 127.79
Geopriv password 33.51 TO
Geopriv pervasive 30.50 TO

HIP 0.21 3.23
UMTS AKA 0.01 0.01

2pRSA 0.28 70.01
8021x Radius 0.09 5.43

APOP 1.35 2260.53
EAP-AKA 0.17 18.93

EAP-Archie 0.28 104.43
EAP-IKEv2 0.92 238.87

EAP-SIM 1.28 1204.79
EAP-TLS 0.60 32.76

EAP-TTLS-CHAP 0.54 25.15
IKEv2-EAP-Archie 6.78 237.96

PEAP 6.31 TO
RADIUS 0.25 2.54
SHARE 0.03 0.04

SIMPLE 385.73 TO
SIP 0.81 TO

S/KEY 0.37 TO
TESLA 0.04 0.17

TSP 0.09 0.92
SSH Transport 15.17 1610.67

Crypto API 0.31 0.31
Diffie-Hellman secure ch. 1.53 13.92

Minimal-Diffie-Hellman 0.01 0.03
SRP (implicit decrypt.) 28.10 269.32

SUM 806.83 > 38379.93
Without TimeOuts 122.19 9579.93

Figure 8: Comparison of OFMC’s performance with and without constraint
differentiation on the AVISPA protocol library and four additional protocols.

34

With CD Without CD
Depth Time Nodes Time Nodes

1 0.01 4 0.01 4
2 0.01 14 0.01 18
3 0.03 48 0.04 82
4 0.09 162 0.15 370
5 0.31 517 0.68 1612
6 1.12 1532 3.48 6648
7 3.56 4212 16.73 25396
8 10.82 10296 69.68 87052
9 28.48 21797 256.20 257208

10 63.92 36731 800.76 612696
11 106.81 40048 1989.79 1031184
12 127.35 19031 3417.40 879648

Figure 9: Comparison of the search trees with and without constraint differen-
tiation (CD) for the protocol IKEv2 with Digital Signatures with two symbolic
sessions.

about 2.5 hours when excluding the examples that time-out. In contrast, with
constraint differentiation, the maximum time required for an example is 386
seconds, and the total CPU time for the entire library is below 14 minutes.
Thus the time required for all examples with constraint differentiation is several
orders of magnitude smaller than the time without constraint differentiation
on many individual examples, and more than 40 times smaller for the whole
testsuite.

The improvement achieved varies for different protocols. One common rea-
son for this stems from early versus late authentication. Late authentication
means that the first messages of the protocol are exchanged without any means
of authentication. Since anyone can send such messages, there are usually fewer
nodes in upper parts of the search tree that can be removed using constraint
differentiation.

Let us now take a detailed look at one of the above problems: the protocol
IKEv2 with digital signatures [25]. We specify two symbolic sessions, which cov-
ers all concrete scenarios with two sessions (hence, the analysis times differ from
those given in Figure 8, where we considered the specification of the protocol
without symbolic sessions as given in the AVISPA library). Figure 9 compares
both the size of the plies in the search tree and the running time for search up
to (and including) the ply when running with and without constraint differenti-
ation. These results can be explained by the fact that constraint differentiation
is most effective when the original search space contains many interleavings of
parallel sessions. The savings are most dramatic on the deeper plies of the
search tree as the number of interleavings grows exponentially in the original

35

model; since many interleavings are redundant and constraint differentiation can
exploit this redundancy, the number of nodes does not necessarily grow exponen-
tially with the depth of the tree. Hence, the difference between an exponential
growth without constraint differentiation and an often sub-exponential growth
with constraint differentiation leads to more dramatic savings the deeper the
tree is searched.

In summary, constraint differentiation is an effective technique for substan-
tially reducing the size of the search space that must be considered. By em-
ploying constraint differentiation, OFMC scales significantly better with the
complexity of the verification problem. This extends the scope of OFMC and
in some cases enables the analysis of problems that were previously out of the
scope of OFMC and other tools.

5 Conclusions

Constraint differentiation effectively integrates the lazy intruder with ideas from
partial-order reduction. We have proved that this integration does not change
the set of represented ground states and hence is correct in an appropriate tech-
nical sense. We have validated our approach experimentally, using the model-
checker OFMC. Our experiments show that constraint differentiation leads to
dramatic reductions in the size of the state space that must be searched and
thereby substantially improves OFMC’s performance and scope.

Although our practical experience with constraint differentiation is only with
OFMC, constraint differentiation is a general technique and its implementation
is straightforward. Thus it should also be possible to integrate it into other
tools to obtain similar speed ups. This remains, however, as future work.

Constraint differentiation, as we have presented it, manipulates constraints
formalizing terms that must be generated by the Dolev-Yao intruder. Hence,
the technique as developed is specialized to security protocols. Note though
that the general idea of reducing the number of interleavings searched by ma-
nipulating constraints is found in other model-checking approaches involving
constraints, such as for timed or hybrid systems. For example, [31, 10] present
a method, inspired by partial-order reduction for timed systems. System states
consist of control states plus clock constraints and the passage of time makes
it difficult to directly exploit partial-order reduction. They show how different
interleavings can be identified by disjoining their constraints. The strategy here
is different than ours (merging transitions together by unioning constraints, in-
stead of keeping them separate and differentiating constraints) but the ideas are
similarly motivated. Similar ideas are found, for example, in the work of [28].
Investigating the application of such reduction approaches to security protocol
analysis, and symmetrically the application of constraint differentiation beyond
the domain of security protocols, also remains as future work.

36

Acknowledgments

The work presented in this paper was partially supported by the FP7-ICT-
2007-1 Project no. 2164 71, “AVANTSSAR: Automated Validation of Trust
and Security of Service-oriented Architectures” (www.avantssar.eu). We thank
Benedikt Schmidt, Matthias Schmalz, and Cas Cremers for useful comments on
a draft of this paper.

References

[1] R. Amadio and D. Lugiez. On the reachability problem in cryptographic
protocols. In C. Palamidessi, editor, Proceedings of Concur’00, LNCS 1877,
pages 380–394. Springer, 2002.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. Hankes Drielsma, P.-C. Héam, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA Tool for the Automated Validation of Internet Se-
curity Protocols and Applications. In Proceedings of CAV’05. Springer,
2005.

[3] A. Armando and L. Compagna. Automatic SAT-Compilation of Protocol
Insecurity Problems via Reduction to Planning. In Proceedings of FORTE
2002, LNCS 2529, pages 210–225. Springer, 2002.

[4] A. Armando and L. Compagna. SAT-based Model-Checking for Security
Protocols Analysis. International Journal of Information Security, 6(1):3–
32, 2007.

[5] The AVISPA library. http://www.avispa-project.org/library.

[6] The AVISPA tool for security protocol analysis. http://www.
avispa-project.org.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[8] D. Basin, S. Mödersheim, and L. Viganò. Constraint Differentiation: A New
Reduction Technique for Constraint-Based Analysis of Security Protocols.
In V. Atluri and P. Liu, editors, Proceedings of CCS’03, pages 335–344.
ACM Press, 2003.

[9] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Se-
curity, 4(3):181–208, 2005.

[10] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for
timed systems. In D. Sangiorgi and R. de Simone, editors, Proceedings of
CONCUR’98, LNCS 1466, pages 485–500. Springer, 1998.

37

www.avantssar.eu
http://www.avispa-project.org/library
http://www.avispa-project.org
http://www.avispa-project.org

[11] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In Proceedings of CSFW’01, pages 82–96. IEEE Computer Society
Press, 2001.

[12] M. Boreale and M. G. Buscemi. A framework for the analysis of security
protocols. In Proceedings of CONCUR 2002, LNCS 2421, pages 483–498.
Springer, 2002.

[13] M. Cagalj, S. Capkun, and J.-P. Hubaux. Key agreement in peer-to-peer
wireless networks. Proceedings of the IEEE (Special Issue on Cryptography
and Security), 94(2), 2006.

[14] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision
Procedure for Protocol Insecurity with XOR. In Proceedings of LICS’03,
pages 261–270. IEEE Computer Society Press, 2003.

[15] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the
Security of Protocols with Diffie-Hellman Exponentiation and Products in
Exponents. In Proceedings of FST TCS’03, LNCS 2914, pages 124–135.
Springer, 2003.

[16] Y. Chevalier and L. Vigneron. Automated Unbounded Verification of Se-
curity Protocols. In Proceedings of CAV’02, LNCS 2404, pages 324–337.
Springer, 2002.

[17] S. Clarke, E. Jha and W. Marrero. Partial order reductions for security
protocol verification. In Proceedings of TACAS’00, LNCS 1785, pages 503–
518, 2000.

[18] R. Corin and S. Etalle. An Improved Constraint-Based System for the
Verification of Security Protocols. In Proceedings of SAS 2002, LNCS 2477,
pages 326–341. Springer, 2002.

[19] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of
security protocols. In Proceedings of CAV’08, LNCS 5123. Springer, 2008.

[20] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[21] B. Donovan, P. Norris, and G. Lowe. Analyzing a Library of Security Pro-
tocols using Casper and FDR. In Proceedings of the Workshop on Formal
Methods and Security Protocols, 1999.

[22] M. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryp-
tographic Protocols. In Proceedings of CSFW’01. IEEE Computer Society
Press, 2001.

[23] W. Fokkink, M. T. Dashti, and A. Wijs. Partial Order Reduction for
Branching Security Protocols. In Proceedings of WITS’07, 2007.

38

[24] A. Huima. Efficient infinite-state analysis of security protocols. In Proceed-
ings of the FLOC’99 Workshop on Formal Methods and Security Protocols
(FMSP’99), 1999.

[25] C. Kaufman. RFC 4306: Internet Key Exchange (IKEv2) Protocol, Dec.
2005.

[26] C. Kirchner and H. Kirchner. Rewriting, solving, proving. A prelim-
inary version of a book available at http://www.loria.fr/~ckirchne/
rewriting.html.

[27] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal
of Computer Security, 6(1):53–84, 1998.

[28] D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach
to the clock explosion problem of timed automata. Theoretical Computer
Science, 345(1):27–59, 2005.

[29] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic
Programming, 26(2):113–131, 1996.

[30] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In Proceedings of CCS’01, pages 166–175.
ACM Press, 2001.

[31] M. Minea. Partial order reduction for model checking of timed automata.
In J. C. M. Baeten and S. Mauw, editors, Proceedings of CONCUR’99,
LNCS 1664, pages 431–446. Springer, 1999.

[32] J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryp-
tographic Protocols Using Murphi. In Proceedings of IEEE Symposium on
Security and Privacy, pages 141–153, 1997.

[33] S. Mödersheim. Models and Methods for the Automated Analysis of Security
Protocols. PhD thesis, ETH Zurich, Switzerland, 2007.

[34] D. Peled. Ten Years of Partial Order Reduction. In Proceedings of CAV
1998, LNCS 1427, pages 17–28. Springer, 1998.

[35] D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient
automatic security protocol analysis. Journal of Computer Security, 9:47–
74, 2001.

[36] G. Steel. Deduction with XOR Constraints in Security API Modelling. In
Proceedings of CADE 20, LNAI 3632. Springer, 2005.

[37] T. Wu. The Secure Remote Password Protocol. In Proceedings of the
1998 Internet Society Network and Distributed System Security Symposium,
pages 97–111, 1998.

39

http://www.loria.fr/~ckirchne/rewriting.html
http://www.loria.fr/~ckirchne/rewriting.html

A Concrete Lazy Intruders

To illustrate the generality of our abstract formalization, we show how several
representative examples of concrete lazy intruder approaches can be recast in
our formalization, i.e., as instances of the reduction rule schemata that we have
introduced in Subsection 2.4. Our intent here is not to define formal transla-
tions, but rather to show the main ideas behind such translation. As shown
in Theorem 1, given a set of reduction rules implementing a correct and ter-
minating approach, the integration of constraint differentiation preserves these
properties. We begin with our own previous work.

A.1 Basin, Mödersheim, and Viganò [9]

As this has been our running example, we have discussed many of the rules
already. Here we show how to represent the analysis of pairs in our formalism,
as this is the only encoding example that is substantially different from the
previous ones.

The analysis rule for pairing from [9] is

from(T ; {m1,m2, 〈m1,m2〉} ∪ IK) ∧ C, σ
from(T ; {〈m1,m2〉} ∪ IK) ∧ C, σ

AL
pair ({m1,m2} \ IK 6= ∅) .

In this case, we map AL
pair to two instances of A (Φ), where the side conditions

Φ are:
Φ ≡ m = 〈r, r′〉 ∧ k = i ∧ r /∈ IK

and
Φ ≡ m = 〈r′, r〉 ∧ k = i ∧ r /∈ IK .

Here, m, r, and k are variables from the rule A and r′ is a place holder for
the other part of the pair being analyzed. We have also used the name of the
intruder i as the “decryption key” that the intruder needs to generate. Since
intrudable(i), the intruder can always decompose pairs into their components.
We have two rules, one for each of the projections.

A.2 Chevalier and Vigneron [16]

Here we give a representative example of how one of the lazy intruder rules of
[16] can be cast in our setting. In particular, they have a rule of the form (we
have renamed variables for clarity)

T,comp(t) from know(s ∪ IK);C → Tτ from know((s ∪ IK)τ);Cτ ,

where τ = mgu(t, s) and t /∈ V. This differs from our unification rule schema
only syntactically (and in the lack of explicitly recording the substitution). We
can translate this rule to our setting as

from(T ; {s} ∪ IK) ∧ C;στ
from({t} ∪ T ; {s} ∪ IK) ∧ C;σ

τ = mgu(s, t), t /∈ V ,

40

which is an instance of the U rule.
With a similar syntactic transformation, we can also recast the other rules

as instances of the G and A schemata, where we have to apply the same trans-
formations for the analysis of a pair as in the case of our lazy intruder approach.

A.3 Extensions to Algebraic Properties

[15, 14] have presented extensions of the lazy intruder approach of [16] to handle
algebraic properties. They show that it is sufficient for constraint satisfiability
to non-deterministically choose substitutions of a bounded size and check con-
straint satisfaction under these substitutions, modulo the algebraic properties.
We can directly express such a non-deterministic algorithm with our rules. The
main rule in our translation is

(from({t1, . . . , tn} ∪ T ; IK) ∧ C)τ ;στ
from({t} ∪ T ; IK) ∧ C;σ

Φ ,

where

Φ ≡ t /∈ V ∧ τ ∈ Subst(k) ∧ tτ ≈ f(t1, . . . , tn)τ ∧ intrudable(f) .

Here k ∈ N is an additional parameter of the constraint reduction procedure. It
is a function of the size of the given constraint, the number of sessions considered,
and the size of the protocol. Subst(k) is the set of all substitutions where terms
are bounded to size k (and the given set of variables used in the constraint
store). As before, ≈ is the congruence relation of the algebraic theory under
consideration. Note that this approach does not find an equivalent constraint
but is focused on satisfiability. Thus the constraint reduction will lead to at
least one simple solution iff there exists a solution.

A.4 Millen and Shmatikov [30]

In [30], Millen and Shmatikov present their lazy intruder as a collection of rules,
which differ from our schemata only in two main points. First, they employ an
ordering on the constraints and only allow for reduction along this order. This
requires some coding in the translation: we must label constraints with ordering
information, and then check that the reduction is applied to the first non-simple
constraint according to that order.

For instance, their rule (which is read top-down):

C<, s : IK , C>;σ
τC<, τC>; τ ∪ σ (un)

where τ = mgu(s, t), t ∈ IK

is then translated into our approach as follows:

(from l(T ; IK) ∧ C)τ ;στ

from l({t} ∪ T ; {s} ∪ IK) ∧ C;σ
(Φ)

41

where

Φ ≡ T = ∅ ∧ t /∈ V ∧ τ = mgu(s, t)
∧∀l′, T ′, IK ′, C ′. (C = (from l′(T ′ ; IK ′) ∧ C ′) ∧ l′ < l) =⇒ T ′ ⊆ V) .

Note that [30] use constraints with only a single term in the term-part and thus
T = ∅ in our rule.

A second obstacle is the variable elimination rule of [30] that we cannot map
to our rule schemata. The variable elimination rule removes variables from the
intruder knowledge of constraints to ensure that we do not attempt to decrypt
the respective term. In our translation, we simply leave the variables in the
intruder knowledge and add as a side-condition of every analysis rule that the
term to be analyzed is not a variable.

With these two points in mind, the translation of the other rules is straight-
forward.

42

	Introduction
	Constraint-Based Protocol Models
	Terms and Messages
	The Dolev-Yao Intruder
	The Lazy Intruder
	Constraint Reduction Rules
	Generation Rules
	Unification Rules
	Analysis Rules

	Symbolic Transition Systems

	Constraint Differentiation
	Constraint Reduction with Constraint Differentiation
	D-RedR based on RedR
	Generation Rules
	Unification Rules
	Analysis Rules
	Rule Translation and its Properties

	Properties of D-RedR
	Integrating Constraint Differentiation with Symbolic Transition Systems
	Implementing Constraint Differentiation in OFMC

	Experimental Results
	Conclusions
	Concrete Lazy Intruders
	Basin, Mödersheim, and Viganò BasinMoedersheimViganoIJIS05
	Chevalier and Vigneron ChevalierVigneron02a
	Extensions to Algebraic Properties
	Millen and Shmatikov millen01constraint

