Proving Paraconsistent, Many-Valued and Modal Logics by Handling Polynomials: Some Perspectives on Polynomizing Logics

Walter Carnielli

IFCH/CLE - State University of Campinas - Brazil ICR-CSC - University of Luxembourg - Luxembourg

Department of Informatics and Mathematical Modeling at the Technical University of Denmark (DTU)

くロト (過) (目) (日)

Outline

- Polynomial expansions as logic tools
 - Boole's views on Algebra & Logic
 - Polynomizing=Algebra+Calculus+Logic
 - Deductions as solving equations
- Several logics in polynomial format
 - PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form
 - Boole's analysis of syllogistic in polynomial format
 - Modal Logic in polynomial form
- Polynomials as heuristic machines
 - Half-logics and quarter-logics
 - The "translation paradox"
 - Polynomizing: perspectives and problems

★ E ► < E ►</p>

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Boole's dream of algebrizing logic

- An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities (1854): ordinary algebra + Aristotelian Logic
- Boole was more interested in the *algebra of logic* than in the logic of algebra
- In in this sense, he was concerned in solving equations, while Aristotle was concerned with predication

ヘロト 人間 ト ヘヨト ヘヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Why was Boole mixing everything?

- However, his first publication on mathematics was a paper on the Theory of Analytical Transformations (*Cambridge Math. J.* in 1840;
- And also Boole was much involved with his "Differential Equations" of 1859 and his "Finite Differences" of 1860.
- How did Boole unify all this?

イロト イポト イヨト イヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Polynomizing=Algebra+Calculus+Logic

- Develops some ideas on recovering Logic + Algebra in a wide sense
- Reasons with polynomials as a guiding model
- But departs from Boolean rings and their generalization, instead of Boolean algebras
- Gives new proof theory (or semantics) to classical and to seveal non-classical logics, and lead to the clarification of some ideas of Boole.

ヘロト 人間 ト ヘヨト ヘヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Polynomial representations: the "complex" made simple (but infinite)

Functions f(x) rewritten as infinite polynomials (close to a base point x₀):

$$f(\mathbf{x}) = \alpha_0(\mathbf{x}_0) + \alpha_1(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \dots + \alpha_n(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)^n + \dots$$

• Coefficients $\alpha_k(x_0)$ coincide with the derivatives of f(x) in x_0

ヘロト 人間 ト ヘヨト ヘヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Polynomial expansions can be enlightening: Euler

• Leonhard Euler (1707-1783), in comparing infinite sums and products: $\frac{2\cdot3\cdot5\cdot7\cdot11...}{1\cdot2\cdot4\cdot10...} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \dots$

• In contemporary notation:

$$\prod_{p} \frac{p}{p-1} = \sum_{n} \frac{1}{n} \quad \text{for } p \text{ primes, } n \ge 1$$

- This gives another proof of the infinity of primes: the right-hand harmonic series is divergent.
- Euler's proof talks about distribution, not counting.

< ロト < 同ト < ヨト < ヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Are deductions and solving equations incompatible?

Against Boole:

- Some authors see solving equations as opposed to performing deductions
- e.g. Corcoran, p. 281:
 - ".... There is no such thing as indirect equation-solving, of course."
- Not so sure! What about conditional equation solving (solving under constraints)?

ヘロト 人間 ト ヘヨト ヘヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

And a shortcoming?

Not sure!

"According to our ideas there was one serious shortcoming in Boole's calculus, considered as a system of logic; it contained no quantifiers, and therefore could not deal with some of the most interesting questions..."

W. Kneale. Boole and the Revival of Logic. op. cit.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ → < Ξ →</p>

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Boole's unifying approach

- Boole is reasoning at the same time with algebra and with classes, anticipating the results by M. Stone...
- .. or, if you prefer, the work by Stone justifies his intuitions
- But more: Boole mixed ideas of Differential Calculus, Logic, Algebra and Probability

ヘロト ヘ戸ト ヘヨト ヘヨト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Boole's idea on the 'index law'

The Laws of Thought: great importance to the "index law"
 x² = x "...a fundamental law of Metaphysics is but the consequence of a law of thought."

x(x-1) = 0: Law of Non-Contradiction.

- Boole thought of generalizing the 'index law" to $x^n = x$, but rejected it as meaningless
- However, this is totally meaningful using polynomials over finite fields (Carnielli, 2001)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

PC in polynomial form

Definition

The translation $*: PC \mapsto Z_2[X]$ of PC into the Boolean ring $Z_2[X]$ produces the following interpretation for Classical Logic:

- $x^2 \rightsquigarrow x$
- $x + x \rightsquigarrow 0$
- $p_i \rightsquigarrow x_i$ for each atomic variable p_i
- $\neg \alpha \rightsquigarrow \mathbf{1} + \mathbf{x}$
- $\alpha \wedge \beta \rightsquigarrow \mathbf{X} \cdot \mathbf{y}$
- $\alpha \lor \beta \rightsquigarrow \mathbf{X} \cdot \mathbf{y} + \mathbf{X} + \mathbf{y}$
- $\alpha \rightarrow \beta \rightsquigarrow \mathbf{x} \cdot \mathbf{y} + \mathbf{x} + \mathbf{1}$

イロト イポト イヨト イヨト

æ

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Proving reductio ad absurdum

Example

$$\alpha \to \beta, \alpha \to \neg\beta \vdash_{\mathit{PC}} \neg \alpha$$

Proof.

In polynomial form, we have to check that:

$$(x \cdot y + x + 1) \cdot (x \cdot (y + 1) + x + 1) \cdot x \vdash_{\approx} 0$$

But easily: $(xy + x + 1)(x(y + 1) + x + 1)x \approx (xy + x + 1)(xy + 1)x \approx$ $(x^2y^2 + xy + x^2y + x + xy + 1)x \approx$ $(xy + xy + xy + xy + 1)x \approx (x + 1)x \approx x^2 + x \approx 0$

くロト (過) (目) (日)

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Completeness for PC

Theorem (Weak Completeness for PC)

 $\vdash_{PC} \alpha iff(\alpha)^* \vdash_{\approx} 1$

Theorem (Strong Completeness for *PC*)

$$\Gamma \vdash_{PC} \alpha \text{ iff } \prod_{i=1,n} (\gamma_i)^* \cdot ((\alpha) + 1)^* \vdash_{\approx} \mathbf{0}$$

for $\Gamma_0 = \{\gamma_1, \ldots, \gamma_n\}$ where $\Gamma_0 \subseteq \Gamma$

That is,

$$\gamma_1 \wedge \cdots \wedge \gamma_n \wedge (\neg \alpha) = \mathbf{0}$$

イロト イポト イヨト イヨト

3

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Previous intuitions on 'polynomizing'

- E. Schröder used \sum and \prod to represent quantifiers.
- Some methods for Boolean reasoning were developed by the Russian logician Platon Poretsky (known in digital circuitry) in the 19th century.
- Also, Gégalkine, 1927, Mat. Sbornik (in Russian) shows a translation of sentences of Principia Mathematica into polynomials.

ヘロト ヘアト ヘビト ヘビト

Boole's views on Algebra & Logic Polynomizing=Algebra+Calculus+Logic Deductions as solving equations

Gröbner bases and complexity

- Clegg, Edmonds, and Impagliazzo: Gröbner bases algorithm to find proofs of unsatisfiability, 1996.
- Wu, Tan and Li: polynomials over *Q* to represent truth-tables and decide many-valued logics, 1998.
- However, nobody used polynomial ring properties, nor extended the method to all finite-valued logics, to non-finite valued logics or to FOL...
- or to modal logics!

くロト (過) (目) (日)

PC, FOL, Belnap-Dunn's logic, *mbC*, C₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Polynomials instead of formulas

- Given a propositional logic L, a *polynomial interpretation* for L is a translation * : L → F[X] of wffs into the ring F[X]
- α ∈ L is satisfiable if its traduct α^{*} ∈ F[X] gets values in a certain D ⊆ F when evaluated in the field F
- $D \subseteq \mathbf{F}$ are the *distinguished truth-values*

ヘロト ヘ戸ト ヘヨト ヘヨト

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

PRC Rules for many-valued logics

For general (many-valued) logics formulas are interpreted within the polynomial rings over Galois fields $GF(p^n)[X]$: Index rules:

● $x + x + ... x \vdash_{\approx} 0$ (summing *p* times)

$$2 x^{p^n} \vdash_{\approx} x$$

Ring rules:

- $(f+g)\vdash_{\approx} (g+f)$
- $I + 0 \vdash_{\approx} f$

•
$$f + (-f) \vdash_{\approx} 0$$

$$\mathbf{S} f \cdot (\mathbf{g} \cdot \mathbf{h}) \vdash_{\approx} (f \cdot \mathbf{g}) \cdot \mathbf{h}$$

 $\bullet f \cdot (g+h) \vdash_{\approx} (f \cdot g) + (f \cdot h)$

ヘロア 人間 アメヨア 人口 ア

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

PRC Rules: Metarules

Substituting "inside" and "outside" For $f, g, h \in \mathbf{F}[X]$:

Uniform Substitution:

$$\frac{f\vdash_{\approx}g}{f[x:h]\vdash_{\approx}g[x:h]}$$

② Leibniz Rule: $\frac{f \vdash_{\approx} g}{h[x:f] \vdash_{\approx} h[x:g]}$

ヘロト ヘアト ヘビト ヘビト

3

PC, FOL, Belnap-Dunn's logic, *mbC*, C₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Proofs and deductions in PRC

Definition (Weak Completeness for L)

 $\vdash_L \alpha$ iff $\alpha^* \vdash_{\approx} d$, where $d \in D$ (i.e., *d* ranges over distinguished truth-values).

 That is: the polynomial rules *prove* that the polynomial α^{*} never outputs values outside the set *D* of distinguished truth values

Definition (Strong Completeness for L)

 $\Gamma \vdash_L \alpha$ iff $\alpha^* \vdash_{\approx} d \in D$, under the constraints $\Gamma^* \approx d \in D$

イロト イポト イヨト イヨト

1

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Why do we need Galois fields $GF(p^n)$?

Theorem (Representing finite functions)

Any *k*-ary finite functions can be represented as polynomials over $GF(p^n)[x_1, \dots, x_k]$.

- As *Z_m* is not a field if *m* is not a prime number, *Z_m*[*X*] does not suffice
- For example: Z₄[x, y] cannot represent
 f(x, y) = max{x, y}, but GF(2²)[x, y] can

But also

Theorem (Representing non-deterministic finite functions)

Any k-ary bounded non-deterministic finite functions can be represented as polynomials over $GF(p^n)[x_1, \dots, x_k]$ with extra (hidden) variables.

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

4-valued logics and the Galois field $GF(2^2)$

4-valued logics are well represented in polynomials over $GF(2^2)$:

\oplus	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

\odot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	1
3	0	3	1	2

ヘロア 人間 アメヨア 人口 ア

э

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

The (paraconsistent) 4-valued logic of Belnap and Dunn

Tables in $GF(2^2)$:

 $\textit{B}_{4}=\langle\{0,1,2,3\},\{\neg,\wedge,\vee\},\{2,3\}\rangle$

	_
0	0
1	2
2	1
3	3

\wedge	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

\vee	0	1	2	3
0	0	1	2	3
1	1	1	3	3
2	2	3	2	3
3	3	3	3	3

ヘロト 人間 ト ヘヨト ヘヨト

æ

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

イロト イポト イヨト イヨト 一臣

Belnap-Dunn's logic B_4 in polynomial form

 B_4 is translated into $GF(2^2)[X]$ as:

- \neg : $p_{\neg}(x)$ becomes $2x^2$
- \wedge : $p_{\wedge}(x, y)$ becomes $x^2y^2 + 3x^2y + xy^2$
- ∨: p_∨(x, y) becomes x²y² + 3x²y + xy² + x + y

• Rules:
$$x + x \approx 0$$
 and $x^4 \approx x$

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Using the Galois field $GF(2^2)$ in 4-valued logics

Example (Deciding in Belnap-Dunn's logic)

 $\alpha \vee \neg \alpha$ translates (using the *GF*(2²)[*X*] arithmetic to):

 $x + x^2 + 3x^3$

It can be easily seen that:

•
$$x + x^2 + 3x^3 \in \{2,3\}$$
 for $x \neq 0$,

but

•
$$0 + 0^2 + 3 \times 0^3 \approx 0$$
,

• hence $\alpha \lor \neg \alpha$ is not a B_4 tautology

ヘロト 人間 ト ヘヨト ヘヨト

æ

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Monadic FOL in polynomial format

Definition

Monadic FOL is represented in $Z_2[X]$ by adding clauses:

• $(A(c_i))^* = x_i^A$, for each constant c_i (in a denumerable universe), where x_i^A is a variable in $\mathbb{Z}_2[X]$

$$(\forall z A(z))^* = \prod_{i=1}^{\infty} x_i^A$$

As a consequence:

Definition

$$(\exists z A(z))^* = (\neg \forall z \neg A(z))^* = 1 + \prod_{1=1}^{\infty} (1 + x_i^A)$$

Note that now polynomials are infinite (i.e, formal series in $\mathbf{Z}_{2}[\mathbf{X}]$) Simplified notation:

•
$$(\forall z A(z))^* = \prod x_i$$

•
$$(\exists zA(z))^* = 1 + \prod(1+x_i)$$

Walter Carnielli

Polynomizing: Proving by Handling Polynomials

ヘロン 人間 とくほ とくほ とう

э

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

イロト イポト イヨト イヨト 一臣

Examples of proofs in FOL

Example

•
$$\forall z A(z) \rightarrow \exists z A(z):$$

 $(\prod x_i) \cdot (1 + \prod (1 + x_i)) + \prod x_i + 1 \approx$

$$(\prod x_i) \cdot (\prod (1 + x_i)) + \prod x_i + \prod x_i + 1 \approx$$

$$(\prod x_i \cdot (1+x_i)) + \prod x_i + \prod x_i + 1 \approx 1$$

since $\prod x_i + \prod x_i \approx 0$ and $x_i \cdot (1 + x_i) \approx 0$ for each x_i

• We can also easily find counter-models in **FOL**, by using this method.

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

ヘロト 人間 ト ヘヨト ヘヨト

Boole's analysis of Syllogism in polynomial format

The four categorical forms:

Α	All A is B	$\forall z(A(z) \rightarrow B(z))$
Ι	Some A is B	$\exists z(A(z) \land B(z))$
Ε	No A is B	$\forall z(A(z) \rightarrow \neg B(z))$
0	Some A is not B	$\exists z(A(z) \land \neg B(z))$

• A and I are affirmative (resp., universal and existential)

- E and O are negative (resp., universal and existential)
- $\mathbf{O} = \neg \mathbf{A}$ and $\mathbf{E} = \neg \mathbf{I}$

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

Recovering Boole's interpretation

A holds iff

$$\prod (ab + a + 1) = 1 \text{ iff } ab + a + 1 = 1$$

for every *a*, *b* iff ab + a = 0 for every *a*, *b* iff ab = a for every *a*, *b*, which coincides with Boole's formalization of **A** as "AB = A"

in The Mathematical Analysis of Logic of 1847.

• I holds iff

 $1 + \prod(1 + ab) = 1$ iff $\prod(1 + ab) = 0$ iff $1 + a_0b_0 = 0$

for some a_0 , b_0 iff $a_0b_0 = 1$ for some a_0 , b_0 which coincides with Boole's formalization of I as "AB = V" in *The Calculus of Logic* of 1848.

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

A Polynomial Ring Calculus for S5

Definition (PRC for S5)

• Translation function (*:
$$ForS5 \rightarrow \mathbb{Z}_2[X \cup X']$$
, where $X = \{x_1, \ldots\}$ and $X' = \{x_{\Box\alpha_1}, \ldots, x_{\neg \Box\alpha_1}, \ldots\}$):

Reduction rules and translations for connectives are the same for *CPL*, plus:

 $\begin{array}{l|l} (\Box\alpha)^* = x_{\Box\alpha}, \text{ where } x_{\Box\alpha} \text{ is a hidden variable, plus constraints:} \\ (cK) & x_{\Box(\alpha \to \beta)}(x_{\Box\alpha}(x_{\Box\beta} + 1)) \approx 0 & \Box(\alpha \to \beta) \to \Box\alpha \to \Box\beta \\ (cT) & x_{\Box\alpha}(\alpha^* + 1) \approx 0 & \Box\alpha \to \alpha \\ (cB) & \alpha^*(x_{\Box\Diamond\alpha} + 1) \approx 0 & \alpha \to \Box\Diamond\alpha \\ (cA) & x_{\Box\alpha}(x_{\Box\Box\alpha} + 1) \approx 0 & \Box\alpha \to \Box\Box\alpha \\ (cNec) & \alpha^* \approx 1 \text{ implies } x_{\Box\alpha} \approx 1 & \vdash \alpha \text{ implies } \vdash \Box\alpha \end{array}$

ヘロト 人間 ト ヘヨト ヘヨト

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

イロト 不得 とくほと くほとう

∃ 900

A Polynomial Ring Calculus for S5

Lemma

$x_{\Box \perp} pprox 0,$	(a)
$x_{\Box lpha} x_{\Box \neg lpha} pprox 0,$	(b)
$X_{\Box \neg \neg lpha} \approx X_{\Box lpha},$	(C)
$x_{\Box \alpha} \approx 1 \text{ or } x_{\Box \beta} \approx 1 \text{ implies } x_{\Box (\alpha \lor \beta)} \approx 1,$	(d)
$X_{\Box(\alpha \wedge \beta)} pprox X_{\Box \alpha} X_{\Box \beta},$	(e)
$X_{\Box\alpha} \approx X_{\Box\Box\alpha} \approx X_{\Diamond\Box\alpha},$	(f)
$\mathbf{X}_{\Diamond lpha} pprox \mathbf{X}_{\Diamond \Diamond lpha} pprox \mathbf{X}_{\Box \Diamond lpha}.$	(g)

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

A Polynomial Ring Calculus for S5

Theorem (Soundness)

If $\Gamma \vdash_{S5} \alpha$ then $\Gamma \models_{S5} \alpha$.

Proof.

Deduction theorem plus the following fact: constraints (cK)-(c4) establish validity of axioms K, T, B and 4. Constraint (cNec) establishes validity preservation under necessitation rule.

Theorem (Strong completeness)

 $\[\[\models_{S5} \alpha \] then \[\[\vdash_{S5} \alpha \]$

Proof.

Adapting the familiar Lindenbaum-Asser argument for CPL.

Walter Carnielli Polynomizing: Proving by Handling Polynomials

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A Polynomial Ring Calculus for S5

Example

 $\models_{S5} (\Diamond p \to p) \lor (\Diamond p \to \Box \Diamond p):$

$$\begin{split} &((\Diamond p^{-}) \lor (\Diamond p \to \Box \Diamond p))^{*} \\ &= (\Diamond p \to p)^{*} (\Diamond p \to \Box \Diamond p)^{*} + (\Diamond p \to p)^{*} + (\Diamond p \to \Box \Diamond p)^{*} \\ &\approx (\Diamond p \to \Box \Diamond p)^{*} ((\Diamond p \to p)^{*} + 1) + (\Diamond p \to p)^{*} \\ &\approx ((\Diamond p)^{*} ((\Box \Diamond p)^{*} + 1) + 1) ((\Diamond p)^{*} (p^{*} + 1)) + (\Diamond p)^{*} (p^{*} + 1) + 1 \\ &\approx ((x_{\Box \neg p} + 1) (x_{\Box \Diamond p} + 1) + 1) ((x_{\Box \neg p} + 1) (x_{p} + 1)) + (x_{\Box \neg p} + 1) (x_{p} + 1) + 1 \\ &\approx ((x_{\Box \neg p} + 1) (x_{\Diamond p} + 1) + 1) ((x_{\Box \neg p} + 1) (x_{p} + 1)) + (x_{\Box \neg p} + 1) (x_{p} + 1) + 1 \\ &\approx ((x_{\Box \neg p} + 1) (x_{\Box \neg p}) + 1) ((x_{\Box \neg p} + 1) (x_{p} + 1)) + (x_{\Box \neg p} + 1) (x_{p} + 1) + 1 \\ &\approx (x_{\Box \neg p} + 1) (x_{p} + 1) + (x_{\Box \neg p} + 1) (x_{p} + 1) + 1 \\ &\approx 1. \end{split}$$

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

A Polynomial Ring Calculus for S5

Example

$$\approx_{S5} \Box (\Box (\rho \to \Box \rho) \to \rho) \to \Box (\Diamond \Box \rho \to \rho):$$

$$(\Box(\Box(\rho \to \Box p) \to p) \to \Box(\Diamond \Box p \to p))^*$$

= $(\Box(\Box(\rho \to \Box p) \to p))^*((\Box(\Diamond \Box p \to p))^* + 1) + 1)^*$
= $x_{\Box(\Box(\rho \to \Box p) \to p)}(x_{\Box(\Diamond \Box p \to p)} + 1) + 1.$

But we also have that:

$$(\Diamond \Box p \to p)^* = (\Diamond \Box p)^* (p^* + 1) + 1$$

= $(x_{\Box \neg \Box p} + 1)(p^* + 1) + 1$
 $\approx (x_{\Box \Diamond \neg p} + 1)(\neg p)^* + 1$
 ≈ 1 (by polynomial constraint (cB)).

Then, by polynomial constraint (cNec) we obtain $x_{\Box(\Diamond \Box \rho \to \rho)} \approx 1$. Consequently, $(\Box(\Box(\rho \to \Box \rho) \to \rho) \to \Box(\Diamond \Box \rho \to \rho))^* \approx 1$.

イロト 不得 とくほ とくほう

PC, FOL, Belnap-Dunn's logic, *mbC*, *C*₁ in polynomial form Boole's analysis of syllogistic in polynomial format Modal Logic in polynomial form

The relationship with modal algebras

Theorem

The structure $\mathcal{Z} = \langle \mathbb{Z}_2[X \cup X'] / \cong, \sqcup', \sqcap', -', \mathbf{n}' \rangle$, with the order \leq' , is a normal-epistemic-symmetric-transitive modal algebra.

Proof.

The definitions below define a modal algebra.

•
$$[P] \sqcup' [Q] = [PQ + P + Q],$$

- $[P] \sqcap' [Q] = [PQ],$
- -'[P] = [P+1],
- $\mathbf{n}'([P]) = [x_{\Box f(P)}].$

The order relation \leq' is defined by $[P] \leq' [Q]$ if $P \leq Q$.

イロト イポト イヨト イヨト

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Non-truth functionality in polynomial form

Definition (Semi-negations)

•
$$\neg_1(p) = \begin{cases} 1 & \text{if } p = 0 \\ \text{undetermined in } \{0, 1\} & \text{if } p = 1 \end{cases}$$

• $\neg_2(p) = \begin{cases} 0 & \text{if } p = 1 \\ \text{undetermined in } \{0, 1\} & \text{if } p = 0 \end{cases}$

Lemma (Semi-negations in polynomial form)

$$\mathbf{1} = xp + \mathbf{1}$$

2
$$\neg_2 p = x(p+1)$$

Proof.

● ¬₁(0) = 1, while ¬₁(1) =
$$x$$
 + 1

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Logics of Formal Inconsistency (LFIs)

Definition

LFIs are paraconsistent logics that define connectives of consistency \circ (and also inconsistency \bullet) at the object language.

- Most of the *LFIs* cannot be characterized by finite matrices.
- Some *LFIs* can be characterized by non-truth-functional 2-valued valuation semantic.

Example (Valuations for *mbC*, a simple *LFI*)

(1)
$$v(\varphi \land \psi) = 1$$
 iff $v(\varphi) = 1$ and $v(\psi) = 1$;
(2) $v(\varphi \lor \psi) = 1$ iff $v(\varphi) = 1$ or $v(\psi) = 1$;
(3) $v(\varphi \rightarrow \psi) = 1$ iff $v(\varphi) = 0$ or $v(\psi) = 1$;
(4) $v(\neg \varphi) = 0$ implies $v(\varphi) = 1$;
(5) $v(\circ \varphi) = 1$ implies $v(\varphi) = 0$ or $v(\neg \varphi) = 0$.

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Polynomial ring calculus with hidden variables

Example (Application *mbC*)

• Translation function $*: For \to \mathbb{Z}_2[X]$.

$$\begin{array}{ll} p_i^* = x_i & (\text{if } p_i \text{ is a variable}); \\ (\varphi \land \psi)^* = \varphi^* \psi^*; \\ (\varphi \lor \psi)^* = \varphi^* \psi^* + \varphi^* + \psi^*; \\ (\varphi \to \psi)^* = \varphi^* \psi^* + \varphi^* + 1; \\ (\neg \varphi)^* = \varphi^* x_{\varphi} + 1 & (x_{\varphi} \text{ is a hidden variables}); \\ (\circ \varphi)^* = (\varphi^* (x_{\varphi} + 1) + 1) x_{\varphi'} & (x_{\varphi}, x_{\varphi'} \text{ are hidden variables}); \end{array}$$

- Reduction rules: 2x = 0 and $x^2 = x$.
- ⊢_{mbC} φ iff φ* reduces by PRC rules to the constant polynomial 1.

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

An example in *mbC*

Example

The PRC shows easily that

- $\alpha \wedge \neg \alpha$ is not a bottom particle in *mbC*,
- 2 $\alpha \wedge \neg \alpha \wedge \circ \alpha$ is a bottom particle in *mbC*

Proof.

Indeed, translating the wffs we have:

$$a^*(\alpha^*(x_{\alpha^*}+1)) \approx \alpha^* x_{\alpha^*} \approx \alpha^*(x_{\alpha^*}+1) \not\approx 0$$

2
$$\alpha^*(x_{\alpha^*}+1)(\alpha^*(x_{\alpha^*}+1)+1)(x'_{\alpha^*})\approx 0(x'_{\alpha^*})\approx 0$$

Notice that x_{α^*} and x'_{α^*} are independent **hidden variables**;

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

The case of da Costa's C_1 : a particular LFI

Example (Bivaluations for C_1)

(1)
$$v(\varphi \land \psi) = 1 \text{ iff } v(\varphi) = 1 \text{ and } v(\psi) = 1;$$

(2) $v(\varphi \lor \psi) = 1 \text{ iff } v(\varphi) = 1 \text{ or } v(\psi) = 1;$
(3) $v(\varphi \rightarrow \psi) = 1 \text{ iff } v(\varphi) = 0 \text{ or } v(\psi) = 1;$
(4) $v(\neg \varphi) = 0 \text{ implies } v(\varphi) = 1;$
(5) $v(\neg \neg \varphi) = 1 \text{ implies } v(\varphi) = 1;$
(6) $v(\circ\varphi) = v(\psi \rightarrow \varphi) = v(\psi \rightarrow \neg \varphi) = 1 \text{ implies } v(\psi) = 0;$
(7) $v(\circ(\varphi \# \psi)) = 0 \text{ implies } v(\circ\varphi) = 0 \text{ or } v(\circ\psi) = 0.$

イロン イボン イヨン イヨン

3

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Polynomial ring calculus for C_1

Example (Translation function $*: For \to \mathbb{Z}_2[X]$)

(1) $p_i^* = x_i$ if p_i is a propositional variable; (2) $(\varphi \land \psi)^* = \varphi^* \psi^*$; (3) $(\varphi \lor \psi)^* = \varphi^* \psi^* + \varphi^* + \psi^*$; (4) $(\varphi \rightarrow \psi)^* = \varphi^* \psi^* + \varphi^* + 1$; (5) $(\neg \varphi)^* = \varphi^* x_{\varphi} + 1$; (6) $(\circ \varphi)^* = (\varphi^* x_{\varphi} x'_{\varphi} + \varphi^* x'_{\varphi} + 1) + 1) x'_{\varphi}$; (7) $\circ (\varphi \# \psi)$ is a bit too complicated....

(5)
$$x_{\varphi} = 0$$
 implies $x_{\neg\varphi} = 1$;
(6) $x = 0$ implies $x' = 1$

 $x_{\circ\varphi} = 1$ and $x_{\circ\psi} = 1$ imply $x_{\circ(\varphi \# \psi)} = 1$

• Reduction rules: 2x = 0 and $x^2 = x$.

•
$$\vdash_{C1} \varphi$$
 iff φ^* reduces to 1.

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Half-logics

Lemma (Béziau)

 \neg_2 recovers classical negation through $\sim P = P \rightarrow \neg_2 P$.

Proof.

In polynomial format: $P \rightarrow \neg_2 P$ is computed as p(x(p+1)) + (p+1) = p+1, but p+1 represents \sim .

• So we recover classical logic, in the language of implication \rightarrow and negation \sim , characterized by two-valued valuations v s.t.: $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $v(P \rightarrow Q) = 1 \text{ iff } v(P) = 0 \text{ or } v(Q) = 1$ (2) $v(\sim P) = 0 \text{ iff } v(P) = 1$

イロト イポト イヨト イヨト 三日

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

The "translation paradox"

A phenomenon?

- A subclassical logic as K/2 (in {→, ¬₁}) turns out to be superclassical in {→, ~, ¬₁}
- Moreover, PC can be strongly translated within K/2:

Definition

$$(P)^* = P, \text{ for } P \text{ atomic};$$

2
$$(A \to B)^* = (A)^* \to (B)^*;$$

$$(\sim A)^* = A \rightarrow \neg_1 A$$

イロト イポト イヨト イヨト

æ

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

More half-logics!

Example (\neg_1 is the negation of da Costa's C_1)

•
$$v(\neg_1 p) = \begin{cases} 1 & \text{if } p = 0 \\ undetermined & \text{if } p = 1 \end{cases}$$

3
$$v(p \leftarrow q) = 1$$
 iff $v(p) = 1$ and $v(q) = 0$;

The connectives \neg_1 and $\stackrel{*}{\leftarrow}$ in polynomial terms:

$$egin{aligned}
equal type \ &\stackrel{*}{\leftarrow} P \ \text{defines classical negation} \sim \ & \text{Indeed,} \\
(px+1)(p+1) = \underbrace{p^2 x}_{px} + px + p + \underbrace{1^2}_{1} = p + 1.
\end{aligned}$$

イロト 不得 とくほ とくほとう

ъ

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

And a "three-quarter" logic

Definition (A logic K3/4 in the signature $\{\rightarrow, \rightarrow\}$)

Consider a binary connective in *p* and *q*: x(p+1)q, corresponding to a non-truth-functional connective \rightarrow whose valuation is:

$$v(P
ightarrow Q) = \begin{cases} 0 \\ undetermined \end{cases}$$

if
$$v(P) = 1$$
 or $v(Q) = 0$
otherwise

ヘロト ヘアト ヘビト ヘビト

1

	0	1
0	0	X
1	0	0

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

A "three-quarter" logic, continued

Lemma

Classical negation $\sim p$ can be defined by $p \rightarrow (p \rightharpoonup q)$

Proof.

In fact, this formula in polynomial format turns out to be: p(x(p+1)q) + p + 1 = p + 1,

Hence full *PC* is recovered in the signature $\{\rightarrow, \rightarrow, \sim\}$.

イロン 不得 とくほ とくほ とうほ

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

More "three-quarter" logics

Definition (A logic K3/4 in the signature $\{\rightarrow, \neg, \gamma\}$)

Consider a binary connective in *p* and *q*: xp(q + 1), corresponding to a non-truth-functional connective \neg whose valuation is:

$$v(P \rightarrow Q) = \begin{cases} 0 \\ undetermined \end{cases}$$

if
$$v(P) = 0$$
 or $v(Q) = 1$
otherwise

ヘロト ヘアト ヘビト ヘビト

1

	0	1
0	0	0
1	X	0

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

More "three-quarter" logics, continued

Lemma

Classical negation $\sim q$ can be defined by $q \rightarrow (p - q)$

Proof.

In fact, this formula in polynomial format turns out to be: qxp(q+1) + (q+1) = q + 1,

Hence, again, full *PC* is recovered in the signature $\{\rightarrow, \neg, \sim\}$.

イロン 不得 とくほ とくほ とうほ

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Polynomials as a "heuristic machine"

There are more "paradoxical" connectives...

...than we ever expected:

 At least 32 binary connectives which may define such "quarter" logics

And many more in other arities!

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Polynomizing: perspectives

- Recover the tradition from Leibniz, Boole, Schröder, etc, incorporating Taylor and features of 17th century thinking and certain ancient (Indian and Chinese) tradition.
- Most fundamental notions of contemporary classical propositional logic go back to the Stoics, not to Aristotle "Boole rehabilitated Stoic logic, rather than Stoicism supported Boole"
 - Cf. B. Mates, Stoic Logic of 1953

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Polynomizing: problems

Which algebra fits logic?

 Can we obtain a new algebraic approach to logic, for multiple-valued and non-finite valued logics?

 Could Differential Calculus and Finite Differences be used to treat full FOL and HOL in polynomial form?

くロト (過) (目) (日)

Half-logics and quarter-logics The "translation paradox" Polynomizing: perspectives and problems

Papers available:

- Polynomizing: Logic Inference in Polynomial Format and the Legacy of Boole
 In Model-Based Reasoning in Science, Technology, and Medicine. Studies in Comp. Intell. v.64 (Eds. L. Magnani, Lorenzo; P. Li) Springer, 2007
 Pre-print at *CLE e-Prints* vol. 6(3), 2006. http://www. cle.unicamp.br/e-prints/vol_6, n_3, 2006.html
- Polynomial ring calculus for many-valued logics. Proc. of the 35th Intl. Symp. on Mult.-Valued Logic. IEEE Comp. Soc. Calgary, Canadá, pp. 20-25, 2005. Pre-print at *CLE e-Prints* vol. 5(3), 2005 as "Polynomial Ring Calculus for Logical Inference" http://www.cle. unicamp.br/e-prints/vol_5, n_3, 2005.html

ヘロト ヘアト ヘビト ヘビト