Proving Paraconsistent, Many-Valued and Modal Logics by Handling Polynomials: Some Perspectives on Polynomizing Logics

Walter Carnielli

> IFCH/CLE - State University of Campinas - Brazil ICR-CSC - University of Luxembourg - Luxembourg

Department of Informatics and Mathematical Modeling at the Technical University of Denmark (DTU)

Outline

(1) Polynomial expansions as logic tools

- Boole's views on Algebra \& Logic
- Polynomizing=Algebra+Calculus+Logic
- Deductions as solving equations
(2) Several logics in polynomial format
- PC, FOL, Belnap-Dunn's logic, $m b C, C_{1}$ in polynomial form
- Boole's analysis of syllogistic in polynomial format
- Modal Logic in polynomial form
(3) Polynomials as heuristic machines
- Half-logics and quarter-logics
- The "translation paradox"
- Polynomizing: perspectives and problems

Boole's dream of algebrizing logic

- An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities (1854): ordinary algebra + Aristotelian Logic
- Boole was more interested in the algebra of logic than in the logic of algebra
- In in this sense, he was concerned in solving equations, while Aristotle was concerned with predication

Why was Boole mixing everything?

- However, his first publication on mathematics was a paper on the Theory of Analytical Transformations (Cambridge Math. J. in 1840;
- And also Boole was much involved with his "Differential Equations" of 1859 and his "Finite Differences" of 1860.
- How did Boole unify all this?

Polynomizing=Algebra+Calculus+Logic

- Develops some ideas on recovering Logic + Algebra in a wide sense
- Reasons with polynomials as a guiding model
- But departs from Boolean rings and their generalization, instead of Boolean algebras
- Gives new proof theory (or semantics) to classical and to seveal non-classical logics, and lead to the clarification of some ideas of Boole.

Polynomial representations: the "complex" made simple (but infinite)

- Functions $f(x)$ rewritten as infinite polynomials (close to a base point x_{0}):
$f(x)=\alpha_{0}\left(x_{0}\right)+\alpha_{1}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\ldots \alpha_{n}\left(x_{0}\right) \cdot\left(x-x_{0}\right)^{n}+\ldots$
- Coefficients $\alpha_{k}\left(x_{0}\right)$ coincide with the derivatives of $f(x)$ in x_{0}

Polynomial expansions can be enlightening: Euler

- Leonhard Euler (1707-1783), in comparing infinite sums and products: $\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \ldots}{1 \cdot 2 \cdot 4 \cdot 10 \ldots}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} \ldots$
- In contemporary notation:

$$
\prod_{p} \frac{p}{p-1}=\sum_{n} \frac{1}{n} \quad \text { for } p \text { primes, } n \geq 1
$$

- This gives another proof of the infinity of primes: the right-hand harmonic series is divergent.
- Euler's proof talks about distribution, not counting.

Are deductions and solving equations incompatible?

Against Boole:

- Some authors see solving equations as opposed to performing deductions
- e.g. Corcoran, p. 281:
".... There is no such thing as indirect equation-solving, of course.
- Not so sure! What about conditional equation solving (solving under constraints)?

And a shortcoming?

Not sure!

"According to our ideas there was one serious shortcoming in Boole's calculus, considered as a system of logic; it contained no quantifiers, and therefore could not deal with some of the most interesting questions..."
W. Kneale. Boole and the Revival of Logic. op. cit.

Boole's unifying approach

- Boole is reasoning at the same time with algebra and with classes, anticipating the results by M. Stone...
- ..or, if you prefer, the work by Stone justifies his intuitions
- But more: Boole mixed ideas of Differential Calculus, Logic, Algebra and Probability

Boole's idea on the 'index law'

- The Laws of Thought: great importance to the "index law" $x^{2}=x^{\text {" }}$..a fundamental law of Metaphysics is but the consequence of a law of thought."

$$
x(x-1)=0 \text { : Law of Non-Contradiction. }
$$

- Boole thought of generalizing the "index law" to $x^{n}=x$, but rejected it as meaningless
- However, this is totally meaningful using polynomials over finite fields (Carnielli, 2001)

PC in polynomial form

Definition

The translation $*: \mathbf{P C} \mapsto \mathbf{Z}_{\mathbf{2}}[\mathbf{X}]$ of $\mathbf{P C}$ into the Boolean ring $\mathbf{Z}_{\mathbf{2}}[\mathbf{X}]$ produces the following interpretation for Classical Logic:

- $x^{2} \rightsquigarrow x$
- $x+x \rightsquigarrow 0$
- $p_{i} \rightsquigarrow x_{i}$ for each atomic variable p_{i}
- $\neg \alpha \rightsquigarrow 1+x$
- $\alpha \wedge \beta \rightsquigarrow x \cdot y$
- $\alpha \vee \beta \rightsquigarrow x \cdot y+x+y$
- $\alpha \rightarrow \beta \rightsquigarrow x \cdot y+x+1$

Proving reductio ad absurdum

Example

$\alpha \rightarrow \beta, \alpha \rightarrow \neg \beta \vdash_{P C} \neg \alpha$

Proof.

In polynomial form, we have to check that:

$$
(x \cdot y+x+1) \cdot(x \cdot(y+1)+x+1) \cdot x \vdash \approx 0
$$

But easily:
$(x y+x+1)(x(y+1)+x+1) x \approx(x y+x+1)(x y+1) x \approx$
$\left(x^{2} y^{2}+x y+x^{2} y+x+x y+1\right) x \approx$
$(\overbrace{x y}+\overbrace{x y}+\overbrace{x y}+x+\overbrace{x y}+1) x \approx(x+1) x \approx x^{2}+x \approx 0$

Completeness for PC

Theorem (Weak Completeness for PC)

$$
\vdash_{P C} \alpha \text { iff }(\alpha)^{*} \vdash^{\approx} 1
$$

Theorem (Strong Completeness for PC)

$$
\left\ulcorner\vdash_{P C} \alpha \text { iff } \prod_{i=1, n}\left(\gamma_{i}\right)^{*} \cdot((\alpha)+1)^{*} \vdash \approx 0\right.
$$

for $\Gamma_{0}=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ where $\Gamma_{0} \subseteq \Gamma$

That is,

$$
\gamma_{1} \wedge \cdots \wedge \gamma_{n} \wedge(\neg \alpha)=0
$$

Previous intuitions on 'polynomizing'

- E. Schröder used \sum and Π to represent quantifiers.
- Some methods for Boolean reasoning were developed by the Russian logician Platon Poretsky (known in digital circuitry) in the 19th century.
- Also, Gégalkine, 1927,Mat. Sbornik (in Russian) shows a translation of sentences of Principia Mathematica into polynomials.

Gröbner bases and complexity

- Clegg, Edmonds, and Impagliazzo: Gröbner bases algorithm to find proofs of unsatisfiability, 1996.
- Wu, Tan and Li: polynomials over Q to represent truth-tables and decide many-valued logics, 1998.
- However, nobody used polynomial ring properties, nor extended the method to all finite-valued logics, to non-finite valued logics or to FOL...
- ... or to modal logics!

Polynomials instead of formulas

- Given a propositional logic \mathbf{L}, a polynomial interpretation for \mathbf{L} is a translation $*: \mathbf{L} \mapsto \mathbf{F}[X]$ of wffs into the ring $\mathbf{F}[X]$
- $\alpha \in \mathbf{L}$ is satisfiable if its traduct $\alpha^{*} \in \mathbf{F}[X]$ gets values in a certain $D \subseteq \mathbf{F}$ when evaluated in the field \mathbf{F}
- $D \subseteq \mathbf{F}$ are the distinguished truth-values

PRC Rules for many-valued logics

For general (many-valued) logics formulas are interpreted within the polynomial rings over Galois fields $G F\left(p^{n}\right)[X]$: Index rules:
(1) $x+x+\ldots x \vdash \approx 0$ (summing p times)
(2) $x^{p^{n}} \vdash \approx x$

Ring rules:

(1) $f+(g+h) \vdash \approx(f+g)+h$
(2) $(f+g) \vdash \approx(g+f)$
(3) $f+0 \vdash \approx f$
(4) $f+(-f) \vdash \approx 0$
(5) $f \cdot(g \cdot h) \vdash \approx(f \cdot g) \cdot h$
(6) $f \cdot(g+h) \vdash \approx(f \cdot g)+(f \cdot h)$

PRC Rules: Metarules

Substituting "inside" and "outside" For $f, g, h \in \mathbf{F}[X]$:
(1) Uniform Substitution:

$$
\frac{f \vdash \approx g}{f[x: h] \vdash \approx g[x: h]}
$$

(2) Leibniz Rule:

$$
\frac{f \vdash \approx g}{h[x: f] \vdash \approx h[x: g]}
$$

Proofs and deductions in PRC

Definition (Weak Completeness for L)

$\vdash_{L} \alpha$ iff $\alpha^{*} \vdash^{\approx} d$, where $d \in D$ (i.e., d ranges over distinguished truth-values).

- That is: the polynomial rules prove that the polynomial α^{*} never outputs values outside the set D of distinguished truth values

Definition (Strong Completeness for L)

Why do we need Galois fields $G F\left(p^{n}\right)$?

Theorem (Representing finite functions)

Any k-ary finite functions can be represented as polynomials over $\operatorname{GF}\left(p^{n}\right)\left[x_{1}, \cdots, x_{k}\right]$.

- As Z_{m} is not a field if m is not a prime number, $Z_{m}[X]$ does not suffice
- For example: $Z_{4}[x, y]$ cannot represent $f(x, y)=\max \{x, y\}$, but $G F\left(2^{2}\right)[x, y]$ can

But also

Theorem (Representing non-deterministic finite functions)
Any k-ary bounded non-deterministic finite functions can be represented as polynomials over $\operatorname{GF}\left(p^{n}\right)\left[x_{1}, \cdots, x_{k}\right]$ with extra (hidden) variables.

4-valued logics and the Galois field $G F\left(2^{2}\right)$

4-valued logics are well represented in polynomials over $G F\left(2^{2}\right)$:

\oplus	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$

\odot	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$

The (paraconsistent) 4-valued logic of Belnap and Dunn

Tables in $G F\left(2^{2}\right)$:

$$
B_{4}=\langle\{0,1,2,3\},\{\neg, \wedge, \vee\},\{2,3\}\rangle
$$

	\neg
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$

\wedge	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

\vee	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$

Belnap-Dunn's logic B_{4} in polynomial form

B_{4} is translated into $G F\left(2^{2}\right)[X]$ as:

- \neg : $p_{\neg}(x)$ becomes $2 x^{2}$
- $\wedge: p_{\wedge}(x, y)$ becomes $x^{2} y^{2}+3 x^{2} y+x y^{2}$
- $\vee: p_{\vee}(x, y)$ becomes $x^{2} y^{2}+3 x^{2} y+x y^{2}+x+y$
- Rules: $x+x \approx 0$ and $x^{4} \approx x$

Using the Galois field $G F\left(2^{2}\right)$ in 4 -valued logics

Example (Deciding in Belnap-Dunn's logic)

$\alpha \vee \neg \alpha$ translates (using the $G F\left(2^{2}\right)[X]$ arithmetic to):

$$
x+x^{2}+3 x^{3}
$$

It can be easily seen that:

- $x+x^{2}+3 x^{3} \in\{2,3\}$ for $x \neq 0$,
but
- $0+0^{2}+3 \times 0^{3} \approx 0$,
- hence $\alpha \vee \neg \alpha$ is not a B_{4} tautology

Monadic FOL in polynomial format

Definition

Monadic $\mathbf{F O L}$ is represented in $\mathbf{Z}_{\mathbf{2}}[\mathbf{X}]$ by adding clauses:
(1) $\left(A\left(c_{i}\right)\right)^{*}=x_{i}^{A}$, for each constant c_{i} (in a denumerable universe), where x_{i}^{A} is a variable in $\mathbf{Z}_{2}[\mathbf{X}]$
(2) $(\forall z A(z))^{*}=\prod_{i=1}^{\infty} x_{i}^{A}$

As a consequence:

Definition

$$
(\exists z A(z))^{*}=(\neg \forall z \neg A(z))^{*}=1+\prod_{1=1}^{\infty}\left(1+x_{i}^{A}\right)
$$

Note that now polynomials are infinite (i.e, formal series in $\left.\mathbf{Z}_{\mathbf{2}}[\mathbf{X}]\right)$ Simplified notation:

- $(\forall z A(z))^{*}=\prod x_{i}$
- $(\exists z A(z))^{*}=1+\Pi\left(1+x_{i}\right)$

Examples of proofs in FOL

Example

- $\forall z A(z) \rightarrow \exists z A(z):$
$\left(\prod x_{i}\right) \cdot\left(1+\Pi\left(1+x_{i}\right)\right)+\Pi x_{i}+1 \approx$
$\left(\prod x_{i}\right) \cdot\left(\prod\left(1+x_{i}\right)\right)+\prod x_{i}+\prod x_{i}+1 \approx$
$\left(\prod x_{i} \cdot\left(1+x_{i}\right)\right)+\prod x_{i}+\prod x_{i}+1 \approx 1$
since $\prod x_{i}+\prod x_{i} \approx 0$ and $x_{i} \cdot\left(1+x_{i}\right) \approx 0$ for each x_{i}
- We can also easily find counter-models in FOL, by using this method.

Boole's analysis of Syllogism in polynomial format

The four categorical forms:

\mathbf{A}	All A is B	$\forall z(A(z) \rightarrow B(z)$
\mathbf{I}	Some A is B	$\exists z(A(z) \wedge B(z)$
\mathbf{E}	No A is B	$\forall z(A(z) \rightarrow \neg B(z)$
\mathbf{O}	Some A is not B	$\exists z(A(z) \wedge \neg B(z)$

- A and I are affirmative (resp., universal and existential)
- \mathbf{E} and \mathbf{O} are negative (resp., universal and existential)
- $\mathbf{O}=\neg \mathbf{A}$ and $E=\neg \mathbf{I}$

Recovering Boole's interpretation

- A holds iff

$$
\prod(a b+a+1)=1 \text { iff } a b+a+1=1
$$

for every a, b iff $a b+a=0$ for every a, b iff $a b=a$ for every a, b, which coincides with Boole's formalization of \mathbf{A} as " $A B=A$ "
in The Mathematical Analysis of Logic of 1847.

- I holds iff

$$
1+\prod(1+a b)=1 \text { iff } \prod(1+a b)=0 \text { iff } 1+a_{0} b_{0}=0
$$

for some a_{0}, b_{0} iff $a_{0} b_{0}=1$ for some a_{0}, b_{0} which coincides with Boole's formalization of I as " $A B=V$ " in The Calculus of Logic of 1848.

A Polynomial Ring Calculus for S5

Definition (PRC for S5)

- Translation function ($*:$ ForS5 $\rightarrow \mathbb{Z}_{2}\left[X \cup X^{\prime}\right]$, where

$$
\left.X=\left\{x_{1}, \ldots\right\} \text { and } X^{\prime}=\left\{x_{\square \alpha_{1}}, \ldots x_{\square \square \alpha_{1}}, \ldots\right\}\right):
$$

Reduction rules and translations for connectives are the same for $C P L$, plus:
$(\square \alpha)^{*}=x_{\square \alpha}$, where $x_{\square \alpha}$ is a hidden variable, plus constraints:
(cK) $\quad x_{\square(\alpha \rightarrow \beta)}\left(x_{\square \alpha}\left(x_{\square \beta}+1\right)\right) \approx 0 \mid \square(\alpha \rightarrow \beta) \rightarrow \square \alpha \rightarrow \square \beta$
(cT) $\quad x_{\square}\left(\alpha^{*}+1\right) \approx 0$
(cB) $\quad \alpha^{*}\left(x_{\square \diamond \alpha}+1\right) \approx 0$
(c4) $\quad x_{\square \alpha}\left(x_{\square \square \alpha}+1\right) \approx 0$
(cNec) $\alpha^{*} \approx 1$ implies $x_{\square \alpha} \approx 1$
$\square \alpha \rightarrow \alpha$
$\alpha \rightarrow \square \diamond \alpha$
$\square \alpha \rightarrow \square \square \alpha$
$\vdash \alpha$ implies $\vdash \square \alpha$

A Polynomial Ring Calculus for $\mathrm{S5}$

Lemma

$$
\begin{aligned}
& x_{\square \perp} \approx 0, \\
& x_{\square \alpha} x_{\square \neg \alpha} \approx 0, \\
& x_{\square \neg \neg} \approx x_{\square \alpha}, \\
& x_{\square \alpha} \approx 1 \text { or } x_{\square \beta} \approx 1 \text { implies } x_{\square(\alpha \vee \beta)} \approx 1, \\
& x_{\square(\alpha \wedge \beta)} \approx x_{\square \alpha} x_{\square \beta}, \\
& x_{\square \alpha} \approx x_{\square \square \alpha} \approx x_{\diamond \square \alpha}, \\
& x_{\diamond \alpha} \approx x_{\diamond \diamond \alpha} \approx x_{\square \diamond \alpha} .
\end{aligned}
$$

A Polynomial Ring Calculus for $\mathrm{S5}$

Theorem (Soundness)

If $\Gamma \vdash_{S 5} \alpha$ then $\Gamma \approx_{S 5} \alpha$.

Proof.

Deduction theorem plus the following fact: constraints (cK)-(c4) establish validity of axioms K, T, B and 4. Constraint (cNec) establishes validity preservation under necessitation rule.

Theorem (Strong completeness)
$\Gamma \approx_{S 5} \alpha$ then $\Gamma \vdash^{S 5}$ α

Proof.

Adapting the familiar Lindenbaum-Asser argument for CPL.

A Polynomial Ring Calculus for $\mathrm{S5}$

Example

$$
\begin{aligned}
\approx_{S 5} & (\diamond p \rightarrow p) \vee(\diamond p \rightarrow \square \diamond p): \\
& ((\diamond p T) \vee(\diamond p \rightarrow \square \diamond p))^{*} \\
& =(\diamond p \rightarrow p)^{*}(\diamond p \rightarrow \square \diamond p)^{*}+(\diamond p \rightarrow p)^{*}+(\diamond p \rightarrow \square \diamond p)^{*} \\
& \approx(\diamond p \rightarrow \square \diamond p)^{*}\left((\diamond p \rightarrow p)^{*}+1\right)+(\diamond p \rightarrow p)^{*} \\
& \approx\left((\diamond p)^{*}\left((\square \diamond p)^{*}+1\right)+1\right)\left((\diamond p)^{*}\left(p^{*}+1\right)\right)+(\diamond p)^{*}\left(p^{*}+1\right)+1 \\
& \approx\left(\left(x_{\square \neg p}+1\right)\left(x_{\square \diamond p}+1\right)+1\right)\left(\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)\right)+\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)+1 \\
& \approx\left(\left(x_{\square \neg p}+1\right)\left(x_{\diamond p+1}+1\right)+\left(\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)\right)+\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)+1\right. \\
& \approx\left(\left(x_{\square \neg p}+1\right)\left(x_{\square \neg p}\right)+1\right)\left(\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)\right)+\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)+1 \\
& \approx\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)+\left(x_{\square \neg p}+1\right)\left(x_{p}+1\right)+1 \\
& \approx 1 .
\end{aligned}
$$

A Polynomial Ring Calculus for $\mathrm{S5}$

Example

$$
\begin{aligned}
\approx_{S 5} \square(\square(p \rightarrow & \square p) \rightarrow p) \rightarrow \square(\diamond \square p \rightarrow p): \\
& (\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow \square(\diamond \square p \rightarrow p))^{*} \\
& =(\square(\square(p \rightarrow \square p) \rightarrow p))^{*}\left((\square(\diamond \square p \rightarrow p))^{*}+1\right)+1 \\
& =x_{\square(\square(p \rightarrow \square p) \rightarrow p)}\left(x_{\square(\diamond \square p \rightarrow p)}+1\right)+1 .
\end{aligned}
$$

But we also have that:

$$
\begin{aligned}
(\diamond \square p \rightarrow p)^{*} & =(\diamond \square p)^{*}\left(p^{*}+1\right)+1 \\
& =\left(x_{\square \neg \square p}+1\right)\left(p^{*}+1\right)+1 \\
& \approx\left(x_{\square \diamond \neg p}+1\right)(\neg p)^{*}+1 \\
& \approx 1 \text { (by polynomial constraint }(\mathrm{cB})) .
\end{aligned}
$$

Then, by polynomial constraint (cNec) we obtain $x_{\square(\diamond \square p \rightarrow p)} \approx 1$. Consequently, $(\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow \square(\diamond \square p \rightarrow p))^{*} \approx 1$.

The relationship with modal algebras

Theorem

The structure $\mathcal{Z}=\left\langle\mathbb{Z}_{2}\left[X \cup X^{\prime}\right] / \cong, \sqcup^{\prime}, \sqcap^{\prime},-^{\prime}, \boldsymbol{n}^{\prime}\right\rangle$, with the order \lesssim^{\prime}, is a normal-epistemic-symmetric-transitive modal algebra.

Proof.

The definitions below define a modal algebra.

- $[P] \sqcup^{\prime}[Q]=[P Q+P+Q]$,
- $[P] \sqcap^{\prime}[Q]=[P Q]$,
- $-^{\prime}[P]=[P+1]$,
- $\mathbf{n}^{\prime}([P])=\left[x_{\square f(P)}\right]$.

The order relation \lesssim^{\prime} is defined by $[P] \lesssim^{\prime}[Q]$ if $P \lesssim Q$.

Non-truth functionality in polynomial form

Definition (Semi-negations)

$$
\begin{aligned}
& -\neg_{1}(p)= \begin{cases}1 & \text { if } p=0 \\
\text { undetermined in }\{0,1\} & \text { if } p=1\end{cases} \\
& -\neg_{2}(p)= \begin{cases}0 & \text { if } p=1 \\
\text { undetermined in }\{0,1\} & \text { if } p=0\end{cases}
\end{aligned}
$$

Lemma (Semi-negations in polynomial form)

(1) ${ }_{\neg 1} p=x p+1$
(2) $\neg_{2} p=x(p+1)$

Proof.

(1) $\neg 1(0)=1$, while $\neg 1(1)=x+1$
(2) $\neg_{2}(1)=0$, while $\neg_{2}(0)=x$

Logics of Formal Inconsistency (LF/s)

Definition

LFIs are paraconsistent logics that define connectives of consistency $\circ($ and also inconsistency $\bullet)$ at the object language.

- Most of the LFIs cannot be characterized by finite matrices.
- Some LFIs can be characterized by non-truth-functional 2-valued valuation semantic.

Example (Valuations for mbC, a simple LFI)

(1) $\quad v(\varphi \wedge \psi)=1$ iff $v(\varphi)=1$ and $v(\psi)=1$;
(2) $\quad v(\varphi \vee \psi)=1$ iff $v(\varphi)=1$ or $v(\psi)=1$;
(3) $\quad v(\varphi \rightarrow \psi)=1$ iff $v(\varphi)=0$ or $v(\psi)=1$;
(4) $\quad v(\neg \varphi)=0$ implies $v(\varphi)=1$;
(5) $\quad v(\circ \varphi)=1$ implies $v(\varphi)=0$ or $v(\neg \varphi)=0$.

Polynomial ring calculus with hidden variables

Example (Application mbC)

- Translation function $*$: For $\rightarrow \mathbb{Z}_{2}[X]$.
$p_{i}^{*}=x_{i}$
(if p_{i} is a variable);
$(\varphi \wedge \psi)^{*}=\varphi^{*} \psi^{*}$;
$(\varphi \vee \psi)^{*}=\varphi^{*} \psi^{*}+\varphi^{*}+\psi^{*}$;
$(\varphi \rightarrow \psi)^{*}=\varphi^{*} \psi^{*}+\varphi^{*}+1$;
$(\neg \varphi)^{*}=\varphi^{*} x_{\varphi}+1 \quad\left(x_{\varphi}\right.$ is a hidden variables);
$(\circ \varphi)^{*}=\left(\varphi^{*}\left(x_{\varphi}+1\right)+1\right) x_{\varphi^{\prime}} \quad\left(x_{\varphi}, x_{\varphi^{\prime}}\right.$ are hidden variables $)$;
- Reduction rules: $2 x=0$ and $x^{2}=x$.
- $\vdash_{m b c} \varphi$ iff φ^{*} reduces by PRC rules to the constant polynomial 1.

An example in $m b C$

Example

The PRC shows easily that
(1) $\alpha \wedge \neg \alpha$ is not a bottom particle in $m b C$,
(2) $\alpha \wedge \neg \alpha \wedge \circ \alpha$ is a bottom particle in mbC

Proof.

Indeed, translating the wffs we have:
(1) $\alpha^{*}\left(\alpha^{*}\left(x_{\alpha^{*}}+1\right)\right) \approx \alpha^{*} x_{\alpha^{*}} \approx \alpha^{*}\left(x_{\alpha^{*}}+1\right) \not \approx 0$
(2) $\alpha^{*}\left(x_{\alpha^{*}}+1\right)\left(\alpha^{*}\left(x_{\alpha^{*}}+1\right)+1\right)\left(x_{\alpha^{*}}^{\prime}\right) \approx 0\left(x_{\alpha^{*}}^{\prime}\right) \approx 0$

Notice that $x_{\alpha^{*}}$ and $x_{\alpha^{*}}^{\prime}$ are independent hidden variables;

The case of da Costa's C_{1} : a particular LFI

Example (Bivaluations for C_{1})

(1) $\quad v(\varphi \wedge \psi)=1$ iff $v(\varphi)=1$ and $v(\psi)=1$;
(2) $\quad v(\varphi \vee \psi)=1$ iff $v(\varphi)=1$ or $v(\psi)=1$;
(3) $\quad v(\varphi \rightarrow \psi)=1$ iff $v(\varphi)=0$ or $v(\psi)=1$;
(4) $\quad v(\neg \varphi)=0$ implies $v(\varphi)=1$;
(5) $\quad v(\neg \neg \varphi)=1$ implies $v(\varphi)=1$;
(6) $\quad v(\circ \varphi)=v(\psi \rightarrow \varphi)=v(\psi \rightarrow \neg \varphi)=1$ implies $v(\psi)=0$;
(7) $\quad v(\circ(\varphi \# \psi))=0$ implies $v(\circ \varphi)=0$ or $v(\circ \psi)=0$.

Polynomial ring calculus for C_{1}

Example (Translation function $*$: For $\rightarrow \mathbb{Z}_{2}[X]$)

(1) $p_{i}^{*}=x_{i}$ if p_{i} is a propositional variable;
(2) $(\varphi \wedge \psi)^{*}=\varphi^{*} \psi^{*}$;
(3) $(\varphi \vee \psi)^{*}=\varphi^{*} \psi^{*}+\varphi^{*}+\psi^{*}$;
(4) $(\varphi \rightarrow \psi)^{*}=\varphi^{*} \psi^{*}+\varphi^{*}+1$;
(5) $(\neg \varphi)^{*}=\varphi^{*} x_{\varphi}+1$;
(6) $\left.\quad(\circ \varphi)^{*}=\left(\varphi^{*} x_{\varphi} x_{\varphi}^{\prime}+\varphi^{*} x_{\varphi}^{\prime}+1\right)+1\right) x_{\varphi}^{\prime}$;
(7) $\circ(\varphi \# \psi)$ is a bit too complicated....
(5) $x_{\varphi}=0$ implies $x_{\neg \varphi}=1$;
(6) $x_{\varphi}=0$ implies $x_{\varphi}^{\prime}=1$;
$x_{\circ \varphi}=1$ and $x_{\circ \psi}=1$ imply $x_{\circ(\varphi \# \psi)}=1$

- Reduction rules: $2 x=0$ and $x^{2}=x$.
- $\vdash_{C 1} \varphi$ iff φ^{*} reduces to 1 .

Half-logics

Lemma (Béziau)

\neg_{2} recovers classical negation through $\sim P=P \rightarrow \neg_{2} P$.

Proof.

In polynomial format: $P \rightarrow \neg_{2} P$ is computed as $p(x(p+1))+(p+1)=p+1$, but $p+1$ represents \sim.

- So we recover classical logic, in the language of implication \rightarrow and negation \sim, characterized by two-valued valuations v s.t.: (1) $\quad v(P \rightarrow Q)=1$ iff $v(P)=0$ or $v(Q)=1$
(2) $\quad v(\sim P)=0$ iff $v(P)=1$

The "translation paradox"

A phenomenon?

- A subclassical logic as $K / 2$ (in $\{\rightarrow, \neg 1\}$) turns out to be superclassical in $\left\{\rightarrow, \sim, \neg_{1}\right\}$
- Moreover, PC can be strongly translated within $K / 2$:

Definition

(1) $(P)^{*}=P$, for P atomic;
(2) $(A \rightarrow B)^{*}=(A)^{*} \rightarrow(B)^{*}$;
(3) $(\sim A)^{*}=A \rightarrow \neg_{1} A$

More half-logics!

Example (\neg_{1} is the negation of da Costa's C_{1})

(1) $v\left(\neg_{1} p\right)= \begin{cases}1 & \text { if } p=0 \\ \text { undetermined } & \text { if } p=1\end{cases}$
(2) $v(p \stackrel{*}{\leftarrow} q)=1$ iff $v(p)=1$ and $v(q)=0$;

The connectives \neg_{1} and $\stackrel{*}{\leftarrow}$ in polynomial terms:
(1) $\neg_{1} P=p x+1$
(2) $P \stackrel{*}{\leftarrow} Q=p(q+1)$
$\neg_{1}(P) \stackrel{*}{\leftarrow} P$ defines classical negation \sim. Indeed,
$(p x+1)(p+1)=\underbrace{p^{2} x}_{p x}+p x+p+\underbrace{1^{2}}_{1}=p+1$.

And a "three-quarter" logic

Definition (A logic $K 3 / 4$ in the signature $\{\rightarrow,-\}$)

Consider a binary connective in p and $q: x(p+1) q$, corresponding to a non-truth-functional connective \rightharpoonup whose valuation is:

$$
v(P \rightharpoonup Q)= \begin{cases}0 & \text { if } v(P)=1 \text { or } v(Q)=0 \\ \text { undetermined } & \text { otherwise }\end{cases}
$$

-	0	1
0	0	x
1	0	0

A "three-quarter" logic, continued

Lemma

Classical negation $\sim p$ can be defined by $p \rightarrow(p \rightharpoonup q)$

Proof.

In fact, this formula in polynomial format turns out to be:
$p(x(p+1) q)+p+1=p+1$,

Hence full $P C$ is recovered in the signature $\{\rightarrow, \rightharpoonup, \sim\}$.

More "three-quarter" logics

Definition (A logic $K 3 / 4$ in the signature $\{\rightarrow, \rightharpoondown\}$)

Consider a binary connective in p and $q: x p(q+1)$, corresponding to a non-truth-functional connective \rightharpoondown whose valuation is:

$$
v(P \rightharpoondown Q)= \begin{cases}0 & \text { if } v(P)=0 \text { or } v(Q)=1 \\ \text { undetermined } & \text { otherwise }\end{cases}
$$

7	0	1
0	0	0
1	x	0

More "three-quarter" logics, continued

Lemma

Classical negation $\sim q$ can be defined by $q \rightarrow(p \rightharpoondown q)$

Proof.

In fact, this formula in polynomial format turns out to be:
$q \times p(q+1)+(q+1)=q+1$,

Hence, again, full $P C$ is recovered in the signature $\{\rightarrow, \rightharpoondown, \sim\}$.

Polynomials as a "heuristic machine"

There are more "paradoxical" connectives...

- ...than we ever expected:
- At least 32 binary connectives which may define such "quarter" logics
- And many more in other arities!

Polynomizing: perspectives

- Recover the tradition from Leibniz, Boole, Schröder, etc, incorporating Taylor and features of 17th century thinking and certain ancient (Indian and Chinese) tradition.
- Most fundamental notions of contemporary classical propositional logic go back to the Stoics, not to Aristotle
"Boole rehabilitated Stoic logic, rather than Stoicism supported Boole"

Cf. B. Mates, Stoic Logic of 1953

Polynomizing: problems

Which algebra fits logic?

- Can we obtain a new algebraic approach to logic, for multiple-valued and non-finite valued logics?
- Could Differential Calculus and Finite Differences be used to treat full FOL and HOL in polynomial form?

Papers available:

- Polynomizing: Logic Inference in Polynomial Format and the Legacy of Boole
In Model-Based Reasoning in Science, Technology, and Medicine. Studies in Comp. Intell. v. 64 (Eds. L. Magnani, Lorenzo; P. Li) Springer, 2007
Pre-print at CLE e-Prints vol. 6(3), 2006. http: / /www .
cle.unicamp.br/e-prints/vol_6, n_3,2006.html
- Polynomial ring calculus for many-valued logics. Proc. of the 35th Intl. Symp. on Mult.-Valued Logic. IEEE Comp. Soc. Calgary, Canadá, pp. 20-25, 2005.
Pre-print at CLE e-Prints vol. 5(3), 2005 as "Polynomial Ring Calculus for Logical Inference" http://www.cle. unicamp.br/e-prints/vol_5, n_3,2005.html

