
212

Preliminary Analysis of the Effects of Pair Programming
on Job Satisfaction

Giancarlo Succi Witold Pedrycz
 Center for Applied Software Engineering Department of Electrical and Computer Engineering
 Free University of Bolzano - Bozen University of Alberta
 Piazza Domenicani 3 ECERF
 I-39100 Bolzano-Bozen, Italy Edmonton, Alberta, Canada T6G 2G7
 +39(0471)315-640 +1(780)492-4661
 Giancarlo.Succi@unibz.it .Witold.Pedrycz@ee.ualberta.ca

Michele Marchesi Laurie Williams
 Dipartimento di Ingegneria Elettrica ed Elettronica Department of Computer Science
 Università di Cagliari North Carolina State University
 p.zza D'Armi 1010 Main Campus Road, 407 EGRC
 I-09123 Cagliari, Italy Raleigh, NC 27695, USA
 +39(070)675-5757 +1(919)513-4151
 michele@diee.unica.it williams@csc.ncsu.edu

ABSTRACT
Pair programming is one of the most controversial parts
of XP. Claims are mostly based on anecdotal evidence
and limited experimentation performed in classroom
settings.

This paper reports the preliminary results of an analysis
of the effects of pair programming on job satisfaction. A
questionnaire on pair programming techniques has been
compiled and posted on the web.

108 responses have been collected from around the
world.

The preliminary results evidence a very positive effect of
pair programming on job satisfaction.

Keywords
Extreme programming, pair programming, job satisfac-
tion, quasi-experimentation

1 INTRODUCTION
Is XP yet another fad? This is the Hamletic question for
software developers of the new millennium, especially
those working in very dynamic markets, such as web-
based systems, office automation tools, etc.

Sometimes the question is explicitly posed. Sometimes it
is politely masked under other forms. Still, apart from a
handful of XP and Agile Methodologies evangelists and
an equally small troop of anti-XPers, most people live in
the dilemma.

It is not the task of this preliminary paper to address this
dilemma. Also, because we think that it is not correctly
posed.

XP is a set of practices often requiring customization
(Beck, 2000). It is quite difficult to identify homogeneous
groups of developers practicing XP in the same way.
Therefore, we decided to concentrate our effort on those
practices that appear most controversial.

In the case of this work, we have started with pair pro-
gramming, that is, having two developers working to-

gether on the same code, in front of the same monitor,
one typing and the other telling what to type.

Pair programming itself may have a variety of impacts on
the overall production system. There are claims of im-
proved product quality, better reliability, shorter learning
curve for new developers, lower sensitivity to turnover,
shorter time to market and higher job satisfaction of de-
velopers.

This paper analyses the latter, higher job satisfaction of
developers. In an environment where, despite the crisis
occurring after the 11th of September, 2001, still experi-
ences a critical lack of developers, attracting a retaining a
fully satisfied workforce is of extreme importance.

We think that satisfied workers are also more productive
and build better systems. However, proving a relationship
between pair programming and job satisfaction does not
imply at all any relationship between pair programming
and any of the other expected effects of it, especially
quality and productivity. We have to keep this well in
mind, both to avoid conclusions, which would be scien-
tifically wrong, may induce companies in wasting re-
sources, and may stop the other, required research to
conduct on the “other” effects of pair programming.

We follow the guidelines of GQM, the groundbreaking
Goal-Question-Metrics approach by Vic Basili (1995).
We first set our general goal using comprehensive tem-
plate, then we define a series of questions to determine
whether we are achieving the goal, and lastly we collect
several metrics to answer the questions.

Section 2 presents the design of the experiment. Section 3
outlines the results of the preliminary analysis. Section 4
draws some conclusions, outlining the lines for future
research.

2 DESIGN OF THE EXPERIMENT
As mentioned, we use the GQM templates. They support
the appropriate definition of the overall goal, avoiding
inconsistencies and ambiguities. Here below there is our

213

goal.
• Analyze pair programming
• For the purpose of evaluating it
• With respect to job satisfaction
• From the view point of software developers
• In the context of development of software systems

To produce a valuable, original contribution to the under-
standing of pair programming, we need to analyse how
“real” developers in general apply such practice.

Questionnaire for
developers not using
pair programmming

Questionnaire for
developers using pair

programmming

Volunteering

Volunteering

Comparison

Pair programmers

Non pair programmers

Figure 1: Design of the experiment

As it would be unfeasible to run a formal experiment on a
wide number of developers, we have decided to use a
“quasi-experimental” approach (Figure 1) (Campbell and
Stanley, 1966).

Based on the GQM goal, we have developed questions
with answers on nominal or ordinal scales. These ques-
tions have been used to design two questionnaires, one
for developers using pair programming and one for de-
velopers not using pair programming.

Two PHP pages have been developed, containing each
one questionnaire, and then they have been posted on the
web site of the Software Engineering Group of the Uni-
versity of Alberta.

Volunteers have been recruited via conference an-
nouncements (ICSE 2001, XP2001, and XP Universe),
mailing lists (SEWORLD and SEA), newsgroups
(comp.software-eng), and private networks of researchers
and colleagues.

The data have been collected on the period June 2001-
December 2001. Then the data have been analysed.

Altogether, 21 questions and 27 metrics have been devel-
oped. The questions are listed here below. The questions
are omitted for space reasons.

Q1. What are the phases of the PP process?

Q2. What are the phases of the non-PP process?

Q3. Which phases are actually executed during the PP
process?

Q4. Which phases are actually executed during the non-
PP process?

Q5. What is the experience of the software engineer?

Q6. What is the software engineer’s experience with the
non-PP process?

Q7. What is the software engineer’s experience with the
PP process?

Q8. How well do the software engineers know what the
PP process is?

Q9. What is the software engineer’s experience/approach
with design review?

Q10. What is the software engineer’s experi-
ence/approach with code review?

Q11. What is the software engineer’s experi-
ence/approach with unit testing?

Q12. What is the developer’s opinion towards PP?

Q13. What is the developer’s opinion towards Collective
Code Ownership?

Q14. What is the developer’s opinion towards using
Coding Standards?

Q15. What is the developer’s opinion towards adopting
the PP process?

Q16. What factors are critical to success in PP?

Q17. What importance is attributed to individual work?

Q18. What is the developer using the PP approach’s
opinion towards his/her job?

Q19. What is the developer using the PP approach’s
opinion towards her/his working environment?

Q20. What is the developer using the non-PP approach’s
opinion towards his/her job?

Q21. What is the developer using the non-PP approach’s
opinion towards her/his working environment

Clearly, this kind of “quasi-experimentation” suffers
from several drawbacks, including the following.

• There is no a priori insurance of an even distribution
of the respondents, representative of the wider popu-
lation of developers; on the contrary…

• … The respondents may be only those people
strongly biased in favour or against pair program-
ming;

• There is no check that the respondents fully under-
stand the questions being posed;

• The statistical techniques employed are not power-
ful, presenting the risk of not being able to conclude
anything significant.

3 ANALYSIS OF THE RESULTS
We had a total of 108 responses, evenly divided among
the pair programming and the non pair programming
groups -54 and 54.

While it is not possible to ensure the complete gener-

214

alizability of the results, we have assessed whether the
two samples of developers using PP and developers not
using PP were significantly different.

We have used non parametric analysis techniques taking
into account the nominal and ordinal scale of the date. In
particular, we have employed the Mann-Whitney U test,
the Wilcoxon W test, and the Chi-square test.

As usual in Software Engineering, we have used α=0.05
as the threshold for the significance test.

Whenever needed, we have employed the technique of
contrasts to determine the preferences between two parti-
tions of a multi-valued set (Stevens, 1996).

Job Satisfaction

0

5

10

15

20

25

30

35

40

Very Satisfied Satisfied Unsatisfied Very Unsatisfied

PP
Non PP

Figure 2: Distribution of job satisfaction

Altogether, we have found that no significant statistical
demographic difference existed between the two groups
in terms of:

• Gender

• Age

• Programming experience

We have then tested whether the developers using pair
programming experienced higher job satisfaction than
those not using pair programming. The null hypothesis –
no difference between the groups, has been rejected by
the chi-square test (α<0.5) (Figure 2).

Other tests have been performed on the groups to deter-
mine whether pair programming was the cause or it was
the effect of other practices and environmental variables.

The variable considered included:

• Communications between departments
• Communications between developers
• Speed of communication of design changes
• Organization of meetings
• Workspace and office layout
• Lighting
• Noise
• Heating
There were no significant differences between communi-
cations between departments, workspace and office lay-

out, lighting, noise, and heating.

Significant better results were found in the pair pro-
gramming group for communications between develop-
ers, speed of communication of design changes, and
organization of meetings.

Pair programming appear to influence significantly how
development teams communicate internally and organize
themselves. Pair programming has insignificant influ-
ences in the communications with other groups and in the
working environment –there is no positive or negative
“bias” of the management team toward pair programming
groups as far as the working environment goes.

The regression between job satisfaction and communica-
tions between developers, speed of communication of
design changes, and organization of meetings does not
evidence any significant difference, reinforcing the con-
clusion that pair programming positively affect job satis-
faction, in a significant way.

4 CONCLUSIONS
In this paper, we have presented the first results of a
“quasi-experimental” study on the effects of pair pro-
gramming on job satisfaction.

The work is based on a questionnaire administered via
the Internet in the period June-December 2001.

108 answers have been analysed, 54 of developers using
pair programming and 54 of developers not using pair
programming. Given the nominal and ordinal nature of
the data, we have used non-parametric tests.

It appears that pair programming has a significant, posi-
tive influence on the satisfaction of developers. This
comes with increased communications between develop-
ers, speed of communication of design changes, and
organization of meetings.

These findings do identify a positive aspect of pair pro-
gramming. However, they do not support or defy the
other claims on pair programming, such as the increased
quality and reliability, the higher productivity etc.

Clearly, more research is required, at least at four levels:

• Extension of the results of the present work to more
studies, if possible using formal experiments and lar-
ger datasets;

• Explorations of the “other” expected effects of pair
programming

• Analysis of the effects of the other individual prac-
tices of XP

• Determination of the cross effects of multiple prac-
tices of XP together

The latter aspects is especially important, as there are
claims that (some of) the practices are strongly linked one
another. Only an empirical study would identify such
cross effects.
A clear determination of the cross effects would then
enable more suitable customizations and more informed

215

introductions of XP.

5 ACKNOWLEDGEMENTS
We thank Teresa Baldassarre for compiling the question-
naire, Jacob Bresciani for writing the PHP scripts to ad-
minister the questionnaires and to collect the results,
Dagmar Morandell for the statistical analysis of the data,
Wolfgang Polasek for the very valuable support in the
statistical analysis, and all the respondents who made
possible this work.

This work has been supported by the Alberta Software
Engineering Research Consortium, the Canadian Natural
Science and Engineering Research Council, and Nortel
Networks.

REFERENCES
Basili, V. (1995) “Applying the Goal/Question/Metric
Paradigm in the Experience factory” in Software Quality
Assurance and Measurement: A Worldwide perspective,
Chapter 2, pp 21- 44, International Thomson Computer
Press

Beck, K. (2000) Extreme Programming Explained –
Embracing the Change, Addison Wesley

Campbell, D.T., and J.C. Stanley (1966) Experimental
and Quasi-Experimental Designs for Research, Rand
McNally

Stevens, J. (1996) Applied multivariate statistics for the
social sciences, Hillsdale.

