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Abstract 
Programmers are often scared that they won't be able to 
optimize later.  For that reason, they tend to optimize 
early leading to brittle design.  Test driven design can 
lead to emergent optimization and code that is readily 
optimizable.  If programmers develop test first, many of 
their upfront concerns about performance can be de-
ferred.
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INTRODUCTION 
Optimization is a favorite hobby of programmers.  I 
haven't yet met a good programmer who hasn't spent a 
good deal of time thinking about optimization.  As much 
as many programmers love to consider the relative speeds 
of different solutions, long time members of the pro-
gramming community point out that premature optimiza-
tion is one way to make a complete muddle of a design.  
The best advice is often attributed to Michael Jackson via 
his two laws of optimization [1]: 

[The First Rule of Program Optimization]  
Don't do it.  

[The Second Rule of Program Optimization 
---For experts only] Don't do it yet.  

Despite Michael Jackson’s admonishment, programmers 
often spend a large amount of time considering the costs 
of various language constructs and implementation 
strategies early in development.  Some languages invite 
this sort of analysis more than others by presenting a 
large number of options of varying cost.  However, atten-
tion to low-level performance is only worth the time if it 
produces gains that cannot be realized later.  Whether 
those gains can be realized depends on the way that the 
program is modularized. 

Ken Auer and Kent Beck point out that better factoring 
allows you optimization alternatives that you wouldn't 
have otherwise [2].  In this paper, I’ll use an example to 
show how incremental test driven design can lead to 
optimizations that may not be considered in an upfront 
analysis of performance.  I’ll also show that in some 
cases where code isn’t transparently optimized, it is read-
ily optimizable because of the modularization that results 
from a test driven approach. 

THE PROBLEM 
I was designing a small parser for program-generated 
documents in a subset of HTML.  At the time that I 
started it wasn't clear whether many of the features of 
HTML would needed, so I decided that it would be 
quicker to gravitate towards a solution via a small set of 
tests rather than use a parser generator. 

The code I was developing was in C++.  I used CppUnit 
[3] as the test harness. 

My first task was to read a tag from an input stream and 
pass it along to another part of the software.  In the first 
set of tests, I built up a little parser class that had the 
ability to skip past text that was not a part of a tag.  Here 
is a test method on a test class: 

void HTMLParserTest::TestSkipUntil()
{
parser.SetInput(" <br>");

parser.SkipCharsUntil('<');
assert(parser.NextChar() == '<');

}

Later, I discovered that I was ready to start parsing tags, 
so I decided to create a ReadTag method that returned a 
tag from the input stream.  But how could I determine 
whether I really had a tag?  One option was to start ask-
ing for the various parts of a tag.  I knew that in one of 
my tasks I would need to be able to see the name of each 
tag, so I decided I needed a test like this: 

void HTMLParserTest::TestReadTag()
{
parser.SetInput(" <br>");

HTMLTag tag = parser.ReadTag();
assert(tag.GetName() == "BR");

}

This test shows that the parser should be able to read past 
an HTML line-break tag and that we should be able to 
determine the name of the tag read.  But, does it really?  
At this point it just shows that I should be able to get the 
name of the tag.  What is the simplest way of satisfying 
the test?  First of all, the HTMLTag class needs to know 
the text that it is working from.  I could have the parser 
read the text into a string and pass it along to the con-
structor of the tag.  If I am doing this intermediate step, I 
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should change the test.  Maybe I should first verify that 
the parser has read past the tag. 

void HTMLParser::TestReadTag()
{
parser.SetInput(" <br>");

HTMLTag tag = parser.ReadTag();
assert(parser.HasNextChar() ==

false);
// assert(tag.GetName() == "BR");

}

To satisfy that test, I wrote ReadTag like this: 

HTMLTag HTMLParser::ReadTag()
{
SkipCharsUntil('<');
while(HasNextChar()

&& NextChar() != '>')
GetNextChar();

return HTMLTag("");
}

Then I enabled the other assert in the test and changed 
ReadTag to this to make it pass. 

HTMLTag HTMLParser::ReadTag()
{
SkipCharsUntil('<');

std::string tagText;
while(HasNextChar()

&& NextChar() != '>')
tagText += GetNextChar();

return HTMLTag(tagText);
}

Notice that at each step, I’ve written the simplest code 
that I could to make each test pass, but I haven’t let effi-
ciency factor into my decision.   

By conventional C++ standards, the code I’ve written so 
far is clearly inefficient.  I create an object and return it 
by value, and then I create a fresh string to hold the tag 
text.  Is there any value in this plainly inefficient code?  
Let's hold off for a little while longer and see.  

How should we get the name of the tag?  The simplest 
thing would be to have the GetName method parse the 
name out of the text:  

std::string HTMLTag::GetName() const
{
std::string name;
for (int n = 1; n < tagText.size()

&& IsNameChar(tagText[n]); n++)
name += ::toupper(tagText [n]);

return name;
}

With this little method, the test passes, but look at the 
downside.  The name of each HTMLTag is going to be 

calculated on demand; reparsed every time GetName is 
called.  That will be remarkably inefficient.  But is it 
bad?  At this point, we don’t know.  If efficiency became 
a concern, we could use a profiler to determine whether 
this string creation is really a bottleneck in the system’s 
performance.  If we discovered that it was, there are a 
couple of optimizations we could perform.  We could 
move the parsing of name into the constructor of tag: 

HTMLTag::HTMLTag(std::string tagText)
: tagText(tagText)

{
CreateNameFromText();

}

std::string HTMLTag::GetName() const
{
return name;

}
Or we could implement a lazy cache by having GetName 
save its result to an instance variable and checking it so 
that the parsing only happens on the first call: 

std::string HTMLTag::GetName() const
{
if (name.size () != 0)
return name;

for (int n = 1; n < tagText.size();
&& IsNameChar(tagText [n]); n++)

name += ::toupper(tagText [n]);
return name;

}

The choice depends upon whether there will be some 
clients of tag that don’t call GetName.  If there are, then a 
lazy cache might be the better choice.   

As I moved forward, I used the same strategy for parsing 
the tag attributes as well, attributes like “clear” in the 
string “<br clear=all>” and then I was struck by a realiza-
tion:  

On some tags, the attributes will never be accessed.  By 
parsing them on demand, the code was becoming unin-
tentionally optimized.   

I thought back to my decision to do this parser by hand.  
When I started, I thought that the grammar was far too 
simple to use a parser generator, so I decided to proceed 
test first.  Interestingly, optimization was emerging as an 
effect of my test decisions.  

Surprisingly, the code looks rather robust in the face of 
other possible optimizations as well.  We can note the 
fact that the input string is never modified and pass refer-
ences and offsets through the object structure.  The fac-
toring that we’ve arrived at supports all of these optimi-
zations.  With luck, we’ll never have to do them. 

APPROACHES TO DEVELOPMENT 
There are many different ways to approach problem solv-
ing, but one of the most natural is Divide and Conquer.
‘Divide and conquer’ was the approach that I was using 
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when I first considered the parser generator.  The break-
down can be seen as follows: 

1. Parse tags and tag internals 
2. Use tag and tag internals 

By decomposing a problem into small sequential chunks, 
we can often get a good straw-man modularization for a 
system.  But, what are the qualities of that modulariza-
tion?  Often it a decent view of the gross steps that can be 
taken to solve a problem.  The implicit sequencing (do 1, 
then do 2) makes the solution easy to understand, and 
communicate, but the work done in step 1 is anticipatory; 
it may not be needed in all execution paths.  

Let’s consider another example.   In a transaction-based 
payroll system, validation of the input data in a transac-
tion can occur as it is constructed from a transaction 
source, or it can be deferred until the transaction is exe-
cuted.  In a ‘divide and conquer’ design, there is no force 
that leads to one solution over the other.  However, defer-
ring validation can be more efficient if there are cases 
where the validation does not have to occur.  One exam-
ple would be a business rule that states that employees 
cannot be changed from hourly to salaried status between 
pay periods.  If a ‘change employee’ transaction is exe-
cuted between pay periods, the system can discard it 
without validating the data needed to perform the transac-
tion.  However, if the validation is done prior to execu-
tion, it is wasted effort. 
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To demonstrate this quantitatively, I wrote two example 
payroll applications.  One was designed with the ‘divide 
and conquer’ strategy.  The other was designed test first.  
In the ‘divide and conquer’ design case, it was reasonable 
to validate transactions immediately.  When I drove the 
design of the system using tests, I was only confronted 
with the need for validated input when I had to execute 

the transaction.  At execution time, the ‘change em-
ployee’ transaction checked the execution date first be-
fore performing its validation.  As a result, the system’s 
execution was faster. 

Figure 1 shows a graph of timing information for the 
‘divide and conquer’ solution and the test first solution. 

Each trial consisted of sets of eight ‘change employee’ 
transactions applied one million times to the system from 
an in-memory source.  Half of the constructed transac-
tions had execution dates that were valid and half didn’t.  
Postponing the implementation of validation led to the 
opportunity to make it conditional during transaction 
execution.  In a real payroll system, the amount of time 
saved would vary depending upon the proportion of 
‘change employee’ transactions and the amount of vali-
dation that can be deferred. 

CONCLUSION
In test first design, capability is only added to a system 
on demand.  Programmers work from the “outside in”, 
asking themselves “what test do I need to show that I do 
not have the result yet” and “what method do I need to 
get this result?” This can lead to designs that have a 
strong “calculate on demand” flavor.  As we saw in an 
earlier section, calculations can easily be cached or 
moved to earlier points in the execution if the system 
requires optimization. 

While it is possible for developers to anticipate cases 
where work is unnecessary during ‘divide and conquer 
design,’ it appears that the implicit deference that hap-
pens in test first design can lead to more efficient solu-
tions without conscious optimization. 
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