
138

Just-in-Time Requirements Analysis – The Engine that Drives
the Planning Game

Michael Lee
Managing Partner

Kuvera Enterprise Solutions, Inc.
1750 30th Street

Suite 186
Boulder, CO 80301 USA

+1 303 638 7728
mike@kuvera.com

Abstract
Just-in-Time Requirements Analysis is an alternative
approach to analysis that perfectly compliments XP
development and planning. Rather than analyzing and
defining requirements up front, Just-in-Time Require-
ments Analysis defines requirements only when they
are needed – and only at the detailed required. It is an
iterative process that expects and embraces change and
makes it easy for requirements to evolve over time.

This paper details the concepts behind Just-in-Time
Requirements Analysis (JITRA) and identifies the bene-
fits of using JITRA on XP Projects. It outlines how
JITRA is implemented in XP development and shows
how JITRA fits into XP planning.

Keywords
Just-in-Time Requirements Analysis, JITRA, Planning
Game, Planning Strategy, Iteration Planning, User Sto-
ries, XP Analysis, Incremental Change, Continuous
Learning, Adaptive Analysis, Agile Processes.

1 INTRODUCTION
Traditional analysis processes do not work well with
XP [1]. Requirements are analyzed and defined up
front and then baselined before development begins.
One requirement is not given priority over any other,
and often requirements will sit for months and even
years before being implemented. Elaborate change
management processes are put in place to guard against
change and it is very hard to evolve requirements over
time to meet changing business needs or advances in
technology.

Just-in-Time Requirements Analysis is the antithesis of
traditional analysis. It defines a process where re-
quirements are continuously analyzed and defined
throughout the life cycle of a project. Requirements are
only analyzed and defined when they are needed for
planning or development – and only at the level of de-
tail required.

JITRA starts the analysis process with a broad, overall
set of requirements. These requirements are then itera-
tively refined into detailed requirements as they are

needed – and only when they are needed. This allows
development to begin with incomplete requirements and
also provides a mechanism for incorporating feedback
from actual development into analysis. The end result
is a shorter project life cycle, better requirements, less
risk, and an evolving baseline that meets the changing
business needs of customer.

2 JUST-IN-TIME REQUIREMENTS ANALYSIS
– WHAT IS IT?

Just-in-Time Requirements Analysis is a lightweight,
adaptable approach to requirements analysis that com-
plements the basic principles of XP. It is an analysis
process that expects and embraces change and is distin-
guished from other analysis methodologies in several
ways:

• Requirements aren’t analyzed or defined until they
are needed.

• Only a small initial investment is required at the
start.

• Development is allowed to begin with incomplete
requirements.

• Analysis and requirements definition is continuous
throughout the project.

• Requirements are continuously refined as the pro-
ject moves forward.

• Change is expected and easy to incorporate into
requirements.

• Analysis tasks compliment XP planning.

3 DON’T DEFINE IT UNTIL YOU NEED IT
(DDIUYNT)

Although it makes for a terrible acronym, Don’t Define
It Until You Need It is analogous to XP’s YAGNI (You
Aren’t Gonna Need It) [2], and is the fundamental prin-
ciple of Just-in-Time Requirements Analysis. It stands

139

in stark contrast to the monolithic approach of tradi-
tional analysis and has three distinct advantages:

• Requirements that are defined closer to implemen-
tation are better requirements.

• Requirements that have not been defined can not
change.

• Requirements can change incrementally as needed.

Defining Better Requirements
As we develop, we learn more about the problem and
what is required to solve the problem [3]. With tradi-
tional analysis, this knowledge isn’t available because
none of the work leading to the knowledge has been
done yet. With JITRA, however, knowledge and un-
derstanding gained from actual development can be
incorporated into requirements – which naturally leads
to better requirements.

Eliminating “Phantom Change”
On any software development project there are two
types of requirement changes: “Real” requirements
change that necessitate actual modifications to imple-
mented software; and “Phantom” requirements change
that only necessitate changes to baseline requirements
that have not yet been implemented. With traditional
analysis, both Real and Phantom changes have an asso-
ciated cost. With JITRA, however, we can eliminate
most – if not all – of the cost associated with Phantom
Change.

Phantom Change is a direct result of an up front analy-
sis process where the result of the analysis – the base-
line requirements – are used to define the scope of a
project and estimate cost. Any changes to this baseline
are then measured against the initial estimate. The delta
between the first estimate and the new estimate is the
cost associated with Phantom Change.

With JITRA there is no phantom baseline to change.
Only implemented requirements are baselined and by
deferring requirements definition until the point of
implementation, JITRA ensures that the initial require-
ments definition is the one that gets implemented.

Incremental Change
Change is inevitable and a good analysis approach must
address this fact. Most traditional approaches abhor
change and have put in place elaborate change man-
agement procedures to limit and control change.

With JITRA changes only apply to real baseline re-
quirements (i.e. requirements than have been imple-
mented) and all changes are treated as new require-
ments going forward. This allows changes to be ad-
dressed on their own merits and handled just like any
other requirement.

Shorter Projects and Decreased Time-to-Market
JITRA eliminates the long analysis phase at the start of
a project. Instead, analysis is spread out across the
entire project life cycle and is concurrent with devel-

opment. In most cases – and especially on big projects
- this significantly reduces the time it takes to complete
development.

Reduced Risk
JITRA uses an evolutionary approach to requirements
analysis and evolutionary approaches reduce risk [4].
With JITRA only the minimum amount of analysis is
performed before development begins. This allows
managers and senior executives to allocate their in-
vestment where it matters most – to actual develop-
ment. It also allows decision makers to focus on the
most important things first and arrive at meaningful
check points much earlier.

4 THE JITRA PROCESS
Just-in-Time Requirements Analysis is a simple proc-
ess. Analysis starts at the highest levels of abstraction
and requirements are continuously refined over the life
cycle of the project. The most important things are
analyzed first, and the analysis is always at the level
required to meet the current needs of the project – no
more and no less.

To support this process, JITRA defines four major
analysis activities:

• Initial Analysis

• Feature Set Analysis

• Story Analysis

• After-action Analysis

These activities are performed continuously throughout
a project’s life cycle, and may over lap each other in
scope and detail. The following paragraphs discuss
each of these activities.

Initial Analysis
The Initial Analysis activity is performed at the start of
a new unit of work. This unit may be an individual
system, a system of systems, a subordinate subsystem,
or individual subsystem components. The purpose of
this activity is to broadly define the scope for the work
ahead and to specify an initial set of features, functions,
and capabilities required for the specified unit of work.

Initial Analysis Tasks
Defining Scope – The first task of Initial Analysis is to
broadly define the scope of the work ahead. This al-
lows planners to estimate the level of effort required to
complete the work. On some projects this take may
take a few hours or days. On other projects – especially
on those projects where a detailed estimate is required
(i.e. fixed price projects) – this may take longer.

Gain the required understanding so follow-on activities
can move forward – The second task of Initial Analysis
is to gain a better understanding of the current problem
domain. This doesn’t have to be a detailed understand-
ing, but as a minimum the team must have a reasonable

140

expectation of success if the project moves forward.

Develop an initial set of required features, functions,
and capabilities – The final task of Initial Analysis is to
define a generalized list of things the new system needs
to do. This list might be a simple bullet list, or it might
be detailed in one or more high-level Stories.

Scaling Initial Analysis
The Initial Analysis activity is highly scalable and
works extremely well on complex projects – especially
those involving multiple teams and organizations.

The key to this scalability is the recursive definition of
the unit of work in Initial Analysis. At the top-level, a
unit of work may specify a system of systems. Initial
Analysis is performed at the top level and then the unit
of work is partitioned into one or more subordinate
units of work (individual systems).

This hierarchical decomposition is recursive and may
continue down any number of levels. At each level an
initial analysis is performed and the unit of work is
either partitioned into subordinate units of work, or
Initial Analysis is completed and Feature Set Analysis
is begun.

Output of Initial Analysis
The output of Initial Analysis is the initial set of fea-
tures, functions, and capabilities for the unit of work.
This may be formally documented (recommended on
large or complex projects), or more loosely defined.
The set may be communicated as a list, or it may be
built into one or more high-level User Stories.

Feature Set Analysis
Feature Set Analysis (FSA) is performed continuously
throughout the life cycle of a project. It’s purpose to
build User Stories that feed into iteration planning and
into individual iteration development. Most of the
analysis effort on any project is performed as part of
FSA, and it is the heart of the JITRA process.

Feature Set Analysis Tasks

Prioritization of features, functions and capabilities -
The list of features, functions, and capabilities defined
during Initial Analysis feeds the analysis of Feature
Sets. At the start of Feature Set Analysis, all of the
features, functions, and capabilities that have not yet
been implemented (or which have only been partially
implemented) are reviewed and prioritized by the Re-
quirements Stakeholders. This process allows stake-
holders – and not developers - to identify what parts of
the system get the most focus, and always ensures that
the most important part of the system will be analyzed
and developed next.

Selection of a Feature Set - Once the remaining fea-
tures, functions, and capabilities have been prioritized,
the development team groups the highest priority items
into a Feature Set. A Feature Set is nothing more than
a grouping of the features, functions, and capabilities
that the development team estimates can be analyzed

and implemented in a small number of iterations (typi-
cally 2 – 4).

Analysis and Definition of User Stories – The primary
task of FSA is the analysis and definition of User Sto-
ries. After the Feature Set has been selected, Domain
Experts and Business Analysts – supported by Re-
quirements Stakeholders and the development team -
perform a detailed analysis of the items in the Feature
Set. This analysis is used to build and define individual
User Stories that feed into iteration planning and actual
development.

Scaling Feature Set Analysis
Scalability of Feature Set Analysis is not an issue. The
size of a Feature Set is under the control of the devel-
opment team and is always determined by how much of
the remaining system can be analyzed and implemented
in the next few iterations.

Output of Feature Set Analysis
The output of Feature Set Analysis are groups of User
Stories. These User Stories should be detailed enough
to allow follow-on iteration planning, yet they do not
have to be detailed enough to implement (although they
may be).

Selecting a Feature Set that is too Big
In a some cases, the team may discover that the selected
Feature Set is too big to fit into a few iterations. In
these situations, simply focus on the highest priority
items first, and return the unanalyzed items to the list of
unimplemented features, functions, and capabilities.
These items will then be addressed in follow-on Feature
Set Analysis.

Story Analysis
As part of iteration planning, User Stories are allocated
to specific iterations. Story Analysis is then performed
as part of each iteration for every Story being devel-
oped. The purpose of Story analysis is to finalize the
details of each Story in the iteration and to baseline the
Story at the completion of the Iteration.

Story Analysis Tasks
There is only one relevant task for this activity – finaliz-
ing User Stories. How this task is performed, however,
may vary widely from project to project and is designed
to be tailored to meet the specific needs of an organiza-
tion.

Splitting User Stories
During Story Analysis the team may find it necessary to
split one or more Stories allocated to the current itera-
tion. In this case, the new Stories may be allocated to
the current iteration, or they may be added back to the
current Feature Set for implementation in follow-on
iterations. The decision is left up to the Requirements
Stakeholders.

141

After-Action Analysis
At the completion of each iteration, an After-Action
Analysis is performed. This allows “lessons learned”
from the previous iterations to be included in the analy-
sis process of subsequent iterations.

As part of After-Action Analysis, new requirements
may be defined. These new requirements may identify
new or modified features or they may specify changes
to features that have already been implemented. Re-
gardless of the form the changes may take, new re-
quirements are fed back into the JITRA process at the
appropriate level.

5 JITRA AND THE PLANNING GAME
“We will plan by quickly making an overall
plan, then refining it further and further on
shorter and shorter time horizons – years,
months, weeks, days. We will make the plan
quickly and cheaply, so there will be little iner-
tia when we must change it.” [5]

Requirements Analysis drives all planning, but the
approach used for requirements analysis must match the
approach to planning. For projects relying on up front
planning, an up front analysis approach is required. But
for a flexible, adaptive, and incremental approach to
planning that evolves over time, we need an analysis
approach that is also flexible, adaptive, incremental and
evolves over time. Just-in-Time Requirements Analysis
is such an approach and it perfectly compliments the
XP Planning Cycle

How JITRA Compliments XP Planning
Initial Analysis - The Initial Analysis activity forces the
team to quickly identify scope and define an initial set
of high-level requirements. This allows decision mak-
ers to rapidly develop a broad overall plan that is ex-
pected to be tailored as subsequent analysis proceeds.

Don’t Define It Until You Need It – A core principle in
XP planning is that you only plan for what you need for
the next horizon[4]. This principle is complimented by
the core principle of JITRA – Don’t Define It Until You
Need It. This principle allows work to begin on the
important parts of a system even if other areas have yet
to be analyzed or defined. This greatly aids in XP plan-
ning because it allows planners to focus only on what is
needed at the moment – not what may be needed in the
future.

Feature Set Analysis – Feature Set Analysis provides
XP planners with a grouping of User Stories (the Fea-
ture Set) that feed Iteration planning. During iteration
planning, decision makers select User Stories from the
current Feature Set and allocate them to an iteration.
Feature Set Analysis ensure that planners always have a
current set of User Stories to select from, yet it doesn’t
require a complete analysis of an entire system.

After-Action Analysis – After-Action Analysis allows
requirements to evolve over time and allows new and
modified requirements to be injected into the analysis
process at the appropriate level. This gives planners the
flexibility of prioritizing new or changing requirements
and allows them to adapt the plan to reflect an evolving
set of requirements.

Splitting User Stories – JITRA supports the splitting of
User Stories at any time. New Stories following the
split can be allocated to the current iteration or added
back to the current Feature Set or a future Feature Set.
This forces planners to always focus on the most impor-
tant User Stories at any give time and to defer work on
less important User Stories.

6 SUMMARY
Just-in-Time Requirements analysis significantly re-
duces project risk and shortens development time. It
ensures the most important parts of a system – as de-
fined by the business stakeholders - are being worked
on at any given point in time and only defines require-
ments when they are needed. It supports the evolution
of requirements and provides mechanisms for easily
incorporating changes into the analysis process. In
short, Just-in-Time Requirements Analysis matches the
vision and promise of XP and perfectly compliments
the XP approach.

ACKNOWLEDGMENTS
The author wishes to acknowledge the support and help
of Kuvera’s clients in the development of Just-in-Time
Requirements Analysis. These clients provide timely
feedback on the use of JITRA on business-critical pro-
jects and allowed the author to refine many of the con-
cepts presented in this paper.

REFERENCES
1. McBreen, Pete: Incremental Requirements Cap-

ture. XP Magazine online.
http://www.xprogramming.com/xpmag/incremental
_req1.htm

2. Auer K. and Miller R.: Extreme Programming
Applied – Playing to Win. Addison-Wesley. 2001.

3. Beck, Kent: Extreme Programming Explained –
Embrace Change. Addison-Wesley. 1999.

4. Highsmith, Jim: Agile Methodologies: Problems,
Principles, and Practices. XP2001 Conference.
http://www.xp2001.org/xp2001/conference/Details/
AgileMethodologiesXP2001.pdf

5. Beck, Kent: Extreme Programming Explained –
Embrace Change. Addison-Wesley. 1999.

