
Refactoring in a “Test First”-World

 Jens Uwe Pipka
Daedalos Consulting GmbH

 Ruhrtal 5
 58456 Witten, Germany
 +49 2302 979 0
 jens-uwe.pipka@daedalos.com

ABSTRACT
Enforced by the “Test First, by intention” principle as
proposed by Extreme Programming (XP), application
code grew up with unit tests [1]. During the development
process, this principle normally builds a stable base for
restructuring the existing code continuously, e.g. to intro-
duce new functionality. This is done by refactoring the
application code and verified by running the existing unit
tests. But applying Test First and refactoring conse-
quently, some kind of paradox occurs: In many cases,
refactoring application code also affects unit tests. So, the
correctness of the refactored application code could not
be verified anymore.

In a “Test First” World, the solution to refactor applica-
tion code successfully and to prove this by the corre-
sponding unit tests is quite clear: First, adapt the unit tests
with respect to the target refactoring. Second, change the
application code. Finally, run the unit tests. In this paper,
we present how the Test First approach could be applied
consequently during the refactoring process and how to
keep unit tests synchronous with application code using
Test First Refactoring.

Keywords
Automated Testing, Unit Testing, Refactoring, Test First,
Extreme Programming.

1 INTRODUCTION
Unit tests provide a powerful technique to develop new
functionality as well as to change existing parts. This is
done by defining tests for a complete unit of work. By it,
unit tests are also essential for refactoring [2].

Normally, a refactoring should not break running unit
tests. Nevertheless, it is also possible that the refactoring
of application code also affect existing unit tests. To sum
it up, you can decide between the following situations:

1. The refactoring has no side effects on existing unit
tests, e.g. Extract Method.

2. The refactoring has clear effects on existing unit
tests, e.g. Rename Method. The affected unit tests
can be adapted by easily.

3. The refactoring breaks existing unit tests that are
coupled to tightly with the application code. This
situation often occurs during structural refactorings,
e.g. when dealing with generalization such as Extract
Superclass.

In real life development, the second and third situation is
quite common, i.e. that the refactoring of application
code breaks existing unit tests (see Figure 1).

During software development and maintenance, this leads

to the dangerous situation that application code and unit
tests are no longer synchronous. Even worse, the applica-
tion works as it should but the unit tests do not run any-
more.

So, it is necessary to adapt the unit tests as well. The
quick and dirty approach to do this is to refactor the ap-

plication code first, to run the unit tests, to check their
results, and finally to adapt the unit tests that have been
broken. However, unit tests should be modified more
carefully to preserve their original semantics [3].

As we will show in this paper, a lot of control and safety
is lost when refactoring is done in this way. Instead, we
focus on adapting the unit tests first. Afterwards, the
refactoring itself is applied on the application code. So,
unit tests could be used for the program verification in
the original sense again.

2 HOW TO KEEP UNIT TESTS
SYNCHRONOUS WITH THE
IMPLEMENTATION

During refactoring the program syntax is changed but the
semantics still remain the same. The naive approach to
refactoring is simple: First, apply the selected refactoring

Base Unit Unit Tests
for Base Unit

Refactored
Base Unit

Adapted
Unit Tests

Adaptation of
Unit Tests

Refactoring

Fig. 2: Refactoring in a Traditional Test World

Base Unit Unit Tests
for Base Unit

Refactored
Base Unit

Test fails:
Adaptation of

test cases
necessary!

Refactoring

Fig. 1: Refactoring and Unit Testing

 179

to application code. Second, run the unit tests. If the code
was successfully refactored, the bar is green.

But in real life, refactoring is much harder: After refac-
toring the application code, it is possible that the unit
tests do not run anymore. In a traditional development
process, the problem is detected only when the unit tests
are run after the application code was already refactored.
In this case, the broken unit tests must be changed. This
workflow is illustrated in Figure 2.

But what guarantees that only the unit tests are broken
and not the refactored code? This question has always to
be asked, even if tools like a Refactoring Browser are
used to support the refactoring process. Otherwise, a
refactoring tool has also to include a full semantic verifi-
cation for the source code transformation.

XP proposes a Test First strategy to develop software
differently: First of all, tests have to be defined. Only
after that, it is allowed to implement application code
Applying this approach consequently means to broaden it
to refactoring.

But what does this mean in practice? First, it is necessary
to find out if a refactoring could cause unit tests to fail.
This could be done with a list of “critical” refactorings.
Then, the refactoring workflow is modified with respect
to the Test First concept as follows:

1. Adapt unit tests with respect to the target refactoring.

2. Run unit tests: For the situations presented in this
paper, it is expected that the unit tests fail.

3. Refactor application code.

4. Run unit tests: If a unit tests is broken, check if the
target refactoring is applied correctly. Go on with the
previous step unit all unit tests are running again.

You can find an illustration of this refactoring workflow

in Figure 3.

3 TEST FIRST REFACTORING IN DETAIL
As mentioned before, refactoring application code could
have different effect on unit tests. So, it is necessary to
check whether or not a refactoring also affects test code.

It is out of the scope of this paper to provide a complete
list of refactorings that could also have effects on unit
tests. Instead, we concentrate on Test First Refactoring in
the context of the following refactorings to illustrate the
side effects of refactoring on application as well as on
test code:

• Rename Method

• Extract Superclass/Subclass

• Collapse Hierarchy

These refactorings had been chosen because they show
the problems to keep application and test code synchro-
nous during refactoring. They also represent different
refactoring activities: Rename Method changes the exist-
ing system as it is, Extract Superclass/Subclass introduce
a new entity, and Collapse Hierarchy removes an existing
one.

Furthermore, Extract Superclass/Subclass and Collapse
Hierarchy are quite complex. Besides dealing with gener-
alization, other refactorings are also used, like moving
features between objects. So, these refactorings give a
good overview of the consequences of Test First Refac-
toring.

Rename Method
First, we start with Rename Method. This is a typical
example for the situation that a refactoring has clear ef-
fects on existing unit tests. Unit tests can be easily
adapted to keep synchronous to application code by re-
naming all references to the renamed method.

If a tool like a refactoring browser is used, this is done
automatically. Though, in many companies it is still
common to use Java development environments without
refactoring support, e.g. VisualCafe. So, it is important to
find alternative ways to refactor the code safely. In a Test
First style, this can be done as follows:

• Check all corresponding unit tests for all calls to the
target method. Rename all references in the test
classes. If necessary, adapt also the name of a test
method.

• Run your unit tests. If the renamed method is refer-
enced, this must fail. Test First Refactoring leads to
an additional verification at this point: Only if the
test fails with “method <new name> not found”, the
Rename Method refactoring is possible as foreseen.
Otherwise, different error situations are possible, e.g.
a method with the same name is already defined in-
side the inheritance hierarchy.

• Apply the refactoring: Rename the method and all its
references inside the application classes.

• Run the unit tests again. If you have refactored your

Fig. 3: Refactoring in a Test First World

Base Unit Unit Tests
for Base Unit

Refactored
Base Unit

Adapted
Unit Tests

Adaptation of
Unit Tests

Refactoring

 180

code correctly, the bar should now be green again.

Even if Rename Method is a very simple example, it
already shows how helpful Test First is. So, it is verified
whether or not a method with the chosen name is already
visible in the class. Malfunctions and side effects are
avoided directly at the beginning of the refactoring proc-
ess.

Extract Superclass
Extract Superclass means to divide one class into two or
more classes. So, at least one new class is introduced into
the system. By default, no unit tests are provided for this
new class.

Considering that unit tests should not test the internals of
the design but the functionality of the unit, you have two
different possibilities: First, you can leave unit tests un-
touched and run the tests when you have refactored your
system class. Second, you can introduce additional unit
tests for the new superclass. The existing unit tests are
changed, so that the moved functionality is tested with
the new superclass. Unit tests referencing the original
class stay unchanged.

Both alternatives have their advantages. In the first case,
the behaviour is exactly the same as before if all unit tests
run. This is what you want to prove. However, you intro-
duce an untested class in your application that will be
used in future. So, the second case is also important: If
the extracted superclass could be used inside the system,
it is essential to provide the corresponding unit tests for
this class. Otherwise, new functionality could be pro-
vided relying on code that is not tested anymore. So, this
is a pragmatic way to increase the test coverage of appli-
cation code.

The decision what to do depends on the situation you
develop: If you extract an abstract superclass, it is fairly
easy: You do not need to adapt your unit tests because the
extracted superclass could not be used on its own.

But if the extracted superclass can be used alone, you
should first introduce a new test class. During the refac-
toring process, the corresponding unit tests are moved to
this new class one by one. This is done in small steps:
First, you move a unit test to the new test class. This tests
a part of the old class that should be moved to the ex-
tracted superclass. Next, you run both sets of unit tests,
i.e. the one for the old classes and the one for the ex-
tracted class. Then, you refactor the application code, i.e.
you move the corresponding part from the subclass to the
new superclass. Finally, you run the unit tests again.
After the bar gets green, you can go on with this action
until all parts have been moved to the new superclass.

Extract Subclass
In contrast to the previous example it is necessary to
adapt your unit tests anyway. If you extract a subclass,
the original test cases will not run anymore, e.g. because
a tested method is moved to the subclass. Reason for this
is that the behaviour of the original class is restricted to a
functionality that is common for all subclasses that are

foreseen.

Again, you have two alternatives: First, you can change
the corresponding unit tests by exchanging the old class
against the extracted subclass. Second, you can create a
new test class for the extracted subclass. All unit tests for
methods that you want to move to the new subclass have
to be moved the new test class.

Both alternatives could be useful. The first alternative is
implemented very quickly and guarantees that the ex-
tracted subclass has still the same behaviour as the origi-
nal before. But once more, you introduce a class in your
system without its own test code.

So, the second alternative seems to be the better choice:
You start with creating a new test class for the extracted
subclass. Then, you move the unit tests one by one to this
new class. After that, you run both sets of unit tests, the
set for the original as well as the set for the new class.
Finally, you refactor the application code and run all unit
tests again. The advantage is, that you provide a set of
running unit tests for the extracted class. So, it is treated
like any other class in the system and could be used as
well in the same way.

Collapse Hierarchy
Finally, we discuss which adaptations inside existing unit
tests are necessary for Collapse Hierarchy. This refactor-
ing is suitable every time when a superclass and a sub-
class are very similar. It is obvious that this refactoring
will break your tests every time a class is accessed that
has been removed.

Applying the Test First strategy, the following steps will
guarantee the semantic equivalence of the implementa-
tion before and after refactoring the code.

First, the corresponding unit tests are changed by renam-
ing all references to a class that should be removed to the
name of the merged class. If possible, the different tests
should also be merged to a single one. It is not really
necessary to do this, but there are several advantages:
First of all, you can reduce the number of test object that
have to be initialized. Furthermore, your unit tests are
clearly arranged after the merge and it is easier to main-
tain them.
Afterwards, it is time to run the modified tests: The unit
tests should be broken for all references to methods and
variables that are defined in a class that should be re-
moved. Otherwise, these methods could be overwritten in
the subclass. Applying Collapse Hierarchy would be a
bad choice then, because it would break the implemented
behaviour.
Else, you can merge the selected classes as described in
the Collapse Hierarchy refactoring. Finally, run your unit
tests again. The bar should be green again if you have
completed the refactoring.
4 WORKING WITH TEST FIRST

REFACTORING
Now, have a closer look on an example to show the ad-
vantages of Test First Refactoring in practice. To illus-

 181

trate the general line of action, we have chosen Extract
Method as an example.

We use a Cash Machine that provides some internal
method getCash() to manage withdrawing. There is also a
specialized cash machine EUCashMachine that offers the
opportunity to withdraw a certain amount as cash or as a
cheque (see Figure 4).

Inside the class EUCashMachine, the method getEuro()
should be renamed to getCash(). Applying Test First
Refactoring, the following steps are carried out:

• Modify EUCashMachineTest: All references to
getEuro() are renamed. Furthermore, testGetEuro()
becomes testGetCash().

• Run unit tests: A method with the name is found.
That must not happen, so we check our refactoring.
A method with the same name already exists in the
superclass, so we have to choose another name.
Here, we chose customerGetCash().

Nevertheless, at this point you should always have a

closer look at the existing method and its behaviour,

because it can perhaps be reused or at least renamed if

an ambiguous name had been chosen.

• Modify EUCashMachine: All references of
getEuro() are renamed to customerGetCash().

• Run unit tests: customerGetCash() is not found. This
is exactly what is expected, so we can go on this
time.

• Refactor application code: Rename getEuro() to
customerGetCash().

• Run unit tests: If the bar gets green again, everything
is okay.

Finally, we have successfully refactored the application
code. Test First Refactoring has saved us from changing
the system in a way that was not intended.

5 CONCLUSION
XP is based on Test First Design to support agile soft-
ware development. However, this practice is very often
not applied during refactoring. Nevertheless, it is a good
choice to adapt your unit tests first and then to refactor
your code.
Very often, unit tests are coupled (too) tightly to applica-
tion code, because they grew up with it from scratch on.
In this case, you should normally change unit tests to test
the functionality of the unit instead of design internals.
But if time has run short and this is always true in soft-
ware development, it is quite common to fix unit tests
only to make them run again.
To make the development process smarter and to intro-
duce more safety, it is essential to adapt unit tests before
refactor your code. Test First Refactoring forces to adapt
unit tests first of all. Doing this, it is guaranteed that all
tests are preserved from removed components as well as
expanded to new components during the refactoring
process.
Furthermore, Test First Refactoring provides additional
checkpoints that reveal missing or overseen prerequisites.
This prevents that a developer changes the system behav-
iour during refactoring. The Software gets more reliable
if the Test First approach is applied consequently in all
stages of the development process - and this includes
refactoring.
REFERENCES
1. Jeffries R., Anderson A., Hendrickson C.: Extreme

Programming Installed. Addison Wesley, 2000.

2. Fowler, M.: Refactoring – Improving the style of
existing code. Addison Wesley, 1999.

3. Deursen A. van, Moonen L., Bergh A., Kok G.:
Refactoring Test Code. In the Proceedings of the 2nd

International Conference of eXtreme Programming
and Flexible Processes in Software Engineering,
Cagliari, 2001.

4. Langr J.: Evolution of Test and Code via Test-First
Design. At http://www.objectmentor.com, March
2001

Fig. 4: Class hierarchy for Rename Method

CashMachine
 getCash(...)
 ..

EUCashMachine
 getEuro(...)
 getCheque(...)
 ...

CashMachineTest
 testGetCash()
 ...

EUCashMachineTest
 testGetEuro()
 testGetCheque()
 ...

