
186

The Development of Net Perceptions Personalization Manager

 Peter Clark
pclark.net Consulting, LLC

 1736 Berkeley Ave
 Saint Paul, MN, 55105 USA
 +1 651 698 9917
 pclark@pclark.net

ABSTRACT
This paper discusses the author’s experiences as the en-
gineering manager of the Net Perceptions Personalization
Manager for E-Commerce product. The development
effort utilized several “agile” techniques in an effort to
deal with rapid requirements churn. These techniques
allowed the team to ship on schedule despite changing
requirements.

Keywords
Agile development, timeboxed scheduling, personaliza-
tion

1 INTRODUCTION AND BACKGROUND
Net Perceptions[1] is the market leader in personalization
and recommendation tools for e-commerce and call cen-
ters. By early 2000, the company’s core technology, the
Net Perceptions Recommendation Engine, had won nu-
merous awards, several patents, and had garnered numer-
ous customers for the company. However, the recom-
mendation engine frequently required substantial integra-
tion work and lacked the supporting infrastructure re-
quired to make the system easy for non-technical market-
ing staff to use.

The Net Perceptions Personalization Manager for E-
Commerce[2] product, referred to as NPPM, was in-
tended to address these concerns. The product vision was
to extend the recommendation engine with a rules sys-
tem, provide a simpler API, and add a web-based user
interface and reporting system to allow marketers to
control promotions on an e-commerce site. The details
evolved a lot, but this vision was constant throughout the
development effort.

As this was the company’s flagship product, the planning
process was intense and included a broad cross-section of
the product stakeholders – marketing, support, sales,
testing, development, and senior management. These
groups brought different perspectives to the table, and
they were asked to collaborate more closely than they’d
done in the past. Everything was up for discussion, and
debates continued throughout the development lifecycle
as each group learned more about what the marketplace
wanted.

The development team set up a process that allowed us to
make steady progress in the face of steady change. This
report will focus on that process, and our lessons learned.

2 BIRTHING PANGS - GETTING STARTED
During early 2000, the development team comprised
twenty-four developers broken out into four teams, under
three different engineering managers. Each team was

initially responsible for delivering a maintenance release
of one of the company’s three existing application prod-
ucts, as well as rapidly building a prototype of NPPM.

This proved to be a flawed strategy. The need to deliver
maintenance releases was a distraction and added to the
coordination challenges. The teams selected tools optimal
for their own tasks without an eye towards integration.
The front-end user interface was developed in Microsoft
ASP, which offered the fastest path to a demoable user
interface prototype, and a back-end written in Java,
which allowed the most leverage of the prototype rules
technology. Tying these two systems together would
present problems.

During the time that the engineering groups were work-
ing on completing the maintenance releases, the market-
ing team had fleshed out a complete first pass at require-
ments and functional specifications. These specs were not
finalized, but were a good starting point.

3 FINDING OUR STRIDE - THE NPPM
DEVELOPMENT PROCESS

Although the requirements docs provided a good start,
they weren’t detailed enough to code against. As the
marketing and product management team spent time with
customers, the requirements evolved rapidly – many
features that were “must-have” one week were “off the
list” the next. The team adopted several techniques to
react to this.

Timeboxed Iterative Development
Timeboxed, iterative development had not been used
much at Net Perceptions prior to this project. The team
adopted timeboxed iterations for four reasons: risk man-
agement, clarity of tasks, predictable rhythm, and insula-
tion from constant change. These will each be touched on
below.

Risk areas: The main user metaphor for NPPM was that
of a rules-driven marketing campaign, but the engineer-
ing team wasn’t quite sure what that meant. Our first
iteration was to ignore all the proposed features except
for one: process and execute the simplest campaign pos-
sible. This let us focus; there was a concrete, measurable
finish line to the iteration, and a reasonable amount of
time allotted to get there. We similarly picked the high-
risk areas for each subsequent iteration and tackled them
first.

Clarity: Each iteration started with a concise list of sto-
ries that the system needed to support, which usually fit
on one page. This provided clear goals for the team.
When work couldn’t be completed in the allotted time,

187

stories were moved to the next iteration, and we budgeted
some time in the schedule to allow for that to happen
occasionally.

Rhythm: Each iteration was timeboxed to be 6 to 8 weeks
in duration: 5 to 6 weeks of coding, with 1 to 2 weeks of
system testing and integration time at the end of each
cycle. The stories to be implemented within an iteration
had to fit within that time. This allowed the team a set
amount of time to work independently, with time budg-
eted for integration and testing by the testing group.

Insulation: With the support of senior management, the
product team was instructed that the development team’s
task list within the current iteration was fixed. The stories
for future iterations could be changed as needed to reflect
changing priorities, but the current iteration was off-
limits. This gave the development team a fixed target
within the context of a single iteration.

The stories for an upcoming iteration were negotiated
between the engineering manager and the product man-
ager prior to the end of the current iteration, with review
from the entire product team. There was lots of give-and-
take in the discussion, as proposed new stories were pri-
oritized and estimated. The timeboxing drove the prioriti-
zation effort and gave the product management team the
comfort that if a story slipped out of current iteration,
they’d have an opportunity to review it for the next one.

Establishing the use of timeboxed, story-driven iterations
to control the impact of scope change was the most sig-
nificant management practice we put into place. It al-
lowed us to react quickly to changes, without letting
those changes throw the development process into chaos.

Automated Unit Testing and Daily Builds
The Java-driven side of the team used the JUnit[3] testing
tool to build automated tests into the code. As the code
changed to respond to new requirements, JUnit provided
rapid feedback when we broke things. Developers were
able to test their code quite comprehensively, on demand.
The JUnit tests were also tied in to the build system.

The back-end system was set up for daily builds, which
automatically checked the entire source tree out of the
revision control system (CVS), built it, ran automated test
scripts (supplementing the JUnit tests), and mailed the
results to the entire development team. This gave us daily
feedback on the system’s health.

Focus on the Simple
The development team tried to avoid complexity where
possible. When we couldn’t, we tried to hide it behind
simple interfaces. The interface between the aforemen-
tioned ASP front-end and Java backend was via an XML
document stored in a database. Both systems had to gen-
erate and parse XML, but the XML specification was
codified in a DTD and could be automatically checked.

We also looked for ways to reduce overall complexity.
As a large database-driven Java system, the use of an

Enterprise Java Bean (EJB) app server would seem natu-
ral. However, we determined that we couldn’t justify the
added complexity, both development- and deployment-
time. The system was built as a set of Java servlets run-
ning inside the Apache Tomcat [4] environment.

Similar accommodations were made for reporting tools.

Tight Customer Interaction
Both the development team and the product management
team worked closely with a small set of “lighthouse cus-
tomers” – early adopters who committed to working with
us to help shape the product. We demoed incomplete,
development builds of NPPM to various representatives
from these customers and took their input back to the
development team to integrate into the next iteration.

4 CONCLUSIONS
The schedule only slipped once. Our first committed
release date was at the end of November, which we
committed to in late July. In late September, as we neared
a feature-complete version of the product, the product
team agreed to move the ship date 4 weeks, to December
22nd, to accommodate additional testing and custome
requests

The product did in fact ship on December 22nd, and was
successfully deployed at several customer sites by the
end of Q1 2001. Anecdotal comments from the QA team
were that this was one of the highest-quality pieces of
software Net Perceptions had ever produced. The use of
story-driven timeboxed iterations was key to making our
date and managing requirements throughout the devel-
opment effort. The use of JUnit and nightly builds gave
us instantaneous information on the health of the code-
base. The focus on simplicity kept us from over-
engineering, and the customer involvement kept every-
one focused on why we were building the system in the
first place.

ACKNOWLEDGEMENTS
The work of the Net Perceptions for E-Commerce 6.0
team was incredible. This paper is dedicated to their
effort. Any errors in this paper are the sole responsibility
of the author.

REFERENCES
1. Net Perceptions (NASDAQ:NETP). See

http://www.netperceptions.com

2. As of this writing, product information for Net Per-
ceptions Personalization Manager is available at:
http://www.netperceptions.com/solutions/retail/

3. JUnit is an open-souce automated regression testing
tool. See http://www.junit.org

4. Tomcat is the open-source reference implementation
for the Java Servlet 2.2 specification. See
http://jakarta.apache.org/

