
62

Introducing XP in a start-up

 Roberto Deias Giampiero Mugheddu Orlando Murru
 Fst s.r.l. Fst s.r.l. Fst s.r.l.
 Sesta Strada |Ovest Sesta Strada |Ovest Sesta Strada |Ovest
 Z. I. Macchiareddu Z. I. Macchiareddu Macchiareddu, Uta
 09010 Uta, Italy 09010 Uta, Italy 09010 Uta, Italy
 +39 070 24663030 +39 070 2466 3522 +39 070 2466 3088
 roberto.deias@fst.it giampiero.mugheddu@fst.it orlando.murru@fst.it

Abstract
This paper relates on the on-going process of introducing
XP in an Internet Company. After a brief description of
our experiences with XP we discuss the issues raised by
the introduction of XP in three key areas of our firm:
customer relationships, project management, and
ISO9001 quality assurance.

Keywords
XP, Extreme Programming, ISO9001, ISO12207, Risk
Management.

 INTRODUCTION
Fst is a small firm (160 employees), active in designing,
building and out-sourcing Internet services. Its specific
areas of expertise are building complex portals with
multi-channel access, strict security requirements, sup-
port for digital signatures and various kinds of financial
settlements. Fst is not a software house and aims at
building a partnership with its customers, providing solu-
tions to specific needs.

Fst has made large investments in Java technology for
Internet development. Our project management process is
based on the Rational Unified Process, and we use exten-
sively the Rational tools (Rose, Requisite Pro, SODA
etc.). The firm is in the process of obtaining an ISO9001
certification on its development process. Its quality sys-
tem comprises 19 procedures and guidelines, plus over
30 templates for managing the process of software devel-
opment, so it may be considered quite lean by ISO9001
standards.

In the past two years we have studied extensively XP, as
an improvement on our current practices. The points that
we hoped that XP could address were bloated documen-
tation and software quality. In the process we learnt that
XP is a way of planning and managing a project, and a
new philosophy about risk management.

The rest of this paper briefly reports on the lessons we
have learned while experimenting with XP, and then
discusses the issues raised in favor or against the intro-
duction of XP by people from three areas: customer rela-
tionships, project management, personnel management.
Finally we report on the work we are doing to incorporate
XP within our quality system.

A final note: this paper assumes that the reader is knowl-
edgeable about XP. Key concepts will be used without
any explanation. [1] and [2] are the key references to the
XP terms introduced below.

OUR EXPERIENCE WITH XP
Fst research laboratory has been using XP since February
2001, completing two pilot projects. In the first project
we developed a set of cryptographic components in C++.
We used a pared down XP process leaving out the plan-
ning game and coding standards.

The results confirmed the 20-80 rule proposed by Beck,
namely that if you follow 80% of the process you get just
20% of the benefits. The problem was especially the lack
of control and coordination of the overall process.

Therefore in the second project we decided to apply XP
by the book, with 2-week iterations and half hour track-
ing unit. We tried to release something meaningful every
two iterations. The project objective was to develop a
demo of an e-procurement portal supporting digital sig-
natures and time stamp functionality according to Italian
Law. As a necessary complement we also developed a
time stamp server compliant with RFC3161 and a few
clients for requesting and managing time stamps. The
goal was to demonstrate the use of our legally compliant
crypto components in a real world scenario that our cus-
tomers could understand.

Both projects lasted approx. 3 months and employed 6/7
people. The customer role was played by the director of
the R&D lab. The experience of the team was low, with 5
people having less than 2 years of programming experi-
ence.

Currently we have about 15 people working using XP,
half of them for external customers, and there is a lot of
interest in the firm for this new methodology. Our ex-
perience taught us a few lessons, which we are
passing on:

You need to be cautious when tailoring XP. It is all right
to use some of the XP practices inside another process.
Chances are that these practices are already present in
your process, and you only have to stress them. In the
first pilot, the group was eager to pick up those practices
which were in line with their beliefs on software devel-

63

opment. This is perfecly ok, provided that the aim is just
to improve on the traditional methodologies, not to adopt
XP.

Our experience confirms that it is the synergic interplay
between all practices that allows the XP practitioner to
give up key activities essential in established methodolo-
gies such as upfront requirement analysis and planning
and design exercises. In the first pilot we used traditional
planning, (GANTT charts, RUP iterations), but no writ-
ten architecture or design specifications, and the project
ended up in a middle ground where we did not benefit
from either XP or the traditional methodology.

We found it difficult to develop and maintain an overall
architecture for the project. Kent Beck in [1] says that
the “metaphor” should play much of the role played by
architecture in traditional methodologies. We could not
make this metaphor concept work, maybe because we did
not fully understand it. We used a metaphor for the whole
system to discuss and decide which features should be
implemented or added.

After a few iterations we found that we lacked a clear
overall vision of the system. This could very well derive
from the relative inexperience of the team members. So
we decided to have posters around with sketches of the
architecture or checklists of important points to remem-
ber. These posters were drawn in design sessions that
usually were held at the end of each iteration, as a prepa-
ration for the next planning session. We found that it is
better to keep iteration planning sessions focused on
planning and hold separate design sessions. We also
scheduled in advance the design sessions because inexpe-
rienced programmers are likely to be late in realizing that
some design is called for. We do not know if this is a
sensible thing to do, but there seems to be no clear recipe
in XP for developing an architecture (see [5]).

Refactoring is hard. Refactoring seems to rely on an
aesthetic awareness which can only be developed with
time. The group must have enough senior programmers
so that most of the time each pair has the experience to
do the necessary refactoring. Moreover, the team must
share a basic agreement about software “quality”. Inex-
perience often implies the lack of this common culture,
and this translates in a lot of open-ended discussions of
limited worth.

The systematic and synergic nature of the XP process
facilitates the adoption of each practice. Most program-
mers in the pilot projects, and some of the most experi-
enced ones, had some trouble accepting some XP prac-
tices like simple design, coding standards or test-and-
code. When adopting XP by the book, the focus of the
group shifts to implementing the process as a whole, and
everyone is more inclined to be a little less critic on as-
pects of the process which they find objectionable. In
particular, pair programming is a very powerful way to
discipline programmers by averaging individual idiosyn-
crasies.

Programmers reported an enhanced awareness of the state
of their activities with respect to the agreed plan of the
project. This may seem obvious since XP is all about

maximizing communication. We just want to report that
people with RUP experiences said that the planning
game gave them a stronger feeling of being in control
than traditional planning: each programmer knew where
the project was going, if there was any delay, how good
was the code and this improved his/her motivation.

You need to actively foster involvement in the planning
game. In our experience people new to XP assume a
rather passive attitude during iteration planning ses-
sions. Task cards and user cards do not travel around,
but are traded between the two or three more senior
programmers, who write most of the stuff and are too
ready to advance estimates and suggest possible solu-
tions. Other members of the team do not actively sign on
tasks, but often limit themselves to agreeing on proposed
estimates and accepting a task. Sometimes the situation is
not so clear cut as described above, so the coach must
make sure that everybody feels that he/she is part of the
decision process, and is really the owner of the task de-
scription and estimates.

INTRODUCING XP IN THE FIRM
In order to evaluate the feasibility of adopting XP for
most of our software development projects we conducted
a series of meetings between XP practitioners and inter-
views with people from marketing, project management,
software engineer and quality assurance.

The interviews were conducted informally and involved
9 people, each with some prior knowledge about XP,
although none of them participated in a XP project. The
interviewers had a good prior knowledge of the people
interviewed and of their problems and were able to estab-
lish good communication.

Each interview was organized in three sections: first we
asked about the main problems facing the inteviewees.
Then the interviewers recalled or explained those XP
practices that could be relevant to the issues raised. Fi-
nally, the objections and observations of interviewees
were noted and discussed. The actual questions made
depended on the role of the interviewee in the firm.

It is apparent that the main objections to using XP do not
come from persons actively involved in the software
building process, but from marketing people and person-
nel managers. In the following we discuss the issues
raised in the interviews. These issues reflect without any
doubts the particular situations of an Italian firm based in
Sardinia, and may not be representative of any other
reality.

Customers are not ready to accept the assumption of the
unpredictability of requirements. The people that deal
directly with the customers and whose objective is to
have contracts signed, feel very strongly that they would
have a hard time proposing contracts without a formal
sign off of requirements, fixed time and cost provisions,
and penalties in case some of the terms of the contract
are not honored by the supplier.

64

As known (cfr. [2]), XP requires the constant guide of the
customer or an empowered proxy to lead software devel-
opment. The customer does this by working very closely
with the development team, selecting priorities, clarifying
and redefining the project scope, or, as a last resort, by
extending deadlines. On the contrary, if the customer
requires the definition of the scope, cost and time frame
of the project at the very beginning, then he/she is implic-
itly rejecting the adaptive nature of the XP process.

Our customers do not like contractual provisions that
address the risk of changing requirements. Most of our
customers regard software as just one of the goods that
they acquire, and want to buy it using the same kind of
contractual agreements used for buying other products.

On the contrary, XP, and the agile methodologies in
general, claim that the process of software development
is inherently unpredictable (see [1], [2], [3]), mainly
because of the unpredictability of requirements. How-
ever, we believe that the case proposed in support of this
view is not very strong. An agreement on this point can
be reached among people that basically agree on the
nature of software development. Customers with little or
no experience with software and software projects will
not be moved by sentences like “in software development
requirement changes are the norm” [3], especially if
they have just allocated considerable resources to re-
quirement analysis.

More fundamentally however, the problem seen by our
marketing people is that a lot of our customers do not
seem to care a lot about risk management, which obvi-
ously is one of XP main driving points and advantages.
Maybe this has to do with the peculiarities of our target
market: our customers are large corporations or public
administrations and Fst is often a subcontractor or a
(smallish) partner in a group of large firms that won a
bid. The persons in charge of the project whom we speak
to are rarely the owners of the requirements. Often they
have to play a difficult political part to gather require-
ments in face of unclear legislation and competing re-
quests by their superiors. Moreover our customers often
lack an emotional involvement in the project and their
desire to reach the project goals at optimal costs is over-
shadowed by a constant preoccupation not to make mis-
takes which could be blamed directly on them. If this is
coupled with a incomplete grasp of the technological
issues, it is understandable that our customers adopt a
very conservative approach to software engineering: they
are not eager to assign priorities and do not like speaking
about “plan B’s” and adjustments to the project. Instead,
they like a lot the kind of written “promises” that K. Beck
criticizes in [1]: requirement sign-offs, detailed GANTT
charts, contracts that heap all the risk on the supplier,
who must deliver the “complete” system at a hard dead-
line for a fixed cost.

Lately the similarity between the values at the basis of
XP and the values that led to the development of such
well established disciplines as Supply Chain Manage-
ment or Total Quality Management has been noticed by
various writers (cfr. [3], [6]). We found their ideas really
useful to discuss lightweight methodologies with non-

programmers. These similarities provide an escape route
from discussions based on that kind of examples from
other fields of engineering (mainly civil engineering) that
so many non-technical people seem so fond of. More-
over, these ideas help to lend credibility to people-centric
and agile processes. We think that unpredictability of
software requirements is a much harder concept to sell,
not least because it can be seen as an excuse for sloppi-
ness, lack of vision or plain whining.

XP gives too much visibility on the inner workings of a
firm. The fear of our business people is that by opening
up the development process to our customers, we will end
up having customers going around shopping for specific
people, trying to build the team of their choice for their
projects. This is happening to a certain extent even now
in our firm. Moreover, it is not totally unheard of that a
firm oversells its ability in some specific areas, taking
some risks but confiding that its programmers will be
able to catch up or that it will be possible to find timely,
competent third party help. The customer on-site would
make this more difficult or more risky.

 XP is a process that allows growing and maintaining the
core abilities of programmers. The problem is that in our
software process there is a strong distinction between
programmers and analysts. This distinction has historical
roots and Fst shares it with a lot of software firms, at
least in Italy and maybe in continental Europe. There is a
monotone increase in prestige, salary and visibility going
from programmer, to analyst and then to manager. Only
programmers actually program. The analyst, (who is
usually a team manager), spends all of his time coordi-
nating, planning, coaching, designing, supervising, re-
viewing and interfacing with other areas of the firm.
These activities make the figure of the analyst one of the
busiest in the firm. The problem with this organizational
model is that it is not sustainable in the long run.

In fact there is a truth accepted by most programmers and
by many non-programmers: you cannot improve your
competences in software engineering by just thinking,
speaking or reading. You have to compile something and
make the thing run. And yet, by isolating the analyst from
the menial task of programming, we are guaranteeing the
rapid obsolescence of his technical competence that is the
raison d’etre of his position. At present our firm is
mainly using server side Java programming on applica-
tion servers on Unix platforms. Suppose that in a couple
of years a significant part of our customers start requiring
.NET on WIN64 servers. How is the present crop of
analysts going to adapt to change? In an interview a man-
ager explained to us some ideas for flattening the team
hierarchy and involving the analyst more closely in the
workings of the team he or she is managing. It turns out
that all of his ideas are perfectly compatible with XP,
which addresses these issues in a much more systematic
and thought-out manner, by means of concepts like pair
programming, collective code ownership and planning
game.

XP can make a big improvement on a ISO 9001 quality
system. XP gives very precise guidelines on project man-
agement. In fact we think that XP is as much about man-

65

agement as it is about software engineering. For exam-
ple, XP is very specific about roles and responsibilities in
customer/developer relationship. Similarly for planning:
XP describes in detail the characteristics of the required
input artifacts to the planning game (tracking data, pri-
oritized user stories, exploratory prototypes), suggests
procedures to conduct the planning sessions and a prac-
tical method to check progress. Moreover XP is agile: it
concentrates on a few key aspects of the process and
leaves all the freedom to customize the rest, and so it can
be adapted to different needs of formal validation, con-
figuration management etc, which is a big plus when one
wants to adapt a true XP process to a ISO 9001 frame-
work. We think that this is a step forward from other
software development methodologies, which are very
clear about the artifacts that must be produced, provide
templates for all sorts of documents, but are often unsat-
isfactory when it comes to explain the steps required to
produce the documentation and the quality characteris-
tics of the artifacts.

CONCLUSIONS
We are enthusiastic about XP, and it is difficult for us to
imagine a software project where we should not try to use
XP, at least in the domain of Internet development. XP is
both a methodology and a novel approach to software
development. We found that it is not a good idea to “cus-
tomize” the core practices of XP. However, nothing in
XP prevents the practitioner from integrating XP with
everything that can be useful for the project: verification
teams, design documentation, configuration management
etc. In a sense XP requires these add-ons because it is so
focused on the core practices that leaves a lot of neces-
sary processes and tools out of the spotlight.

Our experience shows that XP is no magic either. If the
team lacks the necessary programming experience results
will be at best marginally better than what one would
expect from any other methodology. This for two rea-
sons: 1) the inexperienced team will be poor at applying
the XP process; 2) XP relies on the team checking itself
constantly for simple design, code quality and rate of
progress, and this requires experience. However, we got
to the conclusion that XP is a good choice even in this
situation, mainly because XP is a robust and flexible
methodology. In a project currently under way, staffed
with people with 1 year of XP practice and 2 years of
programming experience, the coach has to travel a lot and
is available only for iteration planning, but the team is
still functioning effectively, producing at the expected
rate. If we had adopted the normal RUP-based life cycle,
the project would have been stalled by the inability of the
lead to work on the start-up documents (vision, architec-

ture etc.), and would have degenerated in an unstructured
effort. On the contrary, even without supervision and
coaching, the XP programmers tend to stick to the rules,
which are easy to follow, as they do not require anything
that does not have an immediate, perceptible value for the
programmers.

As discussed above, we found that the most problematic
feature of the XP methodology is the requirements on the
on-site customer. Frankly, we would never worry about
a project where the customer is in charge, knowledge-
able, flexible, available and risk conscious as required by
XP. Give just some competence to the developing team
and you will have a project bound to success, regardless
of the methodology. At least this is true in our market,
where projects are quite simple, ranging from a few
weeks to 6 months elapses and up to an effort of 15 man-
year. As it is, we are often practicing a split process,
managing the development process with XP, but with
limited direct interaction with the customer. The coach
acts as a customer proxy to the team, relying require-
ments, priorities and deadline at the best of its knowl-
edge, and interacting with the customer in usual ways,
through documents and plans. At the same time we are
making it clear that we are using XP internally and we
are trying to educate our partners, but it looks like a long
way to go.

REFERENCES
1. Beck, K. Extreme Programming Explained:

Embrace Change, Addison-Wesley, 2000; ISBN
0201616416.

2. Beck, K. Fowler, M. Planning Extreme Pro-
gramming, Addison-Wesley, 2001; ISBN
0201710919.

3. Fowler, M. The New Methodology;
http://martinfowler.com/articles/
newMethodology.html.

4. Fowler, M. Is Design Dead?;
http://martinfowler.com/articles/
designDead.html.

5. ISO/IEC 12207:1995: Information tecnology –
Software life cycle process.

6. EN ISO 9000-3:1997, Quality Management
Guidelines for Sofware Development

7. Poppendieck, M. Lean Programming, Software
Development Magazine , May-June 2001
(http://www.poppendieck.com/lean.htm)

