
182

Refactoring Tags for automatic refactoring of framework dependent
applications

 Stefan Roock Andreas Havenstein
 Apcon Workplace Solutions & Apcon Workplace Solutions
 University of Hamburg
 Vogt-Kölln-Str. 30 Friedrich-Ebert-Damm 143
 Hamburg, Germany Hamburg, Germany
 +49 40 42883 2302
 roock@jwam.de havenstein@jwam.de

ABSTRACT
We describe the concept of refactoring tags which
supports XP for framework development – especially
simple design, refactoring and short releases.

A set of four refactoring tags (similar to Java meta tags)
reify modifications done to the framework in its source
code. Migration tools interpret the refactoring tags and
support application developers when migrating to a new
framework version with a changed API.

Keywords
Refactoring, framework, refactoring tag, meta tag.

1 MOTIVATION AND INTRODUCTION
Refactoring frameworks puts extra load on refactorings,
(cf. [2]) since most refactorings change the framework
API. Framework dependent applications have to mi-
grate to new framework versions (cf. [4]). The caused
efforts hinder framework refactorings. Therefore
frameworks are often designed up front and then their
API is maintained stable. This is in contrast with XP
techniques of simple design, merciless refactoring and
short releases. We experienced problems with these XP
techniques for the JWAM (see [1]) framework devel-
opment.

Based on our experience we developed the concept of
refactoring tags which supports XP for framework
development. Refactoring tags reify modifications done
to the framework in the framework source code. Migra-
tion tools interpret the refactoring tags and support
application developers when migrating to a new frame-
work version with changed API.

The migration tools are implemented for Java on the
base of Java meta tags and can be transferred to other
programming languages easily.

2 MODIFICATIONS
Refactorings create modifications like the following:

• Move class or interface to another package
• Create, remove, rename class or interface
• Create, remove, rename method or attribute
• Change modifiers of class, method or attribute
• Create or remove inheritance between classes and

interfaces
• Change method return type or parameter list
• Change method semantics (contract of the method,

cf. [3]).
These modifications can be assessed by their compati-
bility:
Compatible No changes to framework API.

Incompatible The application has to be migrated manu-
ally.

 A modification is compatible if it does not change the
API of the framework and doesn’t therefore cause any
migration effort for the application. An incompatible
modification changes the API of the framework and
causes migration efforts for applications. Nearly all of
the above modifications are incompatible.
3 REPRESENTING MODIFICATIONS IN

SOURCE CODE
The main idea of our approach is to represent modifica-
tions in source code in an abstract way. For Java we use
meta tags for this purpose. We define the following
meta tags which we call framework tags:

• Past: Denotes the previous version of the signature
of a class, interface, method or attribute. The signa-
ture of a class or interface is defined by its modifi-
ers, name and super classes and super interfaces.

• Future: Denotes the coming version of the signa-
ture of a class, interface, method or attribute.

• Paramdef: Defines default values for parameters.
• Default: Defines a default implementation of ab-

stract methods.
Past Tag
The past tag denotes the previous version of an element.
Consider the class Customer which inherits from Busi-
nessObject.

/**
* @past public class Client
* extends BusinessObject
*/
public class Customer
extends BusinessObject [...]

It is obvious that the class was renamed from Client to
Customer and that the modification is automatable.

Future Tag
The future tag is similar to the past tag but directed into
the future. Let’s assume that the framework developers
want to remove the inheritance relation between Cus-

183

tomer and BusinessObject. In this case they don’t per-
form the modification directly but announce it with the
future tag.

/**
* @future public class Customer
*/
public class Customer
extends BusinessObject

Since the future tag does not denote the inheritance it is
clear that the inheritance relation will be removed. Now
the application developers have to remove all polymor-
phic assignments of customers to business objects. The
advantage is that the application developers have at
least one framework version cycle to adapt the applica-
tion. Therefore migration is much more smoother since
the application is compilable during the whole migra-
tion process.

Paramdef Tag
The paramdef tag denotes default values for methods.
If the parameter list changes as a result of a refactoring,
the corresponding method calls or overwriting methods
can be migrated automatically. Changes of a parameter
list are recognizable for a tool via the past tag described
above. The default values are needed in two cases:

• A parameter is added to a framework method.
For migrating method calls within application
classes to the new method signature, a migration
tool can automatically add the given default pa-
rameter in calls of framework methods. Consider
the following refactored framework method:

/**
* @past public boolean comp(int
c)
* @paramdef delta = 0.001
*/
public boolean comp(int c,
float delta)

{
return abs(_value – c) < delta;

}

In application classes calls to this method can be
automatically completed with the default value for
the new parameter.

Call with old signature: obj.comp(42);
Call after migration: obj.comp(42, 0.001);

• A parameter is removed from a framework
method
In this case the default parameter values are used to
keep the code consistent inside of overwritten
methods in application classes. For demonstration
we reverse the refactoring of the example above.
The comparison method in the framework is now
reduced to a single parameter method:

/**
* @past public boolean comp(int
c,
* float delta)
* @paramdef delta = 0.001
*/
public boolean comp(int c) {[..]}

An overwriting method in an application class de-
rived from that framework class has now to be mi-
grated to a single parameter method. This can be
done by moving the former parameter to a local
variable with the same name and the value of the
default parameter.

The old implementation of the derived applica-
tion method has two parameters:

public boolean comp(int c, float
delta)
{
return abs(_value – c) < delta;

}

After the migration it is reduced to a single parame-
ter method. The removed parameter is replaced by
a local variable initialized with the given default
value:

public boolean comp(int c)
{
float delta = 0.001;
return abs(_value – c) < delta;

}

Default Tag
If new framework methods are defined in an interface
or an abstract class, the default tag defines a default
implementation for these methods. This is important for
the migration of derived or implementing application
classes. New framework methods can be detected via
the since tag. These new defined methods with the de-
fault implementation can be automatically inserted into
the application classes. Consider the customer interface
with the new method getName inserted.

public interface Customer
{
/**
* @since 1.2
* @default return ”no name”;
*/
public String getName();

}

In all implementing application classes the new get-
Name method can be inserted automatically with the
default implementation:

184

public String getName()
{
return ”no name”;

}

4 ADDITIONAL EXAMPLES
In Section 3 we described some basic modifications
applied to the framework and how the tags provide a
means to support the application classes migration.
There are some cases which seem to be more difficult
but which can also be handled by analyzing the frame-
work tags.

Examples for non-automatic-migratable changes to the
framework are

• Change of the return type of methods
If the return type of a method changes, all occur-
rences of method calls had to be adapted to that
new return type. This is not automatable and the
application code would not be compilable any more
due to these incompatible changes.

• Change of contracts that specify the semantics
of a method
Application code based on methods with the old
semantics would be compilable but could lead to
runtime problems and exceptions due to the
changed contracts.

To avoid the semantic problems and keep the applica-
tion code compilable a combination of copying and
renaming framework methods is a solution.

Lets assume we want to change the semantics of a
framework method. In the former framework version
the description method provided access to some infor-
mations with an index starting at 0. In the new version
the first element is accessed by an index starting at 1.

The new version of the method denotes the old precon-
dition (require) of the method’s contract:

/**
* @contract require 1<=index<=count
* @past require 0<=index<count
*/
public String description(int index)
{
assert 1 <= index && index

<=_count;
return _entries[index-1];

}

The application code relies on the old contract with
indices starting at 0 and is not automatic migratable to
the new semantics.
To keep the existing applications consistent with the
new framework version, the old method with the old
semantics is copied and renamed:

/**
* @contract require 0<=index<count
* @past public String
* description(int index)

* @future #undefined
*/
public String
deprecated_description(int index)

{
assert index 0 <= index < _count;
return _entries[index];

}

Detecting the past tag a migration tool can change
automatically the application classes to use the depre-
cated_description method which provides the proper
semantics for the old application classes.

The future tag with the #undefined value indicates that
this method will be removed in future versions of the
framework. The future tag with value #undefined is
equivalent to the Java deprecated tag.

A similar procedure is applicable to methods with a
changed return type.

The resulting application code is compilable and has the
same behaviour as the old application code with the old
framework. Again a smooth migration is possible.

5 COMPATIBILITY WITH REFACTORING
TAGS

With these meta tags the compatibility classes increases
by three. Now we have:

Compatible No changes to framework API.

Automatable A software program can migrate the appli-
cation to the new framework version.

Semi-
Automatable

A software program can migrate the appli-
cation. Application developer has to make
some choices from a limited set.

Deferred-
Incompatible

An incompatible modification is an-
nounced but not done yet. Application
developers have at least one version cycle
to migrate the application.

Incompatible The application has to be migrated manu-
ally.

When the framework tags are used, most modifications
change their compatibility from incompatible up to
”better” compatibilities.

The following table shows for some framework modifi-
cations the compatibility classes reached by the usage
of our tags:

Modification Tags used Compatibility class

rename method past automatable

rename class past automatable

add interface
method

since, default automatable

change method
signature

past, paramdef automatable

change method past, future deferred-

185

return type Incompatible

change method
semantics

past, future deferred-
Incompatible

6 TOOL SUPPORT
For the framework tags to work properly in professional
contexts tool support is necessary:

Past Tag
Generator

Generates past tags for all elements with their
current signature.

Migrator Performs automatable migrations and creates
todo lists from deferred-incompatible modifi-
cations.

The Past Tag Generator is used by framework develop-
ers whenever the development of a new framework
version is started. Then it replaces all existing past tags
with new ones. The new past tags first refer to the cur-
rent version of the annotated element. When framework
developers modify an element the past tag denotes the
previous version of the element.

The Migrator is used by application developers to mi-
grate applications to new framework versions. The
migrator can be configured with a framework fitted
with tags and the application to be migrated. The migra-
tor tool then generates a todo list. A todo list entry indi-
cates the position in the application source which has to
be adapted due to the changes in the framework. The
entry describes the framework modification and the
compatibility class. All automatable refactorings can be
performed by the migrator tool automatically. All
semi-automatable refactorings can be interactively
performed. The application developer has to choose
between the several alternatives presented by the migra-
tor tool. Then the tool performs the choosen adaption.
Occurrences of incompatible modifications are also
indicated in the todo list but have to be performed and

checked out manually by the application developer.

7 STATE OF WORK
The described concept is implemented as a prototype
for the JWAM framework (cf. [1]). The described con-
cepts should be usable for components, class libraries
and sub systems as well.

One experience from first usages is that refactoring tags
avoid using the ”change comments” feature of modern
refactoring browser. This feature does not only rename
a class or method and all references but is able to guess
which comments have to be changed as well. The
guessing is done based on string matching and finds the
refactoring tags also.

8 ACKNOWLEDGEMENTS
We thank the collegues at Apcon Workplace Solutions
GmbH for their support in testing the described ideas
and concepts. Also we owe thanks to the reviewers for
substantial enhancements for this paper.

REFERENCES
1. JWAM framework. http://www.jwam.org

2. M. Fowler: Refactoring: Improving the Design of
Existing Code. Reading, Massachusetts, Addison-
Wesley, 1999.

3. B. Meyer: Design by Contract. In: D. Mandrioli, B.
Meyer (Eds.): Advances in Object-Oriented Soft-
ware Engineering. New York, London: Prentice-
Hall, 1991, pp. 1-50.

4. S. Roock: eXtreme Frameworking - How to aim
applications at evolving frameworks. In: [5]. pp.
71-82.

5. G. Succi, M. Marchesi (Eds.): Extreme Pro-
gramming Examined. Reading, Massachusetts, Ad-
dison-Wesley, 2001.

