
172

DiPSUnit: a JUnit Extension for the DiPS Framework

 Sam Michiels, Dirk Walravens, Nico Janssens, Pierre Verbaeten
 DistriNet, Dept. of Computer Science, K.U.Leuven
 Celestijnenlaan 200A, B-3001 Leuven, Belgium,
 +32 16 327640
 {Sam.Michiels, Dirk.Walravens}@cs.kuleuven.ac.be

ABSTRACT
Testing system software (such as protocol stacks or file
systems) often is a tedious and error-prone process. The
reason for this is that such software is very complex and
often not designed to be tested. This paper describes
DiPSUnit, a JUnit extension, which allows fine-grained
as well as composed units to be tested consistently. Al-
though non-trivial test support is provided, using DiP-
SUnit keeps testing simple and intuitive.

Keywords
Testing, framework, component software engineering

1 INTRODUCTION
Testing system software, such as a protocol stack or a file
system, is a complex, tedious and error-prone task. The
basic problem is that, for performance reasons, system
software is often designed as a monolithic block of multi-
threaded software. This prevents such software from
being tested properly because of two reasons: first, it is
very difficult to isolate the basic building blocks as stand-
alone units that are independent from each other. Second,
concurrency code, which is introduced in such multi-
threaded system software, often crosscuts the code [3].

We present the DiPSUnit test framework, which is an
extension of JUnit [2] specifically for DiPS (Distrinet
Protocol Stack) [4] units. DiPSUnit offers a uniform way
of testing because all DiPS units share the same interface.
This keeps testing very intuitive and simple. However,
the provided support for testing units in isolation in the
presence of concurrent behavior and external control
events is not trivial.

2 THE DIPS FRAMEWORK
DiPS is a Java component framework based on inde-
pendent units that are connected as a pipe-and-filter ar-
chitecture. The framework supports the development of
system software such as protocol stacks or file systems.
Communication between DiPS units is intercepted by the
framework. This allows for units to communicate
anonymously, since they have no explicit notion of other
units in the system.

A DiPS unit is an object-oriented entity with a very spe-
cific (fine grained) responsibility. A distinction has been
made between purely functional units and concurrency

units. This separation allows the concurrency model to
change, independent from the functionality in the system.
DiPS units can be grouped together into more coarse
grained composed units (such as a protocol layer in a
protocol stack). All units process an explicit semantic
entity (Packet). These packets can enter and leave a
DiPS unit through one or more entry and exit points. A
singular DiPS unit (such as a fragmenter or an encryption
unit) with one entry and one exit (PacketReceiver
and Packet Forwarder) is shown in detail in the left
figure. Next to the data (Packet) flow there is a control
flow that allows inter-unit control communication via
DiPS events.

3 DIPS UNIT TESTING
The DiPSUnit framework provides a consistent way to
test both singular and composed units. DiPSUnit has
been developed specifically for DiPS but has some inter-
esting generic test characteristics. Since the test frame-
work is separated from a tested unit, a test-first develop-
ment [2] approach is possible.

The DiPSUnit framework provides generic infrastructure
support to plug in a unit (regardless of its number of
entries or exits). First, a PacketContainer is pro-
vided to manage so-called packet buffers. An entry buffer
is used to store specific test packets created for the test.
An exit buffer collects result packets that are received
from the tested unit during a test run. The PacketCon-
tainer is initialized by creating a packet buffer for
each entry and exit of the unit. Second, the Linker links
a unit with the DiPSUnit framework. This means that
each entry point of the unit is linked with an entry buffer
in the Packet Container and each exit point is
linked with an exit buffer. Linking an exit buffer is done
by introducing a specific PacketReceiver that puts
incoming packets from the unit's exit point into the exit
buffer. This is done completely transparent for a test
developer.

The figure shows three (composed) units, which are
linked in DiPSUnit. For clarity reasons, the figure shows
the PacketContainer as 4 queues instead of 1 logi-
cal entity and unit details, such as entry and exit points,
are removed in the composed units.

4 DIPSUNIT EXTENSIONS
In this section, we extend DiPSUnit to deal with more
complex issues such as testing of multi-threaded (asyn-
chronous) units and handling control flow stubs.

Dealing with Concurrency
When a concurrency (active) unit is present within a
composed unit, a test must be suspended until all packets
have arrived or until a timeout occurs (to avoid being
suspended forever in case of an error). The active unit in
the middle figure has an internal thread and a buffer to
store incoming packets.

DiPSUnit provides test support for such asynchronous
units by offering a Monitor. A test should simply ask
for such a Monitor to be present, the rest will be trans-
parently handled by the framework. The framework pro-
vides the Monitor with a PacketContainer and a
timeout value after which the test should continue. Be-
cause some DiPS units may introduce or remove packets,
a test must specify the number of packets to expect at
each of the exit points of a unit. Therefore we extend the
Packet Container so that the number of packets to
be expected at each exit buffer can be specified. DiP-
SUnit introduces a special PacketReceiver which
not only stores incoming packets into the associated exit
buffer, but also signals the Monitor for each packet it
receives. This is again transparent for a test developer.
The Monitor will send a wake-up signal to resume the
test when all expected packets have arrived.

Control Flow Stubs
DiPS units can exchange control information by using
DiPS events. DiPSUnit offers support to intercept control
events in order to allow such units to be tested in isola-
tion.

A test developer describes how to respond to a given
event, by creating a Policy (which is semantically
equivalent to a stub [1]). Such a Policy simulates the
expected behavior or an error (such as a Policy that
duplicates or omits the reply for a certain event, to simu-
late network errors). Separation of policies from test
cases, allows reuse of generic policies. All Policies
are registered in the DiPSUnit EventManager, to-
gether with the event type that triggers each of them.
DiPSUnit offers an Event Catcher, which is respon-
sible for catching specific types of events. The default
EventCatcher simply delegates incoming events to
the EventManager to look up the associated Policy
(see right figure). More complex EventCatchers (e.g.
to collect a number of (different) events before looking
up the associated Policy) can easily be introduced.

Note that DiPS units can be replaced (e.g. by stubs) with-
out any code changes.

5 CONCLUSION
The combination of JUnit, DiPS and DiPSUnit is very
promising. JUnit offers the basic infrastructure to develop
test cases and test suites. DiPS facilitates unit testing
because it forces to create modularized architectures and
because it allows units to be replaced without changing
any code, thanks to its anonymous communication
model. Especially for complex system software, concur-
rency support in DiPS comes in very handy. Thanks to all
this support, DiPSUnit can consistently test DiPS units,
from fine grained to composed unit level. However, de-
veloping test cases is still intuitive and simple. Our ex-
perience is that DiPSUnit encourages a test-first devel-
opment approach [2].

6 INFORMATION AND QUESTIONS
[5] provides a more detailed description of DiPSUnit. For
more info, contact Sam.Michiels@cs.kuleuven.ac.be.

ACKNOWLEDGEMENTS
This research has been carried out in order of Alcatel Bell
with financial support of IWT (project SCAN #010319).

REFERENCES
1. Robert V. Binder, Testing Object-Oriented Systems:

Models, Patterns and Tools, Addison-Wesley, 1999.

2. E. Gamma, K. Beck, Test infected: Programmers love
writing tests, http://www.junit.org/, 1998.

3. G. Kiczales, e.a., Aspect-Oriented Programming, In
proceedings of ECOOP’97, 1997.

4. F. Matthijs, Component Framework Technology for
Protocol Stacks, Ph.D. thesis, K.U.Leuven, 1999.
(Available at http://www.cs.kuleuven.ac.be/~samm/netwg/dips/)

5. S. Michiels, D. Walravens, e.a., DiPSUnit: an Exten-
sion of the Junit Test Framework for DiPS, Tech. Re-
port CW-333, K.U.Leuven, Dept. Comp. Science,
2002.

PacketForwarder

PacketReceiver

Unit

DiPSUnit

Com-
posed

unit

DiPSUnit

Composed

unit

Policy

Event

Catcher

DiPSUnit

A

B

C

F

E

D

A

B

C

F

E

D

active

Consistent test approach in DiPSUnit: a singular DiPS unit, a composed unit with internal concurrency and a com-
posed unit which sends (and receives) control events

