
95

Quantitative Survey on Extreme Programming Projects

Bernhard Rumpe Astrid Schröder
 Software & Systems Engineering Software & Systems Engineering
 Munich University of Technology Munich University of Technology
 Arcisstr. 21 Arcisstr. 21
 D-80333 Munich, Germany D-80333 Munich, Germany
 +49 89 289 28129 +49 89 289 28129
 Bernhard.Rumpe@in.tum.de Astrid.Schroeder@in.tum.de

Abstract
In recent years the Extreme Programming (XP) com-
munity has grown substantially. Many XP projects have
started and a substantial amount are already finished. As
the interest in the XP approach is constantly increasing
worldwide throughout all software intensive application
domains, it was time to start a first survey on XP. This
paper presents the results of 45 evaluated questionnaires
that have been received during the Summer 2001 sur-
vey.

Keywords: Extreme programming, XP, survey.

INTRODUCTION
Based on a series of books and a large body of confer-
ence, magazine, and journal papers, the Extreme Pro-
gramming approach to software development is widely
known and has become rather prominent. A number of
pilot projects using the XP approach has been started.
However, many companies are still facing the question,
whether, in which projects and in which form they
should move from their traditional or object-oriented
approaches to software development to Extreme Pro-
gramming. Supporters of XP claim a larger number of
benefits, but today statistical quantitative support for
these claims has not been given. As XP exists for a
number of years, it is time to start gathering data.

This article describes a survey based on 45 question-
naires, which was conducted during Summer 2001. In
Section 2, we describe the content of the survey, and
how people have been addressed. In Section 3, we pre-
sent a condensed version of the survey results and give
a final outlook in Section 4.

For those interested in an introduction to or further
reading on XP, we recommend [1,2,3,4] or more scien-
tific articles in the proceedings [5] that contain e.g. [6].
The full study is available as [7].

STRUCTURE OF THE SURVEY
The questionnaire
The purpose of this survey was to get a general under-
standing of the current situation in XP projects, the
problems, the kind of projects using the XP approach,
the results, the background of the team members etc. As
XP people are typically busy, we decided not to ask all
interesting questions, but to concentrate on three blocks
of total 33 questions. The questions are:

Block 1. On the Company
1,2: Name of project, person, company are not dis-
closed, but were collected for possible additional ques-
tions and to prevent several questionnaires on the same
project.
3. Role of person who filled in this questionnaire
4. City and country where company is located
5. Some information about the company (how big,

founded when, what line of business is it in, how
many other XP projects were carried out before?, ...)

Block 2. On the XP-Project
6. Duration of project (from when till when)
7. Team size
8. Total manpower e.g. in person-months
9. How good was the general software engineering

training/knowledge of the team members initially?
10. How many team members had made experiences in

XP previously?
11. How many development companies/independent

consultants were involved?
12. Why did you decide to develop this project with

XP?
13. Programming languages used
14. Technologies used
15. What kind of software was developed?
16. Has it been a development from scratch (new sys-

tem), legacy maintenance, or adding new functional-
ity on an existing system?

17. What was the project structure (how many people
were there for each role)?
• Programmers (writing production code and code

for component tests)
• Customers
• Testers (helps customer developing functional

tests)
• Coach
• Further roles (consultant, big boss, tracker...)

18. How many customers with different stakes (re-
quirements, forms of usage for the system) were in-
volved?

19. Did the project terminate successfully? (9=very
successful, 0=not at all successful)

20. What were the major reasons for its success / fail-
ure? Can you priorize them

21. If it was a success what were the main obstacles?
How dangerous have they been?

22. XP was invented to make software development
more successful. Some of its main goals are listed
below. In your XP-project, could these goals be

96

reached? If not, explain the obstacles? (5=fully
achieved, 0=as always, -5=much worse)
• Deliver software in time
• Let developers have fun with their work
• Develop software with a high quality (less bugs)
• Late changes don't cause high costs, because one

can react fast to changes
23. Which XP-Elements did you use in the Project?

(9=fully used, 0=not at all) Please say for every
element how strong you used it (9-0) and if you con-
sider it helpful(h), improvable(i), or even making-
difficult(m) for success of development.
Planning Game
Short Release Cycles
Metapher
Simple Design
Testing
Refactoring

Pair Programming
Common Code Ownership
Continuous Integration
40-Hour-Week
On-Site Customer
Coding Standards

24. Please give reasons for the three least used con-
cepts, why you didn't use them? Did you explicitly
decide not to, or had there been other obstacles?

25. Do you have improvement suggestions for any of
the XP elements (perhaps in your project you al-
ready used this elements in the way you improved it
for yourself)?

26. Have you used additional concepts, tools or model-
ing languages that go beyond the pure XP approach?
How did they integrate to XP?

27. Some comments about the project and the project
progress

28. Further comments

Block 3. Future plans and personal background
29. Will you use XP again?
30. Are you actively advocating XP in the future?
31. Are you trained in UML or a similar modeling

language?
32. If you know UML, did you miss it?
33. Would you like to use UML combined with an XP

approach, e.g. for generation of code or tests?

How the data was gathered
To achieve credible results, the questionnaire was dis-
tributed among several channels worldwide. Mailing
lists, direct contact and addresses of contact persons
found in the internet were used. Interestingly mailing
lists were relatively inefficient (only 7 of 45 answers
from there). From the directly approached persons,
22% responded with a filled in questionnaire. Others
responded, that they aren’t allowed to officially ac-
knowledge that they are doing XP (“Guerilla XP”).

The questionnaire contains questions to be answered
with free text as well as with a numeric rating. The
latter are grouped and usually represented in charts. The
free text questions were evaluated and (if possible)
classified according to the context of the question.
Some of these answers are cited below.

RESULTS OF THE SURVEY
Some core results
• Almost all of the projects were rated successful.
• 100% of the asked developers would reuse XP in

the next project, when appropriate.
• The frequent absence of the customer was identi-

fied as high project risk.
• Problems with XP often come from “barriers in the

mind”: management was skeptic, company philoso-
phy didn’t allow on-site customer, developers refused
pair programming.

• Most useful XP elements were common code own-
ership, testing and continuous integration. Most criti-
cal metaphor and on-site customer.

• As most important success factors have been men-
tioned: testing, pair programming and the focus of XP
on the right goals.

Potential problems with the survey
The filled questionnaires showed a clear trend to rate
the project outcome as success. Only one of 45 was
rated partial success, none as failure. This may have
three reasons: (1) XP is a real silver bullet, (2) develop-
ers tend to evaluate their work more positive than cus-
tomers would (and we didn’t have access to customers),
and (3) developers from unsuccessful XP projects don’t
bother about XP anymore and either haven’t been
reached or didn’t want to answer. But the high success
rate clearly demonstrates that XP enables successful
projects.

The second problem is that, whenever a new technology
is used, the early adopters are usually higher motivated.
This alone may make XP projects more successful than
traditional projects, without XP itself being superior.
Reasons for XP projects were among others: “personal
interest” with 17,8%, “good experience in other pro-
jects” and “customer/management wanted it” with 20%.
Therefore, “personal interest” was a partial motivator
and thus had some influence on the survey outcome,
that we unfortunately cannot quantify.

Statistics on the participating companies
The companies and their continents are structured as
follows (the most important countries were: USA 24%,
Germany 20%, Switzerland: 13%, UK: 13%)

6,7%
0,0%

2,2%
2,2%

28,9%
60,0%

0% 10% 20% 30% 40% 50% 60%
n.A.

Africa
Australia

Asia
America
Europe

The industrial sectors split as follows:

97

17,1%

7,3%

4,9%

7,3%

9,8%

12,2%

12,2%

29,3%

0% 5% 10% 15% 20% 25% 30%
n.A.

Others

Biotechnology

Bank/Insurance

Consulting

other
IT/Elektronics

Internet/Web

SoftwareDevelopment

XP is used in traditional as well as new economy com-
panies of all sizes:

36,6%

29,3%

12,2%

14,6%

7,3%

0% 10% 20% 30% 40%

n.A.

≤ 150 years

≤ 50 years

≤ 10 years

≤ 5 years

22,0%

4,9%

9,8%

17,1%

36,6%

9,8%

0% 5% 10% 15% 20% 25% 30% 35% 40%

k.A.

≤ 500.000

≤ 100.000

≤ 1000

≤ 100

≤ 10

Employees

Age of company

Background of the respondents and teams
In a third of the questioned teams the members are well
experienced in software engineering in general. In an-
other 42% of the teams the experience was mixed (ex-
perts and newcomers).

The roles of the respondents were distributed as fol-
lows:

11,6%

2,3%

18,6%

25,6%

41,9%

0% 10% 20% 30% 40% 50%

n.A.

Other

Developer

Coach

Teamleader

In more than 50% no external consultant was member
of the project team, 21% had one consultant, 24% even
more (5% didn’t answer that question).

That XP has a high expansion rate can be concluded
from the fact that more than half of the questionnaires
were filled on the first XP project:

30,2%

18,6%

51,2%

0% 10% 20% 30% 40% 50% 60%

n.A.

involved in
earlier XP projects

first XP
project

In several larger XP projects the start was quite con-
ventional:

• “The project itself started about two years ago
using a standard development methodology. The deci-

sion to transition to XP was taken because of all the
usual difficulties of managing development projects.”

The projects
51,1% of the projects were finished, 48,9% still run-
ning. The following project schedule indicates the rap-
idly growing interest in XP:

11,1%

2,2%

2,2%

4,5%

15,6%

22,2%

42,0%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
n.A.

1996

1997

1998

1999

2000

2001
Project started in

The duration of the projects was rather equally distrib-
uted among: less than six months, one year, and up to
three years.

The size of the teams, however, was somewhat surpris-
ing, as larger XP projects do exist and are considered as
successful:

4,4%

11,1%

48,9%

35,6%

0% 10% 20% 30% 40% 50%
≤ 40 persons

≤ 15 persons

≤ 10 persons

≤ 5 persons

The application domain was rather mixed, with the
following peaks:

2,2%

15,6%

15,6%

28,9%

37,8%

0% 5% 10% 15% 20% 25% 30% 35% 40%
n.A.

Tool/ framework

Insurance-/
banking software

Web-software

Other

About 73% of the systems were developed completely
new, the others either added new functionality to a
given system (15%), developed a new part interacting
with a legacy system (9%) or were maintenance pro-
jects (11%) (multiple selection was allowed).

The languages used were distributed as follows (again
multiple selection allowed):

11,1%
2,2%

11,1%
17,8%

73,3%

0% 20% 40% 60% 80%
Others

Lisp
Smalltalk

C++
Java

It is not surprising that XP is most efficient and there-
fore mainly used with high-level (OO) languages. Simi-
lar for technologies that have been used:

98

8,9%
17,8%

20,0%
46,7%
46,7%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
EJB

COM/ CORBA
JSP/ ASP

DBMS/ SQL
XML/ HTML/ WML

Why XP was used?
One of the most interesting questions: What were the
reasons for applying the XP approach? The free text
answers have been categorized as follows:

8,9%

11,1%

17,8%

28,9%

33,4%

0% 5% 10% 15% 20% 25% 30% 35%

Customer/management wanted it

Good experience in other projects

Personal interest
to the project settings

Frustrated from other methods

Fitted optimally
/seemed to be best

In many cases, XP seemed to be the appropriate
method. Some statements:

• “Basically, after reading and thinking and
talking about it a lot, I thought that it made more
sense then any other methodology I'd read about. I
didn't agree with all of it but I decided we should give
it a try...”.

• ”We felt that the XP is simple & better Proc-
ess.”

Others were frustrated from traditional techniques and
relaunched the project

• ”The project commenced in March 2000 using
CMM Level 5 outsourced developers using Unified
method. Code delivered unsatisfactory. Development
brought in-house February 2001, and project re-
started”

XP in the project
55% of the projects had more than one person acting as
customer, 25% at least one, 4.6% none. 14% didn’t
answer this question, which could lead to the assump-
tion they had no on-site customer as well. Furthermore,
several customers were “substitutes” played from the
project manager, sales persons or the programmers
themselves. The pretty high rate for customers indicates
either that the on-site customer indeed plays a vital role
in XP projects or that a higher rate of the project teams
were already satisfied with a “normal” customer, who is
more closely integrated into the team, but still not a
perfect on-site customer.

Testers, coaches and programmers were distributed as
follows:

4,4%
55,6%

28,9%
6,7%

4,4%

0% 20% 40% 60%
n.A.
≤ 5

≤ 10
≤ 15
≤ 30 Programmers

8,9%
6,7%

33,3%
51,1%

0% 20% 40% 60%
n.A.

none
one

several

Customers

20,0%
26,7%

15,6%
37,8%

0% 10% 20% 30% 40%
n.A.

none
one

several
Testers

6,7%
24,4%

15,6%
53,3%

0% 20% 40% 60%
n.A.

none
one

several

Coaches

In more than 60% of the projects additional roles, such
as time tracker have been mentioned.

Of particular interest have been the assessment 12 XP
elements. Each of them was rated on a scale from 9
(strongly used) to 0 (not used at all). The average values
and the deviation distribute as follows:

7,01
4,09

7,17
7,56
8,01

7,29
7,77

7,27
6,98

3,19
6,86

6,03

0 2 4 6 8 10
Coding Standards
On-Site Customer

40-Hour-Week
Continuous Integration

Common Code Ownership
Pair Programming

Testing
Refactoring

Simple Design
Metaphor

Short Release Cycles
Planning Game

2,26
3,24

2,37
2,11
2,14

2,6
1,7
1,9
1,96

3,14
2,8
3,05

0 2 4

Average value Deviation

Metaphor was seen most critically: It was not used by
40% of the projects at all, because to many respondents
it wasn’t clear how to apply it. The on-site customer got
a bad rate, mainly because customers have not been as
available as it was desired. On the other hand, common
code ownership seems to be the easiest to realize. So it
is consistent that the metaphor and the on-site customer
are the two elements that need improvement most:

Helpful Can be improved

M
ak

es
 s

uc
ce

ss
 m

or
e

di
ffi

cu
lt

0% 20% 40% 60% 80% 100%
Coding Standards
On-Site Customer

40-Hour-Week
Continuous Integration

Common Code Ownership
Pair Programming

Testing
Refactoring

Simple Design
Metaphor

Short Release Cycles
Planning Game

Project goals
Questions dealing with project progress and results
were to be answered relative to traditional approaches
in a scale from 5 (much better), to 0 (as always) to –5
(much worse). Interestingly none of the answers in-
cluded a number below 0. This is a strong case for XP.

The detailed numbers have been split between ongoing
and finished projects. The questions where, whether the
costs of late changes have been reduced, the quality of
the result was increased, the work was more fun, and
the software can/could be delivered in time better than
before:

99

4,04

4,13

4,18

3,77

4,11

3,95

4,4

4,44

3,4 3,6 3,8 4 4,2 4,4 4,6
Delivery in time

Fun factor ofwork

Quality of
result

Costs of late
changes

running
finished

Interestingly, both the cost of change and the quality
were seen less positive from the finished projects than
from ongoing ones. This effect sustains that changes in
later stages of the project still have higher costs of
change and the projects are seen less optimistically.
Furthermore, design flaws usually occur at the end of
the project, thus reducing the quality ratings. But, al-
though the optimism is less after projects are finished,
the rating of 3,77 still indicates that the costs of late
changes are much less in XP projects than in traditional
ones. Reasons for this may be that refactoring, rigorous
testing techniques and the omission of redundant docu-
mentation enables changes and lean (“simple”) software
produces less rework when changed. Interestingly, the
fun factor for finished projects is higher than for ongo-
ing ones. This may come the fact that people tend to
forget negative experiences earlier than positive ones.

Difficulties with XP elements
Knowing the ratings of their usefulness, it is not surpris-
ing, what the difficult elements of the XP approach
were:

0% 10% 20% 30% 40% 50% 60% 70% 80%
2,2%

4,4%
4,4%

6,7%
8,9%

15,6%
15,6%

20,0%
20,0%

31,1%
66,7%

68,9%

Continuous Integration
Common Code Ownership

Short Releases
40-Hour Week

Testing
Pair Programming

Simple Design
Coding Standards

Refactoring
Planning Game

On-Site Customer
Metaphor

While the metaphor was not used largely, due to diffi-
culties to understand it, the problems with the on-site
customer had other reasons. Some citations:

• “On-Site Customer: This would be great, but
we did not have a chance to experience it.”

• “Hard to convince the customer to be on-site
always.”

• “[Customer] did not participate as much as
would have been preferred.”

• “On-Site Customer, didn't use this because we
couldn't get a customer to participate.”

• “The customer was very busy on other projects
...”

On the other hand, there were also cases, where the
customer wasn’t necessary all the time, or wasn’t able
to play his part accordingly:

• “On-Site customer - We didn't need him on-
site 100%.”

• “Customers not really competent (or to busy)
to write stories.”

This indicates how important it is to have the customer
willing and able to support an XP project.

Project success
In a rating from 9 (full success) to 0 (failure) all except
one projects rated between 7 and 9. Average of the
running projects was 8,1, of the finished projects sig-
nificantly smaller: 7,6. As above, this indicates that
running projects are estimated more optimistic than
finished ones.

The following success factors have been identified:

2,2%
8,9%

11,1%
11,1%

13,3%
17,8%
17,8%
17,8%

0 5 10 15 20%
Commited management, customer

Motivated team
Well trained developers

Priorizing of tasks, story card planning
Good communication to customer, mgmnt.

XP goals: quality, meets customer needs
Pair Programming

Testing

Comments on the success factors were:

• “Tests and pair programming had prio 1 as
success contributions.”

• “Test, test, test. Write test cases first. Have a
good test driver available for ALL components.”

• “Quality Software delivered on time.”
• “Stability and defect rate is excellent.”

Pair programming seems to be much harder to realize:

• “I was most sceptical about this [Pair Pro-
gramming] before; I'm most in favor of it now.”

• “The Pair Programming was a major benefit
to the project. Coding was completed much faster and
there was immense knowledge transfer between the
programmers.”

• “Pair Programming: never decided to use it at
100\%, had two developers in team who refused to do
it or were very difficult to work with.”

Project risks
Being asked what they consider as the most important
risks for the project success, the respondents answered:

8,9%
11,1%

15,6%
15,6%

28,9%

0% 5% 10% 15% 20% 25% 30% 35%
Unskilled developers

Not trained in XP enough

Problems with technology,
missing tools

 Opposition against XP
Problems with On-Site Customer

Thus the most critical problems are the missing or un-
willing on-site customer, mental opposition against XP
by one or some of the participants, but interestingly also
technical problems. The opposition could come from a
variety of sources, such as management, other depart-
ments, developers or the customer. Some comments
indicate, that a non permanently available customer can
be at least partially replaced by the planning game.
Other comments:

• “No customer on site. Not too dangerous since
there were clear requirements and regular meetings.”

100

• “Lack of an on-site customer - very dangerous,
causes a lack of focus in the project.”

• “On-site customer - the current culture of how
software development "works" makes it extremely
hard to apply this in practice, i.e. to involve a non-
technical stakeholder as a peer within the team. In-
stead, the relationship between engineers and users
are implicitly viewed as ‘adversarial’.”

• “On-Site Customer, difficult from a logistic
point of view; not very well compatible with com-
pany's culture.”

Although, the customer(s) sometimes have been avail-
able, they caused problems by not being able to priorize
tasks or to describe test plots.

Partly XP projects have been carried out without in-
forming the customer like in a “Guerrilla XP”:

• “Project management had no trust in team and
XP - very dangerous.”

• “The only obstacle was time and the customer.
The customer wasn't informed...”

On the technological side, questions on modeling tech-
niques such as UML showed, there is some interest in
combing UML in the XP approach. 35% of the respon-
dents used UML in the project. The desired main pur-
pose for UML in an XP project was for communication
(28,9%) and for code and test generation (13,3%). A
majority of 53,3%, however, doesn’t want to see UML
in XP projects at all.

Conclusions on the XP approach
The question, whether XP shall be used again have been
answered with “yes” by 93,3%, whereas the remaining
6,7% wanted an improved XP. All 100% of the respon-
dents even want to actively advocate XP in the future.
This demonstrates that XP is superior to some of the
traditional approaches at least in the domains it was
used. However, it also raises the question, whether, the
survey only reached XP supporters and should therefore
be treated carefully. This has been discussed earlier
already.

OUTLOOK
This survey has to be understood as an initial survey on
the use of XP in real world projects. The XP community
has grown up and more and more XP projects will be
finished. Therefore, more surveys on XP need to come
and to refine the data gathered with our survey in Sum-
mer 2001. Actually we feel it too early to come up with
final conclusions based on this single survey, but more
surveys will follow and will either strengthen or change
our findings.

As discussed, the pretty high rate of developer statisfac-
tion with XP and the equally high number of people
rating their projects a success demonstrate that XP is an
attractive approach to software development. The com-
pany structure also indicates, that XP is by no means
restricted to the New Economy or the internet world,
but is appealing for all innovative companies.

No doubt, a living methodology such as XP will im-
prove, as the body of knowledge will grow. It will be
extended with traditional elements and will be applied
to new domains, such as large and well structured tele-
communication systems, embedded systems software,
as well as to larger projects. Furthermore, tool support
will improve and lead to an adaptation of the impor-
tance of XP concepts.

Not only based on this survey, we believe XP tech-
niques belong to the portfolio of a well trained software
engineer in the same way as more traditional tech-
niques. This enables the software engineer to flexibly
react to upcoming projects needs.

ACKNOWLEDGEMENTS
This work was supported by the Bayerisches Staatsmin-
isterium für Wissenschaft, Forschung und Kunst
through the Bavarian Habilitation Fellowship and the
German Bundesministerium für Bildung und Forschung
through the Virtual Softwaereengineering Competence
Center (ViSEK). Special thanks go to our colleague
Guido Wimmel, Michele Marchesi for helping us iden-
tifying contact persons, our partners BMW, ESG,
Mummert + Partner, Siemens and all participants of the
survey.

REFERENCES
1. Beck, K. Extreme Programming Explained. Addi-

son-Wesley, 1999

2. Beck, K., Fowler, M. Planning Extreme Program-
ming. Addison-Wesley, 2000

3. Fowler, M. Refactoring. Addison-Wesley, 1999

4. Jeffries, R., Anderson, A., Hendrickson, C.: Ex-
treme Programming Installed. Addison-Wesley,
2000

5. G. Succi, M. Marchesi. Extreme Programming Ex-
amined. Addison-Wesley, 2001

6. Jacobi, C., Rumpe, B. : Hierarchical XP – Improv-
ing XP for large scale projects. In: [5]. 2001

7. Rumpe, B., Schröder, A.: Quantitative
Untersuchung des Extreme Programming Prozesses.
Technical Report. TUM-I01 (in print). Munich Uni-
versity of Technology. 2001.

