
86

Challenges for Stakeholders in Adopting XP

 Peter Bailey Neil Ashworth Nathan Wallace
 Synop Pty Ltd Synop Pty Ltd Synop Pty Ltd
 PO Box 1024 neil@synop.com nathan@synop.com
 Artarmon NSW 1570 Australia
 +61 2 9411 8744
 peter@synop.com

Abstract
Adopting XP is a challenge both to incorporate new prac-
tices into an organisation’s software development meth-
odology and for the individuals concerned. We identify
several groups of stakeholders who must typically adjust
to change, which aspects of XP are often challenging, and
why this is so.

Keywords
Stakeholders, challenges, adoption of XP experience

INTRODUCTION
Adopting a new software development process, espe-
cially Extreme Programming (XP) with its strong empha-
sis on people rather than process, is always a challenge.
There are many contributing factors to the difficulties
involved. Classically, this can be considered an exercise
in change management [4]. In this paper, we examine the
twelve standard XP practices and how they challenge the
main stakeholder groups in software development. We
draw on our experience in introducing XP within three
quite different companies to distil some common issues
that arise.

RELATED WORK
A number of people have written about how to adopt XP.
Beck in [1] following suggestions from D. Wells advises
picking a worst aspect of current practice, address it with
XP techniques, and repeat until all worst problems are
solved. Wells and Buckley [13] provide an experience
report on the process of adopting XP one practice at a
time within a company. Fowler argues attempting to start
(at least on a new project) with adopting all the practices
“by the book”, before adapting any of them [7]. Collins
and Miller write on the need for adapting a new software
process to suit local conditions [3]. They nominate sev-
eral alternatives to follow, including doing it “by the
book”. Sommerlad [10] discusses how itopia used XP for
an Internet server infrastructure product for external cus-
tomers, and the difficulties in prioritizing the needs of
multiple customers. Talbott and Miller discuss the chal-
lenges in persuading the “Gold Owner” role to support
the adoption of XP [11]. Gittins et al provide a qualitative
research study of the adoption of XP in a medium sized
business with reference to the twelve standard XP prac-
tices [8]. Our paper differs from all of these prior works
by specifically focusing on the different stakeholders who
are involved in the process of adoption, and how XP
practices impact on them.

STAKEHOLDERS
In the literature on XP (see [1, 2] as a starting point),
there is considerable emphasis on the two most signifi-
cant stakeholders in software development, programmers
and customers. Our experience suggests that there are
often four other stakeholder groups who affect or are
affected by the adoption of a new software development
process.

These additional stakeholders are:

• Quality Assurance (QA) – these people perform
activities relating to system testing, code quality, de-
fect analysis and so on.

• Documenters – various types of documentation are
written for a software product, ranging from techni-
cal documentation to user manuals and marketing
material.

• Project managers – have overriding responsibility for
the delivery of a project, and typically act as the cen-
tral link between the programmers and management.

• Management – overall responsibility for a com-
pany’s performance, with reporting duties to direc-
tors and/or shareholders and investors.

Stakeholders vs Roles
In [1], responsibilities within the XP process are identi-
fied by role. Beck makes it clear that individuals may
carry out one or more roles, and that a single role may be
held by several people. To be similarly clear, the stake-
holders we identify are simply groups of responsibilities
that are carried by one or more individuals. In larger
companies, individuals will often only belong to one
stakeholder group. As XP is adopted, these responsibili-
ties may change for some of the people involved. We use
the distinction to clearly identify the responsibility group-
ings before adoption (stakeholders) and during and after
adoption (roles).

Kinds of Development Organisations
In our experience, development organisations can have
significantly different nature. One was a startup com-
pany, with no established development methodology.
Another was a small development company, with less
than 5 developers. The last was larger, and had a team of
developers, testers, analysts, and managers.

Kinds of Users
XP talks about a customer role, but we believe it is also
instructive to consider the final user of the software. In
some senses, the customer role is a proxy for the per-
ceived needs of the user(s). The XP practices require a

87

customer representative role within the team capable of
making decisions about what features are built. The cus-
tomer role is also responsible for representing the user’s
needs in a way that makes business sense. Sommerland
argues in [10] that in practice this is not always possible
depending on the kind of customer(s). They built a single
product, with multiple external customers, so changes for
one customer had to be balanced against changes for
others. In our experience, we have seen at least three
kinds of user. The first, with three real user organisations,
but represented by a single on-site and available customer
representative, was the most effective. Another was a
single user organisation, located in another country. In
this case, the development team had to play the customer
role internally, using prioritisation advice from the user
organisation. The final example was where there were no
existing users at all, and so business decisions as a cus-
tomer had to be made internally.

XP PRACTICES
Beck argues in [1] that the 12 standard practices of XP
are interdependent, that the weaknesses of one practice
are made up for by the strengths of the others. In fact,
only a few of the practices are usually considered conten-
tious by a new adoptee of XP in our experience. Some
practices are relatively novel, but the rest are generally
regarded as best practice for rapid development. McCon-
nell’s study [9] of rapid development practices identifies
the benefits and risks of these. In [7] Fowler makes a case
for why all practices should be adopted if possible when
starting out with XP, before adapting to the local condi-
tions. What follows is our observation of which of the
practices challenge the different stakeholders when first
adopting them.

Pair Programming
Pair programming is where two programmers work to-
gether to produce code. Pair programming is most
strongly resisted by two stakeholders: programmers and
management. Programmers typically resist because most
have no experience of programming other than on their
own. Some programmers enthusiastically adopt it after
trying it, while others remain resistant. The challenge for
project managers is to find ways to encourage pair pro-
gramming, and to help find appropriate balances in the
levels of experience to make it a satisfying experience for
both people in a pair. There are many papers written on
pair programming (see [5] for a start), so we will not
consider the issues for programmers further. Management
are likely to resist pair programming, but for different
reasons. The standard reservation is that pair program-
ming is expected to reduce productivity, and that pro-
grammers are expensive. The only ways to address this
perception are by the body of published results on bene-
fits of pair programming and by measuring its effects
within the organization. QA people are likely to appreci-
ate the benefits of pair programming due to the decline in
defect rate that it tends to produce. There is low to no
affect on customers or documenters. (In subsequent prac-
tices, we will not comment if we believe there is little or

no affect on a stakeholder group.)
Collective Ownership
Collective ownership allows any programmer to change
any code in the system. Collective ownership is often a
challenge, especially for programmers, and to a lesser
degree project managers, customers and management.
Programmers conditioned to programming on their own
find it difficult to accept that other people can modify
their code. There is often a strong sense of ownership to
written code that must be lost before collective ownership
can be accepted. Often programmers need to understand
how the whole system fits together before being confi-
dent to change it. This hesitation is particularly true for
programmers who arrive partway through a project. The
challenge facing project managers, management and
customers is the loss of an identifiable single point of
responsibility for any part of the system. In other proc-
esses, there is usually a single programmer who can be
identified as the person responsible to talk to about some
part of the system. With collective ownership, in theory
they should be able to talk to any programmer at all. In
practice, there will still only be a few programmers who
have constructed any particular part of the system, but
identifying who they are is more complex.
Testing
Testing in XP insists on a test-first strategy where unit
tests are written before coding begins. Programmers
again are usually the most reluctant to adopt this ap-
proach, as it requires a change to their habitual work
practices. On projects which adopt XP part way through,
there is even more resistance as there are already large
bodies of code without any tests at all. Programmers are
often reluctant to create tests for old bits of code. The
time taken to write the tests is begrudged as it apparently
does not contribute to producing code. Lastly, there is
overhead in establishing the automated unit testing
framework and learning how to write effective unit tests.
Programmers tend to slip back into old habits and put off
writing tests until the completion of a user story. Since
this will often come near the end of an iteration, there is
schedule pressure to complete the story, and tests are less
effective. QA people are substantially affected by the XP
testing regime. As programmers take on more QA re-
sponsibility, there is less classic QA work required. In the
early stages, experienced QA people can play a valuable
role in educating programmers about how to write good
quality unit tests. They can also take responsibility for
establishing the unit testing framework.

Project managers, management and customers are gener-
ally supportive of tests as it provides increased evidence
that the system is working. As McConnell identifies [9],
testing is used as an early warning indicator – if there is a
problem, it is best discovered as early as possible so that
there is time to fix it.

On-Site Customer
An on-site customer acts to represent and make clear
decisions of the customer’s business needs. Obviously,
the biggest challenge is for customers themselves, who
now take an active part in the process of software devel-

88

opment. The key change for customers is that they must
make hard decisions about what goes in or out of the
product. They must also learn how to determine whether
user stories are accepted, which means they must learn to
formulate acceptance tests. QA people are affected as
they are the best people to assist the customer in develop-
ing formal acceptance tests or in translating the cus-
tomer’s specification of what constitutes acceptance of a
user story into an automated (if possible) functional
test(s). Programmers must learn to interact with the cus-
tomer to discover what is required in each user story.
Programming has often been taught or practiced as a
solitary activity, so interpersonal communication skills
may need to be learnt. Project managers and management
may be faced by two challenges. XP allows little room
for disguising the true rate of progress. An on-site cus-
tomer is rapidly aware of exactly how fast development
proceeds, and the planning game makes them aware of
how it is likely to proceed in future. If this rate is not
sufficient to meet deadlines, customers are prone to fall
back on old habits and demand increased development
speed by various flawed practices. Project managers and
management are responsible for educating the customer
on their rights in prioritising what is developed when, and
preventing the return of bad old ways. XP tends to give
frequent progress indications which let management
demonstrate a working system is deliverable. Document-
ers may also find that an on-site customer alters their
traditional activities. Much of the system (in terms of the
details of how user stories are interpreted) is defined
iteratively in interactions between the customer and pro-
grammers. Working to capture these details as they are
discussed may provide more effective documentation of
the system from a user perspective, at the cost of in-
creased and/or incremental workload.

Metaphor
A metaphor provides a simple analogy for what the sys-
tem should be like or do. Programmers typically are just
as, if not more, comfortable working from a metaphor as
they are working from a 500 page functional require-
ments document or an architecture diagram of “big boxes
and connections” [1]. The same problems remain – how
to translate the ideas into code. Customers too seem
happy to accept working from metaphors. There is a
degree of unfamiliarity, and sometimes a desire to see
architecture diagrams. However, since many customers
are not technically inclined, the best way to reassure
people is with working prototypes. The stakeholders most
affected by a switch to using a metaphor are the testers
and documenters. In both cases, there are no longer de-
sign documents which in principle define how the system
should operate. Thus they are required to spend more
time discovering exactly how it does work, which in-
volves more communication skills. Project managers are
affected, as now they must explain initially in terms of
the metaphor. Management is likely to be uncomfortable
about the lack of details. XP tends to be vaguer than
traditional approaches about how something is going to
work in the early stages of a project, but then provide far
more statistics and observable progress indicators as

iterations and releases are completed. Unfortunately, at
the adoption stage, management is left with less informa-
tion than typical, which makes the risk factor appear
higher.

The Planning Game
The planning game determines what stories get built each
iteration and release. The primary parties involved are
customers and programmers. The main challenges facing
them when adopting XP are learning how to write good
user stories, and how to estimate them respectively. Also
both customers and programmers have to learn the
boundaries of their responsibilities and rights. Again,
this becomes a learning exercise in communication. Pro-
grammers particularly may initially find the planning
game a waste of time when they could have been coding.
Naturally it pays off in a better understanding of the cus-
tomer’s real requirements, and how the different stories
fit together. There are several challenges for the project
manager. First, they must adjust to a completely new way
of deciding what schedule is followed for development as
the customer now gets to choose, and adjust to using user
stories as the unit of development. Second, they must let
go of some of the responsibility in deciding what each
programmer is working on. In early adoption stages, we
have found that it is still helpful for the project manager
to play a part in guiding each programmer towards par-
ticular user stories which have a natural fit with the pro-
grammer’s abilities. Third, they must accept that the half
day or day spent in the planning game is a necessary cost
in the schedule of each iteration. Fourth, there is in-
creased overhead in preparing for each planning game
activity, both for iterations and releases.

Refactoring
Refactoring is the art of adjusting the code to make it
simpler. Programmers unfamiliar with the technique may
find this a challenge, as it is not an aspect of program-
ming often taught, and is often best done by practice or
observation. Project managers and managers are not
substantially affected by the practice, other than needing
to accept that refactoring does take time, and this must be
allowed for in the schedule. Documenters and QA may
both be affected by refactoring, as the process of refactor-
ing may involve changes to existing code interfaces.
Thus, depending on how much work has been done al-
ready around the code being refactored, they may need to
redo some of it. Documenters should also consider refac-
toring their own documents frequently, to avoid unneces-
sary duplication.

Simple Design
Simple design is doing the simplest thing possible while
keeping the rest of the system working. Programmers
often find this a challenge, due to their fascination with
new technology. McConnell [9] refers to it as “gold-
plating” and nominates minimal specification and re-
quirements scrubbing as practices for keeping design
simple. Of course in XP, it is up to the customer to decide
on which requirements can be scrubbed. The challenge
for the customer is in accepting that their vision of the
system almost always contains unnecessary or overly

89

complex features. The interactions with programmers on
estimating a particular feature’s likely development effort
and the process of learning to sacrifice features to get a
story delivered are two important early lessons for cus-
tomers. The challenge for project managers is to help
constrain the programmers’ natural tendencies to develop
more complex code than is necessary.

40-Hour Week
A 40-hour week dictates that programmers do not work
more than 40 hours each week writing code. Program-
mers have little resistance to a 40-hour week, other than
when they are highly motivated, in which case they may
well wish to work a little longer. Customers, project
managers, and management have the biggest challenge.
In the face of schedule pressure, almost always the first
response is to suggest programmers should work longer
hours. There is a substantial set of published studies on
the number of hours worked and actual productivity.
McConnell [9] quotes figures and reports from numerous
sources in support of his assertion that anything other
than voluntary overtime has an immediate and dramatic
negative effect on productivity.

Coding Standards
Coding standards require that all code be formatted and
written in a common way, with meaningful naming stan-
dards. Programmers are the people most challenged by
this practice if they have not previously had to work with
other people or read other people’s code. The challenge
for the project manager is to find a coding standard ac-
ceptable to the programmer group, and to find ways to
enforce it if required.

Small Releases
Small releases require the system be driven into a work-
ing and most business useful form every two to three
months. The challenge for project managers is to allocate
enough resources to accomplish the release process,
which is more work than just having a working system.
All stakeholders usually end up having to spend some
effort working on the release specifically, rather than
their normal activities. All stakeholders gain a sense of
satisfaction in seeing a working release – it provides a
tangible sense of accomplishment.

Continuous Integration
As with small releases, continuous integration is a fairly
non-controversial practice. It is essential for ensuring that
the system is always working, and everyone likes a work-
ing system. The main challenge arising from it is really
for the project manager, to ensure that there are sufficient
resources to allow integration by all programmers on a
regular basis without undue delays. There is also the need
to make sure that the source code control system is man-
aged to allow testers access to versions which are stable
for them to test against.

CONCLUSIONS
Of the twelve standard XP practices, only a subset actu-
ally tend to provide challenges for several of the six
stakeholder groups we identify. Of the rest, many of them
are regarded as best practice in achieving rapid develop-
ment, and impose relatively small challenges to only one
or two of the stakeholders. The common theme to adopt-
ing all the practices is that one or more changes are in-
volved for the stakeholders. As such, we believe it is
valuable to consider active change management practices
when adopting XP, with an awareness of the systems of
stakeholders who are going to be affected most. Pro-
grammers are perhaps most affected by adopting XP, and
one of the key skills they require to accommodate the
changes is communication – with each other, with the
QA and documenter people, with their project managers
(and management if required), and most importantly with
the customer. As such, it reinforces Denning and
Dunham’s assertions in [6] that value skills are a vital
core to IT professionals.

REFERENCES
1. K. Beck, Extreme Programming Explained, Addison-

Wesley, (2000).
2. K. Beck and M. Fowler, Planning Extreme Pro-

gramming, Addison-Wesley, (2001).
3. C. Collins and R. Miller, “Adaptation: XP Style”, in

Proceedings of XP2001, (May 2001), 54-57.
4. Change Management Resource Library, online at

http://www.change-management.org.
5. A. Cockburn and L. Williams, “The Costs and Bene-

fits of Pair Programming”, in Extreme Programming
Explained, Addison-Wesley, (May 2001), 223-243.

6. P. J. Denning and R. Durham, “The Core of the
Third-Wave Professional”, Communications of the
ACM, Vol. 44, No. 11, (Nov 2001), 21-25

7. M. Fowler, Variations on a Theme of XP, online at
http://martinfowler.com/articles/.

8. R. Gittins, S. Hope, and I. Williams, “Qualitative
Experiences of XP in a Medium Sized Business”, in
Proceedings of XP2001, (May 2001), 122-126.

9. S. McConnell, Rapid Development, Microsoft Press,
(1996).

10. P. Sommerlad, “Adopting XP”, Ch. 24 in Extreme
Programming Explained, Addison-Wesley, (May
2001), 423-432.

11. N. Talbott and R. W. Miller, “Selling XP to the Peo-
ple who Buy”, in Proceedings of XP2001, (May
2001), 72-74.

 12. D. Wells and T. Buckley, “The VCAPS Project: An
Example of Transitioning to XP”, in Extreme Pro-
gramming Explained, Addison-Wesley. (May 2001),
399-422.

