
176

Test-First Development with Mock J2EE, JMS, and JNDI

Shaun Smith
ClearStream Consulting

205 5th Ave SW

Suite 3710

Calgary, Alberta Canada

1 403 809-3085

shaun@clrstream.com

Jennitta Andrea
ClearStream Consulting

205 5th Ave SW

Suite 3710

Calgary, Alberta Canada

1 403 264-5840

jennitta@clrstream.com

Gerard Meszaros
ClearStream Consulting

205 5th Ave SW

Suite 3710

Calgary, Alberta Canada

1 403 560-2408

gerard@clrstream.com

INTRODUCTION
Having recently begun developing applications that de-
pend upon the Java Message Service (JMS) [5], we
searched the Internet for experiences on testing JMS
applications. Finding nothing, we set out to determine
how applications built on JMS could be unit tested.

In a message-based architecture, processing is performed
when a message is received on a queue. Message proc-
essing may involve arbitrary computations and database
interactions and usually results in yet another message
being placed on another queue. The challenge was to
determine out how to develop in a test-first approach
when the JMS API does not readily permit the usual
MockObject [3] approach of passing the appropriately
configured MockObjects into objects to be tested.

BACKGROUND
The JMS API defines “a common set of interfaces and
associated semantics that allow programs written in the
Java programming language to communicate with other
messaging implementations” [6]. JMS is an implementa-
tion independent API for messaging products in the same
way that JDBC is an implementation independent API for
relational databases. With the introduction of Message
Driven Beans in version 2.0 of the Enterprise Java Beans
(EJB) [4] specification, JMS is poised to become an im-
portant part of J2EE development. The evolution of test
strategies for JMS applications is necessary if we are to
practice test-first development when using these tech-
nologies.

MockObjects were devised as a way of verifying that a
piece of software that is expected to invoke specific
methods on other components is indeed invoking those
methods. The usual procedure when using MockObjects
is to create a mock implementation of a class, create an
instance of it, and configure it to expect certain method
calls in the course of a test.

MockObjects examples typically show the MockObject
being passed in to the object under test as one of the
arguments of the particular method under test. This is
certainly possible when you are defining the API of the
object under test but presents an interesting dilemma
when the object under test is expected to acquire the
(possibly mocked) object by other means.

RECEIVING A MESSAGE
Applications use JMS to receive and send messages.
Messages can be received in one of two ways: calling
receive() on a QueueReceiver (which will block
until a message is received),

Message m = aQueueReceiver.receive();

or by implementing the MessageListener interface and
registering for notification when a message is received.

public class MyListener
implements MessageListener {
public void onMessage(
Message message) {
// process message

}
}
...
aQueueReceiver.
setMessageListener(myListener);

Implementations using either of these approaches appear
readily testable. The latter though the direct invocation
of the onMessage() of a MessageListener with
an appropriately configured Message object and the for-
mer through the use of a mock QueueReceiver con-
figured to return a Message object when receive() is
called. But using the receive() technique offers a
particularly problematic challenge—a QueueRe-
ceiver must be obtained via the JMS API and cannot
be passed in. We’ll see the details when trying to send a
message.

SENDING A MESSAGE
As stated above, it is typical for the processing of a mes-
sage to involve the generation and sending of new mes-
sages. The following code sample (devoid of error
checking) illustrates what has to be done to send a mes-
sage using JMS.

jndiContext = new InitialContext();
queueConnectionFactory =
(QueueConnectionFactory)
jndiContext.lookup(
QUEUE_CONNECTION_FACTORY_NAME);

queue = (Queue)
jndiContext.lookup(QUEUE_NAME);

177

queueConnection =
queueConnectionFactory
.createQueueConnection();

queueSession =
queueConnection.createQueueSession(

IS_TRANSACTED,
ACKNOWLEDGEMENT_MODE);

queueSender =
queueSession.createSender(queue);

message =
queueSession.createTextMessage();

message.setText(anXmlDocument);
queueSender.send(message);

USING MOCKOBJECTS WITH JMS
The last line in our Sending a Message example is the
line of primary interest. This is the line that actually
sends a message—the line we want to confirm occurs or,
depending on the test scenario, does not occur. Unfortu-
nately, as the sample illustrates, replacing the queue-
Sender with a MockObject is not easy. The queue-
Sender object is obtained after a series of method calls
which lead back to a Java Naming and Directory Service
(JNDI) lookup on an InitialContext object that is
instantiated. The queueReceiver of the message
receipt example is obtained through a nearly identical set
of message sends. However, even though it looks impos-
sible, it turns out that a mock QueueSender can be
substituted for the real one.

The key is JNDI. The “new InitialContext()”
creates a new object that provides access to the JNDI
directory—a directory that can be configured with
MockObjects. The setup for a test can configure JNDI
with mock objects that will be returned when performing
a lookup.1

Once a mock QueueConnectionFactory and a
mock Queue have been published in JNDI, all that is left
to do is to configure these mocks and the mocks they
return to correctly execute the series of method send
required to produce the mock QueueSender. Having
achieved this, it is standard procedure to determine if the
QueueSender was asked to send a message to a queue
or not.

CONCLUSIONS
This exercise with JMS has produced two interesting
results. First, frameworks defined in terms of interfaces
are easy to “mock out”. EasyMock [2] was employed to
create all the required mock objects, which was only
possible because JMS is defined entirely by interfaces.
This use of interfaces was intended to allow for the use of
various underlying messaging products—but it also al-

1 “Real” JNDI can be configured with mock JMS objects,
but during testing is easier to install a mock JNDI imple-
mentation too.

lows for the use of a completely mock messaging imple-
mentation. This is a result that we can apply to the de-
velopment of our own testable frameworks and applica-
tions.

Second, JNDI provides an alternative way of getting
MockObjects into an object under test. Papers on the use
of MockObjects thus far have relied upon the ability to
pass MockObject into the method under test. Publishing
MockObjects using JNDI is another way and, in some
cases, the only way to introduce MockObjects into a test
scenario. The J2EE technologies tend to rely on JNDI to
obtain references to services. This reliance provides an
opportunity, not a challenge, for unit testing J2EE appli-
cations.

More generally, this result illustrates that the use of a
directory to locate services, no matter what the language
or framework, provides a means of introducing MockOb-
jects to support testing. In technologies lacking a direc-
tory service, we have used a component factory instead.
Like a directory service, a component factory may be
configured by a test to return suitably initialized
MockObjects.

ACKNOWLEDGEMENTS
The authors would like to thank Doug Berscht of Cogni-
case for providing the opportunity for this work and
Denis Clelland for his enthusiastic support of XP at
ClearStream Consulting.

REFERENCES
1. Freeman, S. “Developing JDBC applications test-

first”, Online at
www.mockobjects.com/papers/jdbc_testfirst.html

2. Freese, T., EasyMock 0.8, Online at
www.easymock.org

3. Mackinnon, T., Freeman, S., Craig, P. “Endo-
Testing: Unit Testing with Mock Objects”, eXtreme
Programming and Flexible Processes in Software
Engineering - XP2000, May 2000.

4. Sun Microsystems Inc., Enterprise JavaBeans™
Specification, Version 2.0, Online at
java.sun.com/products/ejb/docs.html

5. Sun Microsystems Inc., Java Message Service, Online
at java.sun.com/products/jms/docs.html

6. Sun Microsystems Inc., Java Message Service Tuto-
rial, Online at
java.sun.com/products/jms/tutorial/index.html

