
174

One suite of automated tests:
examining the unit/functional divide

Geoffrey Bache
Carmen Systems AB

Odinsgatan 9
411 03 Göteborg, Sweden

+46 (0) 31 720 8137
geoff@carmen.se

Emily Bache
(independent)

Flunsåsliden 25
418 71 Göteborg, Sweden

+46 (0) 31 779 35 14
emily_bache@goteborg.utfors.se

ABSTRACT
Extreme Programming (XP) as written [1] pre-
scribes doing and automating both unit and func-
tional testing. Our experiences lead us to believe
that these two sorts of testing lie at two ends of a
more or less continuous scale, and that it can be
desirable to instead run a XP project with just one
test suite, occupying the middle ground between
unit and functional. We believe that this testing
approach offers most of the advantages of a stan-
dard XP testing approach, in a simpler way. This
report explains what we have done, and our theory
as to why it works.

Keywords
XP, Automated testing, Functional testing, Unit
testing, Test First Development

1. INTRODUCTION
When we introduced XP at Carmen Systems, the
worst problem with our development process was
not our testing procedures being out of control. We
already had automated testing, though not along the
lines outlined by Beck, Jeffries et al [1, 2]. Follow-
ing the advice to “Solve your worst problem first”,
we began introducing other aspects of XP, expect-
ing that at some point testing would become our
“worst problem” and we would start needing sepa-
rate unit and functional test suites. That never
seemed to happen - we have been doing all the
other XP practices in 2 projects for 18 months or
so, and our style of automated testing has not only
not become a problem, but in fact a great success
that seems to fit very well with the rest of XP.

The automated tests we have are perhaps best ex-
plained as “pragmatic acceptance tests” - we run
the system as closely as possible to the way the
customer will run it, while being prepared to break
it into subsystems in order to allow fast, easily
automatable testing. The overall effect is that the
tests are owned by the customer, while being just
about fast enough to be run by the developer as part
of the minute by minute code-build-test cycle.

2. THE CARMEN TEST SUITE
What we have created is an application independ-
ent automatic testing framework written in Bourne

shell and Python. The framework allows you to
create and store test cases in suites, runs them in
parallel over a network, and reports results. For
each test case the framework provides stored input
data to the tested program via options or standard
input redirects. As it runs, the tested program pro-
duces output as text or text-convertible files. When
it has finished, the testing framework then com-
pares (using UNIX “diff”) this output to version-
controlled “standard” results. Any difference at
all10 is treated as a failure. In addition, the frame-
work measures the performance of the test, and if it
strays outside pre-set limits, (for example if it takes
too long to execute) this is also recorded as failure.

New tests are added by providing new input op-
tions and running the system once to record the
standard behaviour against which future runs will
be measured. This behaviour is carefully checked
by the customer, so that s/he has confidence the test
is correct. Once verified, the new test case (ie input
and expected results) is checked into version con-
trol with the others.

Of course, not all differences in system behaviour
are undesirable, and it sometimes happens that a
test failure is registered even though the new sys-
tem behaviour seems as good as or better than the
old. If this happens, it is up to the developer who
made the code change that caused the test to fail to
confirm with the customer that the change is desir-
able, and then check in the new standard results of
the test(s). They must also add a comment explain-
ing why the new behaviour is an improvement on
the old. In this way the behaviour of the system can
evolve in a fully controlled way.

We have been very successful using this technique
at Carmen Systems to test the decision making
middle layer of a larger application - that is the bit
between the user interface and the data storage.
Since we are not testing the system end to end, we
are not really doing Acceptance Testing from the
customer’s point of view. Since we are not writing

110except for run-dependent output such as times and
process IDs, which the framework ignores.

175

tests in the same language as the code, and are not
writing tests for individual classes, we are not do-
ing Unit Testing. However, we do get enough of
the advantages of both kinds of testing to support
XP.

3. STRENGTHS AND WEAKNESSES
The most important ways the testing practices sup-
port the rest of XP are by providing developer
confidence to refactor and customer confidence in
progress being made. The testing we do provides
both of those:

Most of the tests can be run in a matter of
minutes, (the tests run in parallel across a network),
so they can be run at nearly every build, and can
provide fast enough feedback to enable merciless
refactoring.

Every test corresponds to real input and cus-
tomer-verified output, so the list of passing tests is
an accurate measure the customer can use to assess
progress.

This way of testing has other advantages, too. Add-
ing a new test is very straightforward, all it requires
is finding suitable input data then having the cus-
tomer confirm that the output is correct. There is no
application- or feature-specific code to maintain
and refactor, only the generic testing framework
itself. Another useful feature is the ability to run
tests in parallel, using 3rd party load balancing
software to make maximal use of the computing
resources available on the network. This means that
the speed of the test suite is only limited by net-
work resources and the time it takes the longest test
to run.

One criticism that has been levelled at this style of
testing is that without unit tests, Test First Devel-
opment (TFD) as such is not really possible. Beck
describes TFD as a design technique [3], and it has
been reported as such by many practitioners of XP
[4]. However, despite not doing TFD, we have not
had difficulty creating a system composed of ob-
jects exhibiting high cohesion and loose coupling.
We have also not had difficulty evolving the design
via merciless refactoring as new user stories are

implemented. In short, our experience suggests that
TFD is not the only way to evolve a good design
within an XP project.

4. FURTHER WORK NEEDED
The applications with which we have so far used
this testing technique all operate in batch mode,
and do not need to deal with the problem of simu-
lating interactive input. However, we have been
able, on a trial basis, to integrate the test suite with
a third-party GUI playback testing tool (QCRe-
play[5]). The playback tool simulates a user session
in a repeatable way, and in effect makes an interac-
tive application into a batch application. We hope
that future XP projects with a GUI-focus will be
able to build on this trial work. We also believe that
other kinds of applications can usually be made to
run in batch mode with a bit of effort and ingenu-
ity.�

5. CONCLUSION
In this practitioners report we have outlined our
experiences with automated testing in the middle
ground on the scale between unit and acceptance
testing. Our main conclusions are that since the
customer is far better qualified than the developers
to specify tests for the system, they should specify
the tests. On the other hand, the power of placing
testing in a very tight feedback cycle within devel-
opment is essential to enable refactoring and agile
design, so the tests must run quickly. If we can
have one suite of tests that is both customer owned
and fast to run, we have a powerful tool to support
a simpler process than XP as written - with one
type of testing rather than two.

REFERENCES
1. Beck, “Extreme Programming Explained”
2. Jeffries et al, “Extreme Programming Installed”
3. Beck, “Aim, Fire”
http://www.computer.org/software/
homepage/2001/05Design/
4. Community discussion, for example
http://www.c2.com/cgi/wiki?TestDriven
Programming
5.
http://www.centerline.com/productline/qcreplay/qcreplay
.html

