
125

Agility and the Database

 Peter Schuh

Consultant
 Suite 300
 2316 West Belden Avenue
 Chicago, IL 60647-3223
 +1 312 560 5349
 pete@peterschuh.com

Abstract
The database is a vital component in nearly every busi-
ness application. It not only houses the data upon which
code is written, but maintains many of the portals through
which information is driven into, through and out of the
system. While much has been written regarding Agile
Development and the refinement of agile processes, it
seems that development teams often put little considera-
tion toward the database—short of accepting its existence
as a necessary evil. This paper introduces a strategy to
implement a flexible database infrastructure to comple-
ment a continuous integration-style development ap-
proach.

Keywords
Database, Agile Development, Extreme Programming,
Continuous Integration

INTRODUCTION
Automated builds, exhaustive unit-test suites, and, ulti-
mately, continuous integration, enable developers to code
independently, yet concurrently and even fearlessly, on
the same code base. While developers each run, code
against and test their own instance of the application, the
database is typically relegated to a handful of instances
(often one for development, one for the Quality Assur-
ance team, and one for acceptance testing) overseen by
the cranky and cantankerous database administrator.

There is, however, little reason why database instances
cannot be used in nearly the same manner as application
instances. Therefore, developers may each have their own
instance of the database, separate instances may be set
aside for building and unit tests, numerous instances may
be given to QA, and any number of instances provided
for demos, system testing and, ultimately, deployment.
The key difference between the database and application
instances, however, is that compiled code can be razed
and rebuilt with no adverse impact, while schema
chocked full of setup and test data cannot. What is
needed, then, is a system that allows databases to be
maintained instead of rebuilt when object relationships
change, facilitates such upgrades in a painless manner,
and encourages collaboration instead of conflict between
development and the DBA.1

1 I should note that the strategy in this paper is meant for real-world

At ThoughtWorks, we have devised such a system, and it
has been in use for over two years on our much-
chronicled Atlas project. At last count, this fifty-plus
person project had 120 database instances, distributed
across six Oracle servers, in different levels of develop-
ment, supporting branched builds and various flavors of
fake and converted data. The last time we checked, our
DBAs had not gone insane.

THE CASE FOR THE AGILE DATABASE
One might ask why we should attempt to support the
database at all. Why not, instead, endeavor in the oppo-
site direction and code applications that—in develop-
ment—are completely free of the database? One might
recall patterns such as Mock Objects and ObjectMother2,
which encourage test suites that are database independ-
ent. Additionally, there is a solid case for architecting
applications so that they might run entirely in memory,
enabling faster and more-portable test suites.

These are all good practices, but they miss a very crucial
point. Most business applications are built specifically for
the purpose of receiving, processing, storing, distributing
and otherwise interacting with the contents of their data-
bases. That is, without the stuff that is going to live in
that database there would be no reason to build the appli-
cation in the first place. In the end, no amount of unit-
testing is going to replace acceptance tests performed
with real data. User interfaces must be developed and
tested against data—and the more consistent and higher
quality the better.

Furthermore, as the application and the database grow
more complex and undergoes regular rounds of refactor-
ing it becomes increasingly difficult to maintain existing
datasets. Paradoxically, the larger and more complex the
database becomes, the greater the need to maintain those
same datasets—because the cost of rebuilding, from
scratch, the setup data and development and testing envi-

teams that may be tackling sizeable and complex projects. I fully intend
to discuss and make reference to entities and groups—such as DBAs,
QA, and subteams such as conversion and reporting—that go all but
undiscussed in agile literature. The larger the development initiative the
more certain it will involve of such entities. This is when the forced
marriage between agility and the database demands ever more counsel-
ing.
2 For more on these patterns see Mackinnon[1] and Schuh[2], respec-
tively.

126

ronments is so high.

In short, the bigger your project the more you need to
focus on the flexibility of your database. If you have an
application where a user can create the most complex of
objects within five minutes then run an acceptance test,
then, perhaps, you need not worry about making your
database agile. If, however, you have structures that take
thirty-minutes of key-strokes and mouse-clicks to gener-
ate through the GUI, and acceptance test scripts that run
for more than an hour, you can only benefit from invest-
ing in your database.

THE DATABASE INSTANCE
The foundation of this paper’s approach to an agile data-
base is the database instance—an analog to the applica-
tion instance. A database instance is no more and no less
than an easy to obtain—and easy to maintain—copy of
the application database. It will include all the schema
(tables, views, triggers, etc.) and data (both setup and
test-specific) necessary to fully support the application
under development. It will be stand-alone, so that one
developer’s activities will neither impact nor be impacted
by the activities of others on the team.

The database instance is a single concept, but its manifes-
tation depends upon the database product in use. A pic-
ture may best demonstrate this notion:

User
User

User

Oracle Database Sybase Server

DB

DB
DB

File

File
File

Microsoft Access

Here we have three different database platforms with
three different types of objects, all of which we would
term database instances. In Oracle, a single database is
shared by many users, and each user has its own space in
that database. Because each user can contain its own
schema and data apart from and unaffected by any other
user, the user becomes our database instance in Oracle. In
the Sybase world, users and databases are mutually ex-
clusive entities, and only databases can contain schema
and data. Therefore, in Sybase, the database instance is
the aptly-named database itself. Finally, in the pseudo-
database world of Microsoft Access, the application
file—the ultimate, stand-alone repository for schema and
data—serves as our database instance. These three differ-
ent examples should help to define the database instance
as a concrete concept.

THE TWO DIMENSIONAL DATABASE
Time
Database instances are similar to application instances
because they are a functioning copy of the system-in-
development at a given point on the development time-
line. On most projects, the source control tool is consid-

ered to be the place of record for all code. Therefore, if
one were on a project in its eighth iteration and wanted to
see the code base at the end of iteration four, one would
merely go to the source control tool and check out the
code as it was on the last day of iteration four. A simple
timeline can illustrate the point.

Time
(In Iterations)

1

Iteration 4
Code Base

4 8

Current
Development

In the above diagram, time (and iterations) progress from
left to right. The development team is currently in the
middle of coding for iteration 8 (as represented by the pin
stuck into the timeline at its far right). Because the source
control tool has been deemed the system of record (and
ignoring the case of a code branch for now) we know
there will always be only one version of the code base at
the end of iteration four (represented by the pin left to the
center of the line) and we know how to use the tool to
retrieve it. A portion of the application database—that is,
its schema and setup data3—can be drawn out and trav-
ersed on a timeline in exactly the same manner as appli-
cation code. Therefore, if a development team were to (1)
use scripts to build its database schema and maintain
setup data and (2) source control those scripts in the same
tool that keeps their code, the team would be able to
recreate a functional database instance at any point in
time (in a remarkably similar fashion to the way this can
be handled with code).

The only way this timeline gets more complicated is with
branching. This is represented in the following diagram:

Time
(In Iterations)

Release 1
4 8

Current
Development

Release 1.1

Implementing a code branch is almost never a smooth
ride in practice, but the concept is easily represented and
well understood. Any source control system worth its bits
has functionality to handle this. If a team source controls
their schema and setup data, then the database can be
made to handle a branch in exactly the same manner.

Context
What is context? Context is all the other non-setup data
that various team members and subteams need loaded
into the database for reasons including (but not limited
to) general development activities, acceptance testing,
regression testing, automated testing and deployment. A
medium-sized project working on a data-intensive appli-

3 By schema, I am referring to tables, views, triggers and other “objects”
in the database. By setup data, I mean the minimum amount of data that
must be in the database in order for the application to function properly
(such as a populated codes table).

127

cation can have three or four well-understood contexts
for the database, and they will all lie on the same point on
the development timeline. In order to capture context, we
now have to change our timeline to a timeplane.

Time

Context

1 4 8Development
Acceptance Test

Production

Context is a much more discrete dimension than time.
While time may be traversed, with context we can only
draw a line in the metaphoric sand—and we call this line
a lineage. A lineage is, in essence, a specific dataset that
is maintained as the database is grown and refactored. In
the above diagram (the timeplane) a lineage is repre-
sented as a line running from left to right. The diagram
portrays a team that began with a set of development data
in iteration 1, instituted a dataset to support acceptance
testing in iteration 2, and went live in iteration 4. There-
fore, at any point in iterations two and three the team was
working with one version of code (and one version of
database schema and setup data) but two database line-
ages (specialized datasets). Furthermore, in iterations
four through eight, the team was working with one ver-
sion of code and schema and three lineages. (Imagine
what this would like after a code branch!) While these
lineages are all based on the same setup data, they may
be drastically different in any other fashion. The devel-
opment lineage may be chocked full of all manner of
data. Conversely, the acceptance test database could be
Spartan, pertaining only to the test cases that require
preexisting objects. Finally, production could be colossal,
having gotten a head start with a sizable chunk of con-
verted data.

Tracking the growth of individual lineages may be diffi-
cult. If updates to a lineage can be maintained using
scripts (similar to the way schema and setup data are
updated) then stuffing schema into the team source con-
trol tool will do the trick. If the lineage cannot be grown
through scripts, then the team will have to settle for regu-
lar snapshots (possibly at the end of each iteration). Ac-
ceptance tests, for example, may be based on datasets that
are created through the application. In these cases, the
database instance upon which the lineage is based4

should be put on a regular export schedule. This should
be done apart from database or server backups and should
include only the database instance (an Oracle user, a
Sybase database or a Microsoft Access file). These snap-
shots (or exports) should be stored in such a way that it is
not unduly difficult for a team member to load up a copy
of a lineage three or four iterations in the past.

THE LINEAGE AND ITS ATTRIBUTES
As introduced above, a lineage represents the progression

4 This is the master instance and will be introduced in the next section.

of a particular dataset across time and in the context of
other lineages. In a more practical, day-to-day sense, the
lineage may be thought of an object with attributes. It has
(1) a master instance, (2) a change log, (3) an update list,
and (4) a collection of child instances that have been
derived from its master and may subscribe to its update
list. The first lineage of any application is the lineage that
supports the application itself (what I will refer to as the
primary lineage), containing only schema and setup data.

A new lineage should be created every time an applica-
tion is branched, or when a portion of the team (such as
development, QA or reporting) requires a new, unique
and maintainable dataset. While new lineages should be
created whenever necessary, keep in mind that every new
lineage adds a degree of complexity to the DBA’s work-
load. They should not be created for frivolous reasons, or,
worse, to encourage bad habits. For example, a valid
reason to add a new lineage might be to maintain a spe-
cialized dataset for acceptance testing. Conversely, an
invalid reason for a new baseline might be to support a
unit test suite that breaks on the latest run of converted
data. In the latter case, the suite should be made to run on
the new batch of data and the proposal to implement a
test-data creation pattern should be seriously considered.
Finally, the DBA should be forever vigilant about de-
commissioning unnecessary lineages—and the entire
team should be responsive to this concern.

The Master Instance
A master instance is the gold standard for a given lineage.
It should be a live instance (not an archived copy) and not
be accessible by any application instance. This master is
the instance from which all new instances of a given
lineage are created. Additionally, any existing instances
may be “refreshed” by importing a new copy from the
master.

Whenever a change is made to schema or setup data, this
change must be reflected in the master. Additionally, any
change to the lineage dataset must be persisted in the
master. If the changes are done via scripts, then (as noted
above) they should be source controlled. If, however, the
lineage is based on a dataset that is grown in some other
fashion, then some new method of keeping the lineage up
to date must be considered. For example, if the develop-
ment team has found it worthwhile to code against a
nightly copy of production data, then a lineage should be
designated to handle this and a nightly process should be
enacted to load a new copy of production into the master
instance.

The Change Log
Several times now, I have said that changes to lineages
(particularly the primary lineage) should be put into
source control. This collection of scripts and updates can
be thought of as a change log. Lineages that are not
grown through scripts will not have change logs (such as
our production lineage in the previous section). Change
logs are valuable for three reasons. First, they allow for a
lineage to be reconstructed at any point in time. This is
useful both (1) as an analog to a code rollback and (2) as

128

a backup to database backups5. Second, change logs can
be used to migrate out-of-date instances. For example,
archived instances can be migrated to the current iteration
for regression testing. Or, a QA team may routinely
freeze their lineage at iteration’s end in order to test more
thoroughly, then apply the updates they missed from the
primary lineage’s change log to get up to date. Finally,
change logs are valuable for the mere fact that they are a
comprehensive record of everything that has been done to
a lineage; they provide a history that is available for any
use anyone may dream up.

 The Update List
The update list is the means by which changes to a line-
age are communicated to the lineage’s master and all its
child instances. It may be in very simple. For example,
the update list for a primary lineage may look like this:

connect master/user@devdb
@c:\db\changes.sql
connect developer/user@devdb
@c:\db\changes.sql
connect build/machine@devdb
@c:\db\changes.sql
@c:\db\qa-update.sql

In the above example (intended for an Oracle database)
the schema and data updates are written in a file at
c:\db\changes.sql, and the update is being replicated
across the instances by connecting to each instance, exe-
cuting the changes and moving on to the next. One
should note that the final line—@c:\db\qa-update.sql—is
actually executing an update list for the QA lineage. All
lineages will need to subscribe to the primary lineage in
order to receive updates to schema and setup data. Freez-
ing QA, therefore, is a simple matter of commenting it
out of this script.

Child instances of a given lineage are generally sub-
scribed to that lineage’s update list, although there are
some times when an instance may need to be “frozen”
and unsubscribe from the list. Frozen instances will need
to be updated with the lineage’s change log before they
resubscribe to the update list. Additionally, if an instance
is being used only for a few hours (or even a few days) it
may not be worth the trouble of subscribing and unsub-
scribing it.

Acknowledging that everyone on the team is not con-
stantly up to date on code, the DBA must be careful to
identify and time any “destructive” actions that need to
be made to a lineage. A good practice, typically, is for the
DBA to wait three days on any data model changes that
would involve the deletion of columns or tables (allowing
stragglers to move over to the newer application code
while their database instances still support older versions

5 While database backups are necessary, they are not always sufficient.
For example, I know of one team (not a ThoughtWorks project) where
the client’s database server crashed and spirited the hard drive off to
storage device heaven in the process. When the backup tapes were
pulled, the were found to be blank. It was then discovered that the
backup script for that server had not been working correctly for over a
year. The team had nothing resembling a change log and was set back
several weeks.

of the data model). Occasionally, changes must be made
to the data model that do not allow for reverse-
compatibility. In these cases, team members should be
warned of the upcoming change and be given the ability
to easily transition their database instances at the same
time they transition their application builds.6

AUTOMATION
Automation is a principle that underpins all of the con-
cepts previously discussed. Instances must be easily cre-
ated and refreshed; masters and any of their offshoot
instances must be easily updateable; and instances, them-
selves, must be nearly as manageable as files. Nonethe-
less, automation, itself, is not sufficient. These automated
tasks must be pushed out to developers and other team
members, allowing them to queue up and switch between
database instances in much the same manner as they
might treat application instances. This kind of automation
should be set in place both to spare team members the
hassle of having to hunt down a DBA and to spare the
DBA the hassle of having to perform such menial tasks.

The sticking point I have most often encountered regard-
ing task automation and the database is the perceived
danger of handing the average developer tools that would
allow him or her to drop users, alter schema, corrupt data
and otherwise inflict misery upon the rest of the team.
Honestly, some developer will sooner-or-later bring
down a database through the incorrect or inappropriate
use of a DBA-provided tool. That is what back-ups are
for. In the end, it should be clear to everyone that the
time spent mopping up the occasional mess is a worth-
while investment that, by removing unnecessary obsta-
cles and processes, returns a higher team velocity. And
this does not mean that safeguards—such as nightly
backups—should not be put in place. Master instances
may be hidden away from the everyday developer, tools
may log their activity, and data modeling decisions that
affect an entire project should not be made by an individ-
ual in a vacuum.

AN ILLUSTRATION
Thus far I have argued for a more agile approach to the
database, and I have provided a broad overview of how
this may be accomplished, but I have yet to illustrate
what all the effort will buy you. Consider the example of
a story card, perhaps eight or nine iterations into a pro-
ject. The card requests new functionality to be added to
preexisting functionality based on a growing heap of
business objects. In other words, many complicated ob-
ject structures must be available to run the acceptance test
for this card. The database instance facilitates (and even
leverage) this process.

The customer for our example is Mary. After writing the
story card, Mary needs to write the acceptance test. She

6 We generally found that doing this during the time between iterations
(at night or just before or after the iteration kick-off meeting) was best.

129

knows that the QA team’s database has most of what she
needs but not everything. She asks the team DBA, Julie,
to creates a new instance loaded up with QA data and
called Card75. Julie creates the new instance for Mary
and subscribes it to the QA update list. Mary then points
an instance of the application at Card75 and creates the
extra data upon which her test script will be based.

The developer in our example is Joe, and he has picked
Mary’s story card. After a week of coding Joe is finished
developing the functionality. He creates his own database
instance called JoeTest and loads up a copy of Card75.
He runs the acceptance test script and finds that one of
the results is off. He checks his code, finds the cause of
the error and fixes it. He loads a new copy of Card75 into
JoeTest and tries again. This time the script passes.

When Mary sees that her card has been completed, she
loads up a copy of the Card75 into her regular database
instance, MaryDB. She runs the acceptance test and it
passes. Mary then performs some ad hoc testing to make
certain that there is not a scenario that she has missed.
Satisfied that the card has been coded correctly, Mary
sends an email off to Julie, the team DBA, and asks her
to archive Card75 (non-techie-speak for “make an export
of it then blow it away”).

The final person in our example team is Bob in QA. Four
iterations have passed since Mary’s story card was com-
pleted, and Bob is doing regression testing. Bob emails
Julie and asks for a restored copy of Card75. Julie pulls
the export and loads it into a new database instance,
which she also calls Card75. She then goes to the source
control tool and checks out the change logs for the last
four iterations and runs them against Card75. Julie emails
Bob that the instance is ready. Bob loads a copy of
Card75 into his personal instance, BugHunter, and begins
regression testing.

If only every team could make their database do this.

CONCLUSION
I have attempted to outline a complete vision of how the
database may be unbound from its more sluggish trap-
pings and be made to serve the faster development pace
characteristic of the agile methodologies. By introducing
context as a dimension governing the growth of the ap-
plication database, I have tried to convey that the data-
base is a more complicated beast than the codebase, but
that it can be tamed. By providing a detailed example of
how a team may operate with a more agile database, I
hope to convince the reader that the benefit of a more
flexible database is worth the effort.

The vision I have detailed begins with the database in-
stance—a stand-alone and disposable copy of the applica-
tion database. The dimensions of time and context allow
us to plot any instance’s position relative to a develop-
ment timeline (or timeplane). The lineage, then, allows us
to group instances in a fashion that makes them easy to
track and manage. Master instances, change logs and
update lists are the tools we use to manage and maintain

individual instances and their lineages. Automation is
both the glue and the grease of the whole system.

Due most directly to space constraints, I have painted
little detail into this paper.7 My goal, rather, has been to
block out the landscape and all of its major features.
Where appropriate, I have worked with a thinner brush
(one more suited for implementation) to better demon-
strate the viability of this approach.8 Finally, I do want to
reiterate that the processes detailed in this paper have
been used with much success—and discovered by means
of extensive trial and error—at ThoughtWorks.

ACKNOWLEDGEMENTS
Credit must most immediately be given to Pramod Sadal-
age, ThoughtWorks’ Chief Data Architect, who pio-
neered the practices and processes discussed in this pa-
per. Thanks, also, to Andy Kotlinski , another Thought-
Worker, for helping to define in a communicable manner
the discrete dimension of context.

REFERENCES
1. Mackinnon, Tim, Steve Freeman and Philip Craig,

“Endo-Testing: Unit Testing with Mock Ob-
jects.” Available at:
http://www.connextra.com/about/
xp_approach.htm

2. Schuh, Peter and Stephanie Punke. “Object-
Mother: Easing Test Object Creation in XP.”
Available at
http://www.thoughtworks.com/library.

3. Wells, Don. “XP and Databases.” Available at:
http://www.extremeprogramming.org/stories/
testdb.html

7 For anyone who is hungry for details on this topic, the only resource I
can recommend is a write-up by Don Wells[3]. (After a couple hours of
Google-based surfing, this is the only useful information I could find on
the database and either XP or agile development.) Although short, the
piece does provide a more tactical view of how to flex a database is a
manner similar to what I have described in this paper.
8 At the time of publication, tutorial proposals on this topic have been
submitted to this year’s XPUniverse and OOPSLA conferences. The
goal of these tutorials is to get past the concepts and get dirty with the
details.

