
225

Empirical experiments with XP.

Francisco Macias Mike Holcombe Marian Gheorghe
University of Sheffield University of Sheffield University of Sheffield

Regent Court Regent Court Regent Court

Sheffield, S1 4DP, UK Sheffield, S1 4DP, UK Sheffield, S1 4DP, UK

+44 114 222 1800 +44 114 222 1802 +44 114 222 1800

F.Macias@dcs.shef.ac.uk M.Holcombe@dcs.shef.ac.uk M.Gheorghe@dcs.shef.ac.uk

ABSTRACT
This paper describes the current state of an on-going
study into an empirical assessment of eXtreme Pro-
gramming. A pilot study has finished and a rigorous
experiment is underway. A detailed description of the
pilot study is given together with some details of the
data collected so far and an initial analysis is presented.
The focus of this report, however, is not the results but
the knowledge obtained from the experience from this
pilot study which will be utilised in the forthcoming
experiments.

Keywords pilot study, extreme programming, empirical
software engineering.

1. INTRODUCTION

In empirical research of any kind it is important that the
experiments are carefully designed, the right sort of
data is collected and the analysis of the results is ori-
ented to some coherent purpose. In empirical research
into software engineering processes and methodologies
it is particularly difficult to do this because of the many
parameters and variables that are relevant to the issues
under investigation. Poorly defined and executed ex-
periments can be easily challenged and their conclu-
sions rejected. Thus it is vital that suitably designed
pilot studies are carried out to articulate the problems
that might be faced in a full trial.

A pilot study can help in tuning the method as well as
discovering unseen problems and weaknesses in the
method. With this study it is possible to predict the
usefulness of a set of data or the lack of some data. In
the current study the conditions of the experiment are
repeated every year so it is possible to carry out the
pilot study and one year later to carry out another ex-
periment.

This report describes the current state of a study in-
tended to assess eXtreme Programming. The experi-
mental context is divided into two parts. The back-
ground for the hypothesis depicts the field for the fur-
ther discussion, once the interpretation has been fin-
ished. The hypothesis states the core of the study. The
formal definition of the experiment provides the re-
quired information to distinguish the experiment in
accordance with Basili [2], [3]. Some initial observa-
tions help in gaining a better understanding of the prob-
lem as well as giving a preview of the results that we
could expect. A short description of the general method
chosen for this study follows. Finally the conclusions
describe what was learnt through the pilot study.

2. EXPERIMENTAL CONTEXT

The study involves a comparative experiment involving
two types of software development: eXtreme Program-
ming and a design-led traditional approach where test-
ing is not considered at the outset.

The object of the study translated into a formal hy-
pothesis is presented as follows:

Null hypothesis

eXtreme Programming no advantages over traditional
design-led approaches for a short-medium size project.

Alternative Hypothesis

eXtreme Programming provides a methodology that
enables software developers to get better quality soft-
ware with less effort than the traditional design-led
approach.

3 DEFINITION OF THE EXPERIMENT

According to Basili et al. [1] most empirical research

226

study definitions contain six parts: motivation, object,
purpose, perspective, domain, and scope. The motiva-
tion of this study is to assess eXtreme Programming
(XP). The object is the complete process of software
construction. The purpose consists of evaluating the
philosophy compared with a traditional design-led ap-
proach from the perspective of a researcher - an exter-
nal observer not engaged with the process. As there will
be two separate experiments (Genesys and Software
Hut) the domain of the study involves different teams
of people, they differ in size, in skills and all the pro-
jects are different. Therefore, the scope of the study
splits as follows: in the Genesys project several teams
working with several projects will be observed. All the
projects are different. Every team could be involved
with several projects, but a project will involve just one
team. This scope has been called “multi-project varia-
tion”. In the Software Hut project several teams work-
ing with several projects will be observed. Every team
will work on just one project, and one project will be
simultaneously addressed by several teams. This scope
is known as “blocked subject-project”. Fenton and
Pfleeger [5] provide a classification for projects. From
their point of view Genesys is a case study because we
have restricted control on the process, there is no repli-
cation and there is no control subject, while the Soft-
ware Hut project is a proper experiment for the opposite
reasons, it has replication and there are control subjects.

The formal definition of the experiment is fully detailed
in a more extensive document available from the au-
thors. This includes particular goals and detailed defini-
tion for the intended metrics. It was not included in this
report because of space limitations which will focus on
the comparative study in the Software Hut.

4. THE EXPERIMENTAL DESIGN

The experiment splits into two studies [7], [8].

The first one is the Software Hut project. This project is
taken by 2nd year undergraduate students during the
spring semester. They work for real clients and the
client pay a nominal fee. The Software Hut pilot study
ran with 80 people distributed in 15 teams and three
clients were involved. The students were doing these
projects alongside their other courses, they were each
supposed to spend 6 hours per week on the project.
These projects were tracked by three lecturers. Every
client deals with five teams, two or three of them
worked with XP and the rest with the alternative. Each
client provided a short description of their software

needs at the beginning of the semester and this was
followed by regular weekly meetings with the teams in
order for the teams to understand the clients’ require-
ments. It was not possible to have an on-site customer
but students were able to meet the client sufficiently
often to identify the problem. This process lasted for 5
weeks and then the software was developed, prototypes
were demonstrated to clients where appropriate and at
the end of the semester every client received five differ-
ent systems. Even though these systems were different,
they carried out the same task. The client did not know
that some systems were produced using eXtreme Pro-
gramming and others were produced using a traditional
approach. Finally the client was required to classify the
systems from the best to the worst. The client was blind
to the methodology followed.

The second study is the Genesys company [6]. This
company was set up in 1997. Every autumn its person-
nel are renewed. Master students and 4th year under-
graduate students produce software for real clients. The
client pay near commercial rates for the software and
can accept or reject it. The previous year’s pilot study
involved 25 students, and the current year comprises of
33 students. Each team is composed of 3, 4 or 5 stu-
dents and has its own client. The results from this ex-
periment will be discussed elsewhere. The main focus
was on investigating how XP can be introduced into an
existing software company.

The design of the Software Hut project that ran this
spring semester included 15 experimental units distrib-
uted in a random balance between two treatments.
There was simultaneous replication. The groups were
allocated in two blocks, one for every treatment. The
first block had 8 teams, and the second 7 teams. In this
pilot study two factors were considered. The first one
was the time spent on the project for every team and the
second was the bulk of work. Special attention was
made to the number of requirements.

5. METHOD FOLLOWED

The pilot study has offered the possibility to define,
discover and redefine not only the experiment but the
process as well, around the goal of the study. The fac-
tors chosen for the pilot study came from the challenge
to carry out an approximation as close as possible to the
actual experiment. But the experiment is driven, after its
definition and design, by a set of metrics. These metrics
were fixed through the Goal-Question-Metric template
[2]. Once the goals and hypothesis of the entire project

227

have been stated, the first set of questions was formu-
lated with the consequent metrics. The subsequent ques-
tions came from secondary goals or from the refinement
and feedback process for previous questions.

6. THE PILOT STUDY

The pilot study ran between October 2000 and July
2001. The data relative to the Software Hut project was
collected in several ways. Reports of meeting and the
timesheets that every team had to fill in weekly these
were automatically collected on Fridays at 4:00 p.m.
Another source of data was the progress reports that the
teams had to submit as well as the schedules and plans
for their activities. The final report, manual, software,
client’s evaluation and lecturers’ marks were considered
as well. There were no verification mechanisms, and
some inconsistencies were detected at analysis time.
The lesson learned was that data collected must be
verified. [1] suggests carrying this out through inter-
views.

This report on the pilot study includes only two factors:
time spent in the activities (measured in hours), and
quantity of work. This last one stands for only one sub-
product: the requirements as it is one of the factors that
we can compare directly, not only in quantity but in
quality aspects like level of granularity and confidence.
The quantity of time spent by the teams was collected
through the timesheets filled-in weekly.

The total time spent by the teams has a standard devia-
tion of 146.2 and mean 196.82. This distribution has
66% of the data at the distance of one standard devia-
tion or closer from the mean, 84% of the data is at two
standard deviations from the mean or closer and 90% of
the data is at three standard deviations from the mean or
closer.

The number of requirements was another factor in the
pilot study. The standard deviation of the number of
requirements was 12.8 and the mean was 32.9. 6 teams
identified 25 requirements, 3 teams had 30 and 7 other
teams had requirements ranging from 20 to 60.

This distribution has 72% of the data at the distance of
one standard deviation from the mean or closer, 84% of
the data is at two standard deviations from the mean or
closer and 90% of the data is at three standard devia-
tions from the mean or closer. The distribution of the
data per client is closer to the normal distribution than
this one.

Once having this data, a relationship between them was
investigated, and between some other dependent vari-
ables. Looking for such a relationship the correlation
coefficient between these two factors was calculated as
0.63. Many other scatter diagrams were produced, as
well as the correlation coefficient between the com-
pared data. Some dependent variables were considered,
such as the assessment of the client to the manual and
the software, and the assessment of the lecturer to the
reports. Then three factors were mainly considered: the
manual, the external quality factors and the internal
quality factors. The client assessed numerically items
like comprehensiveness, understandability etc. of the
manual. The client assessed the software (the final
product) as well. The targets of the clients’ evaluation
were the external quality characteristics of the product.
The lecturers did not evaluate exactly the same aspects
because the product documentation differs, but in both
cases the internal quality items were evaluated. All
these marks were treated as dependent variables.

The time spent and the number of requirements gener-
ated were contrasted through the scatter diagrams and
correlation coefficient against the data produced by the
lecturers and clients.

7. SOME INITIAL OBSERVATIONS

From the data the following it was noticed that the XP
teams produced more useful information than the oth-
ers. There is a weak relationship (the correlation coeffi-
cient obtained is 0.63) between the time spent on the
project and the quantity of the material generated, this
includes the size of the product. All the teams in the
Software Hut project were considered. Maybe the set of
data requires another kind of manipulation, because one
of the factor sets presented a left skewed distribution.
This possibility must be considered in the actual ex-
periment. The final product results indicated better
quality in the case of XP projects than the other pro-
jects.

From the point of view of the client, the manuals writ-
ten by the XP teams were better than the other teams.
Two of the three clients found that the best external
quality factors were in the product delivered for XP
teams, the third client found best quality in the product
delivered by one of the other teams. Apart from this
team, the better quality tendency was observed in XP
teams. From the point of view of the lecturers the prod-
uct produced by the XP teams has better internal quality
characteristics than the other teams.

228

8. CONCLUSIONS

The pilot study highlighted faults in the experimental
process intended for the current assessment. Some other
practices already carried out through the pilot study
were evaluated. Some characteristics of the study that
were formerly considered harmful, like the non-
homogeneous skills of the students, were considered in
the pilot study. The pilot study can not be considered a
risk analysis study, but it provides information about
the viability of the research. Some of the practices re-
quired for an empirical assessment were noticed
through the pilot study. The most relevant are:

- the need for verification of the data collected

- the need for tracking the progress of the process

over short periods of time, e.g. weekly

The pilot study is no guarantee that the actual ex-
periment will run without any problems but it is use-
ful in order to identify in advance some of the likely
problems we will face.

9. BIBLIOGRAPHY

1. V. R. Basili, R. W. Selby, D. H. Hutchens; Experi-
mentation in software engineering; IEEE Transactions

on software engineering, vol. SE-12, pp. 733-743; Jul.
1986.

2. V. R. Basili, H. D. Rombach; The TAME Project:
Towards Improvement-Oriented Software Environ-
ments; IEEE Transactions on software engineering,
14(6):758-773; Jun. 1988.

3. V. R. Basili, F. Shull, F. Lanubile; Building knowl-
edge through families of experiments; IEEE Trans-
actions on Software Engineering, 25(4):456-473; Jul-
Aug. 1999.

4. K. Beck; 1999; Extreme Programming Explained:
Embrace Change; Addison-Wesley; U.S.A

5. N. E. Fenton, S. L. Pfleeger; 1996; Software Metrics:
A Rigorous and Practical Approach; 2nd Ed.; Interna-
tional Thomson Computer Press; U.K.

6. Genesys Solutions Web site, On-line at
<http://www.genesys.shef.ac.uk>

7. M. Holcombe, M. Gheorghe, F. Macias; Teaching
XP for real: Some initial observations and plans; Pro-
ceedings XP2001; Sardinia, Italy, May 20-23, 2001; 14-
17.

8. F. Macias, M. Holcombe; Experiments of an appren-
tice of scientist: An empirical assessment of eXtreme
Programming; Proceedings ENC’01; Aguascalientes,
Mexico, Sep. 15-19, 2001; 875-880.

