
105

Complementing XP with Requirements Negotiation
Paul Grünbacher Christian Hofer

 Systems Engineering and Automation
 Johannes Kepler University
 Altenbergerstr. 69, 4040 Linz, Austria
 +43 732 2468 {x8867 | x8873}
 {pg | ch}@sea.uni-linz.ac.at

ABSTRACT
Attaining consensus among the success-critical stake-
holders is crucial for the success of any software engi-
neering project. Extreme Programming (XP) addresses
this fact by providing a set of negotiation-oriented
practices. In this paper we discuss negotiation tech-
niques that would nicely complement XP. We present
the EasyWinWin requirements negotiation approach
and discuss its potential benefits for XP.

Keywords
Extreme Programming, Requirements Negotiation,
Stakeholder Win-Win Concepts.

INTRODUCTION
In any software project regardless of using an agile or a
plan-driven approach attaining consensus among the
system stakeholders (e.g., customers, developers, users,
or marketing experts, etc.) about the requirements and
constraints is crucial. In a negotiation process stake-
holders have to balance their personal goals with the
preferences of others to come up with mutually satis-
factory solutions and to develop a shared vision and a
joint understanding about the development goals and
alternatives. Adopting systematic requirements nego-
tiation processes and techniques that support gathering,
elaborating, and negotiating the stakeholder objectives
can positively influence project success in several
aspects [5, 11]:

More complete requirements. Stakeholders typically
have to deal with incomplete and often vaguely defined
requirements. Although not all requirements can be
identified initially and thus have to be evolved and
refined during development, effective negotiation
processes can help to elaborate a more complete set of
requirements in the early stages of a project.

Enabling a shared vision. Only few projects will be
based on stable requirements, more typically the basic
conditions change during development, which inevita-
bly affects the requirements. In such situations a shared
vision among the stakeholders becomes crucial. A
negotiation approach can provide adequate guidance
for developing a shared vision and support for re-
negotiation.

Dealing with changes. In any project some of the
originally taken assumptions will become invalid at a
later stage, which means that decisions already taken
must be revised. Negotiation methods ease this task as

they preserve the rationale of decisions taken earlier in
a project.

Negotiation becomes even more important in the in-
creasing dynamics of today's business world character-
ized by rapid innovation cycles leading to radical re-
thinking and the re-organization of software develop-
ment processes. Projects often have to pursue moving
targets and to check continuously whether the origi-
nally defined bundle of objectives is still valid under
the changed circumstances [9]. Agile software devel-
opment methods like Extreme Programming (XP) have
been developed to deal with that challenge and to foster
reconsideration and modification of decisions [1].
Although these methods provide some guidance for
negotiation (e.g., the “Planning Game”) we think that
the role of negotiations should be emphasized.

The remainder of this paper is organized as follows:
We will first discuss selected XP practices and show
how they support negotiations. As an example of a
negotiation method we will then present the Easy-
WinWin requirements negotiation approach. In the
conclusion we discuss its potential benefits for XP.

REQUIREMENTS NEGOTIATION AND XP
The XP-approach provides a set of fundamental prac-
tices allowing the production of high-quality software
in the context of a rapidly changing environment. Sev-
eral of the 12 XP practices [2] are related to require-
ments negotiation and elicitation of user needs: The
metaphor for example supports a shared vision among
stakeholders, the planning game helps to understand
and prioritize requirements, the idea of the on-site
customer improves stakeholder involvement, and the
specification of acceptance tests helps to refine und
evolve requirements:

Metaphor
In the beginning of a software project the fundamental
vision and mission should be determined and described
in a superordinate, fundamental metaphor. Beck de-
scribes the system metaphor as a “story that everyone
[…] can tell about how the system works” [2]. Specific
aspects of a system can be described in subordinated,
but more concrete metaphors.

Finding an appropriate metaphor relies on involving all
success-critical stakeholders, discussing their different
views and negotiating all relevant details like the key
objects of the domain and their interaction. The meta-
phor is a crucial ‘ingredient’ of the shared system vi-

106

sion as it helps to align all involved stakeholders to-
wards the same goals and architectural foundations,
and harmonizes the common project language [12].
Broadly speaking the metaphor is the underlying foun-
dation for the requirements to be developed and can be
subject to change during development as the require-
ments themselves.

Planning Game
The XP planning game puts a special focus on the
negotiation of the requirements and likewise on the
planning of their implementation. All members of the
project team meet and discuss the requirements cap-
tured by the customer in so-called user stories.

In a negotiating process the stakeholders try to achieve
consensus about the user stories and the related imple-
mentation effort: While the customer describes the
functional aspects of the user stories, the developers
evaluate their estimated implementation efforts and
associated risks. Based on that agreement the customer
selects the user stories and allocates them into the re-
spective releases – another negotiation process. User
stories with the highest expected benefits will be im-
plemented first, in order to deliver the maximum busi-
ness value to the customer in each release.

Subsequently iteration planning is executed. The user
stories of a particular release will be implemented
during several, shorter iterations. Each user story is
divided into several tasks, which are estimated and
negotiated regarding their effort by the programmers.
Finally, the programmers take responsibility for the
tasks and start to implement them. The customer is
present during iteration planning and helps the pro-
grammers, if they get stuck with the estimation [3].

On-site customer
XP emphasizes the involvement of the customer in the
development process. The on-site customer is respon-
sible for supplying user stories in a form assessable for
the programmers. User stories can describe both func-
tional and non-functional characteristics of the system.
When needed the customer gives immediate help and
feedback throughout the project. Furthermore the on-
site customer is responsible for defining and checking
the acceptance tests. It is important to note that the on-
site customer should not be understood as only one
physical person, but as a representative for all stake-
holders involved from the customer side [4].

Testing
For each user story at least one acceptance test must be
provided by the on-site customer to check the fulfill-
ment of both functional and non-functional require-
ments. The specification of acceptance tests supports
the programmers to understand the customer’s re-
quirements in more detail and helps the on-site cus-
tomer to re-check the completeness, consistency, and
reliability of the requirements. The specification of
acceptance tests leads to a re-interpretation and refine-
ment of the requirements defined earlier in the devel-
opment process, potentially leading to a re-negotiation.

If all acceptance tests existing for a user story are
passed, the team can be sure that the required function-
ality has been implemented as requested. Since both
the metaphor and the requirements themselves can be
modified, passed acceptance tests must be re-executed
even in later iterations and releases regularly to deter-
mine contingent modifications of the requirements or
unintentional interactions caused by the modification.
In addition it is desirable, that – like unit tests – the
acceptance tests will be executed automatically [10].

Negotiation-related Issues
XP practices support the identification, negotiation,
and evolvement of requirements as discussed above.
There are, however, some potential problems and risks:

Insufficient definition of the project vision/mission. The
definition of high-level goals and constraints (e.g.,
cost, schedule, staffing, interfaces, technology, etc.) in
a project vision/mission is not an explicit part of XP,
which may have some negative implications. For ex-
ample, without a project mission it is difficult to define
a consistent set of user stories in the planning game.

Limited set of stakeholders. Success-critical stake-
holders are not always limited to customers and devel-
opers. A mechanism to identify and involve all suc-
cess-critical stakeholders in the planning game would
be beneficial. This might for example include end-
users, marketing experts, financial experts, executives,
or even the general public in some cases. Stakeholders
need to be represented and integrated in the definition
process for the metaphor as well as in the negotiation
process for the requirements. Neglecting important
stakeholders can lead to incomplete requirements and
to a wrong set of objectives, which can lastingly en-
danger the success of a system.

Limited perspective of the on-site customer. The on-site
customer may not be a good representative for the
needs of success-critical project stakeholders. Direct
involvement in the negotiation process would ensure
that the different viewpoints are appropriately captured.

Separation of concerns in decision-making. XP as-
sumes that customers are solely responsible for busi-
ness-related decisions while developers are responsible
for technology-related issues. This separation in deci-
sion-making might lead to sub-optimal results as well
as to a lower acceptance of the results.

In the next Section we will discuss negotiation tech-
niques defined in EasyWinWin that address these limi-
tations.

EASYWINWIN
The EasyWinWin requirements negotiation approach
helps stakeholders to jointly discover, elaborate and
negotiate their system and software requirements.
EasyWinWin builds on the WinWin negotiation model
and the WinWin spiral model developed by Barry
Boehm et al. and extends the WinWin approach with a
detailed negotiation process and groupware support.
This section gives only a summary. For more details

107

refer to [5, 7, 8, 11] or visit the EasyWinWin website
[6].

Negotiation Model
The WinWin negotiation model defines the basic ele-
ments that guide a requirements negotiation: Win con-
ditions describe stakeholders’ goals, issues capture
known conflicts or constraints, options describe alter-
natives to overcome and resolve issues, and agree-
ments denote mutually satisfactory solutions.

Major deliverables of a negotiation are (1) negotiation
topics organized in a domain taxonomy, (2) definitions
of key project terms, (3) agreements providing the
foundation for further actions and plans, (4) open is-
sues addressing constraints, conflicts, and known prob-
lems, as well as (5) further decision rationale showing
the negotiation history (comments, win conditions,
issues, options, etc.).

Negotiation Process
EasyWinWin defines a set of activities that guide
stakeholders through a negotiation process. These
negotiation activities are supported by group decision
support tools (e.g., electronic brainstorming, polling,
shared outliner, etc.). A detailed process guide is avail-
able that can be used by facilitators to moderate a ne-
gotiation [7].

Although EasyWinWin is extremely useful to develop
a shared vision in the upfront phases of a project, it is
also an integral part of the WinWin spiral model.
Therefore, the activities described below are typically
performed also in later iterations of a project.

The EasyWinWin process can also be applied without
tool support, e.g., by using cards and boards in face-to-
face meetings or email and telephone in distributed
meetings. Our experience to date shows however that
using collaborative tools is very helpful to deal with
the complexity caused by the quantity of negotiation
artifacts.

The activities in EasyWinWin are as follows:

Review and expand negotiation topics. Stakeholders
tend to enter software development projects with
vague, limited and retrospective perspectives. In this
step they refine and customize an outline of negotiation
topics serving as both an organizing framework and a
negotiation checklist. Common high-level topics in-
clude features and services, interfaces to the end-user
as well as software and hardware systems, system
properties and level of service aspects, constraints like
cost, schedule, development tools, and, support, and as
well as system evolution concerns.

Brainstorm stakeholder interests. Stakeholders are
encouraged to thoroughly explore their objectives us-
ing a brainstorming technique. If using a tool they
make their contributions simultaneously and anony-
mously. They share different opinions, perspectives,
and exploit the creative potential and experiences of
the team. The brainstorming activity is thus an impor-

tant technique to create a shared vision and to find
possible metaphors.

Stakeholders identify goals for all identified negotia-
tion topics and thereby explore less understood areas of
the project, too. There are typically several brainstorm-
ing activities for the major negotiation topics identified
upfront: Capabilities, interfaces, level of service, pro-
ject & process, and evolution.

Converge on win conditions. Comments gathered in the
brainstorming step are usually unstructured, redundant,
ambiguous, and often vague. In this activity stake-
holders jointly craft a list of clearly stated, unambigu-
ous win conditions by considering all contributed
ideas. Stakeholders also sort these win conditions into
categories representing the major negotiation topics.
An important challenge is not to miss any important
ideas and at the same time weed out all pointless con-
tributions.

Capture a glossary of terms. As participants build their
win conditions, they use words that have special mean-
ings within the context of a project or a domain. Dur-
ing the convergence step, the facilitator adds important
terms to a shared list. Stakeholders use this information
to create and jointly review definitions for these terms
resulting in a glossary containing all key project terms.
There are usually several rounds of reading and refin-
ing the definitions, but the time spent is worthwhile to
reduce major risks stemming from miscommunication.

Prioritize Win Conditions. Polling in EasyWinWin is
used (a) to determine priorities of win conditions, and
(b) to reveal conflicts and different perceptions among
stakeholders. Stakeholders rate each win condition for
each of two criteria: Business importance shows the
relevance of a win condition to project success; ease of
realization indicates perceived technical or economic
constraints of implementing a win condition. The basic
rule during polling is “Vote what you know, don’t vote
what you don’t know”. So developers typically often
focus on technical issues, while clients and users con-
centrate on the business relevance but this is not a strict
rule. Win conditions are organized in one of four cate-
gories: “Low Hanging Fruits”, “Important With Hur-
dles”, “Maybe Later”, and “Forget Them”. The polling
results are used during a negotiation by focusing on
elements with high importance but they can also be
used for other tasks, e.g., to define the increments in a
project plan (see defining priorities in the planning
game).

Reveal Issues and Constraints. Stakeholders examine
the results of the prioritization poll to analyze patterns
of agreement and disagreement. When using a polling
tool win conditions with high/low consensus can be
automatically identified. At the end of this step all win
conditions with high instability in polling results are
discussed until voting converges or issues resulting
from different points of view are clearly understood
and captured.

108

Identify Issues, Options, and Agreements. Conflict
identification and resolution in the WinWin negotiation
model is based on capturing issues, options, and
agreements. Stakeholders identify these artifacts in
several iterations and organize them in a hierarchy. The
resulting deliverable is a hierarchy called the WinWin
tree with win conditions, some of which will have
issues as subheadings, some of which will have options
as subheadings. The WinWin tree shows how agree-
ments emerge in a negotiation process and thus cap-
tures the decision rationale. The group continues to
work and tries to achieve a WinWin equilibrium, i.e.,
all win conditions and options are covered by agree-
ments and there are no outstanding issues.

One main result of the negotiation process is a list of
agreements and a list of open issues, which could not
be resolved in the session. All unresolved issues (e.g.,
caused by stakeholder dissent) have to be managed as
potential projects risks. Agreements of success-critical
stakeholders are input to further planning activities and
also elaborated into more precise requirements.

CONCLUSIONS AND FUTURE WORK
In this paper we discussed selected XP practices from
the perspective of negotiation support and presented
the EasyWinWin requirements negotiation methodol-
ogy. Complementing XP practices with negotiation
techniques such as defined by EasyWinWin has some
important benefits:

Emphasis of shared vision. During an initial project
meeting the success-critical stakeholders should meet
and negotiate the strategic orientation of the new sys-
tem. Using an approach like EasyWinWin would help
to come up with a shared vision and mission statement
for the project, and to constitute the general conditions
under which the system has to be realized. This would
facilitate the quest for the fundamental metaphor and
the definition of high-level requirements supported by
all involved stakeholders.

More complete stakeholder identification. The Easy-
WinWin approach supports identification and involve-
ment of all success-critical stakeholders during the
requirements negotiation process, which leads to (1) a
higher acceptance of the new system (2) a lower rate of
rework necessary caused by misunderstandings and
misinterpretations of requirements.

Full perspective for on-site customer. During the re-
lease planning meeting the on-site customer is sup-
ported by all success-critical stakeholders from the
customer side so they are able to refine the high-level
requirements developed in the project planning meet-
ing into more measurable statements. All stakeholders
negotiate the requirements using EasyWinWin to agree
on schedules and risks, as well as importance and fea-
sibility of every feature – an essential input needed to
assign the features to the next release.

Extensive stakeholder involvement in decision-making.
Finally, EasyWinWin enables all stakeholders to nego-
tiate and resolve business-related and technology-
related issues. The focus on consensus leads to a higher
acceptance of decisions and to an increased mutual
understanding among the involved parties.

We are currently carrying out a case study to validate
this approach under real-world characteristics. We will
use the negotiation techniques in several XP projects.
For example, we will explore the use of a lightweight
EasyWinWin approach based on cards and boards in
the XP planning game. This will also lead to an im-
proved integration of XP guidelines and the Easy-
WinWin handbook.

REFERENCES
1. Beck, K. Embracing Change with Extreme Pro-

gramming. IEEE Computer, Oct. 1999, pp. 70-77.
2. Beck, K. Extreme Programming Explained: Em-

brace Change. Addison-Wesley, 1999.
3. Beck, K. and Fowler, M. Planning Extreme Pro-

gramming. Addison-Wesley, 2000.
4. Beck, K. One Team. On-line at http://groups. ya-

hoo.com/group/extremeprogramming (Dec. 2001).
5. Boehm, B., Grünbacher, P. and Briggs, B. Devel-

oping Groupware for Requirements Negotiation:
Lessons Learned. IEEE Software, May/June 2001,
pp. 46-55.

6. EasyWinWin website: On-line at
http://sunset.usc.edu
/research/WINWIN/EasyWinWin (Dec. 2001).

7. Grünbacher, P. EasyWinWin OnLine: Moderator's
Guidebook, A Methodology for Negotiating Soft-
ware Requirements. USC-CSE 2000 & GroupSys-
tems.com.

8. Grünbacher, P. and Briggs, B. Surfacing Tacit
Knowledge in Requirements Negotiation: Experi-
ences using EasyWinWin. Proc. HICSS, IEEE CS,
2001.

9. Highsmith, J. A. Adaptive Software Development
- A Collaborative Approach to Managing Complex
Systems. Dorset House, 2000.

10. Jeffries, R., Anderson, A., Hendrickson, C. Ex-
treme Programming Installed. Addison-Wesley,
2000.

11. Stallinger, F. and Grünbacher, P. System Dynam-
ics Modelling and Simulation of Collaborative
Requirements Engineering. Journal of Systems
and Software, Dec. 2001, pp. 311-321.

12. Wake, W. C. Extreme Programming Explored.
Addison-Wesley, 2001.

