
11

Retrofitting unit tests

 Steve Freeman Paul Simmons
M3P, Independent

 12 Montagu Square 6 Copse Close, Pattens Lane
 London Rochester, Kent
 W1H 2LD, UK ME1 2RS, U.K
 +44 (0) 797 179 4105 +44 (0) 7967 966203
 steve@m3p.co.uk pas@pobox.com

Stroking his chin sagely the old man replied, “Well
now, if I was going there I wouldn’t be starting from
here.” Ancient joke.

“If you do not start adding unit tests today then one
year from now you will still not have a good unit test
suite.” Don Wells1

ABSTRACT
In this paper we describe techniques that we have found
helpful for adding unit tests to existing code that has
been written without tests. The paper presents some
common coding practices that make unit tests hard to
retrofit, and why. For each practice we suggest minimal
refactorings to open up the code for testing.

Keywords
Refactoring, Unit Testing, Legacy Code, Retrofitting

1 INTRODUCTION
Unit tests can be hard to retrofit to legacy code, but not
as hard as many developers believe; for our purposes,
“legacy” is working code that must be maintained but
that has been written without unit tests. We believe that
it is worth attempting to improve the internal quality of
any system that matters and that unit testing is a key
technique for doing so.

Relentless unit testing is a core practice in Extreme
Programming (XP) [1]. It gives the developers the con-
fidence to make changes as new requirements arise or
new refactorings are discovered. Furthermore, when
written before the code, unit tests are a powerful design
tool that act as executable specifications; they concen-
trate the programmer’s mind on what is really needed
and help to drive the code towards good coding practice
[2].

Many projects, however, convert to XP after starting
with another methodology, which usually means that
there is an existing code base that does not have a thor-
ough unit test suite. The dilemma for the team is that
they need a testing safety net to support the agile devel-
opment practices they want to adopt but cannot write
unit tests for the entire code base for two reasons. First,
retrofitting unit tests is expensive, full coverage can
easily take as much effort to write as did the original
system without adding any visible functionality. Sec-

1 http://c2.com/cgi/wiki?UnitTestingLegacyCode

ond, there is an obvious deadlock in that legacy code
often needs some refactoring to make it testable, but
refactoring should not be undertaken without tests in
place to prove that it’s safe.

Both problems must be addressed by a combination of
skill and compromise. First, unit tests can be added
incrementally, perhaps before changing a component
for the first time during subsequent development. Com-
bined with some judicious functional testing, the team
can give themselves enough confidence to make pro-
gress, although at less than full speed, whilst improving
the quality of the code. Second, our experience is that
carefully fixing a few “code smells” without unit tests
can give the developer enough leverage to bootstrap the
writing of a full test suite. As the test suite builds up,
the developers should look for opportunities to improve
it as suggested by [3].

In this paper we concentrate on those careful fixes. We
describe some common code smells that we have found
inhibit the retrofitting of unit tests, and suggest tactical
refactorings to make such code more accessible. Most
of the smells we have identified are concerned with the
difficulty of isolating the code we wish to test from the
rest of the system, a key requirement for effective unit
testing. Our experience is that changing code to make it
testable usually improves its quality, with a clearer and
more flexible structure. When we retrofit unit tests, we
can also try to retrofit the design benefits that come
with test-first programming.

Our experience is mainly based on Java, but we believe
that most of these patterns apply to other object-
oriented languages. We assume that the reader is famil-
iar with test-first development, the JUnit framework [4],
and refactoring as described by Fowler [5]; we annotate
patterns and refactorings from Fowler using [F].

2 CODE SMELLS
This section describes some common code smells that
make unit tests difficult to add to legacy software. For
each smell, we offer an appropriate refactoring in the
next section.

Singleton
The Singleton is perhaps the most widely used and
misunderstood pattern in Gamma et al [6], and is often
found in legacy code. A common use of Singleton is to
encapsulate external resources such as databases or
files. Since it provides a single access point, calls to a

12

singleton are often scattered throughout the code.

The issues for unit testing are: first, sometimes the sin-
gleton object cannot be changed because, for example,
it is set up in a static initializer (see below). This makes
it impossible to isolate the tested code from its envi-
ronment by substituting a mock implementation [7] of
the singleton. Second, even where the singletons can be
replaced, the tests for objects that refer to many single-
tons will be tedious and error-prone to set up. Finally,
many uses of a singleton will repeat behaviour that
must be tested separately for each case, increasing the
testing effort.

One solution is to add a setter method to the singleton
class to overwrite its static instance. This weakens the
encapsulation of the singleton itself but may be suitable
for cross-application features such as a logging inter-
face. The test suite can use the setter to assign a mock
implementation and the application can continue to use
the singleton as before. Rainsberger [8] suggests aggre-
gating singletons in a Toolbox so that their lifetimes can
be managed by the application. An alternative approach
that does not alter the singleton class is to Pass single-
tons through.

Complex construction
Sometimes most of the implementation of a class is
concerned with setting up its initial state and is not used
again after instantiation. For example, a class to repre-
sent a financial yield curve requires complex calcula-
tions to work out its initial values, but only simple
lookups when in use. Similarly, a class that represents a
user may refer to an external directory service only
during initialization.

The issues for unit testing are: first, it is cumbersome to
create instances of the class when testing both the class
itself and classes that interact with it; for example, it
may be too hard to create every state that needs testing
via the public constructors. Second, construction that
relies on external resources is an unnecessary depend-
ency when managing unit test suites. Third, the test
suite for class instances will be less readable because it
will be swamped with tests for construction rather than
tests for use. These are all symptoms of a poor separa-
tion of concerns.

A first step would be to add a simple constructor to the
class and to write separate test suites for construction
and use. A better approach is to refactor using Separate
construction from use.

Data class
Data class, which consists mainly of fields and their
getters and setters, is described in Fowler. Data classes
are often found with utility classes to support common
operations on them.

The issue for unit testing is that data classes often imply
that some related behaviour has been scattered around
the clients of the class, so related test code has to be
repeated or gathered into helper code. Furthermore,
code that passes data objects around tends to have Long
methods (see below) that are hard to test.

Even where data classes are required, perhaps for use in
a reflective framework, it is often possible to move
responsibility to the data class by combination of ex-
traction, encapsulation and moving, as described in
Fowler.

Static initialization
Many developers use static initialization, code that is
run when a class is loaded, to set its initial state; com-
mon examples are initializing singletons, starting log-
gers, and loading property values from files. Whilst this
technique is useful for reducing the intellectual load on
the programmer and for ensuring the internal consis-
tency of a component before it is used, there are main-
tenance costs if the static code is complex or refers to
external resources.

The issues for unit testing are: first, it can be difficult to
run repeated tests over such code. To do so requires
repeated reloading of the class, it may be hard to set up
conditions to test failures, and errors may be hard to
trap for test results. Second, such classes are hard to
instantiate outside their framework when they are re-
quired for testing other classes, especially when the
source code is not available. For example, one of the
authors got stuck trying to create a parameter object
from an application server because a static initialization
in a super type was failing silently.

The solution is to Remove complex static initializers.

Bleeding across layers
It is quite common to see business domain code use
framework classes, such as Servlets, so that package
dependencies “bleed” across the layers of an applica-
tion. Examples include passing a Servlet request as a
parameter to a domain class, or throwing a Servlet ex-
ception from within a domain class. This risk may be
higher on Extreme Programming projects, where the
programmers aspire to “Do The Simplest Thing That
Could Possibly Work.”

The issue for unit testing is that bleeding across layers
introduces unnecessary dependencies between compo-
nents and, hence, between tests. First, anyone reading or
writing a test for the business class must understand
both layers and the tests are less likely to read well.
Second, if classes from the framework layer change,
this may require business layer tests to be changed.
Finally, test setup may be difficult if, for example, some
framework classes do not have constructors that are
accessible outside the framework.

The solution is to refactor at the places where the layers
touch and Weaken dependencies between layers.

Classes as parameters
In Java, it is worth specifying the parameter and return
types of a method (its signature) in terms of interfaces
rather than classes, if those classes are at all complex.

The issue for unit testing is that, for parameters that are
defined as classes, a mock or stub implementation can
only be substituted by subclassing, which has two limi-
tations. First, it cannot also inherit from common mock
or stub implementation classes, nor can it take advan-

13

tage of Java proxies, as with EasyMock [9]. Second, if
the parameter class, or one of its ancestors, changes or
adds a method, the stub class will no longer override all
the real methods and the test case might pick up the
wrong implementation. Such bugs in the test environ-
ment can be difficult to find when the test unexpectedly
fails (or, worse, passes). Similar issues arise with return
types; when the class itself is stubbed out for testing
other classes in the code base, it may be easier to return
a simple stub than an instance of the real type.

The solution is to Replace class with interface in the
signature. If this solution is too difficult to apply at first,
perhaps because the parameter class is used in many
places, then first create the stub implementation as a
subclass of the parameter class and later refactor both
the stub and original classes with Extract Interface [F].

Imprecise exceptions
Java supports checked exceptions, where the compiler
will validate that all the exceptions that might be
thrown from within a method are either handled or
declared as part of the signature. Some developers
avoid checked exceptions by catching and dropping
exceptions they don’t know how to handle (that is, by
ignoring the signal), or by declaring the method to
throw the generic type Exception. An equivalent to the
latter is to always throw unchecked exceptions.

The issue for unit testing is that exception handling
must also be tested. First, it may be hard to detect a
result that will confirm that an exception has been
thrown if the target code drops it. For example, if the
beginning of a method drops an exception, its unit tests
ought to be run twice, once with the exception thrown
and once without. Second, where exception checking is
ignored, it can take some time to work out and unit test
all the possible exception paths through the code.

The solution is to be precise when managing checked
exceptions. Dropped exceptions should be encapsulated
by Extract Method [F], which will often suggest a fur-
ther Extract Class [F] to reify the interaction with the
component that throws the exception. Checked excep-
tion lists should be narrowed to just those exceptions
that a method can throw, this can be propagated incre-
mentally from where the code touches external libraries.
Our experience is that a little rigour applied to indistinct
Java exception management can greatly simplify the
code and, hence, the unit tests to drive it.

Long method
Long method is described in Fowler. The additional
issue for retrofitting unit tests is that such methods are
also painful to test. Typically this involves writing a
long series of tests, each of which progresses a little
further through the method before forcing the next exit
condition. Setting up enough state in a test to get
through the entire method is, at best, complicated.

If the method is too long to test as it stands, one solu-
tion is to test and refactor incrementally. Long methods
often contain several logical sections, for example:
check the inputs, perform operations, and assemble the
result. Test a section at a time and extract helper meth-

ods to isolate it. If possible, extract a section and its
tests as a class, perhaps as a policy object. Subse-
quently, this may be replaced with a Mock Object and
the tests for the method simplified.

In the best case, a long method collapses either to a
class in its own right, or to a collaboration between a set
of smaller objects, that can be tested separately. The
tests for the refactored method need only exercise the
routing between those objects.

3 REFACTORINGS
Pass singletons through
Objects that are neither ubiquitous, such as loggers, nor
constant values should be passed through as method
parameters, rather than retrieved as singletons; a com-
mon example is a database connection. This can be
done incrementally by first creating the singleton
DBConnection instance, and passing it as a parameter
to low-level methods. Then later propagating the new
parameter up the call stack, until it can be set up from
some suitable high-level routine. There is a risk that
parameter lists will become too long as more singletons
are removed, but in practice we have found that ex-
singletons, such as external connections, are usually
local to a sub-system or package. Furthermore, passing
singletons through as parameters often leads to Intro-
ducing Parameter Objects [F] which, in turn, suggest
useful refactorings.

The advantage for unit testing is that a parameter, par-
ticularly if it is an interface, is easier than a singleton to
replace with a mock implementation, thus isolating the
test from the rest of the application.

Separate construction from use
Where most of the implementation of a class is taken up
with constructing an instance, such as calculating the
yield curve on a financial instrument, consider separat-
ing the construction aspects into a factory object—our
mental image for this is the way that booster sections
are jettisoned during the launch of a space rocket.

This technique is most likely to apply when the con-
struction phase uses different resources or libraries from
the use of the object. The benefit for unit testing is that
the two classes should have more focused responsibili-
ties and so be easier both to test and to stub out.

Remove complex static initializers
A first step is to move static initialization code into
static methods so it can be referred to by name and
parameters and results passed through. Techniques such
as lazy initialization allow such methods to be called
explicitly, for testing, or automatically when in produc-
tion.

It may be, however, that code of any complexity should
not be run implicitly, but should be made visible and
called directly from the application startup sequence.
This makes error handling easier to manage and ensures
that failures occur at the right time. One of the authors
used this technique when porting a component between
two frameworks that used different error reporting. The
move revealed a failure in initializing the logging li-

14

brary that had previously been hidden by an incorrect
startup sequence.

Weaken dependencies between layers
To reduce class dependencies between layers of an
application, there are three cases to consider: First,
where explicit creation occurs across the boundary,
such as creating a new Customer object from a servlet,
consider Replace Constructor with Factory Method [F].
Thus the servlet might now use a CustomerFactory to
create a Customer, rather than instantiating one directly.
When unit testing we can substitute a mock Customer-
Factory that instantiates a mock Customer.

Second, where several values are passed across a
boundary, consider Introduce Parameter Object [F].
For example, when passing start and end dates from a
user’s http request to an Account object, we might bun-
dle these into a DateRange type. This clarifies the rela-
tionship between the layers and we are likely to be able
to move behaviour to the new parameter object, which
can then be tested in isolation.

Third, where a framework layer needs to interrogate its
client layer, it should define a callback interface that the
client layer can implement. For example, where an
Account object needs to extract session values from an
http request, define an AccountSession interface that
makes explicit what an Account needs to know about its
context, then implement an HttpAccountSession class
for use with servlets. We can now unit test separately
the extraction of the values from the http session and
the use of those values in the Account. For the Account
class, we can create a MockAccountSession to isolate
its tests from the servlet framework.

Replace class with interface
In Java, where the input parameters or return value of a
method are typed as classes that are at all complex,
consider changing those types to interfaces and renam-
ing the classes. Types based on interfaces are easier to
substitute with stub or mock implementations, so it
becomes easier to test a class in isolation from the rest
of the system. The overhead of maintaining the extra
type is mitigated by modern development environments
and by the flexibility it adds to the code. One implica-
tion of this technique is that the coding standard should
not use type names to distinguish interfaces or classes,
such as with a leading or trailing ‘I’, as this hinders
refactoring between the two.

With some care, the same technique can be applied in
C++ by using abstract classes as interfaces and multiple
inheritance to bind them to implementation classes.

4 RELATED WORK AND OTHER
TECHNIQUES

There is a growing body of experience with test-first
development: Fowler [5] catalogues the core code
smells and refactorings, and there are links to papers
and discussions from the JUnit site [4] and on the C2
wiki [10]. This paper focuses on code smells and refac-
torings related to retrofitting unit tests.

There have been some interesting discussions about the

use of Aspect Oriented Programming [11] for unit test-
ing. The idea is to intercept the calls the target code
makes to other objects in the application. One idea is to
use this technique to implement Mock Objects, tracking
calls and returning preloaded results [12]. An alterna-
tive is to log important values when running functional-
level tests and check that these don’t change during
refactoring. In our view, these are valuable intermediate
techniques to help with opening up opaque code, but we
are wary that they change the actual code under test.

5 CONCLUSIONS
In this paper, we have identified some coding practices
that make the retrofitting of unit tests difficult. We have
identified some related refactorings that we have found
allow us to “chip away” at the code enough to start
adding unit tests. These tests then give us the confi-
dence to refactor, add new functionality, or fix bugs
using test-first programming.

Those of us who practice test-first programming do so
because we believe that it is more effective and drives
us to writing better code. Many of us, however, also
have to work with existing code that we cannot break,
but need to change. The authors have found that retro-
fitting unit tests helps to support programmers when
making changes and to guide the code to a better design
through refactoring.

How much time to spend on retrofitting unit tests, or
whether to do so at all, is outside the scope of this pa-
per; it can be an expensive exercise. For those who
chose to do so, we hope that this paper embodies some
useful experience. Before starting to refactor for testing,
we also recommend that the developers write some
functional tests that touch the components concerned to
catch any gross errors that they might introduce.

Finally, the real point of this paper is that, given the will
and enough slack in the immediate schedule, it is possi-
ble to add unit tests to almost any existing code base—
and for a team that wants to be agile, it is essential.

ACKNOWLEDGEMENTS
Thanks to Michael Feathers, Tim Mackinnon, Duncan
McGregor, and Rachel Davies for their comments on
early versions, and to the members of the Extreme
Tuesday Club for being part of the community.

REFERENCES
1. Beck, K, Extreme programming explained:

embrace change. Addison-Wesley, 1999.

2. http://c2.com/cgi/wiki?UnitInUnitTestIsntThe
UnitYouAreThinkingOf

3. van Deursen, A., Moonen L, can den Bergh, A,
Kok G, Refactoring Test Code, XP2001, Sar-
dinia, 2001.

4. The JUnit web site. http://www.junit.org

5. Fowler M., Refactoring: improving the design
of existing code, Addison-Wesley, 1999.

15

6. Gamma E, Helm, R, Johnson, R, Vlissides, J.
Design Patterns, Addison-Wesley, 1995.

7. Mackinnon T., Freeman S., Craig P., En-
dotesting: unit testing with Mock Objects, in
Extreme Programming Examined, Addison-
Wesley, 2000.

8. Rainsberger, J. Use your singletons wisely,
http://www-106.ibm.com/developerworks/
components/library/co-single.html

9. EasyMock http://www.easymock.org/

10. http://c2.com/cgi/wiki?UnitTestingLegacy
Code

11. http://www.aspectj.org

12. http://groups.yahoo.com/group/extremeprogra
mming/message/37004

