
6

Making a Mockery

Ivan Moore Sebastian Palmer
 Connextra Ltd Connextra Ltd
 Studio 312, Highgate Studios Studio 312, Highgate Studios
 53-79 Highgate Road 53-79 Highgate Road
 London NW5 1TL, England London NW5 1TL, England
 +44 (0)20 7692 9898 +44 (0)20 7692 9898
 ivan@connextra.com seb@connextra.com

Abstract
Mock objects are used by Extreme Programmers to write
isolated tests, and result in classes that clearly express
their dependencies.

Some would assume that using mock objects requires
writing lots of extra code. However, a number of tools
have been developed for the automatic generation of
mock object code.

This paper examines four such tools for Java. Each takes
a different approach. The use of any of these tools re-
duces the amount of code that has to be hand written to
implement mock objects, making the use of mock objects
simple and efficient in developer time.

This paper will not specifically investigate the existing
collection of mock objects provided by the MockObjects
project framework, but is about tools for creating new
mock objects.

Keywords
Mock objects, unit testing, testing.

INTRODUCTION
“If a collection of rocks is a rockery, a collection of

mock objects must be a mockery.”[1]

Mock objects[2] are used by many Extreme Program-
mers[3]. Some programmers consider them to require too
much extra coding or to be too difficult. One of the fea-
tures of the mock object approach is that mock objects,
known as “mocks” in this paper, have uniform function-
ality and predictable code. This enables the development
of tools for the automatic generation of mocks.

 This paper examines four tools for creating mocks for
Java, which collectively will be called CAMP tools
(Computer Aided Mock Production. CAMP is a concen-
trated liquid coffee from McCormick Foods[4]).

This paper assumes some familiarity with the concept of
mock objects, but nevertheless, the authors believe that
CAMP tools themselves are instructional about mock
objects.

THE CAMP TOOLS
The tools described are: EasyMock[5], Extender[6][7],
MockCreator[8] and MockMaker[9]. Mockry[10], which
became available after this paper was submitted, has not
been included. Only the use of the tools will be exam-
ined, not their implementation. In order to provide a
comparison between the mocks produced by these tools,
a simple example will be demonstrated using each tool.

THE MOCK OBJECTS FRAMEWORK
The MockObjects project[11] provides a framework and
naming conventions for hand writing mock objects, and
pre-written mock objects for various APIs, for example,
servlet programming. The MockObjects project frame-
work is used by the mocks produced by MockMaker and
MockCreator. The other tools take a different approach.
None of the tools examined in this paper are part of the
MockObjects project.

THE EXAMPLES
To compare the CAMP tools, an example of trying to
write a test using mocks generated by each tool will be
described.

The example test code is for a MultiReplacer; part of a
(fictional) tool for globally replacing a collection of
strings with other strings, in a collection of files.

One of the things that we want to test is that a MultiRe-
placer correctly reads a configuration string to extract the
required search and replacement strings, then applies
those changes to a file and reports how many replace-
ments were made.

One way of testing this would be to call a MultiReplacer
with some real files, and to check that the files were
changed in the expected ways.

If instead of having the MultiReplacer actually modify
files itself, we make it responsible only for reading the
configuration string and then using a SearchAndReplacer
(that we will define) for modifiying files, we can test the
reading of the configuration string in isolation from the
file modification code. This means that all test cases can

7

be covered easily, test failures are attributable to a single
object and there are no file system dependencies in the
tests of the MultiReplacer.

Writing tests before code provides a basis for deriving
the interactions of objects. In this case, we want to be
sure that the MultiReplacer, given a configuration string
(each line of which defines a string to search for and
string to replace it with delimited by a ‘|’ character) will
make the appropriate calls on a SearchAndReplacer (im-
plemented as a mock).

The test follows, using MockObjects project conventions:

public void testDoReplacements() {

String config = "xyz|abc\n"+

 "1|2";

MockSearchAndReplacer aMockSearchAndReplacer = new
MockSearchAndReplacer();

aMockSearchAndReplacer.addExpectedReplace("xyz","abc");

aMockSearchAndReplacer.setupReplace(5);

aMockSearchAndReplacer.addExpectedReplace("1","2");

aMockSearchAndReplacer.setupReplace(7);

MultiReplacer aMultiReplacer = new MultiReplacer();

int numReplacements = aMultiReplacer.doReplacements(config,
aMockSearchAndReplacer);

aMockSearchAndReplacer.verify();

assertEquals("expected MultiReplacer to think it has done 12
replacements",(5+7), numReplacements);

}

The test implies a class MultiReplacer that has a method:
public int doReplacements(String, SearchAndReplacer)

and an interface SearchAndReplacer that has a method:
public void replace(String from, String to);

This paper will not deal with the implementation of the
real SearchAndReplacer (which does a search and re-
placement to the contents of a file), but will instead ex-
amine how this example test would need to be written for
the use of the mock SearchAndReplacer generated by
each CAMP tool.

In order to generate the mock implementation, EasyMock
and MockCreator need an interface, SearchAndReplacer.
Extender and MockMaker need either an interface or a
class. As can be seen from the example, working out the
interface implied by a test is usually quite straightfor-
ward.

The classes produced by EasyMock, MockCreator and
MockMaker provide slightly different ways of setting
expectations about the number of times a method is
called, the parameters methods are called with and to
setup return values for methods. Extender does not di-
rectly provide such code, but rather provides an empty
implementation of a class that can be (manually) overrid-
den to provide such behaviour.

HAND WRITTEN USING MOCKOBJECTS
FRAMEWORK

The MockObjects project provides useful classes for
writing mocks by hand, such as classes for setting and
verifying expectations about the number of times a
method is called or the parameters it is called with. Writ-
ing mocks by hand allows for great flexibility in the
mock code. Mocks can be customized for ease of writing
tests and clarity of test code. To give an example: where
a method on a mock takes a number of parameters and
the purpose of our test is ensuring that one of these pa-
rameters is correct (and the values of the other parameters
don’t matter for that test), we can express that more
clearly in the code if we only set up that one expectation;
most of the tool-based approaches would require us to set
expectations for all of the parameters.

Although writing mocks by hand allows for flexibility, it
can also be very repetitive. In most cases a call to a mock
simply increments a call counter, checks parameter val-
ues and returns a preset return value.

EASYMOCK
The EasyMock approach removes the need for writing a
mock at all. To use EasyMock, the EasyMock jar file has
to be included on the classpath, and then EasyMock
mocks can be written using classes from this jar (as
shown in the example code below) without any further
steps being necessary. EasyMock tests create mocks
dynamically at test run time, with each EasyMock object
having two distinct phases.

In the setup phase, an EasyMockControl is used to set up
the mock. Parameter expectations are set up by making
calls on the mock in setup mode. For each call, the
EasyMockControl is then set up with return values and
call counts for the mock. The EasyMockControl is then
activated and the mock works in the normal way as the
test is run, throwing Exceptions when expectations are
not fulfilled.

The approach is very elegant, but it does not allow the
programmer to customize the mocks, and only works in
JDK 1.3.1 and later.

The MultiReplacer test would be written as follows:

public void testDoReplacement() throws Exception {

String config = "xyz|abc\n"+

 "1|2";

MockControl aMockSearchAndReplacerControl =

EasyMock.controlFor(SearchAndReplacer.class);

SearchAndReplacer aMockSearchAndReplacer = (SearchAn-
dReplacer)

aMockSearchAndReplacerControl.getMock();

aMockSearchAndReplacer.replace("xyz","abc");

aMockSearchAndReplacerControl.setReturnValue(5);

aMockSearchAndReplacer.replace("1","2");

aMockSearchAndReplacerControl.setReturnValue(7);

8

aMockSearchAndReplacerControl.activate();

MultiReplacer aMultiReplacer = new MultiReplacer();

int numReplacements = aMultiReplacer.doReplacements(config,

aMockSearchAndReplacer);

aMockSearchAndReplacerControl.verify();

assertEquals("expected MultiReplacer to think it has done 12

replacements",(5+7), numReplacements);

}

EasyMock requires the setting up of expectations for
every method call. That is, if ‘doReplacements’ also calls
another method on the MockSearchAndReplacer in addition
to the calls of ‘replace’ that we are testing for, then the
MockSearchAndReplacer will throw an AssertionFailedError.
If we want to allow our implementation of MultiReplacer to
make some other method calls on the MockSearchAndRe-
placer, then the MockSearchAndReplacer needs to be set to
expect those method calls even if it is not important to
the intent of the test. In our view, this is both a strength
and a weakness. The programmer is forced to set expec-
tations for every method call. Clearly this is a rigorous
approach, but it means that the purpose of a test is easily
obscured by over-specification.

Ideally, a test should specify only the things that are
intended to be tested; in fact, this is one of the motiva-
tions for using mock objects. Using the EasyMock ap-
proach means that all method calls must be specified,
including those that are not relevant to the purpose of the
test. It is our experience that tests are harder to under-
stand if they have to specify more things than you in-
tended to test.

Removing the need to write mock code is elegant and
eliminates problems associated with maintaining gener-
ated code. As the mocks are generated dynamically, and
no extra source created, EasyMock mocks cannot be
customised. This restriction has a benefit; it enforces
standards so EasyMock mocks always behave in the
same way.

EXTENDER
Extender doesn't provide much structure so it's difficult
to say what the best way to use it is. Extender is used as a
command line tool; given the name of a class/interface
that exists on the classpath, Extender outputs the source
for a subclass/implementing class, which can then be
saved to a file. The classes produced by Extender simply
implement/override all the methods of the inter-
face/superclass to throw a RuntimeException, thus prevent-
ing accidental use of any of the methods.

To write a test that uses a mock based on these generated
classes, the programmer must provide a subclass overrid-
den with the appropriate implementations of the relevant
methods from the superclass. The simplest way to do this
is usually by creating an anonymous inner class, since the
number of methods to be overridden will usually be quite
small.

The test code shown has been written to be as close in
behaviour as the code for the other tools as possible:

public void testReadConfigExtender() throws Exception {

String config = "xyz|abc\n"+

 "1|2";

SearchAndReplacer aMockSearchAndReplacer = new

ExtenderMockSearchAndReplacer(){

 int callNumber = 0;

 public int replace(String arg1, String arg2) {

 callNumber++;

 switch (callNumber) {

 case 1 : {

 assertEquals("xyz", arg1);

 assertEquals("abc", arg2);

 return 5;

 }

 case 2 : {

 assertEquals("1", arg1);

 assertEquals("2", arg2);

 return 7;

 }

 }

 fail("shouldn't have been called >2 times");

 return 0;

 }

};

MultiReplacer aMultiReplacer = new MultiReplacer();

int numReplacements = aMultiReplacer.doMutations(config,

aMockSearchAndReplacer);

assertEquals("expected MultiReplacer to think it has done 12

replacements",(5+7), numReplacements);

}

Extender therefore does not automatically generate mock
implementations. It just implements a class that can be
overridden just for those methods needed for the mock
for a test. The act of writing the mock (usually setting up
expectations and verifying them) is left to the program-
mer. The programmer can choose to use the MockOb-
jects project framework, or implement the overridden
methods any other way, for example, in the way shown
above. Extender provides a way of making mocks for
concrete classes whose interface the programmer has no
control over. Examples of such code can be found in the
JDK libraries, such as java.net.URL and
java.io.InputStream.

9

MOCKCREATOR
MockCreator is a tool for VisualAge for Java that gener-
ates and saves a mock class for an interface. Using
MockCreator is very straightforward. A menu item is
available on interfaces that creates a mock implementa-
tion in a manually selected package. The user does not
have to save the source to a file manually; the new class
is added into the VisualAge for Java workbench auto-
matically.

The mocks generated by MockCreator require the tests to
be written slightly differently than the MockObjects
project conventions (arguably neater). The test code for
our example would be:

public void testDoReplacement() throws Exception {

String config = "xyz|abc\n"+

 "1|2";

CreatorMockSearchAndReplacer aMockSearchAndReplacer =
new CreatorMockSearchAndReplacer();

aMockSearchAndReplacer.expectReplace("xyz","abc",5);

aMockSearchAndReplacer.expectReplace("1","2",7);

MultiReplacer aMultiReplacer = new MultiReplacer();

int numReplacements = aMultiReplacer.doReplacements(config,

aMockSearchAndReplacer);

aMockSearchAndReplacer.verify();

assertEquals("expected MultiReplacer to think it has done 12

replacements",(5+7), numReplacements);

}

The mocks created by MockCreator use the MockObjects
project framework but not it’s conventions. Instead of
two calls, i.e. ‘setExpected’ and ‘setup’, as per MockOb-
jects project conventions, only one ‘expect’ call is re-
quired that both sets the expectation and the return value.

MockCreator mocks do not require expectations to be set
for all methods that all called. Using the MockObjects
project framework, if an expectation is not set then none
is attempted to be verified; i.e. not setting an expectation
that method ‘foo’ is called means that whether ‘foo’ is
called or not does not effect the running of the test. To set
an expectation that ‘foo’ is not called is a different matter
and is an expectation that needs to be explicitly set.

The code generated by MockCreator can be modified by
hand if necessary.

MOCKMAKER
MockMaker can be used either as a command line tool or
through a simple GUI to create the source code for a
mock class for either an interface or a class. It also pro-
vides integration with JBuilder, and integration with
VisualAge for Java is due for release soon.

MockMaker can be configured to use the MockObjects
project conventions. The source code for Mock-
SearchAndReplacer would therefore allow the test to be

written exactly the same as shown earlier for the hand
written mock.

There are differences between the code produced by
MockMaker and in the mocks in the MockObjects project
framework in the naming of instance variables and the
strings that are used in messages when tests fail, but these
are of less importance than the conventions for the names
of public methods.

As with MockCreator, MockMaker uses the MockOb-
jects project framework and so does not require over-
specifying of tests. Similarly, because code is generated,
it can be customized as necessary.

The code generated by MockMaker could be neater, and
it does not include all the import statements necessary for
the generated code to compile unchanged, however the
import statements can usually be worked out by an IDE.

SUMMARY OF DIFFERENT APPROACHES
Tool Advantages Disadvantages

EasyMock No code to main-
tain

Enforces standards
of mocks

Only works for
JDK1.3.1 or later

Can require over-
specifying of tests

Extender Works for classes
and interfaces

Does not generate
much of the mock
implementation

MockCreator VisualAge integra-
tion makes it easy
to use

Only available in
VisualAge for
Java

MockMaker Works for older
JDKs and not tied
to IDE

Follows MockOb-
jects project con-
ventions for public
methods

Code generated
could be improved
and shorter

CONCLUSIONS
Writing mocks by hand is a repetitive and time-
consuming task that can be automated. Most of the
CAMP tools are useful in this regard.

Further advantages of the CAMP tools (except Extender)
are that they enforce coding standards (in generated
mocks) and produce simple mock objects of predictable
and consistent behaviour.

Most of the tools provide implementations of mocks that
increment a call counter, compare the parameters with
expected parameters and, where appropriate, return some
pre-set value or object.

Like all code, mocks should be refactored to remove
redundancy and duplication. In practice, however, auto-

10

matic generation of mock code seems to discourage this.
The approach with CAMP tools is usually a cycle of
write test, make mock, run test to fail, write application
code, refactor application code, leave mock alone.

An automatically generated mock contains a complete
but simple implementation for a given interface; for ex-
ample, including a method call counter for each method
whether or not that method's call counts are tested in any
test. Therefore, automatically generated mocks may con-
tain more code than handwritten mocks, which usually
evolve alongside the test code and which only contain
code that is needed to make a specific suite of tests run.

The automatically-generated code may therefore contain
redundant code. Large numbers of unused setup and
setExpectation methods in a CAMP-generated mock
suggests that not all test cases have been covered. We
believe that mock code, because it performs in a very
simple and predictable way, is different than production
code in terms of refactoring. Production code should be
refactored so that it can be changed and read easily.
Automatically-generated mock code is easy to read be-
cause it is predictable and easy to change because a
change to the interface means a predictable change to the
generated mock implementation; all the programmer
needs to do is regenerate the mock.

Some people have reported that debugging using CAMP
generated mocks can be more difficult than with hand
written mocks, because the generated code is not always
very elegant, and for the reasons described earlier may
contain much more code than you are really interested in.
Furthermore, as EasyMock uses reflection to implement
mocks, it might be more difficult to debug when using
EasyMock mocks, particularly if the code you are trying
to debug is itself reflective.

In test-first programming, the design of interfaces
evolves with the test code. As new tests are written, new
methods are identified and added to the interface.

Mocks for which a developer has the source code can be
customized to make the tests more expressive and more
flexible; for example, if you only want to test one of the
parameters that a method is called with, the mock can be
customized with a method for setting only that expecta-
tion.

The tools differ in the tradeoffs they make between the
degree of control that programmers want through cus-
tomization and the ease of changing the interface.

EasyMock accommodates changes to interfaces because
it generates mocks dynamically; if an interface is
changed in a backward compatible way then tests using
EasyMock mocks do not need to be changed.

CAMP tools that generate and save the mock code
(MockCreator and MockMaker) do not accommodate
changes to interfaces so readily. MockCreator overwrites
existing mock code, and existing mocks must be deleted
each time the interface is modified. In a future release,
MockMaker will work incrementally, allowing the pro-
grammer to customize the code of the mock after it has
been generated, then add a method and rerun the tool

without undoing those changes.

The EasyMock approach means that generated mocks
cannot be customized. Perhaps this is a good thing: in our
experience, it is rare for a mock to need to do anything
other than check parameters, check call counts, return
pre-set values or throw Exceptions. Our experience of
mocks that do more than this is that they lead to confu-
sion when trying to understand test code; mocks should
not do very much.

Our experience has been that automatically generating
mocks saves time and produces the mocks that we want:
simple, consistent and predictable.

ACKNOWLEDGEMENTS
Special thanks to John Nolan for the title and the CAMP
acronym. Thanks to Rachel Davies for comments on this
paper, to users of MockMaker who have made useful
suggestions, encouraging comments and contributed
code, and to Matt Cooke, who has taken over as manager
of the MockMaker project. Thanks to the reviewers from
their helpful comments. Also thanks to Connextra for
providing a useful testing ground for MockMaker.

REFERENCES
1. John Nolan, private communication, 2001.

2. Mackinnon T, Freeman S, Craig P. Endo Testing:
Unit Testing with Mock Objects, Extreme Pro-
gramming eXamined, Addison-Wesley, 2001.

3. Kent Beck. eXtreme Programming Explained: Em-
brace Change, Addison-Wesley, 1999.

4. McCormick Europe Condiments Division
http://www.mccormick.com and
http://www.sybertooth.com/camp/

5. http://www.easymock.org/

6. XPUniverse, Raleigh, 2001.

7. http://groups.yahoo.com/group/extremeprogrammin
g-seattle/files/extender.jar

8. http://www.abstrakt.de/en/mockcreator.html

9. http://mockmaker.sourceforge.net

10. http://mockry.sourceforge.net

11. http:// www.mockobjects.com

