
122

 Extreme Programming and Database Administration: Problems,
Solutions, and Issues

Ahmed M. Hassan

ThoughtWorks, Inc.

651 W Washington Blvd.,

Suite 600, Chicago, IL,

60661 USA

+ 1 312 925 2378

Ahmed.Hassan@thoughtworks.com

Amr Elssamadisy

ThoughtWorks, Inc.

651 W Washington Blvd.,

Suite 600, Chicago, IL,

60661 USA

+ 1 312 961 6504

Amr.Elssamadisy@thoughtworks.com

ABSTRACT
XP focuses on both development and the customer. And
because it is recommended that XP be used only with
small projects, it is assumed that the developers do the
DBA functionality. Recently there has been literature
discussing the use of XP with large projects and the
various ways that the basic XP principles have been
adopted with larger development teams. With any
medium to large sized project there is usually a separate
Database Administrator (DBA) or DBA team. How
does this team fit in with the overall XP team and how
or what XP practices are applicable to its responsibili-
ties? In this paper we will tell of our experience doing
just that, how the XP process was or was not used by
the DBA team, problems we had on the database side,
our applied solutions, and solutions that we suggest.

Keywords

XP process, scalability to larger teams, database.

1 INTRODUCTION
This is an experience report describing our findings and
suggestions on a large project that has been heavily
affected by XP and has grown to include an independ-
ent database team. It should be kept in mind that this is
a ‘lessons learned’ format where we only describe what
we believe can be changed for the better. That does not
imply that we did not succeed in supporting an XP
development process with a DBA team; in fact, the
opposite is true. We have been very successful in hav-
ing a DBA team that is agile enough to support a very
dynamic and large XP project.

Historically at ThoughtWorks, Inc. we have been using
agile methodologies and/or a modified version of XP
since January of 2000 [1][2][3]. The particular project
that the authors have been working on grew from hav-
ing a pure development team, to a team with one data-
base administrator (DBA), and now includes a team that
has been as large as four dedicated to supporting devel-
opment and deployment of the application. As the
development team adopted XP and molded it to its
needs the smaller DBA team was out of the loop during
many parts of the development process.

This paper attempts to recognize problems, analyze
them, and describe and suggest solutions for database-
related issues in a large XP software project. First, we
will present the problems we encountered and then we
will present the XP practices that we believe address
these problems.

2 PROBLEMS ENCOUNTERED WITH AN XP
DEVELOPMENT TEAM AND A STANDARD
DBA TEAM

Lack of unit tests for views/stored procedures
During testing some views/stored procedures did not
return the data that they should have. Developers
seemed to take the database code for granted and did
not develop unit tests for all of the code parts that relied
on the database code. At the same time, the database
team was fine with writing code, testing it manually,
and assuming that it worked correctly. The truth is that
both developers and DBAs were at fault – there was
weak informal communication/cooperation in writing
these views and stored procedures. In summary, we
believe that views and stored procedures should be
treated like any other code – they should be written in
pairs and should be covered by the unit test suite.

Code and database are not in synch
This is a 2-fold issue:

One: synchronization of constraints (required fields (not
null), unique, primary key, and referential integrity
(RI)). The application had its own ‘understanding’ of
existing database constraints. The actual database con-
straints were not exactly the same as those of the appli-
cation. Most of the ‘mismatching’ pieces required code
changes that took time and effort to fix during a cleanup
stage.

Two: synchronization of data items (tables and col-
umns). As the code base grew, many database changes
were required. It is not possible to ‘forget’ about add-
ing a new column to a table since it will be used by the

123

code. However, it is very easy to ‘forget’ to remove
unused tables/columns in such a low-communication
environment. This led to having unused tables and col-
umns remaining in the database (and in a few cases in
the code too).

Bad database design decisions
Since most design decisions were driven by developers
(including database design), many design choices were
not the best choices available. This is due to the fact
that not all developers have database design skills.
Therefore bad design decisions fell through unnoticed
without the DBA team having had the chance to review
them.

Missing Database constraint definition
A typical situation for a developer when working on a
story card that required new database columns and/or
tables was to request a simple change to the database
without any constraints. Therefore a column would be
added without any not-null constraints or RI constraints
even though logically they were needed. At the rush to
finish functionality at the end of the iteration, the extra
code needed to turn these constraints on was never
added and subsequently the change request to add these
constraints was never made.

Database changes are a development bottleneck
All database changes were handled only by DBAs.
When the team did not have enough DBAs many code
changes were waiting for the matching database
changes. In other words, database changes became a
development bottleneck. This caused developers to
either delay delivery of their code or to ask for their
database changes prematurely. Some of these prema-
ture changes were removed from the code afterwards,
but not from the database (code-DB synch problem).

Database changes have a single owner
In a large project like the one that the authors worked
on, there were many different environments that devel-
opers are not familiar with or even aware of. Database
changes had to be applied by DBAs who were able to
manage these environments. Therefore, all database
related code (views/stored procedures, etc.) was owned
by DBAs. Many changes were simple and could have
been applied by developers who had to wait for a DBA
to apply their changes.

Missing communication
Communication between the development and a ‘stan-
dard’ DBA team most resembled the communication of
a client to a development team in a pre-XP process.
That is, there is a wall and the client (developers in our
case) throws the requirements over the wall to the de-
velopers (DBAs in this case). Then DBAs throw the
results back over the wall. The problems with this

approach are the same problems that existed with the
old client-developer relationship. This resulted in two
separate teams working on one project.

3 SOLUTIONS TO PROBLEMS ENCOUNTERED

The Planning Game

The planning game is one of the most important activi-
ties that were missed. XP is based on quick iterations,
and each iteration kicks off with the planning game.
This is the feedback that allows the team to ‘drive’ the
application to success and get around potholes. We
have caught problems/bad designs that could have been
avoided if only a member of the DBA team attended the
design meetings (can be replaced by a developer with
high database design skills).

The fact is that not all story cards require DBA input.
However, it is very difficult at the planning phase to
know exactly how things will touch the database.
Therefore we recommend that a member of the DBA
team (or a developer that is highly skilled in DB design)
be present in ALL developer design meetings to be able
to point out and discuss changes that need to be made to
the database. This may seem like a waste of time be-
cause surely not all changes will affect the database.
This may be correct, but at the same time the result of
making a bad database decision is that you will live
with the bad design throughout the life of the project.

Pairing
Pairing is applicable only when developing code in the
database, namely during development of stored proce-
dures and views. The two who should pair are the de-
veloper responsible for the card and the DBA responsi-
ble for making the needed database changes for that
card. This is unconventional pair programming because
we have two different skill sets working to solve one
problem. Applying a test-first strategy, the DBA should
work with the developer when writing the unit tests
giving input based on the requirements that were agreed
upon in the planning game. Afterwards the developer
should pair with the DBA and allow the DBA to drive
in writing the stored procedure. This type of pair pro-
gramming will need a developer who is familiar with
the database and a DBA who is familiar with the appli-
cation programming language. The real gain from this
is increased communication between the two teams and
the melting of the teams into one to write one applica-
tion1.

All story cards must recognize DB tasks and list con-
straints that will be enforced after the card is finished

1 In fact, on our particular project, we have rotated de-
velopers into and out of the DBA team.

124

(this includes PK, FK, RI, unique, and not nulls con-
straints). This means a story card is not finished until
all of its related constraints are enabled and not simply
that the code passes all of the unit/function tests.

Collective ownership
All code that was developed by pairing a DBA with a
developer should be jointly owned. This code is now
part of the code base and the unit tests are present as a
safety net to keep the code on track. This should help
to resolve the problem of DB changes being a bottle-
neck in the development process. This also would help
join the two teams into one development team.

However, we should distinguish between creating the
new database code and applying this new code to all of
the environments that need it. This is due to the situa-
tion when some environments require this change im-
mediately, other environments require one week delay
on code and DB changes, some other environments
require two week delay and some environments have
code and DB changes applied asynchronously (on re-
quest of the owner). It is an open question whether to
have exclusively DBAs perform the task of apply-
ing/maintaining the database code changes or to allow
developers to apply them once they are ready to do so.

Testing
Database related bugs can be very subtle and discovered
very late. Having unit tests for all DB components will
help to discover many issues earlier. These unit tests
can be unit tests for the application code that uses DB
code. They will be part of the whole testing suite for
the application and will allow leveraging of the usually
more powerful development language.

To synchronize our database model and the code’s view
of the database (code model) we had manual runs of
utilities to find: forgotten-to-remove tables and col-
umns, data type mismatching, and required column
constraints. These runs helped to bring the code into
synch with the database. This very useful process can
easily be automated and incorporated into the testing
suite.

4 REFACTORING
The fact is that in our experience, bad database design
decisions are rarely fixed. They are tolerated and are
heavy weights that we carry throughout the life of the
project because they are seen as a low priority because
the code is working. DBAs should be al-
lowed/encouraged to add refactoring tasks in appropri-
ate story cards.

Many common database refactorings are not cataloged.
It might be useful if developers would become familiar
with such refactorings. One example is an upgrade of
one-to-one (1-1) and one-to-many (1-M) to many-to-
many (M-M) relationships. Missing this refactoring
may cause an ill/inefficient database design.

5 CONCLUSION
XP with database administration is a part of XP that has
not been extensively discussed. Many issues came up;
we tried some solutions and we would like to try others
whenever we do this again.

Database Administration in conjunction with XP is not
a frequently addressed subject. We have presented our
experience with a large XP project that included a DBA
team and have enumerated our pains. All of these pains
seem to originate from the fact that in reality we had
two separate teams with different methodologies and
poor communication between the teams. This resulted
in the code and database design getting out of synch,
code that is ultimately part of the application (stored
procedures and views) did not have unit tests, there was
little refactoring of the database, and other problems.
Then we presented some solutions to these problems by
increasing the involvement of the DBA team in the
development process, and increasing the involvement of
the development team in the database administration
process. We do not have all of the answers to the prob-
lems that we encountered; there are many issues left to
be addressed. Where do we draw the line – if any – on
code ownership? When should we refactor? What is
the quality of the database design of an XP driven pro-
ject compared to other databases with an upfront de-
sign? What we do know is that many of the pains that
we encountered could have been reduced by the intro-
duction of testing, pairing, DBA involvement in the
planning game, and more collective ownership.

REFERENCES
[1] Elssamadisy, A. XP On A Large Project: A Devel-

oper’s View,
http://www.thoughtworks.com/library/index.html

[2] Elssamadisy, A. and Schalliol, G. Recognizing and
Responding to “Bad Smells” in Extreme Program-
ming,
http://www.thoughtworks.com/library/index.html

[3] Schuh, P., and Punke, S. ObjectMother: Easing
Test Object Creation In XP,
http://www.thoughtworks.com/library/index.html

