
197

Using XP to develop a CRM framework

 Hubert Baumeister
Institut für Informatik

 Ludwig-Maximilians-Universität
 Oettingenstr. 67
 D-80538 München, Germany
 +49 89 2180 9375
 baumeist@informatik.uni-muenchen.de

Abstract
This paper describes our experiences with using XP prac-
tices within the EU-project CARUSO. The objective of
CARUSO is the development of a framework for build-
ing customized Customer Relationship Management
(CRM) applications. Originally, the project was planned
with a traditional software development process in mind
with a first prototype for evaluation by the customer and
a second prototype building on the results of that evalua-
tion. However, problems occurred defining the require-
ments for the framework for several reasons. First, our
prime customer had only a vague understanding of how
the software support for their CRM needs should look
like, and second, CRM involves almost every business
process in a company. To address these problems we
used an agile software development process that allowed
us to start from a simple CRM process (customer ser-
vice), dividing it into user-stories, and clarifying the
requirements on the framework as the user-stories were
implemented.

1 INTRODUCTION
In particular in the domain of E-commerce, having robust
software systems satisfying the needs of the business, is
getting more and more crucial to the survival of compa-
nies. In addition, when starting the development of a
software system, usually one has only a rough idea of the
final functionality of the system while, on the other hand,
the software is needed already yesterday. Classical,
heavyweight software processes, which first require a
thorough analysis of the requirements and a detailed
design before implementing, fail to deliver in time. Soft-
ware that takes several years to design and implement
may find themselves in a situation that it cannot cope
with the current requirements of the company, or even
worse that the company who initiated the software devel-
opment does not exist anymore. To cope with these kinds
of problems, agile software development processes, like
Scrum, Crystal, FDD, DSDM, and others have been pro-
posed [1]. A quite recent agile method that has gained a
lot of popularity is Extreme Programming (XP) devel-
oped by Kent Beck, Ward Cunningham, and others [2,7].
XP is a lightweight process that incorporates methods to
react to change while not sacrificing the quality of the
resulting software. XP is most suited to small and mid-
dle-sized projects where the software has to adapt to
changes in the requirements and the environment, and
where the software needs to produce business value even
if not all functionality is implemented.

We have used practices from XP in the CARUSO project
[3,4]. CARUSO is a EU-funded project [5] with the ob-
jective to design and implement a framework for building
customized Customer Relationship Management soft-
ware. The major problem with designing such a frame-
work is finding the right components and their function-
ality because the requirements on CRM software are
quite complex as they involve all the business processes
of a company, like marketing, sales, service, etc., and all
its IT systems. We first started the project following a
classical software development process, which required
us to analyze a good deal of these processes before start-
ing the design of the system [9]. Because of the com-
plexities involved in CRM this proved to be impossible.
Therefore, starting from a rough idea of the CARUSO
architecture, we defined user-stories based on the CRM
needs of REMU, a utility company and one of the part-
ners of the project. During the implementation of these
user-stories, the components of the framework and their
functionality was discovered and implemented.

One of the components of this framework is the script
engine that manages the execution of dialog-scripts. Dia-
log-scripts guide the dialog between a call-center agent
and a customer by presenting the agent with text and
questions she should ask the customer. Though more
precise, the general requirements of the script engine
were too many to be dealt with in a suitable time frame.
Thus the problem was to decide which subset of the re-
quirements were the most important in the context of the
CARUSO project. By looking at the user-stories of the
CARUSO project we were led to the definition of suit-
able user-stories for the script engine. In addition, the
script engine was implemented using test-first program-
ming.

In the next section we describe the CARUSO project and
the architecture of the framework in more detail. Sections
3 and 4 show how XP practices were used in the
CARUSO project. Finally, Section 5 provides a conclu-
sion.

2 CARUSO
The CARUSO (Customer Care and Relationship Support
Office) project [3,4] is a project funded by the European
Union within the Information Society Technologies (IST)
program [5]. Partners are REMU, a Dutch utility provider
in Utrecht, DataCall, a German software house in Mu-
nich, and the Institute of Computer Science of the
Ludwig-Maximilians-University in Munich. The project
started in January 2000 and ends June 2002. The objec-

 198

tive of CARUSO is to provide customized CRM solu-
tions for small- and middle-sized enterprises. This is
achieved by designing and implementing a framework for
constructing CRM applications. This framework consists
of a set of generic components together with tools to
customize these components.

Architecture
The basic design consideration of CARUSO was to build
the framework from components. Microsoft's COM/
DCOM component technology was chosen because Win-
dows is the target platform for CARUSO and the frame-
work should reuse and extend existing COM/DCOM
components. The architecture of the CARUSO frame-
work has five major parts: 1) the kernel components 2)
interfaces to back-office systems 3) front-office applica-
tions 4) application builder tools 5) administration tools.

The kernel components provide the basic services to all
front-office applications built with CARUSO. These
components are: Communication Server, Storage Man-
ager, Business Object Manager, Script Engine, and Ser-
vice Manager

The communication server is one of the central parts of
any CRM application. Ideally any communication with
the customer will be done using some of its services. In
particular, the communication server manages the routing
of incoming and outgoing messages, like phone calls, e-
mails, faxes etc.

The storage manager defines an abstraction layer on top
of common relational databases so that an application
programmer does not have to deal with the peculiarities
of a particular relational database. On top of the storage
manager functionality, the business object manager pro-
vides access to the business objects of an application by
applying a user-defined mapping of these objects to rela-
tional database tables.

Finally, the script engine is used to run dialog-scripts
guiding the dialog between a call-center agent and a cus-
tomer. The script engine will be discussed in more detail
in the next section.

For each back-office systems that the CRM application
has to interface with, like ERP systems, workflow-
management systems, etc., a software-component repre-
senting the back-office system needs to be implemented.
The task of this component is to access the data stored in
these systems, but also to initiate business processes
involving these systems.

The CARUSO kernel together with the interfaces to the
back-office systems provides the components used to
build particular front-office applications. These are built
with the help of the application builder tools. These tools
include a data modeler to define the business objects used
by the business object manager, the script developer for
developing dialog scripts, and tools to administer and
monitor the resulting CRM applications.

Script Engine
A dialog-script guides the dialog between the call-center
agent and the customer. It guides the agent through a set
of questions and texts to be presented to the customer.
The sequence of questions and texts depends on the an-

swers a customers gives. In addition, to each transition
from one question or text to another one can associate
arbitrary actions, like updating databases or sending mes-
sages to other agents.

An example is the script used by REMU for changing the
amount of monthly pre-payment for a customer's utility-
bill. After the usual introduction, identification who is
calling, and finding out about the service request, that is,
that the customer wants to change the monthly pre-
payment, the agent is first presented with the following
question on his screen:

Your current monthly payment is [payment]. What
should be your new monthly payment?

 In this question [payment] is replaced by the actual
monthly payment of the customer, which is retrieved
from the customer-database. Then the agent types the
answer of the customer on his keyboard. If the new pay-
ment is greater then the original payment or not less than
90% of the original payment, this new payment is ac-
cepted by the system without further questions and the
customer database is updated with the new payment. The
agent then is presented with the text:

Thank you, your new monthly payment is [payment].

In this example, we assume that the dialog is finished at
this point, although, more likely, the agent would ask the
customer if he could do something else for her.

In case that the new payment is less then 90% of the
original payment an explanation is needed. Thus the
agent asks:

The number you have given is too small. Please give an
explanation.

The agent types the answer given by the customer and
automatically this answer is forwarded by e-mail to some
person in the back-office evaluating the request. The
agent is presented with the following text to end the dia-
log with the customer:

Thank you, your request will be considered.

The task of the script engine is to execute given dialog-
scripts. It keeps track of which questions have been asked
and what answers were given, what the current question
or text is, and performs actions when moving from one
script item to another.

One of the design goals was to separate the logic of how
scripts are executed from the user interface used to exe-
cute these scripts and from the storing of the answers. In
particular, different programming languages were used to
implement these different aspects. The engine itself was
written in Java (Visual J++) as a COM component. One
user interface was written as an ActiveX component
using native Windows widgets, while a web-interface
was implemented with the help of Java Server Pages. To
process and store the answers given to the questions in a
script, the business object manager and storage manager
components were used.

 199

3 REQUIREMENTS PARALYSIS
Our first approach was to use a more traditional software
development process. Two prototypes of the software
were planned. The first prototype was scheduled after the
first 18 months and should be evaluated by REMU. The
result of this evaluation was intended to drive the second
prototype, which was scheduled for the next 9 months.
Each of the two prototypes was planned according to the
traditional development cycle: analyzing requirements,
designing, implementing, and testing the system.

A major problem with this approach was that for the first
design of the system we had the tendency to look for a
complete set of requirements to start with, because any
requirements that were not considered in the first design
could require changes to the design and implementation
that would be too expensive to do in the later phases. In
CARUSO we first tried to model the business processes
that would be influenced by CRM software. This was not
feasible as CRM usually has to interact with almost every
business process of a company and each company has
different kind of business processes. Further, it proved to
be very difficult to find a common data model for a cus-
tomer suitable for several companies even in the same
vertical market. Also, REMU had only an imprecise
understanding of their CRM requirements. REMU was
referring to CARUSO as their customer care dream. As is
common with dreams, CARUSO was supposed to do
everything; but because of the complexity of CRM, no
concrete requirements were given, since nobody knew
where to start. This resulted in the problem that to start
with the design and implementation of the system, we
needed to have precise requirements, while, on the other
hand, the real requirements would only be known when a
first version of the system was available to gain some
experience.

The way XP addresses this problem is that analysis, de-
sign, implementation, and testing is done for each user-
story in turn without taking those user stories into ac-
count which have not yet been implemented. The result
of these steps is a system implementing exactly this user-
story. This allows for immediate feedback by the cus-
tomer. Each new user-story is dealt with the same way.

User-Stories
Therefore, within the CARUSO project, we first focused
on the business process most important to REMU, which
was customer service. This included support cases like
complaining, getting information about products, and
changing customer data.

So the first step was to build a small pilot to show REMU
how these service requests could be handled. While this
pilot could show some sample screens, it did not yet
implement any serious business logic. However, it proved
sufficient for REMU to produce a set of support cases
they want to have handled and to define how these should
be handled. We identified the following user-stories:
user-story 1: identifying customer, user-story 2: change
billing address, user-story 3: change monthly pre-
payment, user-story 4: handle complaints, user-story 5:
handle requests for information, and user-story 6: move
in / out.

Example: Script Engine
Using the script engine as an example, we show how
each of the iterations guided the design of the scripts and
the script engine. To handle the support case of the first
iteration, identifying customer, no script was necessary.
In the support case for the second iteration, changing the
customers billing address, the script consisted of a simple
question and processing its answer without any branch-
ing. The support case for the third iteration, changing the
monthly payment, involved branching on conditions and
performing actions, like sending E-mails to the back-
office. Furthermore, parameters like [payment] had to be
introduced into the text of the question. These parameters
were replaced by their actual value during the execution
of the scripts.

For the support case of the fourth iteration, handling
customer complaints, we discovered that at several points
in the script it was necessary to schedule the visit of a
technician at the customer's house. This involved asking
several questions that could be considered as a script of
its own and led to introducing scripts as part of other
scripts.

The support cases of the last two iterations did not re-
quire any further extensions to the scripts and the script
engine.

4 TEST-FIRST PROGRAMMING
To achieve the robustness required of the script engine,
automated tests and test-first programming were used.
We wrote tests for: intended functionality, assumptions
about the code, border cases, discovered bugs, and inter-
action between COM/DCOM components. Tests for
intended functionality and assumptions about the code
are quite similar. However, the test for intended function-
ality tests for the results the code should produce if eve-
rything is okay. Testing assumptions about the code may
also document failures, for example, what happens if a
function gets passed a wrong argument. While this
probably shouldn't happen at all, in some cases it is im-
portant to document what would happen. Other assump-
tions on code include unexpected behavior (whether
correct or incorrect) of library components.

Writing the test for the border cases, e.g., if an argument
to a method is null and similar cases, made precise (and
documents) what should be the result of such situations.

Bugs were an indication that we forgot to test and im-
plement some functionality. Further, tests for bugs en-
sured that later revisions of the software did not introduce
the same bug again.

One major problem was to understand the interaction
between COM/DCOM components written in Visual
Basic and Java. One of the user interfaces was written in
Visual Basic while the script engine was implemented in
Java. Therefore access from Visual Basic to methods and
objects in Java was needed. Problems occurred with how
data types in the Visual Basic were mapped to data types
in Java; in particular, how values of type Variant in Vis-
ual Basic were mapped to values in Java. Tests were
important to document our assumption on how this map-

 200

ping works.

In addition, also access from Java to other COM/DCOM
components was required, as objects outside the script
engine COM component handled all the data manipulated
by the scripts. For example, all data gathered by the script
engine was stored using the business object manager
components. Again tests were written to document and
test our assumptions.

Tests helped us improve the portability of the script en-
gine. While intended to be used as a COM component in
Windows, we wanted to use the script engine also as a
pure Java application to maintain platform independence.
Thus a first version of the engine was developed under
Linux. When moving from Linux to Windows, tests
showed us that almost everything works with the excep-
tion of a few tests related to reading and writing scripts in
XML. Investigations showed that these failures were
related to the different line end conventions of Unix and
Windows.

A subtler problem occurred when moving from one com-
puter running Windows 2000 to another computer run-
ning the same operating system. All tests passed but one.
The failing test revealed a broken library we distributed
with the script engine. The computer on which the devel-
opment took place used a correct version of the library
instead of the broken one. Because of having the tests we
found the bug which otherwise might have been discov-
ered only at the customer’s site where fixing this bug
would have been quite expensive.

The code size of the tests equals almost that of the pro-
duction code, 42 classes with 5.111 lines of production
code versus 37 classes and 4.837 lines of test code. JUnit
[6] was used to test the Java part and the connection from
Java to other COM components, and VBUnit [8] was
used to test the connection from Visual Basic to Java.

5 CONCLUSIONS
In this paper we have presented our positive experience
with some of the XP practices in the context of the
CARUSO project, although not all XP practices could be
applied because of the distributed nature of the project (as
common with EU-projects, the project partners were
from different countries) and political reasons. It proved
very helpful to divide the development task into user-
stories guided by the CRM needs of REMU to get a pre-
cise understanding of the requirements of the framework
and to get feedback on its use.

Similarly, this approach helped the implementation of the
script engine, which otherwise would have taken much

longer to design and implement, because we would have
taken into account a lot of sensible requirements which
were not needed for CARUSO.

Although no big design phase preceded the implementa-
tion of the engine, the design proved quite stable with
respect to future requirements. While within the
CARUSO project the design of the script engine reached
a stable state, the engine is being extended at the moment
to cope with requirements coming from outside of
CARUSO. A company needs an implementation of dia-
log-scripts involving forms in addition to plain questions.
It showed that these new requirements could be imple-
mented with only minor modifications, although no par-
ticular effort was made to ensure that the design of the
script engine was able to cope with future changes.

Also, the engine is quite stable and only a few bugs were
found since the engine is in use. We believe that this is
due to the automatic tests and due to the fact that tests
were written before the actual code. Writing the tests also
helped us discover problems when moving from one
platform to another and even when moving from one
computer to another running the same OS. We think that
without the tests it would have much harder to find and
deal with these problems.

ACKNOWLEDGMENTS
This research has been partially sponsored by the Euro-
pean Union within the IST project CARUSO (IST-1999-
12192).

REFERENCES
1. The Agile Alliance. www.agilealliance.org, 2001.

2. Beck K.: Extreme Programming Explained. Addison
Wesley Longman, 1999.

3. Baumeister H., Kosiuczenko P.: CARUSO: Customer
Care and Relationship Support Office. ECPPM 2000,
Lisbon, Portugal, pages 115--120. A. A. Balkema,
Rotterdam, Brookfield, 2000.

4. CARUSO Web-site. www.caruso24.com, 2001.

5. European Union. Information Society Technology
Programme. http://www.cordis.lu/ist/, 2001.

6. Gamma E., Beck K. JUnit. www.junit.org, 2001.

7. Jeffries R. E., Anderson A., Hendrickson C.: Extreme
Programming Installed. Addison Wesley Longman,
2000.

8. Maass B. VBUnit. www.vbunit.org, 2001.

9. Sommerville I.: Software Engineering. Addison
Wesley Longman, 2000.

