
189

Agile Development of a Clinical Multi-Agent System:An Extreme Pro-
gramming Case Study

 Holger Knublauch Holger Koeth Thomas Rose
 Research Institute for Applied Institute for Psychology and Research Institute for Applied
 Knowledge Processing (FAW) Ergonomics, TU Berlin Knowledge Processing (FAW)
 Helmholtzstr. 16 Steinplatz 1 Helmholtzstr. 16
 89081 Ulm, Germany 10623 Berlin, Germany 89081 Ulm, Germany
 +49-731 501 8918 +49-30 314 79510 +49-731 501 520
 Holger.Knublauch@faw.uni-ulm.de hko@awb.tu-berlin.de Thomas.Rose@faw.uni-ulm.de

Abstract
This paper presents an agile development methodology
for multi-agent systems based on XP and reports on our
experiences with it for the implementation of agents that
support the clinical information flow. Our case study
shows that XP is a very promising approach for agent
development, because agents are rather small units that
can be implemented, tested and refactored rapidly with-
out risking the overall system’s functionality.

Keywords
Extreme Programming, Multi-Agent Systems, Case
Study

INTRODUCTION
An agent is an encapsulated computer system that is
situated in some environment, and that is capable of
flexible and autonomous action in order to meet the ob-
jectives of its principal [3]. In domains like clinical in-
formation systems, agents have a huge potential to sup-
port human principals by providing intelligent informa-
tion services, e.g. by delivering critical patient data to the
responsible physician proactively at the right time.

The agents’ flexibility and their individual, autonomous
viewpoints make multi-agent systems difficult to build.
The emerging discipline of Agent-Oriented Software
Engineering (AOSE) [2] aims at defining systematic
methodologies which guide the developers through rather
waterfall-based phases such as role analysis and services
design. As a result, the existing AOSE approaches are
expensive when requirements are weakly specified.
When agents are to be introduced into an existing clinical
workflow, clinical staff must be closely integrated into
requirements elicitation and agent design. Since AOSE
methods rely on rather formal modeling artifacts and
deliver feedback late, they appear to be inappropriate for
this collaboration.

XP OF MULTI-AGENT SYSTEMS
We have introduced a novel, agile methodology [4],
which optimizes the practices of Extreme Programming
(XP) [1] for the development of multi-agent systems. In
our approach, clinical experts use a simple process mod-
eling tool to capture the existing clinical activities and the
data flow between them. These models are fed into an XP
cycle in which the processes are “agentified” by incre-
mentally delegating activities to agents and by digitizing
the data flow. The resulting process models can be re-

garded as XP story cards which define the services and
the input and output data of each agent type (see [4] for
details).

We have used our approach to develop a prototypical
clinical multi-agent system in Java. Our case study was
conducted as an XP course for Computer Science stu-
dents at the University of Ulm, Germany in 2001 (we
will conduct a second course in April, 2002). The course
took place in a single office with 5 PCs. It involved 8
students, a coach (the first author), and a medical doctor
(the second author), who was permanently on-site to
provide clinical knowledge. The course took 7 days, the
first two of which were used to introduce the students to
XP, agents, and the tools (IntelliJ, JUnit and CVS).

40-hour-week. The practical work itself was done during
one 40-hour week. The students were explicitly not en-
couraged to work overtime. After the course, the students
reported that they used to be quite exhausted after a full
day of pair programming, but were very disciplined and
concentrated while in the office. Nevertheless, the at-
mosphere was very relaxed and enjoyable and thus stimu-
lated creativity and open, honest communication. This
helped to prevent communication barriers between tech-
nicians and the clinical expert.

Planning game. At the beginning of each day, the team
jointly defined the features that were to be implemented
next. Since the process models (story cards) described the
phases of a patient's treatment on her way through the
hospital in a rather sequential style, we found it most
useful to implement the agents in their order of appear-
ance within the process. We locally focused on those
agents that – according to the domain expert – promised
the most business value.

Pair programming. Each pair of programmers had to
develop and test their individual agent in isolation. The
students found pair programming very enjoyable and
productive. The intense communication helped to spread
a basic understanding of the clinical processes among the
programmers. We changed pairs almost every day.

Testing. Agents are typically rather small and loosely-
coupled systems which solve their tasks in relative
autonomy. As a consequence, writing automated test
cases is quite easy for agents, because the single agents
have a small, finite number of interaction channels with
external system units. Many tests therefore consisted of
sending a test message to the agent and of checking
whether the expected reply message was delivered back
and whether the agent’s state has changed as expected.

190

The students found testing quite useful to clarify re-
quirements although it was considered to be additional
work by some. During the course, the students have im-
plemented 76 test cases, amounting to 4909 lines of code,
while the 43 agent source code classes amount to 5673
lines. The students enjoyed using JUnit very much, be-
cause correct test runs improved motivation and trust in
the code. We found specifying and implementing tests
extremely important, because it clarified several misun-
derstandings between the domain world and the pro-
grammers.

Collective ownership. Since each pair only operated on
the source package of a single agent, there was barely any
overlapping. Only ontology classes (which describe the
content of agent messages) had to be modified by various
teams. Coordination of these changes was accomplished
very informally by voice and the CVS.

Coding standards. In the beginning of the project, we
defined a project-wide coding standard that was very
easy to follow, because the Java tool we used provides
automated code layout features. Thus it was very simple
to shift implementation tasks between the pairs and to
change pair members regularly.

Simple design. The students were explicitly asked to
focus on programming speed instead of comprehensive
up-front designs. This seemed to be sufficient because
the agents were rather small units with few types of tasks
to solve. Despite the focus on simplicity, experienced
students almost automatically identified some useful
generalizations of agent functionality. Our initial process
model underwent several evolutionary changes. Despite
the various small changes, the overall design remained
quite stable throughout the project, so that our simple
process modeling framework proved to be appropriate.

Refactoring. Since the agents were rather small units,
they were very easy to maintain and refactor. Even if an
agent evolved into a performance or quality bottleneck
after a series of refactorings, it was possible to com-
pletely rewrite it from the scratch without risking the
functionality of the overall system. IntelliJ’s refactoring
support was valuable.

Continuous integration and short releases. The agents
were uploaded onto the CVS server and integrated at
least every evening. Since the students were only allowed
to upload those agents that passed all test cases, there
were almost no integration problems. Agent interactions
were tested and presented on a beamer with the help of a
small simulation environment that could trigger external
events.

On-site customer. In the questionnaires that were filled

out by the students after the course, the presence of the
domain expert was very positively evaluated. He was
asked to provide clinical knowledge regularly, at least
once an hour, so that expensive design mistakes were
prevented. His presence did not even mean an overhead
for him, because he could use the “spare time” for other
types of work on his own laptop.

Metaphor. Many communication bottlenecks and mis-
understandings between clinicians and developers are due
to different terminology and comprehension. Metaphors,
which map clinical domain concepts onto symbols the
engineers are acquainted with, can help. For example, the
process of anesthesia, with its induction, monitoring, and
extubation phases, can be compared to aviation, where
take-off, cruising, and landing are the main activities.
This metaphor helped us to draw some insightful paral-
lels between the requirements of clinical monitoring
devices and cockpit technology.

RESULTS
Our case study indicates that XP can be a very natural
approach for the design and implementation of multi-
agent systems. Since the complex interaction scenarios
and emerging behaviors between agents make pre-
planning very difficult, the evolutionary practices of XP
appear to be a better choice than conventional engineer-
ing approaches. Particularly the close involvement of
domain experts simplifies the matching between agent
services and the requirements of the human actors that
are supported by agents. Since agents are rather small,
autonomous units, they can be implemented, tested and
refactored rapidly without risking the overall system’s
functionality. Last but not least, our project has shown
that XP is very enjoyable and motivating for the develop-
ers and domain experts.

REFERENCES
1. Beck, K. Extreme Programming Explained: Embrace

Change. (Addison-Wesley, 1999)

2. Ciancarini, P. and Wooldridge, M., editors. Agent-
Oriented Software Engineering (Springer-Verlag,
Berlin, Heidelberg, New York, 2001)

3. Jennings, N., Sycara, K., and Wooldridge, M. A
Roadmap of Agent Research and Development. Int.
Journal of Autonomous Agents and Multi-Agent Sys-
tems, 1(1):7-38 (1998)

4. Knublauch, H. Extreme Programming of Multi-Agent
Systems. Proc. of the First Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems
(AAMAS), Bologna, Italy (2002).

