
An Essential Distinction of Agile Software Development Processes
Based on Systems Thinking in

Software Engineering Management

Peter Wendorff
ASSET GmbH

 Am Flasdieck 5
 46147 Oberhausen, Germany
 +49 208 628 7220
 P.Wendorff@t-online.de

ABSTRACT
In the late 1990s a number of so-called "agile" software
development methods have been proposed to overcome
problems experienced with more traditional methods.
These new agile methods have led to a controversal dis-
cussion within the software engineering community. This
has illustrated the need for an integrating theoretical
framework to clarify the distinguishing aspects of agile
software development methods. In this paper we use
general systems theory to characterise software develop-
ment methods. We demonstrate that general systems
theory allows a clear and meaningful characterisation of
essential aspects of agile methods.

Keywords: Software management, systems thinking,
agile software development

1 INTRODUCTION
General systems thinking was originally proposed in the
1950s as an analytical paradigm to stress the common
foundations of different scientific disciplines like biol-
ogy, psychology, the social sciences, etc. [11] Since
those beginnings systems thinking has become an estab-
lished perspective on the management process in com-
plex organisations [6], [12], [13], [14].

One goal of systems thinking in management is concep-
tual understanding of the structure and behaviour of
complex organisations. The benefits of systems thinking
can be illustrated using the infamous Brooks' Law, "Add-
ing manpower to a late software project makes it later."
[4, p. 25] Brooks admission that stating this law he was
"oversimplifying outrageously" points to its limited ap-
plicability. There is some evidence that the simplicity of
Brooks' Law may have elevated it into a kind of manage-
rial "mantra" that may even be misleading [10]. Contrary
to this oversymplifying form of Brooks' Law, a systems
thinking perspective suggests that adding the right people
to a late project early enough can even save the project
[1].

Adding the right people to a late project early enough can
save a project. If managers fallaciously apply Brooks'
Law and do not introduce appropriately qualified new
staff into the project team early enough, they probably do
commit an error. This is a common error of judgement
among managers [10]. This error is often disastrous be-
cause later in the project the likelihood increases that
Brooks' Law applies, making it much more difficult to
save the late project. The important issue to notice in this

situation is the long time distance between the error and
its harmful consequences. In large software projects this
time span may be months. In these complex organisa-
tional systems time delays are a major factor that pre-
vents managers from understanding a project's dynamics,
possibly leading to wrong decisions.

Agile software development methods address many com-
mon problems in software projects where cause and ef-
fect may be separated in time considerably. In this paper
we assume a systems perspective and look at the assump-
tions, problems, and solutions that have informed agile
software development methods.

2 A SYSTEMS PERSPECTIVE ON SOFTWARE
DEVELOPMENT PROCESSES

A common systems perspective on software development
is shown in Figure 1 [14]. This system consists of three
subsystems, namely Controller System, Software Deve-
lopment System, and Customer System. The Software
Development System has Requirements and Resources as
major inputs, and Software as major output.

Systems
A system can be regarded as "a way of looking at the
world." [15, p. 52] This definition stresses the point that
systems are often abstract models that are purposefully
constructed by researchers in order to acquire knowledge.
In Figure 1 a system is depicted that is supposed to pro-
duce software.

Subsystems
Figure 1 shows an important concept of systems thinking,
namely the subdivision of a larger system into smaller
subsystems. The larger system comprises all that is

Controller
System

Software
Development

System

Customer
System

Requirements

Randomness

Resources
Software

Other Outputs

Figure 3: A Systems Perspective on
Software Development [14]
(Weinberg, 1992, Figure 11-4)

217

shown in Figure 1, which is subdivided into three smaller
subsystems, namely Controller System, Software Deve-
lopment System, and Customer System. The use of the
term subsystem is a matter of perspective, because any
subsystem is also a proper system, but the term stresses
that the system in question is part of a larger system un-
der investigation.

Environment
No interesting system exists in isolation, it is rather em-
bedded in a larger system called "environment". The
environment of a particular system basically means all
that is outside of that system [15].

Flows
A system receives inputs from its environment, and it
supplies outputs to its environment. In social systems
these inputs and outputs are mostly flows of information
[6]. For example, in Figure 1 the Customer System has
Software (e.g. information about the software's actual
functionality) as one input, and it produces Requirements
(e.g. information about the software's desired functional-
ity) as one output.

States
Subsystems process inputs in order to produce outputs.
Often a system can be in different states. The outputs of
such a system are not only dependent on the inputs, but
they also depend on the system's state. The state of a
system is by definition not directly accessible from out-
side of that system, and that makes it difficult for an
external observer to understand its behaviour [14]. In
Figure 1, for example, important state variables of the
Customer System may be the availability and qualifica-
tion of its members, and obviously these variables will
vary over time.

Delays
The state of a system acts as a memory and can decouple
inputs and outputs in time. This can generate dynamics
that result in time delays between input changes and cor-
responding output changes of a system [6]. Delays can
cause two effects that are often undesirable. First, the
system needs more time to respond to changes. Second,
delayed flows of information result in outdated informa-
tion, and outdated information may lead to inadequate
decisions.

Both of these undesirable effects of delays can be illus-
trated referring to Brooks' Law and Figure 1. The first
effect can be observed when new staff is added to the
Software Development System. The output of this sub-
system will not increase immediately, instead the output
will probably rise over time as the new members become
more familiar with the project. The second effect may be
witnessed if, for example, managers assess the Software
Development Process on the basis of delayed progress
reports. In that case managers might wrongly add man-
power to a project that had been late but has just catched
up, simply because they rely on outdated decision infor-
mation.

3 AGILE SOFTWARE DEVELOPMENT
So-called "agile" software development methods share a
core of values and principles published as the "Manifesto

for Agile Software Development" on the World Wide
Web [2]. Extreme Programming (XP) [3], [8], the Crystal
Methodologies [5], and Adaptive Software Development
(ASD) [7] are some popular agile methods.

Division of Labour
Division of labour into smaller, simple, routine, and well-
defined tasks by managers is the classical management
approch to improving the productivity of personnel. The
tasks are matched to formally defined roles, which are
performed by specialised personnel. For each task the
necessary inputs as well as the required outputs are de-
fined, and the task is completed successfully when the
actual outputs match the required outputs.

Traditional management may suggest to segregate the
definition of a software development process and its
subsequent execution into two separate tasks that are
carried out by different specialists. This approach is, for
example, reflected in "The Unified Software Develop-
ment Process" [9], where the definition of the process
may be assigned to specialised "process engineers".

From a systems perspective traditional division of labour
may have two competing effects. First, increased spe-
cialisation usually results in increased efficiency of the
specialised subsystems. Second, increased specialisation
leads to an increase in the number of subsystems to coor-
dinate, and that will usually delay the response of the
whole system to changes in its environment.

Agile software development favours "individuals and
interactions over processes and tools" [2]. This clearly
reflects the priorities of agile software development. At
first, individuals should define appropriate processes to
support their work, and only then these processes should
guide the behaviour of the individuals. In this sense, agile
software development rejects the separation of process
definition and process execution, instead it suggests an
integrative approach to these two activities. This means
that the people who use the process, continuously de-
velop and refine the process definition during the exe-
cution of the process itself.

Advocates of agile software development assume a vola-
tile environment, where the processes must adapt to dif-
ferent needs frequently and quickly. Then the classical
management approach to segregate process definition
and process execution may intolerably delay this adapta-
tion. Given that situation, a systems perspective supports
the integrative approach to process definition and process
execution that is suggested by agile software develop-
ment.

Information Supply
Figure 1 shows subsystems that are bonded by flows that
mostly represent information. The functioning of the sub-
systems critically depends on their inputs, and therefore
these subsystems will usually make provisions to ensure
this information supply. A subsystem typically has little
control over its environment, and as a consequence, it is
uncertain that the required information can be obtained
from the environment when needed.

Traditional management often uses so-called "buffering

218

strategies" to ensure stability of critical inputs to a system
from the environment [12]. One possible procedure of
that kind is stockpiling of resources that are needed as
input of systems. This approach is followed by most
traditional software development methods, that produce
and maintain detailed documentation in parallel to the
source code of the executable computer programs. These
documents serve as stocks of information that are used to
decouple interdependent subsystems in time and space.

From a systems perspective traditional buffering strate-
gies may have two competing effects. First, buffers de-
couple chains of interdependent subsystems and thereby
ensure the smooth functioning of the whole system. Sec-
ond, buffering procedures lead to stocks, stocks represent
state variables, and state variables introduce delays into
systems.

Agile software development favours "working software
over comprehensive documentation" [2]. This illustrates
two issues in agile software development. First, the num-
ber of information stocks is reduced. Second, the size of
the remaining information stocks is reduced. The prob-
lems that can arise from huge information stocks can be
illustrated in the case of written documentation in a soft-
ware project. Correct documentation is often very help-
ful, but outdated documentation can be extremely harm-
ful. The larger the amount of documentation becomes,
the more effort is needed to find the required informa-
tion, and the more effort is needed to keep the informa-
tion up to date.

One alternative to buffering is closer integration [6].
Agile software development also calls for "customer col-
laboration over contract negotiation" [2]. Referring to
Figure 1, this can be viewed as closer integration of the
Customer System and the Software Development Sys-
tem. Customer collaboration improves the flow of infor-
mation from the customer to the software developers, and
therefore it reduces the need for buffering. Complex
contracts are in a way huge stocks of critical information,
and accordingly, one aim of agile software development
is to reduce the size and complexity of these stocks as
well.

In general, agile software development avoids large
stocks of information, instead it relies on closer integra-
tion of subsystems.

Advocates of agile software development assume a vola-
tile environment, where the inputs to subsystems are
volatile. In such a situation the classical management
approach of buffering may introduce intolerable delays.
Given that situation, a systems perspective supports the
restrictive approach to documentation that is suggested
by agile software development.

4 CONCLUSION
Agile software development methods have been pro-
posed for an organisational environment that is character-
ised by change and uncertainty. One aim of these meth-
ods is to enable a fast response of the software develop-
ment process to changes in the given situation.

The application of systems thinking to agile software

development methods focuses attention on the role of
delays in software engineering processes. Delays can
have two undesirable consequences. First, they can lead
to late decisions, that will usually be suboptimal. Second,
they can lead to wrong decisions, that may well be disas-
trous.

In this paper we have identified two sources of delays in
software development processes, that are generally ad-
dressed by agile methods.

The first source of delays is the separation of process
definition and process execution, that is a frequent prac-
tice in software engineering management. Contrary to
this, agile software development methods propose an
integrative approach toward process definition and proc-
ess execution.

The second source of delays are buffering strategies, that
are widely used in software engineering management.
Contrary to this, agile methods aim at reducing the num-
ber, size, and complexity of buffers, and they call for
closer integration of subsystems instead.

We think that these two issues are essential and distinc-
tive ideas informing agile software development meth-
ods.

REFERENCES
1. Abdel-Hamid, T., Madnick, S.E. Software Project

Dynamics: An Integrated Approach, Prentice-Hall
1991.

2. Agile Alliance Web Site: Manifesto for Agile Software
Development. On-line at: http://agilemanifesto.org/

3. Beck, K. Extreme Programming Explained: Embrace
Change, Addison-Wesley 2000.

4. Brooks, F. P. The Mythical Man-Month, Addison
Wesley Longman 1995.

5. Cockburn, A. Agile Software Development, Addison-
Wesley 2001.

6. Gharajedaghi, J. Systems Thinking: Managing Chaos
and Complexity, Butterworth-Heinemann 1999.

7. Highsmith, J. A. Adaptive Software Development: A
Collaborative Approach to Managing Complex Sys-
tems, Dorset House Publishing 2000.

8. Institute of Electrical and Electronics Engineers: Dy-
nabook on Extreme Programming. On-line at:
http://computer.org/seweb/dynabook/Index.htm

9. Jacobson, I.; Booch, G.; Rumbaugh, J. The Unified
Software Development Process, Addison Wesley
Longman 1999.

10. McConnell, S. C. Brooks' Law Repealed, IEEE Soft-
ware, Nov./Dec. 1999, pp. 6-8.

11. Schermerhorn, J. R. Management. Wiley, 2001.
12. Scott, W.R. Organisations: Rational, Natural, and

Open Systems, Prentice-Hall 1998.
13. Senge, P. N. The Fifth Discipline: The Art and Prac-

tice of the Learning Organisation. Doubleday Books
1994.

14. Weinberg, G.M. Quality Software Management (Vol-
ume 1): Systems Thinking, Dorset House Publishing
1992.

15. Weinberg, G.M. An Introduction to General Systems
Thinking, Dorset House Publishing 2001.

