
164

Extreme Programming by Example

Moacir Pedroso Jr, Marcos C. Visoli and João F. G. Antunes
 Embrapa Informática Agropecuária
 Av. Dr. André Tosello s/n
 Campus da Unicamp – Barão Geraldo
 13084-970 Campinas, SP Brazil
 +55 19 3789-5782
 (pedroso, visoli, joaof)@cnptia.embrapa.br

ABSTRACT
In this paper we describe how we adapted Extreme Pro-
gramming (XP) [2] practices for the successful develop-
ment of a risky project, and managed, as a side effect, to
spread the methodology throughout the whole company.

Keywords
Introducing software engineering practices, Agile Proc-
esses, Extreme Programming.

1 INTRODUCTION
Our company is a government owned agricultural re-
search company, with a portfolio of about 600 research
projects and 2000 subprojects, with an average life span
of three years. In 1995, our specific unit was charged
with the development of a Management Information
System to allow the planning, follow-up and evaluation
of those projects and subprojects. For the development of
such system, let’s call it MIS-X, we acted as an internal
data processing department, although we are not strictly
in such a function.

Due to classical software engineering mistakes, powerful
political forces interested in not having the system de-
ployed, and natural difficulties faced by many internal
data processing shops, after more than four years of de-
velopment effort, the system was considered by some to
be a major failure. In 1999, our company was considering
outsourcing the development of a new version of MIS-X.

A few months later, we were awarded a contract to de-
velop a system to an institution similar to ours, with more
or less the same objectives as MIS-X. So we were facing
an unusual scenario: at the same time we were assuming
an important international commitment, we were being
regarded internally as uncapable of delivering similar
solution to our own company.

2 THE SETUP, TOOLS AND APPLICATION
Just before the contract signature, we started considering
how we could build a team to take care of the commis-
sioned system. A few months before, almost by chance,
we came across XP and thought that it could provide the
necessary framework to organize the endeavor. We then
prepared a presentation to outline the scope of the project
and how we intended to use some of the practices of XP.
To our surprise, although almost everyone showed inter-
est in XP, nobody showed an interest to participate in the
project. The previous bad experience with MIS-X cer-
tainly weighted here. So we started hiring developers
and testers to build a new team.

The first concern was to create support for automated
builds. We decided to use the suite of tools used by the
Mozilla [3] project: Bugzilla, for bug tracking; Bonsai,
for querying the Concurrent Version System (CVS) [1]
tree; and Tinderbox, for automated build and display of
build status.

For unit tests we used jUnit, httpUnit (for server side) ,
and dUnit (for the client) [5]. For acceptance tests, a
commercial GUI capture and playback tool was used.

Another useful development support tool was a project
home page, giving access to all tools and documents
related to the project.

The application was written in Borland Delphi and Java
and consisted of about 280 users interface screens, 220
classes, 200.000 lines of code, and 100 database tables.

3 ARE WE DOING XP?
Without doubt, XP was the glue that helped to hold the
project together and that provided the necessary identity
for the team to act as a real team. To deal with the lack of
previous experience, a lot had to be compromised and
adapted. After the experience, we can see that we clearly
made major mistakes, perhaps even some “heresies” to
the book of XP. In spite of it, in what follows, we attempt
to comment on how we dealt with each one of the ac-
cepted XP practices, as faithfully as possible.

The planning game
We started with a system partially specified by paper user
interface prototypes and we had to extract the user stories
mostly from this source. So, in a sense, we “played” the
planning game almost by ourselves, trying to act as the
customer (with some limited feedback from the real ones)
and as the programmer simultaneously. We recorded the
stories in the bug tracking system.

Onsite customer
It was only after about half of the expected duration of
the project that our customers started staying for short
periods of time with the development team. What we
learned here is that it is a very powerful strategy, but
requires a deep commitment and preparation from both
the customer and the developers to achieve its full poten-
tial.

Frequent releases
We had frequent releases, about one every two months.
But we had them more for formality reasons than for
development strategy. It happened that although we had a

165

big “paper user interface specification”, we discovered
that the specification was very incomplete and did not
took into consideration the needs of other areas of the
institution. For this reason, none of the releases were
“definitive”; we had to get back to them all the time to
introduce the necessary changes to the released versions.

System metaphor
Since we had a previous experience of a similar system,
we did not bother very much to have a driving metaphor
for the development, although we tried to elaborate one
without much success. We had, instead, an idea of archi-
tecture that was shared by all team members, a clear
definition of the interface between the client and server,
and a client architecture based mostly on well designed
blocks of “business objects”. This worked well enough
for this project.

Simple design
No special thought was given specifically to this point,
the reason being that the whole team should be more “XP
aware” for this to happen naturally.

Pair programming
Attempted and abandoned, probably by lack of experi-
ence on how to do it well. In retrospect, we very much
regret for not having insisted on pair programming – we
started with this objective, did not achieve it, and ended
up without any kid of review at all, which caused us
some problems.

Collective code ownership and coding standards
Both were adopted without problems.

Unit tests and functional tests
We intended to take very seriously the tenet of building
tests. Unfortunately, we did not practice “test first” cod-
ing; it appears that it requires a little more of example to
be easily adopted by the team – that is, it requires a
coach. It also appears that the discipline of test first is
very important to guarantee that tests are, in fact build.
Again, we believe that the whole dynamics of the devel-
opment would be very different if we had done test first.

Continuous integration
Absolutely fundamental. Gives a very high payback.
Adoted by the team without reserve.

Refactor mercilessly
By virtue of the specification being constantly modified,
we had to refactor mercilessly – by not for the ideal rea-
son, that is to bring to code into better shape.

Forty hour week
We certainly worked more than forty hours per week, but
there was no feeling of necessity or urgency. It just hap-
pened in a natural way, without relation to pressure of
approaching deadlines.

4 WHERE WE STAND NOW
By the end of December, 2001, the originally estimated
development period had expired and the system was not
deployed, but it happened for reasons related to the
needs of our customer, beyond our control. By all counts,
our customer appears to be very happy with our devel-
opment process and with the results obtained so far. We
have even been awarded an extension for the develop-
ment of new features for the system, that were not previ-
ously required.

We were also very pleased to see that two other projects
that are planned to begin development at our unit are
determined to use the practices of XP – by virtue of our
example.

5 CONCLUSIONS
We can’t really say that we “did” XP, because so many
of its cornerstone rules were not adopted at all or were
adopted with large twists. But it was a definite inspiration
and a driving force more important to the project than the
technological solutions developed.

We have no reason whatsoever to regret adopting any of
the guidelines proposed by XP, even in a twisted way as
we did, and have many reasons to suspect that we could
have done much better if we were more strictly adherent
to the XP practices. We believe we reached a point of no
return, and are eager to refine our current practices of XP
in a new project.

ACKNOWLEDGEMENTS
We are grateful to all team members that have embraced
the project and the ideas of XP to the degree required to
make this a very pleasant and enlightening experience.

REFERENCES
1. CVS web site, http://www.cyclic.com

2. Jeffries, R., Anderson, A., Hendrickson, C., Extreme
Programming Installed, Addison-Wesley Pub, 2001.

3. Mozilla web site, http://www.mo zilla.org , 2001.

4. xUnit testing frameworks can be found at
http://www.Xprogramming.com, 2001.

