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ABSTRACT
This paper describes a random graph based model to 
represent an object oriented software system. The system 
is represented as a graph made of a set of nodes and a set 
of arcs with given crossing probabilities. The model 
provides also the representation of the refactoring process 
as a random propagation through the graph.  

Empirical data taken by real software projects are used 
for a first validation of the approach. 
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1 INTRODUCTION 
Extreme Programming (XP) [1] succeeds where require-
ments are constantly changing. In fact, response to 
change is a kernel concept of XP approach. This means 
that during XP process a software system is constantly 
evolving and it is subject to continuous modification. 

There are two kinds of system changes. The first is the 
incremental change, when functionality is gradually 
added, producing temporary and intermediate releases. 
The second is the evolutionary change, occurring when 
design and code are constantly revisited and simplified, 
in the refactoring phase. 

Understanding how a single modification affects the 
whole system may help in reducing the cost of the XP 
development process and to make better usage of the 
team efforts. The model we introduce in this paper pro-
vides a representation of software systems based on ran-
dom graphs theory. The system is represented as a graph 
made of nodes and arcs. A node is the representation of a 
specific software entity – for instance, a class – and an 
arc is the representation of a specific relationship be-
tween two software entities – for instance, inheritance. 
Given a specific system, there is no randomness in its 
structure, since the graph representing the system is per-
fectly determined. On the contrary, the evolution of a 
specific software system due to maintenance or refactor-
ing shows a random behaviour, and it may be modelled 
as the growth process of a random graph. 

The way a change influences the whole system is com-
puted as a fluid random propagation through the graph 
representing the system itself. The main hypothesis is 
that the modification does not change the graph represen-
tation of the system, or modifies it in a negligible way. 
Under this hypothesis, the impact of a modification can 
be computed on the system representation before the 
changing takes place.  

In the followings, we present our model, introduce sig-
nificant metrics built on it, and provide some results on 
the application of the model to four large C++ projects 
performed at a North American telecommunication com-
pany. 

2 RANDOM GRAPHS  
Random graphs theory was devised around ’60 by two 
mathematicians, Paul Erdos and Alfred Rèmyi [3], and it 
was developed during the last decade by researchers such 
as Palmer [9] and Bollobas [2]. Random graphs theory 
has been successfully applied to model systems charac-
terized by high level of complexity in different fields 
such as biology, sociology, computer science. 

According to Erdos and Rèmyi, a random graph can be 
built starting from a set of n nodes without connections. 
Then, considering each possible couple of nodes, a con-
nection is drown with probability p or nothing is done 
with probability 1-p.

Starting from this simple definition Erdos and Rèmyi 
demonstrated a number of proprieties. All proprieties are 
given on almost all random graphs, meaning that the 
probability the propriety is true approaches 1 as the num-
ber of nodes becomes large (n → ∞).  

Two different formal definitions are possible [7]. In the 
first, a Complete Graph is defined as follows: 

Kn≡ {En , [n]}, where [n]≡ {1,2,..,3} is the Set of Nodes 
and En≡ {(i,j) | i∈[n], j∈[n], i≠j} is the Complete Set of 
Arcs. Given a Complete Graph Kn≡ {En , [n]}, a Random 
Graph is defined as follows:    

                                  Gn,m≡ {En,m , [n]}                             
(1) 

where En,m is a random subset of m arcs extracted from 
En.

The second definition, called Independent Model, doesn’t 
need the definition of Complete Graph.  
Given 0≤p≤1, the Independent Model is defined as fol-
lows: 

                                   Gn,p≡ {En,p , [n]}                             
(2) 

where every possible arc ε∈En appears independently on 
En,p with probability p.

As the number of nodes become large, model Gn,m and  
the independent model Gn,p become equivalent, and a 
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specific propriety true on Gn,m is also true on Gn,p.

The previous definitions may be modified to adapt them 
for representing a given real situation or focusing on 
certain aspects. In our context, we are interested in repre-
senting software systems and maintenance process. The 
model we propose may be seen as a modification of Gn,m.
According to definition (1), we define Gn,m starting from 
the complete graph and then randomly selecting a m-
subset of arcs. Let’s call our model Gn,m,p. To build Gn,m,p
we start from a colored graph with nodes and arcs of 
different types. Then, subgraphs of Gn,m itself are ran-
domly selected.  

A more practical way to look at the model, is to consider 
it as a graph (not random) traversed by a random propa-
gation process. According to this view, every arc is char-
acterized by a propagation probability p. Starting from a 
specific node, the propagation process may cross each arc 
with probability p or stop with probability 1-p. Thus, the 
focus is on the process rather than on the static structure 
of the graph. This approach isn’t new. A similar model 
has been successful adopted for representing an epidemi-
ological virus propagation within a population or to de-
scribe how computer viruses may infect computer nets 
[8].

3 APPLYING THE MODEL TO THE 
REPRESENTATION OF SOFTWARE 
SYSTEMS: THE RG MODEL  

Object oriented software systems are made of entities 
such as classes, methods, attributes, variables and rela-
tionship among such entities. For instance, a specific 
class is the super class of its subclasses, that is an inheri-
tance relationship exists between the superclass and its 
subclass, or a specific method is related with the class it 
belongs to. When a module within the system needs to be 
changed or refactored, this could affect related modules 
and entities. The way a change will affect the whole 
system depends upon the kind of entity involved in refac-
toring or change and upon the kind of relationship this 
entity has with other software modules. If the change to 
an entity affects another entity, this is in turn changed, 
and other entities related to it may be affected. Thus, 
refactoring may be seen as a random process, which 
propagates across the software system. 

We can represent a software system as a graph where a 
specific kind of software module is represented by a 
specific type of node and a specific relationship between 
software entities is represented by a specific type of edge. 
Let’s call our model RG Model. 

An instance of RG Model is made of a set of nodes of 5 
different types, and a set of relationships between pairs of 
nodes of 9 different types (Table 1). 

Table 1 – Types of Nodes and Relationship. 
Node Types Relationship Types 

Global 
Class 
Method 

Contains 
InnerClass 
Function 

Attribute 
Interface 

Extends 
Calls 
Uses 
Instance 
Parameter 
Implements 

Each relationship is made of a Server node and a Client
node. Moreover, for each type of relationships it is de-
fined a crossing probability from server to client (Prob-
ToCLient) and a crossing probability from client to server 
(ProbToServer). 

For example, suppose ni to be the representation of a 
software module needing a refactoring action. The 
Change action impact will propagate along an edge to 
adjacent nodes with probability ProbToClient if ni is the 
server node or with probability ProbToServer if ni is the 
client node of the relationship. 

Given a specific software system, its RG Model is made 
of nodes and relationships connected according to the 
rules described by RG Metamodel shown in Table 2. 

Table 2 – RG Relationships. 

RG Relationships  Client  Server  
Contains Class  Attribute 

Interface  Attribute 
Method  Attribute 

InnerClass Class  Class 
Global  Class 

Function Class  Method  
Interface  Method 

Extends Class (subClass)  Class (superClass) 
Interface  Interface 

Calls Method (calling)  Method (called) 
Uses Method  Attribute 
Parameter Method  Attribute  
Instance Attribute  Class 
Implements Class  Interface 

Let’s take a look at all possible configuration admitted by 
an instance of RG Model. 

Class nodes may be connected with Class, Method, At-
tribute, Global and Interface nodes. Two nodes of type 
Class can be connected by relationships of type Inner-
Class and/or relationships of type Extends. Extends rela-
tionship represents inheritance, with the subclass as 
server node and the superclass as client node. InnerClass
implements inner class definition, with external class as 
client. A Class node may be connected to a Method node 
through the Function relationships, that is a method be-
longs to a class. 

Connections between Class and Attribute nodes are pro-
vided by Instance and/or Contains relationships. Instance
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implements the relationship between an object and its 
class, Contains implements the relationship between a 
class and its instance variables. Class nodes are related to 
Global nodes using InnerClass relationships and Inter-
face nodes are related with Class nodes by Implements
relationships. 

Nodes of type Method may be connected to nodes of type 
Method, Class, Attribute and Interface. 

The Calls relationship provides a representation of a call 
between two methods, where the called method is the 
server node. Method nodes may be connected to Attribute
nodes through relationships of type Uses, Parameter 
and/or Contains. Method nodes may also be connected to 
Interface (or Class) nodes through Function relation-
ships. All meanings should be clear.  

Two Interface nodes may be connected by Extends rela-
tionships, providing representation of inheritance be-
tween interfaces. Interface nodes may connect Attribute
nodes through Contains relationships.  

The RG Model provides a static view of the system, that 
is the representation of all entities and relationships 
within an object oriented software system. Obviously, 
given a specific system, there is no randomness in its 
graphic representation, since all entities and relationships 
within the system are well determined. However, the set 
of all (existing and potential) software systems may be 
modeled as a random graph, characterized by defined 
distributions of the class, methods, attributes etc. [5].  

4 THE DYNAMIC VIEW: RG VISITS AND RG 
METRICS. 

Maintenance and refactoring are dynamic activities 
which start from a specific software entity and affect 
other parts of the system, accordingly to the type of 
refactored entity and to the type of relationship this entity 
has with other entities.  

The way a change could affect the whole system has a 
random nature. Given the graph representation of a soft-
ware system, maintenance and refactoring (which from 
now on we’ll simply call “refactoring”) may be thought 
as a random propagation process, which starts from the 
first node, typically a Class node, representing the soft-
ware module needing a change, and propagates according 
to given probability values across the whole graph. 

In our approach, refactoring is simulated with a visit to 
the graph. The visit starts from a specific Class node and 
propagate randomly to adjacent nodes according to cer-
tain probability values defined for each type of crossed 
relationship (Table 3). These values are based on pro-
grammers’ empirical experience and have been devised 
interviewing a number of programmers and averaging 
their answers. To avoid unending propagation of the 
visits through the graph, a fading coefficient has been 
defined. It is a multiplicative factor smaller than one, 
which decreases the probabilities of propagation as long 
as the propagation itself is running.  

As already pointed out, the underlying hypothesis of the 

model is that refactoring does not change, or changes in a 
negligible way, the structure of the graph. This may seem 
quite a strong assumption, since refactoring precisely 
aims to restructure and simplify the program. However, 
our hypothesis is that most part of refactoring is made 
working on the existing structure of the program, and that 
the work on the changed structure does not introduce a 
substantial bias. Moreover, many refactoring are made on 
methods, and are not likely to have impact on the graph 
structure.  

Table 3 – Probability values of crossing the arcs of the graph. 
Relationships  ProbToServer ProbToClient 
Contains 0.5 0.8 
InnerClass 0.3 0.5 
Function 0.8 0.0 
Extends 0.2 0.9 
Calls 0.2 0.5 
Uses 0.2 0.0 
Parameter 0.0 0.5 
Instance 0.1 0.8 
Implements 0.2 0.8 

Three different types of metrics have been defined: 

Cost, related to the total number of lines of code 
(LOC) involved in propagation; 

Marks, related to the total number of visited nodes; 

Visits, integrating Marks metric over all existing 
Class nodes. 

Each visit is independently run a large number of times, 
starting from every class node of the graph. Starting from 
a Class node and propagating across adjacent arcs, Cost 
metric accounts for the total number of lines of code 
(LOC) involved in propagation. Similarly, starting from a 
Class node and propagating across adjacent arcs, Marks 
metric accounts for of how many nodes are touched dur-
ing propagation. Visits metric is quite different, and it 
provides a more global meaning. It records how many 
times a specific node is touched after a set of visits has 
been performed, starting from all the existing Class 
nodes.  

5 RESULTS AND CONCLUSIONS 
To validate the RG Model, we developed an application 
able to build the graph representation of a generic soft-
ware system and to compute the three defined metrics. 
We used this application to build the RG Model and 
simulate all the visits on five large C++ projects devel-
oped by a North American telecommunication company. 
Table 4 shows the number of nodes and relationships of 
different types for each project. Note that no Interface 
nodes and no Implements relationships have been found 
by the application, according to the fact that all projects 
were developed using C++ language. For each project, 
the number of maintenance interventions per file, and 
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some classical metrics (LOC, CK) were known. Our 
intention was to find a correlation between defects and 
RG Metrics. Thus, all possible visits have been computed 
for each project, producing a large amount of data.  

Since data about revisions and data about RG Metrics do 
not show normal distribution – as usually happens on 
software data [4] – we couldn’t use the traditional Pear-
son coefficient. 

Table 4- Nodes and arcs in the five considered projects. 

 Proj. 1 Proj. 2 Proj. 3 Proj. 4 Proj. 5 
Global 851 888 516 1065 544 
Class 2093 2523 1217 2641 1721 
Attribute 25507 28739 13761 22524 17864 
Method 19395 15333 9961 19572 9724 
Interface 0 0 0 0 0 
Contains 38784 49154 20986 40398 30534 
InnerClass 4278 5046 2434 5268 3442 
Extends 2074 1274 536 1714 558 
Function 42022 30798 19814 39462 19492 
Calls 27901 20830 9588 10475 11032 
Uses 70572 65106 37594 34406 29158 
Instance 14186 10846 4382 8524 6692 
Parameter 9668 6334 4996 5282 3456 
Implements 0 0 0 0 0 

1.1
For this reason, to correlate the number of revisions with 
RG Metrics, we adopted the Spearman robust correlation 
coefficient [6]: 
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Given n samples, Xi and Yi, in ascending order, Spearman 
correlation is computed as shown in (3), where di= Xi-Yi.

The computation of the correlation coefficient is fol-
lowed by a test of significance. Significance is the chance 
of correlation value not being true [10].  

Table 5 shows that a correlation seems to exist. However, 
we have to be careful. As it usually happens in software 
engineering experiments, our data were incomplete and 
rough. The main problem is that the number of revisions 
for each project is given for files – not for classes. To 
compute defects per class we accounted for the number 
of lines of code per class within the file. This means that 
the numbers in table 5 accounts for the correlation not 

only between RG Metric and revisions, but also between 
RG Metrics and LOC.  

Table 5 – Spearman correlation coefficient between three projects and 
the proposed metrics. 

Rg metrics Correlation Project#1 Project#2 Project#3 
Cost Spearman 0.505 0.460 0.588 

 Significance 0.000 0.000 0.000 
Visits Spearman 0.185 0.293 -0.052 

 Significance 0.001 0.000 0.717 
Marks Spearman 0.048 0.369 0.383 

 Significance 0.396 0.000 0.006 

Table 5 shows that Cost metric is the best correlated with 

the number of revisions, having also perfect significance.  

More experiments are obviously needed to be more de-
finitive. The main problem remains the difficulty to find 
software with good documentation about refactoring, 
which should allow to perform significant statistical 
analysis.   

However, the obtained results are encouraging about the 
usefulness of our model. 
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