
150

Modeling XP Refactoring Using Random Graphs

 Michele Marchesi Giancarlo Succi Nicola Serra
DIEE Center for Applied Software Engineering DIEE

 Università di Cagliari Free University of Bolzano-Bozen Università di Cagliari
 Piazza d’Armi Piazza Domenicani 3 Piazza d’Armi
 I-09123 Cagliari, Italy I-39100 Bolzano-Bozen, Italy I-09123 Cagliari, Italy
 +39(070)675 5899 +39(0471)315-640 +39(070)675 5899
 michele@diee.unica.it Giancarlo.Succi@unibz.it nicola.serra@diee.unica.it

ABSTRACT
This paper describes a random graph based model to
represent an object oriented software system. The system
is represented as a graph made of a set of nodes and a set
of arcs with given crossing probabilities. The model
provides also the representation of the refactoring process
as a random propagation through the graph.

Empirical data taken by real software projects are used
for a first validation of the approach.

Keywords
Refactoring, Random Graphs, Software Engineering.

1 INTRODUCTION
Extreme Programming (XP) [1] succeeds where require-
ments are constantly changing. In fact, response to
change is a kernel concept of XP approach. This means
that during XP process a software system is constantly
evolving and it is subject to continuous modification.

There are two kinds of system changes. The first is the
incremental change, when functionality is gradually
added, producing temporary and intermediate releases.
The second is the evolutionary change, occurring when
design and code are constantly revisited and simplified,
in the refactoring phase.

Understanding how a single modification affects the
whole system may help in reducing the cost of the XP
development process and to make better usage of the
team efforts. The model we introduce in this paper pro-
vides a representation of software systems based on ran-
dom graphs theory. The system is represented as a graph
made of nodes and arcs. A node is the representation of a
specific software entity – for instance, a class – and an
arc is the representation of a specific relationship be-
tween two software entities – for instance, inheritance.
Given a specific system, there is no randomness in its
structure, since the graph representing the system is per-
fectly determined. On the contrary, the evolution of a
specific software system due to maintenance or refactor-
ing shows a random behaviour, and it may be modelled
as the growth process of a random graph.

The way a change influences the whole system is com-
puted as a fluid random propagation through the graph
representing the system itself. The main hypothesis is
that the modification does not change the graph represen-
tation of the system, or modifies it in a negligible way.
Under this hypothesis, the impact of a modification can
be computed on the system representation before the
changing takes place.

In the followings, we present our model, introduce sig-
nificant metrics built on it, and provide some results on
the application of the model to four large C++ projects
performed at a North American telecommunication com-
pany.

2 RANDOM GRAPHS
Random graphs theory was devised around ’60 by two
mathematicians, Paul Erdos and Alfred Rèmyi [3], and it
was developed during the last decade by researchers such
as Palmer [9] and Bollobas [2]. Random graphs theory
has been successfully applied to model systems charac-
terized by high level of complexity in different fields
such as biology, sociology, computer science.

According to Erdos and Rèmyi, a random graph can be
built starting from a set of n nodes without connections.
Then, considering each possible couple of nodes, a con-
nection is drown with probability p or nothing is done
with probability 1-p.

Starting from this simple definition Erdos and Rèmyi
demonstrated a number of proprieties. All proprieties are
given on almost all random graphs, meaning that the
probability the propriety is true approaches 1 as the num-
ber of nodes becomes large (n → ∞).

Two different formal definitions are possible [7]. In the
first, a Complete Graph is defined as follows:

Kn≡ {En , [n]}, where [n]≡ {1,2,..,3} is the Set of Nodes
and En≡ {(i,j) | i∈[n], j∈[n], i≠j} is the Complete Set of
Arcs. Given a Complete Graph Kn≡ {En , [n]}, a Random
Graph is defined as follows:

 Gn,m≡ {En,m , [n]}
(1)

where En,m is a random subset of m arcs extracted from
En.

The second definition, called Independent Model, doesn’t
need the definition of Complete Graph.
Given 0≤p≤1, the Independent Model is defined as fol-
lows:

 Gn,p≡ {En,p , [n]}
(2)

where every possible arc ε∈En appears independently on
En,p with probability p.

As the number of nodes become large, model Gn,m and
the independent model Gn,p become equivalent, and a

151

specific propriety true on Gn,m is also true on Gn,p.

The previous definitions may be modified to adapt them
for representing a given real situation or focusing on
certain aspects. In our context, we are interested in repre-
senting software systems and maintenance process. The
model we propose may be seen as a modification of Gn,m.
According to definition (1), we define Gn,m starting from
the complete graph and then randomly selecting a m-
subset of arcs. Let’s call our model Gn,m,p. To build Gn,m,p
we start from a colored graph with nodes and arcs of
different types. Then, subgraphs of Gn,m itself are ran-
domly selected.

A more practical way to look at the model, is to consider
it as a graph (not random) traversed by a random propa-
gation process. According to this view, every arc is char-
acterized by a propagation probability p. Starting from a
specific node, the propagation process may cross each arc
with probability p or stop with probability 1-p. Thus, the
focus is on the process rather than on the static structure
of the graph. This approach isn’t new. A similar model
has been successful adopted for representing an epidemi-
ological virus propagation within a population or to de-
scribe how computer viruses may infect computer nets
[8].

3 APPLYING THE MODEL TO THE
REPRESENTATION OF SOFTWARE
SYSTEMS: THE RG MODEL

Object oriented software systems are made of entities
such as classes, methods, attributes, variables and rela-
tionship among such entities. For instance, a specific
class is the super class of its subclasses, that is an inheri-
tance relationship exists between the superclass and its
subclass, or a specific method is related with the class it
belongs to. When a module within the system needs to be
changed or refactored, this could affect related modules
and entities. The way a change will affect the whole
system depends upon the kind of entity involved in refac-
toring or change and upon the kind of relationship this
entity has with other software modules. If the change to
an entity affects another entity, this is in turn changed,
and other entities related to it may be affected. Thus,
refactoring may be seen as a random process, which
propagates across the software system.

We can represent a software system as a graph where a
specific kind of software module is represented by a
specific type of node and a specific relationship between
software entities is represented by a specific type of edge.
Let’s call our model RG Model.

An instance of RG Model is made of a set of nodes of 5
different types, and a set of relationships between pairs of
nodes of 9 different types (Table 1).

Table 1 – Types of Nodes and Relationship.
Node Types Relationship Types

Global
Class
Method

Contains
InnerClass
Function

Attribute
Interface

Extends
Calls
Uses
Instance
Parameter
Implements

Each relationship is made of a Server node and a Client
node. Moreover, for each type of relationships it is de-
fined a crossing probability from server to client (Prob-
ToCLient) and a crossing probability from client to server
(ProbToServer).

For example, suppose ni to be the representation of a
software module needing a refactoring action. The
Change action impact will propagate along an edge to
adjacent nodes with probability ProbToClient if ni is the
server node or with probability ProbToServer if ni is the
client node of the relationship.

Given a specific software system, its RG Model is made
of nodes and relationships connected according to the
rules described by RG Metamodel shown in Table 2.

Table 2 – RG Relationships.

RG Relationships Client Server
Contains Class Attribute

Interface Attribute
Method Attribute

InnerClass Class Class
Global Class

Function Class Method
Interface Method

Extends Class (subClass) Class (superClass)
Interface Interface

Calls Method (calling) Method (called)
Uses Method Attribute
Parameter Method Attribute
Instance Attribute Class
Implements Class Interface

Let’s take a look at all possible configuration admitted by
an instance of RG Model.

Class nodes may be connected with Class, Method, At-
tribute, Global and Interface nodes. Two nodes of type
Class can be connected by relationships of type Inner-
Class and/or relationships of type Extends. Extends rela-
tionship represents inheritance, with the subclass as
server node and the superclass as client node. InnerClass
implements inner class definition, with external class as
client. A Class node may be connected to a Method node
through the Function relationships, that is a method be-
longs to a class.

Connections between Class and Attribute nodes are pro-
vided by Instance and/or Contains relationships. Instance

152

implements the relationship between an object and its
class, Contains implements the relationship between a
class and its instance variables. Class nodes are related to
Global nodes using InnerClass relationships and Inter-
face nodes are related with Class nodes by Implements
relationships.

Nodes of type Method may be connected to nodes of type
Method, Class, Attribute and Interface.

The Calls relationship provides a representation of a call
between two methods, where the called method is the
server node. Method nodes may be connected to Attribute
nodes through relationships of type Uses, Parameter
and/or Contains. Method nodes may also be connected to
Interface (or Class) nodes through Function relation-
ships. All meanings should be clear.

Two Interface nodes may be connected by Extends rela-
tionships, providing representation of inheritance be-
tween interfaces. Interface nodes may connect Attribute
nodes through Contains relationships.

The RG Model provides a static view of the system, that
is the representation of all entities and relationships
within an object oriented software system. Obviously,
given a specific system, there is no randomness in its
graphic representation, since all entities and relationships
within the system are well determined. However, the set
of all (existing and potential) software systems may be
modeled as a random graph, characterized by defined
distributions of the class, methods, attributes etc. [5].

4 THE DYNAMIC VIEW: RG VISITS AND RG
METRICS.

Maintenance and refactoring are dynamic activities
which start from a specific software entity and affect
other parts of the system, accordingly to the type of
refactored entity and to the type of relationship this entity
has with other entities.

The way a change could affect the whole system has a
random nature. Given the graph representation of a soft-
ware system, maintenance and refactoring (which from
now on we’ll simply call “refactoring”) may be thought
as a random propagation process, which starts from the
first node, typically a Class node, representing the soft-
ware module needing a change, and propagates according
to given probability values across the whole graph.

In our approach, refactoring is simulated with a visit to
the graph. The visit starts from a specific Class node and
propagate randomly to adjacent nodes according to cer-
tain probability values defined for each type of crossed
relationship (Table 3). These values are based on pro-
grammers’ empirical experience and have been devised
interviewing a number of programmers and averaging
their answers. To avoid unending propagation of the
visits through the graph, a fading coefficient has been
defined. It is a multiplicative factor smaller than one,
which decreases the probabilities of propagation as long
as the propagation itself is running.

As already pointed out, the underlying hypothesis of the

model is that refactoring does not change, or changes in a
negligible way, the structure of the graph. This may seem
quite a strong assumption, since refactoring precisely
aims to restructure and simplify the program. However,
our hypothesis is that most part of refactoring is made
working on the existing structure of the program, and that
the work on the changed structure does not introduce a
substantial bias. Moreover, many refactoring are made on
methods, and are not likely to have impact on the graph
structure.

Table 3 – Probability values of crossing the arcs of the graph.
Relationships ProbToServer ProbToClient
Contains 0.5 0.8
InnerClass 0.3 0.5
Function 0.8 0.0
Extends 0.2 0.9
Calls 0.2 0.5
Uses 0.2 0.0
Parameter 0.0 0.5
Instance 0.1 0.8
Implements 0.2 0.8

Three different types of metrics have been defined:

Cost, related to the total number of lines of code
(LOC) involved in propagation;

Marks, related to the total number of visited nodes;

Visits, integrating Marks metric over all existing
Class nodes.

Each visit is independently run a large number of times,
starting from every class node of the graph. Starting from
a Class node and propagating across adjacent arcs, Cost
metric accounts for the total number of lines of code
(LOC) involved in propagation. Similarly, starting from a
Class node and propagating across adjacent arcs, Marks
metric accounts for of how many nodes are touched dur-
ing propagation. Visits metric is quite different, and it
provides a more global meaning. It records how many
times a specific node is touched after a set of visits has
been performed, starting from all the existing Class
nodes.

5 RESULTS AND CONCLUSIONS
To validate the RG Model, we developed an application
able to build the graph representation of a generic soft-
ware system and to compute the three defined metrics.
We used this application to build the RG Model and
simulate all the visits on five large C++ projects devel-
oped by a North American telecommunication company.
Table 4 shows the number of nodes and relationships of
different types for each project. Note that no Interface
nodes and no Implements relationships have been found
by the application, according to the fact that all projects
were developed using C++ language. For each project,
the number of maintenance interventions per file, and

153

some classical metrics (LOC, CK) were known. Our
intention was to find a correlation between defects and
RG Metrics. Thus, all possible visits have been computed
for each project, producing a large amount of data.

Since data about revisions and data about RG Metrics do
not show normal distribution – as usually happens on
software data [4] – we couldn’t use the traditional Pear-
son coefficient.

Table 4- Nodes and arcs in the five considered projects.

 Proj. 1 Proj. 2 Proj. 3 Proj. 4 Proj. 5
Global 851 888 516 1065 544
Class 2093 2523 1217 2641 1721
Attribute 25507 28739 13761 22524 17864
Method 19395 15333 9961 19572 9724
Interface 0 0 0 0 0
Contains 38784 49154 20986 40398 30534
InnerClass 4278 5046 2434 5268 3442
Extends 2074 1274 536 1714 558
Function 42022 30798 19814 39462 19492
Calls 27901 20830 9588 10475 11032
Uses 70572 65106 37594 34406 29158
Instance 14186 10846 4382 8524 6692
Parameter 9668 6334 4996 5282 3456
Implements 0 0 0 0 0

1.1
For this reason, to correlate the number of revisions with
RG Metrics, we adopted the Spearman robust correlation
coefficient [6]:

)1(

61
2

1

2

−⋅
⋅−= =

nn

d
r

n

i
i

s

(3)

Given n samples, Xi and Yi, in ascending order, Spearman
correlation is computed as shown in (3), where di= Xi-Yi.

The computation of the correlation coefficient is fol-
lowed by a test of significance. Significance is the chance
of correlation value not being true [10].

Table 5 shows that a correlation seems to exist. However,
we have to be careful. As it usually happens in software
engineering experiments, our data were incomplete and
rough. The main problem is that the number of revisions
for each project is given for files – not for classes. To
compute defects per class we accounted for the number
of lines of code per class within the file. This means that
the numbers in table 5 accounts for the correlation not

only between RG Metric and revisions, but also between
RG Metrics and LOC.

Table 5 – Spearman correlation coefficient between three projects and
the proposed metrics.

Rg metrics Correlation Project#1 Project#2 Project#3
Cost Spearman 0.505 0.460 0.588

 Significance 0.000 0.000 0.000
Visits Spearman 0.185 0.293 -0.052

 Significance 0.001 0.000 0.717
Marks Spearman 0.048 0.369 0.383

 Significance 0.396 0.000 0.006

Table 5 shows that Cost metric is the best correlated with

the number of revisions, having also perfect significance.

More experiments are obviously needed to be more de-
finitive. The main problem remains the difficulty to find
software with good documentation about refactoring,
which should allow to perform significant statistical
analysis.

However, the obtained results are encouraging about the
usefulness of our model.

REFERENCES
1. Beck K., Extreme Programming Explained, Addison-

Wesley, 1999.
2. Bollobas B., Random Graphs, Academic Press, London,

1985
3. Erdos E. e Rèmyi A., On the evolution of random graphs,

Magyar Tud. Akad. Mat. Kut. Int. Kzl.5, 1960
4. Fenton N. E. e Pfleeger S. L., Software Metrics, A Rigor-

ous & Practical Approach, Second Edition, PWS Publish-
ing Company, Boston, MA, 1997

5. Focardi S.,Marchesi M., Succi G., A Stocastic Madel of
Software Maintenance and its Implication on Extreme Pro-
gramming Proccess, Extreme ProgrammingExamined, Ad-
dison Wesley, 2001.

6. Frund J.E. e Simon G.A, Modern Elementary Statistics,
Prentice-Hall, Upper Saddle River, NJ, 1997

7. Janson S., Random Graph,
http://www.math.uu.se/~svante/papers/sjb4.ps, 2000

8. Kephard J. O. e White S. R., Directed-Graph Epidemiol-
ogical Models of Computer Viruses, online at:
http://researchweb.watson.ibm.com/antivirus/SciPapers/Ke
phart/VIRIEEE/virieee.gopher.html

9. Palmer E.M., Graphical evolution. An introduction to the
theory of random graphs, Wiley, 1985.

10. Wonnacott T.H. and Wonnacott R.J, Introductory Statistic,
John Wiley & Sons, New York, 1997.

