
206

Teaching And Learning XP

Frank Keenan
Department of Computing

Dundalk Institute of Technology
Dundalk

Co. Louth
Ireland

 frank.keenan@dkit.ie

Abstract
This paper reports on the results of a survey conducted on
57 National Diploma Software Development students at
Dundalk Institute of Technology. The students had stud-
ied programming for two to three years. A development
exercise was carried out over 2 months using Extreme
Programming (XP) in their Software Engineering subject.
The survey investigated student attitude to some of the 12
practices of XP. In addition it also provided feedback on
the class attitude to the learning experience.

Keywords
Extreme Programming, XP, Pair programming, Test first,
Refactoring

1 INTRODUCTION
It was decided to choose a moderately easy problem to
start with and then change the requirements or add new
functionality to make it more complex. The project
would allow students to investigate Pair Programming,
Testing, Simple Design, Refactoring and Standards.
Most tasks were conducted in the pair environment.

2 METHODOLOGY
The problem chosen was the income tax calculator from
Software Engineering; Theory and Practice [1]. The
class was divided randomly into groups of 4 and within
that into pairs. Before beginning each group was re-
quired to agree a set of standards for implementation and
all reports. One pair was then given the problem and
requested to produce an algorithm and then implement a
solution. The other pair was required to plan test cases
for the solution. This ensured that tests were prepared in
advance of programming.

Programmers did not test their own code but the tests
were prepared by members of the same group. It was felt
that the students would learn more from the testing tasks
if they did not have the luxury of testing their own code.
For the next set of requirements the roles were reversed.
This continued for a number of exercises until the last
exercise required some refactoring to ensure that the code
was more reusable.

3 FEEDBACK AND EVALUATION
In most cases the pairs within the 4-person-group were
very competitive. The testing pair seemed to get a great
deal of satisfaction on finding errors in the solutions.

The reaction was certainly more animated than that of
students finding an error in their own code. The pro-
gramming pair seemed to take more pride in their efforts.

3.1 Pair Programming
Studies of pair programming have shown that program-
ming performance has improved. Results, for example,
show a reduction in defect count of 15% [2]. By com-
pleting pair programming tasks it was hoped that partici-
pants would “get the benefit of learning knowledge from
other programmers” [3].
33 students (58%) indicated that they would prefer to be
paired with a stronger programmer. 35% would prefer an
equally skilled partner.

6 students (10%) considered the experience to have
slowed down the development of their programming
skills. 4 of these were in pairs where they considered
themselves the superior programmer. 40% considered
the experience to have improved the development of their
programming skills. Of those, 11 (48%) had considered
their partner to be equally skilled and 10 (43%) had con-
sidered their partner to be stronger.

4 students did not enjoy the experience and were in pairs
in which their partner was perceived to be a stronger
programmer.
Unstructured Responses

• Programmers of equal ability should be paired.

• Personalities within pair are important.

• Commitment of both partners.

• Communications is important.

• Another opinion is a good idea.

• Another opinion is a bad idea.

• Partner can spot errors at edit.

3.2 Testing
On development projects students typically demote test-
ing as a deadline approaches. XP promotes testing. The
percentage of test case failure on the first exercise ranged
from 0% to 60%. 95% rated the time spent developing
test cases as productive.

32 students (56%) felt that test cases were more complete
than they would be in non-XP exercises. Only 12 (21%)
considered them less complete. 3 of those stated that
they felt test cases would be more complete if they had
the opportunity to implement the code first. 51% stated

207

that they had spent more time developing these test cases
than they usually would. 54% felt that they had been
more thorough with 31% expressing that they had been at
least as thorough. Only 9% felt that they had been less
thorough.

Unstructured Responses
• End up with more test cases earlier.

• End up with better test cases.

• Testing was much more thorough, it was as if
both pairs were competing against each other.

• Identify more test cases if coded first.

3.3 Coding Standard
Standards had been agreed on in advance. The replies
indicated a confidence that the agreed standards were
followed. All students responded that they had applied
their standards. As a result of agreeing the standard 60%
felt that the code was easier to understand with 35%
expressing that it made no difference.

Unstructured Responses
• Useful for team projects

• Easy to agree but difficult to apply

• Takes too long – get on and write the code

• Unnecessary in small projects

• Makes programs a lot easier to understand

• Necessary in any group – should be enforced
more rigorously.

• Standards may be overkill.

3.4 Simple Design and Refactoring
Most of the initial solutions were simple and did solve
the early problems. As new requirements were added
and existing requirements changed the solution grew and
became more difficult to modify. A more simple design
was required and the design was modified.

• Difficult to decide when to refactor.

• Easier to refactor if customer was actually there
providing feedback.

• Not easily done but produces a better program.

• Too much analysis at the start would bring us
back to the diagrams. Better to refactor.

3.5 Collective Ownership
In the exercises conducted each team had 4 members.
This allowed any pair of programmers to improve the
code if the opportunity arose. Responses showed that 37
students (65%) felt that the code belonged to both mem-
bers of the pair, with 16% stating that it belonged to
themselves and 19% feeling that it belonged to their
partner.

4 CONCLUSION
This was a first attempt at teaching and learning XP.
Student attitude to the process and the exercises com-
pleted during practical classes was mostly positive. The
pair learning experience seemed to work in that most
participants were motivated and involved in the exer-
cises. When a programming pair were at a PC there was
little of the usual distraction such as net surfing. Com-
munication was increased. In addition to programming
skills other factors such as personality, commitment and
communication skills need to be taken into consideration
when forming pairs. Through test-first programming the
importance of Testing was promoted. An awareness of
the importance of standards, design and refactoring was
created. Further work with XP is planned.

REFERENCES
[1] Pfleeger, S.L., Software Engineering; Theory and

Practice. Prentice Hall (2001).
[2] Williams L. A., “The Collaborative Software Process

PhD Dissertation”, Department of Computer Sci-
ence, Salt Lake City, UT, University of Utah, 2000

[3] Yongqing Ye, Wolff W., “A Great Challenge: XP in
a typical dot.com.”, 2nd International Conference on
Extreme Programming and Flexible Processes in
Software Engineering, 2001

