
43

Limitations of Agile Software Processes

 Dan Turk, Robert France Bernhard Rumpe
 Colorado State University Software & Systems Engineering
 Fort Collins, Colorado, USA Munich University of Technology
 dan.turk@colostate.edu Munich, Germany
 france@cs.colostate.edu Bernhard.Rumpe@in.tum.de

Abstract
Software developers and project managers are struggling
to assess the appropriateness of agile processes to their
development environments. This paper identifies limita-
tions that apply to many of the published agile processes
in terms of the types of projects in which their application
may be problematic.

INTRODUCTION
As more organizations seek to gain competitive advan-
tage through timely deployment of Internet-based ser-
vices, developers are under increasing pressure to pro-
duce new or enhanced implementations quickly [2,8].
Agile software development processes were developed
primarily to address this problem, that is, the problem of
developing software in "Internet time". Agile approaches
utilize technical and managerial processes that continu-
ously adapt and adjust to (1) changes derived from ex-
periences gained during development, (2) changes in
software requirements and (3) changes in the develop-
ment environment.

Agile processes are intended to support early and quick
production of working code. This is accomplished by
structuring the development process into iterations,
where an iteration focuses on delivering working code
and other artifacts that provide value to the customer and,
secondarily, to the project. Agile process proponents and
critics often emphasize the code focus of these processes.
Proponents often argue that code is the only deliverable
that matters, and marginalize the role of analysis and
design models and documentation in software creation
and evolution. Agile process critics point out that the
emphasis on code can lead to corporate memory loss
because there is little emphasis on producing good docu-
mentation and models to support software creation and
evolution of large, complex systems.

The claims made by agile process proponents and critics
lead to questions about what practices, techniques, and
infrastructures are suitable for software development in
today's rapidly changing development environments. In
particular, answers to questions related to the suitability
of agile processes to particular application domains and
development environments are often based on anecdotal
accounts of experiences.

In this paper we present what we perceive as limitations
of agile processes based on our analysis of published
works on agile processes [14]. Processes that name them-
selves “agile” vary greatly in values, practices, and appli-
cation domains. It is therefore difficult to assess agile

processes in general and identify limitations that apply to
all agile processes. Our analysis [14] is based on a study
of assumptions underlying Extreme Programming (XP)
[3,5,6,10], Scrum [12,13], Agile Unified Process [11],
Agile Modeling [1] and the principles stated by the Agile
Alliance. It is mainly an analytical study, supported by
experiences on a few XP projects conducted by the au-
thors.

THE AGILE ALLIANCE
In recent years a number of processes claiming to be
"agile" have been proposed in the literature. To avoid
confusion over what it means for a process to be "agile",
seventeen agile process methodologists came to an
agreement on what "agility" means during a 2001 meet-
ing where they discussed future trends in software devel-
opment processes. One result of the meeting was the
formation of the "Agile Alliance" and the publication of
its manifesto (see
http://www.agilealliance.org/principles.html). The mani-
festo of the "Agile Alliance" is a condensed definition of
the values and goals of "Agile Software Development".
This manifesto is detailed through a number of common
principles for agile processes. The principles are listed
below.

1. "Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software."

2. "Business people and developers must work together
daily throughout the project."

3. "Welcome changing requirements, even late in de-
velopment."

4. "Deliver working software frequently."

5. "Working software is the primary measure of pro-
gress."

6. "Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done."

7. "The best architectures, requirements, and designs
emerge from self-organizing teams."

8. "The most efficient and effective method of convey-
ing information to and within a development team is
face-to-face conversation."

9. "Agile processes promote sustainable development."

10. "Continuous attention to technical excellence and
good design enhances agility."

44

11. "Simplicity is essential."

12. "Project teams evaluate their effectiveness at regu-
lar intervals and adjust their behavior accordingly."

AN ANALYSIS OF AGILE PROCESSES
In this section we discuss the limitations of agile proc-
esses that we have identified, based on our analysis of the
Agile Alliance principles and assumptions underlying
agile processes. The next subsection lists the managerial
and technical assumptions we identified in our study
[14], and the following subsection discusses the limita-
tions derived from the assumptions.

Underlying Assumptions
The stated benefits of agile processes over traditional
prescriptive processes are predicated on the validity of
these assumptions. These assumptions are discussed in
more details in another paper [14].

Assumption 1: Customers are co-located with the devel-
opment team and are readily available when needed by
developers. Furthermore, the reliance on face-to-face
communication requires that developers be located in
close proximity to each other.

Assumption 2: Documentation and software models do
not play central roles in software development.

Assumption 3: Software requirements and the environ-
ment in which software is developed evolve as the soft-
ware is being developed.

Assumption 4: Development processes that are dynami-
cally adapted to changing project and product character-
istics are more likely to produce high-quality products.

Assumption 5: Developers have the experience needed to
define and adapt their processes appropriately. In other
words, an organization can form teams consisting of
bright, highly-experienced problem solvers capable of
effectively evolving their processes while they are being
executed.

Assumption 6: Project visibility can be achieved primar-
ily through delivery of increments and a few metrics.

Assumption 7: Rigorous evaluation of software artifacts
(products and processes) can be restricted to frequent
informal reviews and code testing.

Assumption 8: Reusability and generality should not be
goals of application-specific software development.

Assumption 9: Cost of change does not dramatically
increase over time.

Assumption 10: Software can be developed in incre-
ments.

Assumption 11: There is no need to design for change
because any change can be effectively handled by refac-
toring the code [9].

Limitations of Agile Processes
The assumptions listed above do not hold for all software
development environments in general, nor for all “agile”
processes in particular. This should not be surprising;

none of the agile processes is a silver bullet (despite the
enthusiastic claims of some its proponents). In this part
we describe some of the situations in which agile proc-
esses may generally not be applicable. It is possible that
some agile processes fit these assumptions better, while
others may be able to be extended to address the limita-
tions discussed here. Such extensions can involve incor-
porating principles and practices often associated with
more predictive development practices into agile proc-
esses.

1. Limited support for distributed development environ-
ments:

The emphasis on co-location in practices advocated by
agile processes does not fit well with the drive by some
industries to realize globally distributed software devel-
opment environments. Development environments in
which team members and customers are physically dis-
tributed may not be able to accommodate the face-to-face
communication advocated by agile processes. In such
cases, one can at least approximate face-to-face commu-
nication using technologies such as video-conferencing,
but these technologies are expensive and not as effective
as one would hope.

Face-to-face communication is as important in distributed
environments as non-distributed environment, but it oc-
curs less frequently and has to be planned in advance to
ensure that all involved can participate. One can use such
face-to-face meetings as major synchronization events in
which geographically dispersed developers (1) are made
aware of the progress made by others and (2) discuss
plans for further evolving the product. In between such
meetings, documentation (beyond code) becomes the
primary form of communication. Good documentation of
requirements and designs, produced and maintained in a
timely manner, are essential to ensure that the distributed
team members all maintain the same vision of the prod-
uct to be built. This should not be interpreted as a re-
quirement to document or model all aspects of software.
Documentation and models should be created and main-
tained only if they provide value to the project and pro-
ject stakeholders.

2. Limited support for subcontracting:

Outsourcing of software development tasks to subcon-
tractors is often based on contracts that precisely stipulate
what is required of the subcontractor. Subcontracted tasks
have to be well-defined in the cases where subcontractors
have to bid for the contract. In developing a bid a subcon-
tractor will usually develop a plan that includes a process,
with milestones and deliverables, in sufficient detail to
determine a cost estimate. The process may be an itera-
tive, incremental approach, but the subcontractor may
have to make the process predictive by specifying the
number of iterations and the deliverables of each iteration
in order to compete.

It is possible that a contract can be written that allows a
subcontractor some degree of flexibility in how they
develop the product within time and cost constraints.
This is certainly possible if the subcontractor has a good
track record and can be trusted by the contracting com-

45

pany to develop a product that meets the contracting
company's needs. A contract supporting agile develop-
ment in the subcontractor environment should consist of
two parts:

• Fixed Part: This part defines (1) the framework that
constrains how the subcontractor will incorporate
changes into the product (e.g., cost- and time-based cri-
teria for accepting or rejecting changes to the Variable
Part (see below) of the contract, (2) the activities that
must be carried out by the subcontractor (e.g., quality
assurance activities), and (3) requirements that are to be
considered fixed and deliverables that must be deliv-
ered.

• Variable Part: This part defines the requirements and
deliverables that can vary within the boundaries defined
in the Fixed Part. This part can evolve within the con-
straints defined in the Fixed Part. At the time the con-
tract is signed, a description of prioritized deliverables
and requirements should be included.

3. Limited support for building reusable artifacts:

Agile processes such as Extreme Programming focus on
building software products that solve a specific problem.
Development in "Internet time" often precludes develop-
ing generalized solutions even when it is clear that this
could yield long-term benefits. In such an environment,
the development of generalized solutions and other forms
of reusable software (e.g., design frameworks) is best
tackled in projects that are primarily concerned with the
development of reusable artifacts. This separation of the
product-specific development environment from the
reusable artifact development environment is a primary
feature of the reuse-oriented framework called the Ex-
perience Factory developed by researchers at the Univer-
sity of Maryland at College Park [4]. The wide applica-
bility of a reusable artifact requires that the process used
to build the artifact emphasize quality control because the
impact of low quality (in particular, severe errors) is as
wide as the number of applications that reuse the artifact.
On the other hand, timely development of reusable arti-
facts is desirable. While there seems to be a case for
applying agile processes to the development of reusable
artifacts, it is not clear how agile processes can be suita-
bly adapted.

4. Limited support for development involving large
teams:

Agile processes support process "management-in-the-
small" in that the coordination, control, and communica-
tion mechanisms used are applicable to small to medium
sized teams. With larger teams, the number of communi-
cation lines that have to be maintained can reduce the
effectiveness of practices such as informal face-to-face
communications and review meetings. Large teams re-
quire less agile approaches to tackle issues particular to
"management-in-the-large". Traditional software engi-
neering practices that emphasize documentation, change
control and architecture-centric development are more
applicable here. This is not to say that agile practices are
not applicable in such environments. There may be op-
portunities for teams to use agile practices, but the degree

of agility possible may be less than that found in smaller
projects.

5. Limited support for developing safety-critical soft-
ware:

Safety-critical software is software in which failure can
result in direct injury to humans or cause severe eco-
nomic damage. The quality control mechanisms sup-
ported by current agile processes (e.g., informal reviews,
pair-programming) have not proven to be adequate to
assure users that the product is safe. In fact there is some
doubt that these techniques alone will be sufficient. For-
mal specification, rigorous test coverage, and other for-
mal analysis and evaluation techniques included in soft-
ware engineering approaches provide better, but also
more expensive, mechanisms to tackle the development
of safety- or business-critical software. Some agile prac-
tices can also bring benefits to the development of such
software. For example, (1) test-first approaches requires
one to define unit tests before writing code, (2) the early
production of working code supported by the incre-
mental, iterative process structure of agile processes
supports exploratory development of critical software in
which requirements are not well-defined, and (3) pair-
programming can be an effective supplement to formal
reviews. Therefore, it can be assumed that agile and for-
mal software development are not incompatible, but can
be combined when needed: Formal techniques may be
used in an agile way to handle critical pieces of the soft-
ware to increase quality and confidence.

6. Limited support for developing large, complex soft-
ware:

The assumption that code refactoring removes the need to
design for change may not hold for large complex sys-
tems in particular. In such software, there may be critical
architectural aspects that are difficult to change because
of the critical role they play in the core services offered
by the system. In such cases, the cost of changing these
aspects can be very high and therefore it pays to make
extra efforts to anticipate such changes early. The reli-
ance on code refactoring could also be problematic for
such systems. The complexity and size of such software
may make strict code refactoring costly and error-prone.
Models can play an important role here, especially if
tools exist for generating significant portions of the code
from the models. This view of models as the central arti-
facts for evolving systems is at the heart of the Object
Management Group's (OMG) Model-Driven Architecture
(MDA) approach (see http://www.omg.org/mda).

There may also be systems in which functionality is so
tightly coupled and integrated that it may not be possible
to develop the software incrementally. In these cases an
iterative approach in which code is produced in each
iteration can still be used, but the code produced in each
iteration will include all the pieces in various states of
incompleteness.

46

CONCLUSIONS
While it appears that there have been many software
development project successes based on agile processes,
so far most of these success stories are only anecdotal.
Empirical data comparing the effectiveness and limita-
tions of agile and non-agile approaches would greatly
enhance our understanding of the true benefits and limita-
tions of agile processes. In this paper we presented a list
of limitations based on a study of principles and assump-
tions underlying a subset of the processes that claim to be
“agile”. Not all assumptions apply to all these processes.
For example “Crystal Blue” a yet unpublished larger
brother of “Crystal Clear” [7] will have good support for
developing large software, but will probably be less “ag-
ile”. It is clear, that certain domains are more amenable to
agile development processes. Among them are Internet
application domains, in which there are significant time-
to-market pressure and the costs of upgrading to the next
release are minimal. However, it is also clear that com-
panies that develop long-lasting, large complex systems
may not be able to use agile processes in their current
form.

In general, some aspects of a software development pro-
ject can benefit from an agile approach while others can
benefit from a less-agile or more predictive approach.
From this perspective, practical software development
processes can be classified along a spectrum depending
on their degree of "agility". At one extreme of the spec-
trum are the purely predictive processes in which the
process steps are defined in detail early in the project,
and project goals remain relatively stable throughout the
execution of the process. At the other end of the spectrum
are the purely agile processes in which process steps and
project goals are dynamically determined based on analy-
ses of (1) experiences gained with previously executed
process steps, (2) similar experiences gained outside of
the project, and on (3) changes in the requirements and
development environment. From this perspective, the
agility of a process is determined by the degree to which
a project team can dynamically adapt the process based
on changes in the environment and the collective experi-
ences of the developers.

Practical processes lie somewhere in between the purely
agile and purely predictive spectrum extremes. Current
agile processes are close to the purely agile end of the
spectrum, but they are not purely agile because they pro-
vide a process framework that constrains the form of
processes that developers must follow. For example,
most published works on agile processes stipulate an
iterative, incremental process and advocate practices such
as test-first code development, pair-programming, and

daily review meetings with particular formats.

ACKNOWLEDGEMENTS
Bernhard Rumpe’s work was supported in part by the
Bayerisches Staatsministerium für Wissenschaft, For-
schung und Kunst through the Bavarian Habilitation
Fellowship and the German Bundesministerium für
Bildung und Forschung through the Virtual Softwaereen-
gineering Competence Center (ViSEK). The work of
Robert France and Dan Turk was supported in part by a
grant from the Colorado Advanced Software Institute
(CASI) and Qwest (CASI Project 5-30186).

REFERENCES
1. Ambler, S. Agile Modeling: The Official Agile Mod-

eling (AM) Site. http://www.agilemodeling.com.
Visited September 18, 2001.

2. Aoyama, M. Web-Based Agile Software Develop-
ment. IEEE Software, November/December 1998.

3. Auer, K., Miller, R. Extreme Programming Applied.
Addison-Wesley, 2002.

4. Basili, V., Rombach, D. Support for comprehensive
reuse. Department of Computer Science, University
of Maryland at College Park, UMIACS-TR-91-23,
CS-TR-2606, 1991.

5. Beck, K. Extreme Programming Explained. Addison-
Wesley, 1999

6. Beck, K., Fowler, M. Planning Extreme Program-
ming. Addison-Wesley, 2000

7. Cockburn, A. Agile Software Development. Addison-
Wesley, 2002.

8. Cusumano, M., Yoffie, D. Software Development on
Internet Time. IEEE Computer, October 1999.

9. Fowler, M. Refactoring. Addison-Wesley, 1999

10. Fraser et al. Hacker or Hero? - Extreme Programming
Today. OOPSLA 2000 Companion, Proceedings of
the 2000 ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOPSLA 2000), Mineapolis, MN, USA, 2000.

11. Larman, C. Applying UML and Patterns. Second
Edition, Prentice-Hall, 2001.

12. Rising, L., & Janoff, N. The Scrum Software Devel-
opment Process for Small Teams. IEEE Software,
July/August 2000.

13. Schwaber, K., Beedle, M. Agile Software Develop-
ment with Scrum. Prentice Hall, New Jersey, 2001.

14. Turk, D., France, R., Rumpe, B. Agile Software
Processes: Principles, Assumptions and Limitations.
Technical Report. Colorado State University, 2002.

