
170

XUnit Testing – A plea for assertEquals

 Tim Mackinnon
Connextra Ltd.

 Studio 312, Highgate Studios
 53-79 Highgate Road
 London, England, NW5 1TL
 +44 (0)20 7692 9898
 tim.mackinnon@pobox.com

ABSTRACT
There are too many examples of bad unit tests in the XP
literature. Many claim to use XUnit but in reality they
have misunderstood the features that it provides and so
write bad tests. By properly using features like assertE-
quals, developers write better tests that fail cleanly and
provide enough information for others to identify a fail-
ure and rapidly fix it.

Keywords
XP, XUnit, JUnit, assertEquals

1 Introduction
One of the core practices of eXtreme Programming[2] is
Unit Testing. In XP, unit tests are written by pairs of
developers to help understand a problem and identify
code that needs to be written to solve it (i.e. test first
design). The tests also help to document the production
code as well as identifying failures when they are exe-
cuted. XUnit[6] is a term that represents the language
independent set of testing frameworks that are used to
structure and execute these unit tests. The XUnit frame-
works provide a consistent and useful set of test objects
that help achieve these goals. Unfortunately, although
XUnit frameworks have been around for a long time,
developers still continue to use them inefficiently and
publish articles that do not give others a good example of
best practice.

2 Writing the first test
There are many variations of XUnit but the original in-
carnation was SUnit[3] for Smalltalk, which was later
followed by JUnit for Java[4]. JUnit was popularized by
the Java Report article, “Test Infected - Programmers
Love Writing Tests”[5] and is noted for making unit
testing popular in the programming community at large.
In this article the basic building blocks of unit testing are
introduced, namely the concept of a test fixture which
looks something like:

public void testSimpleAdd() {
Money m12CHF= new Money(12, "CHF"); // (1)
Money m14CHF= new Money(14, "CHF");
Money expected= new Money(126, "CHF");
IMoney result= m12CHF.add(m14CHF); // (2)
// (3)
Assert.assertTrue(expected.equals(result));
}

As indicated in the article, the code fragment shows three
important parts of the test fixture, Code which:

1. creates objects to interact with in the fixture
2. exercises the objects in the fixture.
3. verifies the result.

The last item is particularly important, as when combined
with a TestRunner object it gives a visual indication of
the problem in a window as shown below:

Importantly, this example is just an introduction to the
features provided by JUnit, however many developers
don’t seem to notice this. The article goes on to further
describe some of the richer functionality of the frame-
work, of which the method Assert.assertEquals(…) is
probably the most important. Unfortunately it is simply
not used enough in test fixtures and published examples
of them.

3 Introducing Assert-Equals
While it is useful to have a test indicate that it has failed,
it is even more useful to have it also indicate why it
failed, as well as giving the values that it failed with. This
may seem like a small point, but having worked on an XP
team for 3 years and having encountered many types of
tests – we have consistently noted that the tests that pro-
duce an informative output are the tests that are the sim-
plest to fix, or the quickest to show an error that was
recently introduced.

It is for this reason, that JUnit provides an assertEquals
test method. This method requires that you give an ex-
pected value and an actual value, which are then com-

171

pared for equality. If a failure occurs, the method will fail
showing both values so that you can visually see the
difference. This visual indicator gives you the clue to
understanding what went wrong.

In the previous example, replacing //3 with:
Assert.assertEquals(expected,result);

Gives a much clearer result as shown below:

4 Indicating the Intent
While showing both the expected and actual value is a
good step in writing a great test, there is another obvious
feature that JUnit provides that is often overlooked,
namely the “message” parameter. It may seem like over-
kill adding an additional comment to your test, however
our experience shows that what is obvious to you and
your partner when you wrote the test, may not be so ob-
vious to a pair that later sees the failure when they have
refactored some code and inadvertently broken that test.
In fact, the message parameter is more than a comment –
on failure it gives a just in time indication of what the
original developers were thinking, before you even have
to look at the test fixture.

While the idea is simple, this message parameter has a
subtle twist that often stalls its usage. The message dis-
plays itself on a failure, whereas the test is written from a
successful point of view. In our experience a useful start-
ing point to overcome this reversal, is to start the mes-
sage with the text “Should <some verb>”, where “some
verb” is an action like get, see, calculate etc. This makes
the test read in an English like manner, and helps make it
feel more like documentation. Thus:
Assert.assertEquals(expected,result);

Can be improved by writing something like:
Assert.assertEquals(“Should compare with correct
precision”, expected,result);

The figure below shows this improvement:

The message parameter is also useful when a test method
has several asserts in it. If any one of them fails, it gives
an indication of which assert caused the problem (an
obvious point, but one often overlooked). Finally, it is
important to note that the message parameter should not
be used as an excuse for covering up a badly named test.

5 Word wrapped failures
While a simple message failure is great for simple tests,
in more complicated multi-valued tests (i.e. Collections)
– it becomes important to have multi line failure mes-
sages that allow you to visually compare the results next
to each other. Again this is a simple point, but it is again
one that often gets overlooked in some of the XUnit im-
plementations (e.g. VBUnit). The JUnit UI allows for this
possibility making it even more obvious why the test has
failed:

6 The Missing Assertions
Finally, while assertEquals is an important method in the
Assert utility class, there are a few useful assertions that
JUnit has left out. Following the same principal that a test
should clearly indicate its intent and fail with a useful
message, we have found the following assertions are
particularly handy:
assertExcludes(msg, excludeString, target-
String);
assertIncludes(msg, includeString, target-
String);
assertStartsWith(msg, startString, target-
String);
assertEndsWith(msg, startString, targetString);

And the strangely missing:
assertNotEquals(msg, expected, actual);

The MockObjects[5] library provides these additions,
however they really should be consolidated back into
JUnit and its derivatives.

REFERENCES
1. Erich Gamma, Kent Beck, “Test Infected - Pro-

grammers Love Writing Tests” online at
http://junit.sourceforge.net/doc/testinfected/
testing.htm

2. Kent Beck. Extreme programming ex-
plained:embrace change. Reading Mass.: Addison-
Wesley, 1999.

3. Kent Beck, SUnit paper online at
http://www.xprogramming.com/testfram.htm

4. Junit.org website, online at http://www.junit.org

5. MockObjects website, online at
http://www.mockobjects.com

6. XUnit online at
http://www.xprogramming.com/software.htm

