
101

Metaphor, Architecture, and XP

David West
New Mexico Highlands University

Las Vegas, NM, 87701

+1 505 454-3173

dwest@cs.nmhu.edu

Abstract

The concept of "system metaphor" as a kind of over-
arching story that guides development of XP projects at
the system level is methodological weak point. This
paper explores the idea of system metaphor as devel-
oped by various XP authors, and proposes a notion of
architecture that seems suitable to XP.

Keywords
 System metaphor, architecture, scaling

1 INTRODUCTION

At the recent XP Universe, one of the central topics of
discussion - both formally and informally - centered on
the ability of XP to scale - to be applied to large pro-
jects involving multiple developers. Issues of commu-
nication played a big role in this kind of discussion.
Proponents of more "formal" methods, like RUP, fre-
quently raised the "architecture" issue as a fundamental
XP flaw, one that prevented solid communication and
hence scaling.

There is certainly some merit in considering the needs
of communication: within XP teams (users and manag-
ers considered part of the team for this discussion);
among multiple teams; across the bounds of time; and,
across the bounds of space. There is certainly a com-
pelling desire for those communications to include
some sort of gestalt perspective, which can provide
both a focal point and a baseline understanding of the
system. An "architectural model" is supposed to pro-
vide such a gestalt perspective and so, it would seem,
be a desirable thing for XP to have.

And indeed XP does have "an architecture" - the Sys-
tem Metaphor. But is this sufficient? Critics obviously
think not. If metaphor is insufficient, can we add
something more "architectural" without violating the

spirit and essence of XP.

2 METAPHOR

"System Metaphor - A story that everyone - customers,
programmers, and managers - can tell about how the
system works." [Beck00: pp. 179]

The total discussion of metaphor and architecture in,
eXtreme Programming eXplained, occupies less than
two of 190 pages. And yet, "Architecture is just as
important in XP projects as it is in any software pro-
ject." [Beck00: pp 113]

Martin Fowler notes the problematic nature of the
System Metaphor:

"Okay I might as well say it publicly: I still haven't got
the hang of this metaphor thing. …

Often people criticize XP on the basis that you do need
at least some outline design of a system. XPers often
respond with the answer 'that’s the metaphor.' But I
still don't think I've seen metaphor explained in a con-
vincing manner. This is a real gap in XP, and one that
the XPers need to sort out." [Succi01: pp 15]

 Mark Collins-Cope and Hubert Mathews propose that
XP adopt a 'layered reference architecture [Succi01: pp
51-69], but this idea does not directly address the Sys-
tem Metaphor issue.

Newkirk and Martin finesse the issue entirely.
[Newkirk01: pp18-19] They used a very familiar visual
representation of the major components of a Web serv-
let system as their "system architecture.

William Wake provides the most extensive treatment

102

of metaphor in the XP series. [Wake02: pp 75-96]
First, he suggests that the traditional role of architec-
ture is less relevant in XP.

"Extreme Programming (XP) places less emphasis on
up-front architecture than other methods because ar-
chitecture has less impact in XP: XP programmers
work to keep the system flexible. XP says "embrace
change," whereas architecture-driven approaches say,
"Some things are hard to change, so plan the skeleton
first."

He then goes on to suggest that a specific architecture,
of sorts, is created anyway - especially in the "spike"
and "first iteration" elements of the XP process.
[Wake02:pp 76] And, quoting Kent Beck, "The first
iteration must be a functioning skeleton of the system
as a whole." [Wake02: pp78] Wake then suggests that
a proper system metaphor supports four basic aspects
of system building: common vision, shared vocabu-
lary, generativity, and architecture. Architecture,
"…shapes the system by identifying key objects and
suggesting aspects of their interfaces." [Wake02: pp85-
86]

Despite these efforts we are left in the same position as
Martin Fowler - still absent, "the hang of this meta-
phor thing."

3 PRESUPPOSITIONS

The need for an architecture - or the XP alternative,
System Metaphor - seems to be a given.

If, "architecture is just as important in XP projects as it
is in any software project," it must be presumed that
the importance is for reason(s) other than those es-
poused by traditional software development methods.
It is useful to ground those reasons, where possible, in
the XP Four Values.

 Communication. Keeping everyone informed about
what is going on is essential to XP. Communications
take many forms and almost every XP practice incor-
porates and reinforces some form of communication.
A system metaphor or architecture should function as a
means of enhancing communication. A way of keep-
ing track of all the stories - and relationships among
stories - that actually drive development activities.

Some ad hoc ways of providing this coordination are

evident in XP. Bulletin board with post it notes or
story cards are but one example. A way of enhancing
these ad hoc approaches would be very useful.

 Simplicity. Architecture is a tool, nothing more. As
such, you should be able to create one simply and eas-
ily without special skills or extensive knowledge of
modeling syntax. People should be able to modify it
easily and simply and, conceptually, it should be com-
prehensible at a glance and understandable with mini-
mal perusal.

 Feedback. Architecture should be no more static
than the system which it models. In addition to allow-
ing simple modification, the architecture should cap-
ture state or time in some fashion - even to as minimal
a level as showing the status of individual actions,
stories, or subsystems.

 Courage. Here I am taking some liberties and push-
ing the envelope of what courage is all about. The
form of the architecture should make a bold and unmis-
takable statement to the effect, "This is an XP project!"
It should be unique and interesting so as to draw the
attention and the questions of those that should know
about XP but, as yet, do not.

 Evocative. (Not one of the four XP values.) Tradi-
tional software models, including architectures, strive
to be representational in essence (e.g., "this box stands
for this block of code"). But, representational models
suffer from their inability to provide a one-to-one map-
ping. So the representations are really abstractions.
The "map is not the territory" (Korzibski). And most
of the interesting and critical details escape the archi-
tecture.

Human beings are not limited to representational
knowledge - even though one of our main modes of
communication - the written language - is purely repre-
sentational. We also embody experiential and kines-
thetic knowledge. And we thrive on associational or
evocative knowledge.

An interesting thing about evocative knowledge - it can
be very complex. Each frame of a Ridley Scott movie
exhibits immense complexity in terms of the things
visible in that frame. They are powerfully evocative,
interesting, and compelling. In contrast, a typical cel
from a modern Saturday morning cartoon is almost
devoid of information. They are quickly boring to all
but the most childish viewers. This means that our
architectural model can be complex in appearance
without violating the simplicity requirement noted
above.

103

4 XP ARCHITECTURE

Figure One (at end of paper) is a digital photo of a
Thangka painting on the wall of my office. Depicted
on this painting is an evocative model of Tibetan Bud-
dhist cosmology and philosophy. Even a cursory
glance reveals that it has some kind of structural or-
ganization, significant amount of detail, and lots of
interesting and unusual images.

What you see on the painting is only marginally repre-
sentational. Each icon and each organizational seg-
ment of the whole can be seen as representing a par-
ticular deity or circumstance but that is almost coinci-
dental. The real purpose of the painting, and each
individual element, is to evoke memories - primarily
memories of stories you were told about Tibetan Bud-
dhism.

I propose that this kind of painting be the foundation
for an XP architectural model.

Essential elements of the painting that would have
equivalents in the XP architectural model include:

A center circle with icons evoking the driving
forces behind the system under development.
In the Thangka these are attachment, greed,
and anger. In a system model these might re-
mind us of the importance of money (almost
inevitable), a particular client that will pass fi-
nal judgment on our work, a customer, or a
service.
A large segmented circle, each segment repre-
senting some kind of partitioning of the sys-
tem - preferably isomorphic with the natural
segmentation of the domain. In the painting
these are the various realms of existence, e.g.
heaven, hell, material world. In our model
these might represent realms like order entry,
inventory, accounting, manufacturing; or,
segments of a smaller scale system - data en-
try, backend processing, backup and recovery,
etc.
Icons of various sorts arranged in a tableau
evocative of the stories that relate those icons
to each other. Each icon evokes a specific
story or set of stories about a particular ele-
ment of the overall system. Icons can appear
in more than one segment.
A narrower outer circle, also segmented, with
each segment representing a stage in the "cir-
cle of life." Each segment of this circle could

represent a processing stage or step in a busi-
ness cycle..
Finally, outside the circle - icons that recall
stories about outside influences. Things or
forces or people that can affect our system but
are outside the scope of what we can actually
build.

Dynamism can be added in many different ways. If
each icon evokes a particular story and the work re-
quired to realize that story, then the orientation of the
icon (down = not started, right angle left = in progress,
vertical = done, right angle right = abandoned dead
end) can be used to depict status. A quick glance at the
model reveals a rough approximation of total effort and
total achievements.

The Mandala Architecture works. The model has been
used as a way to train potential architects in the crea-
tion of richly detailed gestalt models of complex proc-
esses. The actual exercise began with about 30 min-
utes discussion of objectives, issues of complexity and
modeling, purposes of gestalt models and examples of
gestalt models. A ten-minute explanation of the Man-
dala Architecture preceded the exercise. Three person
teams were given blank overhead transparencies and
four colored markers and 30-40 minutes to talk about
and construct their Mandalas.

Every team was able to construct and explain a Man-
dala. Sophistication varied, of course, with some icons
being crude caricatures and others exhibiting some
degree of artistic talent. But the quality of the icons
did not matter. Explanations of the mandala contents
required the telling of stories. Since all of the partici-
pants were from the same company they had a shared
"company lore" that they could refer to with shorthand
descriptions.

In subsequent years I used this same exercise in more
than fifteen courses. Most were directed towards pro-
fessional software developers or students in a graduate
software engineering program. At least twice, how-
ever, business managers and executives constituted the
audience. In all cases the results were amazingly suc-
cessful. Actual Mandala models ranged from hand
drawn transparencies with 15-20 icons to a really com-
plex model created by a student using Visio with over a
hundred icons. There was no marked difference in the
overall sophistication of the models created by manag-
ers and by professionals. In the few cases where both a
manager and a software developer created models of
the same domain - the degree of convergence in con-
tent was extremely high (about 90%) and the stories
evoked when explaining the models were almost iden-
tical.

104

On two occasions when this material was part of a
semester long course I had students present their mod-
els about a third of the way through the semester.
Roughly four weeks later I asked students to present
the mandala models created by other students. These
re-presentations were almost as detailed as the origi-
nals. The recall exhibited in this exercise was roughly
triple the level of performance that the same students
exhibited in pop quizzes about other models (classical
DFD, ERD, etc.)

5 CONCLUSION

 The System Metaphor concept in XP is a potential
weak point and is not very well understood.

Mandala Architectures provide a visual metaphor of
potentially rich complexity without contravening any
of the XP Four Values.

The simplicity of creation, depth of explanation, degree
of recall, and richness of story telling have all been
demonstrated when this architectural approach was
used with both professional developers and business
managers.

6 REFERENCES

[Beck00] Beck, Kent. Extreme Programming ex-
plained. Reading, Mass: Addison-Wesley Longman,
Inc. 2000.

[Beck01] Beck, Kent and Martin Fowler. Planning
Extreme Programming. Reading, Mass: Addison-
Wesley Longman, Inc. 2001.

Newkirk01] Newkirk, James and Robert C. Martin.
Extreme Programming in Practice. Reading, Mass:
Addison-Wesley Longman, Inc. 2001.

[Succi01] Succi, Giancarlo and Michele Marchesi.
Extreme Programming Examined. Reading, Mass:
Addison-Wesley Longman, Inc. 2001.

[Wake02] Wake, William C. Extreme Programming
Explained. Reading, Mass: Addison-Wesley Long-
man, Inc. 2002.

Figure One - "Wheel of Life " Thangka

