
130

Catalog of XP Project ‘Smells’

Jennitta Andrea
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 264-5840

jennitta@clrstream.com

Gerard Meszaros
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 264-5840

gerard@clrstream.com

Shaun Smith
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 264-5840

shaun@clrstream.com

Abstract
This paper contributes an initial catalog of XP project
‘smells’ – indicators of problems with a team’s imple-
mentation of XP practices. The paper traces the symp-
toms back to their root causes, and then offers solutions
to either fix the underlying problem or customize the
process to become a better fit within a particular context.
The target audience for this paper is the people who need
keep projects on course.

Keywords
eXtreme Programming, XP, Process Improvement, Men-
toring

INTRODUCTION
The often-asked question Are we doing XP? opens the
door to exploring whether the synergistic practices have
been adopted appropriately [1]. The next question be-
comes Are we doing it well?

Through our engagements mentoring a variety of clients
in their transition to and customization of XP, we have
noted significant variation in each experience; concepts
that are easy for one team to adopt present a great chal-
lenge for another. In the majority of cases, one or more
aspects of pure XP are not a good fit for the team or pro-
ject, so some degree of customization and process adap-
tation are necessary. We have also found that, if left
unchecked, the installed process may degrade over time
for a variety of reasons, including: shallow understanding
of the practices and concepts, reverting back to old and
comfortable ways, and significant changes to team com-
position.

In this paper we borrow the concept of ‘code smell’ [2]
(an indicator of problems in code) and apply it to the XP
project as a whole. This paper contributes an initial cata-
log of XP project smells – indicators of problems with a
team’s implementation of XP practices. The paper traces
the symptoms back to their root causes, and then offers
solutions to either fix the underlying problem or custom-
ize the process to become a better fit within a particular
context.

The material contained in this paper is distilled from our
involvement in seven XP projects over a two-year period
(2000 - 2001). The projects ranged in scope from short-
term pilot projects to mission critical software projects,

ranged in size from two to twelve team members, and
ranged in composition from predominately junior team
members to predominately senior team members.

XP PROJECT SMELLS
Over Engineering
Symptoms: expressions of frustration and dissatisfaction
with the constraints that are placed on highly valued
analytical skills, time overruns due to extra work being
done that are not part of the assigned task, and estimate
padding to facilitate doing ‘a little extra’.

Practice Affected: Simplest Possible Thing, Task Estima-
tion.

Root Cause: Big Picture Thinkers: One of the biggest
challenges for senior team members who have experience
as architects or framework generalists is to strictly do the
simplest possible thing for the specific task at hand.
They instinctively think several steps beyond the current
task and worry about a wide array of details.

Solution 1a Adopt Simplest Possible Thing: For a project
that is building a one-off application, it’s best to continue
to strive to develop the simplest possible thing. The root
of the problem lies in the mental shift of team members.
Pairing one of these affected team members with a strong
mentor will help keep them in check while they are mak-
ing the transition. Concerns are generally alleviated over
time as practice is gained in refactoring, and if they have
access to excellent refactoring tools.

Solution 1b Adapt Simplest Possible Thing: For a project
that is building application frameworks and generalized
component-ware, doing the simplest possible thing in an
incrementally evolving manner is not necessarily a good
fit. The process must be customized to accommodate
more big-picture thinking and synthesis of a number of
customer stories into framework stories [3]. This raises
the question of whether developing frameworks using XP
is fundamentally different than when developing end user
systems. This is something that we have been grappling
with recently in the development of our own frameworks.

Overly Complex Integration
Symptoms: the integration of small and/or localized
changes is more complex and time consuming than nor-
mal.

Practice Affected: Continuous Integration

131

Root Cause 1 Too Long Off Baseline: Delaying task inte-
gration for extended periods of time increases the diffi-
culty of the job because the baseline has significantly
changed. Large tasks are particularly susceptible to these
issues because they take longer to complete and tend to
have a wider impact.

Solution 1a Adopt Continuous Integration: Ensure team
members are integrating at the completion of each task.
If tasks are sized correctly and concurrent tasks have
minimal overlap, then the complexity of each integration
will be significantly reduced.

Solution 1b Refactor Task: Break a large task into sepa-
rate phases (e.g. investigation, preparatory refactoring,
adding logic, cleanup refactoring). Perform an integra-
tion after each phase rather than a single integration at the
very end of the task.

Solution 1c Private Integration: Private integration in-
volves synchronizing local code with the current baseline
without checking it into the shared repository. During a
large task, integrate privately on a regular basis to avoid
getting too far off the baseline.

Root Cause 2 Avoiding Bad Tools: In some cases we
have discovered that poor configuration management
tools deter people from integrating frequently. Configu-
ration management tools that have poor performance, are
unreliable, and/or impose complex processes, signifi-
cantly reduce productivity.

Solution 2 Improve Tools: Developing and publicizing
workarounds or “best practices” for using the tool fre-
quently helps to mitigate the problem. In extreme cir-
cumstances serious consideration should be given to
upgrading or changing the toolset.

Root Cause 3 Refactored Baseline: When tasks involv-
ing feature development and major code refactoring oc-
cur in parallel, integration is generally more complex and
time consuming than normal. This can create a lot of
extra work for everyone who is making changes.

Solution 3 Refactoring ‘Time-Out’: Communication and
coordination are key avoiding the mistake of performing
major refactoring while others are working on the same
areas of code. When planning a major refactoring task,
ensure that parallel development is reduced to an absolute
minimum. Ensure everyone has a chance to integrate
their work before the refactoring task starts, then refactor
quickly or outside of prime time. Use powerful tools for
comparing and merging code (for example BeyondCom-
pare [4]).

Unrepresentative Acceptance Test
Symptoms: customer crashes the system when they use it
manually, even though all of the automated acceptance
and unit tests pass. The user is using the system in a
‘reasonable manner’ and is only using functionality that
has been completed.

Practice Affected: On-site Customer, Automated Accep-

tance Testing

Root Cause 1 Language Mismatch: When acceptance
tests are not representative of real world usage, it is often
a symptom of problems in the communication between
the team and customer. There is a chasm between the
customer’s informal specification of the acceptance test
and how it is ultimately recorded as code. The customer
is not able to properly validate the automated acceptance
test because they do not understand code.

Solution 1 Demo Script: The customer creates a manual
demo script that also acts as a formal specification for the
acceptance test. The script is specific in terms of the pre-
condition data setup, the steps to perform, and the ex-
pected outcomes. Customer acceptance of a release in-
cludes running all automated tests and manually running
the demo scripts.

Root Cause 2 Environment Mismatch: Acceptance tests
may not match real-world usage because of technical and
logistical challenges. For example, automating accep-
tance tests is challenging for a system that is triggered by
system time events. While the unit tests can stub out the
system clock to enable fine grained control of the passage
of time, the acceptance test must wait for the actual sys-
tem clock to change and thus may take hours to run.

Solution 2 Realistic Test Environment: Ensure that the
acceptance tests operate as closely as is feasible to the
way the system will really run. Only use test-stub code
in the acceptance tests if test automation would be im-
possible or impractical otherwise.

Coding Assistant
Symptoms: The partner leaves all the decisions to the task
owner and may degenerate into a “spell checker”. If the
partner takes the keyboard, they often ask, “What do you
want me to do?”

Practice Affected: Pair Programming

Root Cause 1 Unbalanced Roles: Pair programming is
one of the most foreign concepts that XP introduces.
Each team refines the roles and etiquette of pair pro-
gramming as they gain experience. Unfortunately, some
teams develop unbalanced role definitions where the task
owner (i.e. the one that signed up for the task and esti-
mated it) is expected to individually own the outcome of
the task.

Solution 1 Re-align Roles: Remind the team of the pur-
pose of pair programming, namely: continuous review
and knowledge transfer, collective ownership, synergy,
etc. Reestablish the role definitions for each party in the
pair and clarify acceptable pair programming etiquette.
Strategically pair people together to reinforce these con-
cepts through mentoring until they became widely prac-
ticed. Pair the mentor with the ‘coding assistant’ and
encourage them to make decisions whether they are at the
keyboard or not.

Singleton programming
Symptoms: pair programming degrades back to singleton
programming.

132

Practice Affected: Pair Programming

Root Cause 1 Culture Shock: Without having tried it,
team members are reluctant to embrace pair program-
ming because it is such a significant departure from their
normal work habits. Pairing becomes a challenge when
team members have significantly different work hours.

Solution 1 Adapt The Culture: Strategically pair people
together to reinforce pair programming concepts through
mentoring until they become widely practiced. People are
more likely to see the benefit if they are paired with
someone who has valuable knowledge or skills that they
themselves are lacking. Ensure that there is adequate
accommodation for quite, personal time.

Root Cause 2 Office Logistics: Office space logistics are
a serious roadblock for adoption of pair programming.
It’s not common to have a large area available for a team
to configure as it wishes. The time and cost to re-
configure cubicles, re-locate people, and purchase larger
monitors is often prohibitive. For short projects the
upheaval is not considered practical.

Solution 2a Buddy Programming: There are many crea-
tive ways to adapt the concept of pair programming –
without incurring the cost and disruption associated with
creating the ideal workspace. One adaptation that we
have seen work well is to introduce a buddy system,
whereby people are closely located and collaborate fre-
quently every day. Each person works on a different task
and individually writes code. The buddies design their
solutions collaboratively and perform small, incremental
code reviews each day. Integration is always done as a
pair.

Solution 2b Abandon Pair Programming: Of course, this
removes the main checks and balances provided by XP
and must thus be compensated for; formal design and
code reviews must be introduced into the process.

Unmatched Acceptance Test Failure
Symptoms: an acceptance test still fails after the last task
for a story is complete, while the entire unit test suite
passes.

Practice Affected: Test-first Development

Root Cause 1 Stale Acceptance Test: By definition a set
of unit tests will overlap with one or more acceptance
tests – each covers the same functionality but at different
levels of granularity. An acceptance test validates a path
through the end-to-end process at a coarse granularity. A
unit test validates an activity belonging to the process at a
much finer and focused granularity. Consequently, if an
acceptance test fails, one typically expects one or more
failing unit tests to pinpoint the problem.

Normally, the first task of a story is to write the accep-
tance tests, which are initially expected to fail because
the supporting software does not yet exist. When the
acceptance test does not pass after the last task is inte-
grated, the team typically has one of two reactions: a
new task is created which is focused on fixing the failing
acceptance test, or the pair integrating the last task as-

sumes this responsibility and has a very long integration
step. These are both symptoms of an incomplete and
shallow integration process.

Solution 1 Semantic Integration of Acceptance Tests: As
part of each task integration, revisit the associated accep-
tance tests with a view to making them progress farther
based on the contributions made by the task. This en-
forces semantic integration rather than just task-based
syntactic integration; merely ensuring the acceptance test
still compiles is not enough. Introduce record keeping
about the progress of the acceptance tests as part of the
integration process; include details such as which accep-
tance tests fail, and where. This practice facilitates pro-
gress monitoring, while acting as a reminder that con-
tinuous integration means that the acceptance tests are
not allowed to go stale.

Root Cause 2 Missing Unit Tests: Another possibility is
that some unit tests are missing. This indicates that either
the development and refactoring is not strictly test-
driven, or some of the test scenarios were overlooked.

Solution 2 Increase Test Coverage: Employ test cover-
age analysis tools, like Jester [5] to find areas that lack
tests. Unit tests may not exist for components that are re-
used by the project (e.g. infrastructure and legacy sys-
tems), and may need to be developed if problems are
found with these components. To improve test develop-
ment skills in the team, structure the pairings so that at
least one experienced tester is involved during the test
specification and design stages, and ensure that develop-
ment and refactoring is consistently performed in a test-
first manner.

Obtuse Specification
Symptoms: test learning curve is too long; uncertainty as
to where to find a test; test cases are duplicated.

Practice Affected: Test-first Development

Root Cause 1 Unreadable Test: A way to measure the
quality of a test is the length of time it takes someone else
to understand it. The test forms the formal specification
of the system, thus it is of utmost importance that it is
clear, concise and well organized. However, the essen-
tial meaning of a test is easily obscured by the code-level
details required to make it run automatically.

Solution 1a Improve Test Writing Skills: Mentor team
members as they write tests, highlighting intent revealing
coding concepts, and single-purpose tests. If time per-
mits, mentor team members in the refactoring of existing
tests to improve their standards.

Solution 1b Adopt Testing Standards: Introduce a stan-
dard format or template that all tests must conform to.
Readability is dramatically improved by developing cus-
tom domain-specific test frameworks to encapsulate
details behind well-defined method names. For example,
instead of repeating ten lines of validation code in each
test method, create a custom ‘assert’ method that contains
the ten lines of code. Test set-up and pre-conditions are
other prime candidates for custom framework methods.

133

Hard to Test Software
Symptoms: The software as designed is hard to write
automated tests for.

Practice Affected: Design for Testability, Test-first De-
velopment

Root Cause 1 Overly Coupled Software: Sometimes, a
class or component is too intimate with other classes.
This makes it hard to test it without also testing the other
classes and this results in tests that are overly complex or
difficult to automate. When dependencies are hard-
coded, it is virtually impossible to replace a real ob-
ject/component with a test stub or a mock object [6].

Solution 1 Configuration Manager: Evaluate whether
test-first development is being practiced; theoretically,
this situation should not arise when tests are used to drive
development. Refactor the software to make it more
testable. Typically this involves a centralized component
factory, which is used to override the real components
with test stubs [7].

Root Cause 2 Hard to Test Interface: User interface code
is hard to test because of the input comes from manual
user interaction.

Solution 2 Layered Architecture: Clearly separate the
user interaction from the core business processing. By-
pass the user interface and test directly against a façade
that exposes the core logic. Test the user interface logic
separately.

APPLYING THE CONCEPTS
While children can be forced to bathe, adults do not re-
spond as well to just being told to do something. Fortu-
nately, most adults find value in bathing after having
experienced the consequences of not doing so. XP men-
tors and coaches should let people experience some of
these smells for themselves so that they have a deeper
learning experience and so they can become accustomed
to detecting/fixing problems early. Helping them detect
the smells, identify the root causes and choose the solu-
tion (bath or deodorant!) is a good way to reinforce the
learning experience.

CONCLUSIONS
Early detection of problems can help steer an XP project
away from serious trouble and provides direction in the

customization of the process to best fit a particular team
or project. The “smells” that characterize common chal-
lenges and misapplication of XP practices can be used to
quickly detect the problems and identify appropriate
solutions.

This paper contributes an initial catalog of project
‘smells’. There are certainly more root-causes and solu-
tions for the ‘smells’ described in this paper. Many more
‘smells’ exist that have not been identified in this paper,
for example in areas related to project tracking, and the
planning game. It is our hope that the work of cataloging
project ‘smells’ continues within the XP community in a
collaborative fashion for the benefit of all.

ACKNOWLEDGEMENTS
The authors would like to thank the clients who’s pro-
jects gave us the opportunities to gain the experiences
described here as well as the colleagues who reviewed
and commented on drafts of this paper.

REFERENCES
1. Jefferies, Ron, “Are We Doing XP?”, Invited

Talk, eXtreme Programming and Flexible Proc-
esses in Software Engineering - XP2001, May
2001.

2. M. Fowler. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

3. Meszaros, Gerard, et al., “Building Frameworks
Using XP”, eXtreme Programming and Flexible
Processes in Software Engineering - XP2002,
May 2002.

4. Beyond Compare is a product of Scooter Soft-
ware, online at www.scootersoftware.com.

5. Moore, Ivan, “Jester – a Junit Test Tester”, eX-
treme Programming and Flexible Processes in
Software Engineering - XP2000, May 2000.

6. Mackinnon, T., et al. "Endo-Testing: Unit Test-
ing with Mock Objects", eXtreme Programming
and Flexible Processes in Software Engineering
- XP2000, May 2000.

7. Smith, Shaun, “Test-First Development with
Mock J2EE, JMS, and JNDI”, eXtreme Pro-
gramming and Flexible Processes in Software
Engineering - XP2002, May 2002.

