
118

Constructing Agile Software Processes

Hasko Heinecke
Daedalos Consulting AG

Seestr. 510
CH-8038 Zürich

Switzerland
+41 (1) 481 07 20

hasko.heinecke@daedalos.com

Christian Noack
Daedalos Consulting GmbH

Ruhrtal 5
D-58456 Witten

Germany
+49 (2302) 9790

christian.noack@daedalos.com

Daniel Schweizer
Daedalos Consulting AG

Seestr. 510
CH-8038 Zürich

Switzerland
+41 (1) 481 07 20

daniel.schweizer@daedalos.com

ABSTRACT
A Software Development Process usually cannot be suc-
cessfully applied out of the box. Practitioners know that
methods have to be adapted to company culture and pro-
ject constraints. However, many current Agile Processes
lack an explicit description of the constraints, alterna-
tives, and side effects of such changes. This paper de-
scribes how a pattern language with clearly described
forces and trade-offs can be derived from existing devel-
opment processes, and how the result can be used for a
“Bottom-Up” approach to process adaptation.

Keywords
Extreme Programming, Agile Software Processes, Pat-
terns, Methodology, Adapting, Constructing

CONSTRUCTING AGILE PROCESSES
In the past couple of years, Extreme Programming (XP)
and other Agile Software Processes have started to gain
considerable impact on software development in enter-
prise IT departments. Nevertheless, still many project
managers are reluctant to switch to these new methodolo-
gies. They feel that some of the practices and techniques
employed by Agile Processes are too alien to their com-
panies’ cultures. This is the reason why in many projects
processes are not applied “by the book” but rather are
adapted to the specific needs and standards of the envi-
ronment.

However, existing Agile Processes usually do not specify
explicitly how to be adapted. Aside from that, it is not
easy to decide which of the growing multitude of Agile
Processes to deploy in the first place. It requires much
experience and a thorough understanding to select and
tailor a new process to meet the specific requirements and
constraints of a given software project.

The problems that need to be addressed by software
processes are complex and cannot be solved without
taking into account the concrete environment in which
they are implemented. Pattern languages are an instru-
ment to describe possible solutions to such complex prob-
lems in a structured way.

“[A] pattern is a three-part rule, which expresses a rela-
tion between a certain context, a problem, and a solu-
tion.” [Ale79, p. 247]

Pattern languages require the relationships between the
patterns and the environment to be made explicit. Soft-

ware process descriptions would benefit from this be-
cause the constraints for adapting them would be obvi-
ous.

Therefore, we believe it would be worthwhile to rewrite
software processes as pattern languages. Moreover, if
those could be integrated into a single comprehensive
pattern language, we would have an alternative to adapt-
ing processes: Software processes could be constructed,
using the concrete project-specific constraints as input.

Deriving the actual pattern languages for each of the
Agile Software Processes is beyond the scope of this
paper. Instead, we give some examples of patterns de-
rived from different processes and show how they can be
integrated, to become part of a common pattern language.
Furthermore, we outline how such a common pattern
language can be used to construct a custom process in a
bottom-up fashion.

DERIVING THE PATTERNS
The foundation for the construction of custom software
processes is a comprehensive pattern language. Its build-
ing blocks are patterns. Deriving them from existing
processes suggests itself. An important criterion for the
quality of a pattern is whether it has been applied suc-
cessfully more than once. Therefore, we chose examples
from software processes that have been proven in indus-
try use.

The actual procedure of deriving patterns from a software
process is interactive rather than formal. E.g. Christopher
Alexander describes how patterns are conceived in an
informal conversation (see [Ale79], p. 270ff). To the best
of our knowledge, there does not even exist a formal
procedure. We believe, professional judgement and dis-
cussion among peer is the only feasible foundation for
such work. However, the focus of this paper is on the
integration of patterns from different processes, and on
constructing processes bottom-up. It is out of the scope of
this paper to describe in detail how we arrived at the
example patterns we use. This is not a trivial task,
though, and will be a subject for other papers.

Software process literature is usually not already in pat-
tern format. Where we find pattern-like structures, such
as the core practices in Extreme Programming, they do
not explicitly mention constraints and relationships to
other elements. Other patterns can be found which are not
primary elements of the process in question. E.g., Ex-

119

treme Programming requires the project team to work in
a common office. This in itself is not one of the core
practices, although it is understood by the XP community
to be an important property of XP projects. In fact, a lot
of discussions in newsgroups and on conferences concen-
trate on this topic: Is a common office necessary to do XP
properly, and what if a common office is not feasible?
Consequently, special care must be taken when deriving a
pattern language from a process description to gather all
the implicit patterns.When deriving a pattern language
from a process, it is necessary to define a pattern struc-
ture first. In the following sections we describe and jus-
tify a possible structure that we found useful. Here is an
example pattern we derived from XP:

Name: Pair Programming

Source: Extreme Programming

Problems:
Quality of Code: No software is free from defects. Re-
ducing the number of defects can greatly improve cus-
tomer satisfaction and maintenance costs.

Knowledge Distribution: During the course of a project,
people acquire specific knowledge about the problem
domain and the tools they use. Over several projects, this
knowledge can be accumulated. However, people change
jobs, they get sick, leave the company, go on holidays, or
are generally not available when you need them.

Process Discipline: All software development processes
and methodologies require discipline: Certain things have
to be done, even if they are not particularly interesting.
But most people are not good at self-discipline, especially
when it is required over extended periods of time, like in
a software project. If a task does not challenge them or
seems too hard, people concentrate on quick ways to get
over with it. Sloppiness creeps in, the defect rate rises,
and the process is neglected. The same can happen when
a project is close to some milestone and more work is left
to do than the team is able to perform.

Constraints:
Readiness for Working in Pairs: Working in pairs even
for a limited amount of time each day requires a certain
readiness from the developers. Additionally, project man-
agement must not judge pair work as a waste of re-
sources.

No Closed Groups: In order for distributing knowledge
through pair work to succeed, it is necessary to mix pairs
as much as possible. Closed groups of people who mix
among themselves, but to not change between each other
hinder distribution.

Implied Patterns:
One Location: Pair Programming requires the project
team to work in one room, or at least in one building.
Otherwise, the separate locations function as Closed
Groups, see above.

Solution:
Pair Programming as described in [Bec00].

The example displays the general pattern structure that
we use for collecting process patterns. The minimal set of
features of a pattern are the name, the problem addressed,
the constraints, that define the context in which it is ap-
plicable, and the solution to the problem. (See e.g.
[Ale79], [G+95]) As can be seen in the example, our
pattern structure adds some elements.

Different processes can use the same name for practices
that are similar but still not identical. Therefore, when we
derive a pattern we add the source process name to each
pattern description.

We found that most patterns that can be derived from
existing software processes actually address more than
one problem at once. (Conversely, every problem is usu-
ally addressed by more than one pattern.) Therefore, the
problem section of our pattern structure is a list of prob-
lems rather than a single problem.

The list of constraints is actually broken into two sec-
tions. The first is named “constraints” and lists the gen-
eral preconditions and restrictions for the application of
the pattern. The second is called “implied patterns”. If
one pattern requires another one to work, we call this an
implied pattern. It is a real constraint, but of a special
nature. We discuss the consequences of implied patterns
in the section Constructing Processes below.

The solution part of the pattern often contains just a ref-
erence to the original process description. Only if the
pattern is not obvious or not sufficiently described there,
we add some explanation of the solution itself.

This pattern structure we found applicable to many dif-
ferent software processes. Below is an example from the
Capability Maturity Model (CMM), a process model
believed to be non-agile by many.

Name: Peer Review

Source: CMM for Software

Problems:
Quality of Code: See above, focus on defects

Process Discipline: See above

120

Implied Patterns:
Written Policy: All of the CMM practices require a writ-
ten policy to be followed.

Constraints:

Time and resources need to be reserved for performing
peer reviews, and for implementing their results, even
under pressure. This requires support from management
in critical situations.

Technical experts must be available for performing the
technical part of the review.

Solution:

Peer Reviews as described in [P+93], p. L3-97ff.

Using this structure, each software process can be formu-
lated as a pattern language. The individual languages
(that describe one process each) will overlap, but they are
still separate. In the following section, we will describe
how they can be integrated into one common pattern
language.

INTEGRATING THE PATTERN LANGUAGES
Each eligible software process will be refined into a sepa-
rate pattern language. This in itself provides already
valuable information about the patterns and their relation-
ships therein. However, our goal is to provide a solid
foundation for constructing agile processes. So the multi-
tude of pattern language must be integrated into synthe-
sis, a single, comprehensive pattern language.

One important source of differences between processes is
the vocabulary. In order to unify them, it is therefore
necessary to unify the vocabulary first. Since all software
processes address a similar set of problems – after all it is
always some kind of program that has to be developed
and delivered – we suggest the collection of all problem
descriptions from the pattern language in a catalogue.

This catalogue will be the starting point for process con-
struction, as we will show in the next section, so particu-
lar care must be taken to make it complete and consistent.
By complete we mean that all the problems addressed be
a process must be included in the catalogue. By consis-
tent we mean that problems should rather not overlap.
Often, we find problems that are similar but not identical.
It is then necessary to isolate the similarity into a new
problem description to separate it from the two original
problems.

Sometimes one of the original problem descriptions is
then completely encompassed by the new one, while the
other one is a superset. But equally often, we end up with
three problems where before there were only two. If that
happens, we have to go through all affected process de-

scriptions and review them with respect to the new prob-
lem. Quite often, we find that patterns will have to be
restructured as a result, and new patterns are found as a
result. This is an iterative procedure that may have to be
repeated for each of the problems of the respective pat-
tern languages. It is tedious work, but it results in a much
better (and much better documented!) understanding of
the respective software processes.

When a complete and consistent problem catalogue has
been built, the next step is to repeat the process of inte-
gration and unification for the pattern constraints and the
patterns itself. This, however, is easier because there will
be much less overlap. Certainly, processes use different
terminology in these aspects as well. But since a lot of the
constraints were formulated during pattern derivation
rather then taken from the process descriptions, they are
generally much more organized already.

Finally, we arrive at an integrated pattern language with
the following characteristics: The problem descriptions
are clearly formulated and separate. The constraints are
unified and implied patterns are clearly marked. The
patterns themselves define a common vocabulary. We
further build three indices: 1) A list of the pattern names
to be able to find the patterns in the catalogue; 2) a list of
the pattern sources, to be able to find all patterns from
one process; 3) a list of the addressed problems. The last
index is the most important one for constructing proc-
esses but also the most difficult one to obtain. To create
this index a list of key words must be build up, and all
patterns must be harmonized, so that equal problems have
equal problem entries in a pattern. To be able to construct
a process from the catalogue we suggest to generate a
dependency graph containing all filed patterns and show-
ing the implied patterns.

CONSTRUCTING PROCESSES
Within most of the projects, processes are not applied out
of the book. We conducted several interviews with pro-
ject teams who claimed to use Extreme Programming.
We found that most of them did employ certain tech-
niques like Unit Testing, but left out others, like Cus-
tomer on Site. This kind of adaptation was born out of
necessity rather than ignorance: The circumstances sim-
ply did not allow to have a customer on site. Different
projects also applied different changes to the process.

However, these adaptations are frequently done without
control: First, the existing techniques within the process
and beyond it are often not taken into concern, because
they are not well understood. Second, the existing prob-
lems are not taken into account while adjusting a process
to the specific concerns because there is no checklist or
catalogue to compare against. Third, the dependencies
between the chosen techniques are not clearly docu-
mented. This is where a pattern language helps. It can be
used as a construction kit to build up a process.

To choose the building blocks of your process you first

121

have to think about the expected problems you will have
to handle during the whole process. Most of the problems
are very similar for almost every project and are already
known. You can take them from the catalogue of prob-
lems in the pattern language. By integrating more than
one process into one pattern language, even rare prob-
lems or such that are overlooked easily are provided in
the form of a checklist from which you can select the
problem areas that apply to a given project.

With the resulting collection of problems you can start
selecting the patterns from the catalogue and build up
your process. This is a creative work. Which patterns are
actually chosen depends highly on the preferences, the
existing technical and social skills of the people and sev-
eral other circumstances of your project. The pattern
language helps not to forget the options you have, and it
helps not to lose the focus on your problems. It also helps
ensure the consistency of the resulting process, by clearly
documenting relationships between patterns, namely
those that are implied by others. When all problem areas
a covered by patterns, the process is complete.

The final question that remains is, in what way are the
resulting processes agile? While it is beyond the scope of
this paper to justify a formal definition of “agileness”, we
give one that covers what we find important in Agile
Processes: 1) They stress importance of working software
rather than that of process artefacts. 2) They consist of a
minimum number of process elements. 3) They address
the problem of rapidly changing requirements.

So on the one hand it is certainly possible to create “Big
M” methodologies with a pattern language as the outlined
in this paper. On the other hand, it does give project man-
agers a tool with which they can create processes that
consist only of a minimum number of patterns. When
these patterns address the rapid requirements change
problem (from the problem catalogue), then the resulting
process should be reasonably agile.

ABOUT THE AUTHORS
Hasko Heinecke has been working in object-oriented
software development since 1991. He has been the victim
of both lack of process and too much process in various
projects since then, and has been introducing Agile Proc-
ess ideas and techniques to software projects since he
worked with Kent Beck in 1999.

Christian Noack has been doing object-oriented software
development for ten years. He has been working in the
field of software processes within the last four years and
is focussing on agile processes due to his work with Kent
Beck in 1999 and Joseph Pelrine in 2000/2001.

Daniel Schweizer has a background of 9 years in soft-
ware development and about 3 years with object technol-
ogy. Since 2001, he has authored and taught courses in
Smalltalk, and XP.

All the authors work for branches of Daedalos Interna-
tional.

REFERENCES
[AIS77] Ch. Alexander and S. Ishakawa and M.

Silverstein: A Pattern Language, Ox-
ford University Press, New York, 1977

[Ale79] Ch. Alexander, The Timeless Way of
Building, Oxford University Press,
New York, 1979

[Amb98a] S.W. Ambler: Process Patterns: Build-
ing Large Scale Systems Using Object-
Oriented Technology, SIGS Book,
Cambridge University Press, New
York, 1998

[Amb98b] S.W. Ambler: More Process Patterns:
Delivering Large Scale Systems Using
Object-Oriented Technology, SIGS
Book, Cambridge University Press,
New York, 1998

[Bec00] K. Beck, Extreme Programming Ex-
plained: Embrace Change, 2000, Addi-
son-Wesley

[Cop95] J.O. Coplien: A Generative Develop-
ment-Process Pattern Language, Pattern
Languages of Program Design, 1995,
Addison Wesley Longman, Inc., pp.
183-237

[Cun96] W. Cunningham: EPSIODES: A Pat-
tern Language of Competitive Devel-
opment, Pattern Languages of Program
Design 2, 1996, Addison-Wesley, pp.
371-388.

[G+95] E. Gamma and R. Helm and R. Johnson
and J. Vlissides: Design Patterns, 1995,
Addison Wesley

[P+93] M.C. Paulk et al.: Key Practices of the
Capability Maturity Model, Version 1.1

