
35

No Pain, No XP Observations on Teaching and Mentoring Extreme
Programming to University Students

Peter Lappo
Systematic Methods Research Ltd

 Greylands House.
 Hove, E.Sussex
 BN3 6TD, UK
 +44 1273 544160
 peter.lappo@smr.co.uk

Abstract
This paper describe how a group of Masters students at
Brighton University were taught Extreme Programming
(XP) and applied their knowledge to a 12 week project to
produce a web based resource management application.

Observations are made on the teaching, project, tools,
architecture and use of XP. Recommendations are made
on the teaching of XP at universities.

Keywords
Extreme Programming, XP, Teaching Recommendations,
Mentoring, Experience.

INTRODUCTION
In the summer of 2001 I taught an extreme programming
(XP) [1] class to a group of Masters students and some of
their lecturers at Brighton University. After the classes I
mentored the students through a web based human re-
sources application I wanted for my company. The objec-
tive of the exercise was three fold,

• To understand extreme programming better.
• To teach the students about extreme program-

ming.
• To get some working software.

The later objective has always been elusive when dealing
with the results of student projects.

This paper describes my experiences and reflects on
some of the issues raised.

THE PROJECT
Teaching and Mentoring
There were formal XP teaching sessions before the pro-
ject started covering the whole XP process with detailed
session on the planning game, software design, and unit
and acceptance testing. Class practicals were included
when possible. Refactoring was not covered in detail.

Following the XP classes I taught the students the basics
of Java Servlets [5] and Java Server Pages (JSP) [4] as I
wanted the application to be web based and this seemed
the natural choice as I am experienced with JSP and
Servlet technology.

Project
The project lasted 12 weeks which included two weeks of
writing up at the end. The objective was to apply XP to
the maximum extent possible using two week develop-
ment iterations. I was the customer as well as the XP
mentor and the students were the development team.

The aim of the project was to develop a human resources
application consisting of screens to enter working history
and qualifications, coupled with screens to search and
select people from a list of candidates.

Due to real-world constraints the customer and mentor
could not be present 100% of the time. In practice I was
probably with the students on average twice a week for
about 3 hours.

To facilitate communication I set up a Wiki [13] to
document the user stories and any comments raised by
myself or the students. We also used email extensively.

Tools
The project used JBuilder [2] as its interactive develop-
ment environment, Tomcat [3] for the web server and
Servlet engine, Castor [4] for object relational mapping
and MySQL [5] for the relational database. All the soft-
ware was "free", that is, either community edition or open
source.

Each student had their own workstation and developed
from a common set of code, but we did not use a configu-
ration management tool. Each workstation had its own
relational database to allow students to work independ-
ently.

JUnit [8] was used for unit testing and HttpUnit [3] for
acceptance testing. The unit tests were written by stu-
dents whereas acceptance tests were written by the cus-
tomer.

Architecture
An early decision was made to use an architecture based
on Java Servlets as the human interface had to use a web
browser.

The Model View Controller (MVC) design pattern [11]
was employed where the Servlet is the controller, Java
beans are the model and the view is a JSP page. The
Struts framework [11] was reused to save some pro-
gramming effort as it supports MVC.

36

The html at the front was kept as simple as possible
avoiding the need to use Java script which simplified
testing.

All the data was stored in a relational database but rather
than using direct database access it was decided to use an
object relational mapping tool called Castor [4]. The
intention was to speed up the development process.

OBSERVATIONS
Teaching and Mentoring
The teaching was a mixture of formal lectures and practi-
cal sessions involving the students. At first the students
were skeptical of XP as they had just been through an
intensive year during which a lot of emphasis had been
placed on up front design using waterfall methods. Even
my industrial experience using waterfall did not seem to
convince them of XP's applicability. Although they
warmed to the method as the project went on. Interest-
ingly their lecturers were more receptive even though
they were the ones teaching them traditional techniques.
The impression seemed to be the more experience a per-
son had of developing software in teams the greater was
their appreciation of XP.

Mentoring was vital to the success of the project as this
not only reinforced the XP practices and ensured there
was no misunderstandings about the method, but it was
also vital in solving technology problems encountered by
an inexperienced team.

Project
The planned two week iterations did not proceed as ex-
pected. This was primarily due to the fact we wanted to
use the first iteration to create a single thread through the
system to develop and test the architecture. Unfortu-
nately web development using Java is not easy when you
are not familiar with the technology. The role of the men-
tor at this stage was vital not just to encourage the stu-
dents to stick with XP but also to help with the technol-
ogy.

Once architectural problems had been resolved the pro-
ject went more smoothly and a minimal human resource
application was delivered to the customer's satisfaction. It
has to be said that despite the fact the students did not
have much experience with Java nor with Servlets and
JSP their efforts were considering very satisfactory.

In retrospect a simpler problem could have been chosen,
but then we would not have delivered any software as
promised to the customer. The disadvantage of a simple
problem such as a roman number converter, is that some-
how it is not real enough. The consequence is that stu-
dents loose confidence after they return from their course
because some of the subtle aspects of XP have not been
explored. When applying XP in a more complex project
an XP mentor becomes essential. In fact it is surprising
that so few training companies follow up training with
mentoring. Could this be they don't have the necessary
experience to mentor the subject in depth?

Tools
Quite a complex set of tools were used which again pre-
sented the students with a steep learning curve. However,
the tools did not present barriers to progress and were
essential in helping students write Java. The lack of a
configuration management tools proved to be a serious
failing as common ownership of code and continuous
integration were harder to achieve and easier to ignore.

Due to the complexity of the architecture debugging Java
Servlets and JSP was difficult. Debuggers were used but
proved to be very slow even on fast machines. Unit test-
ing using JUnit [8] and acceptance testing with HttpUnit
[3] proved to be much more useful in solving problems.

Architecture
A lot of XP material seems to be quite dismissive of
architecture [1] or say that it can be evolved [7]. Much of
the newsgroup / wiki discussions also appear to recom-
mend an evolutionary approach to architecture.

Based on my experience and the experience of this pro-
ject I believe there is a certain amount of wisdom in these
recommendations especially if it discourages the forma-
tion of an infrastructure team or redundant code. How-
ever, it is a fact of programming life that some kind of
architecture must be chosen, either because the customer
has specified it or because the project cannot progress
without it.

Take the case of the project discussed here. It had a user
requirement to be Web enabled. Consequently some
method was required to achieve this and when a decision
was made to use Java the use of Servlets and JSP became
the obvious choice. Once this step had been taken it was
obvious to look around and see what tools and libraries
would help. Hence the decision to use Struts which
speeds up web application development by reusing code.

Another architectural decision that was taken early in the
project was the use of the Castor object relational map-
ping library. This library is very interesting as it removes
much of the drudgery associated with database develop-
ment. In simple terms all that is required of the pro-
grammer is to write a Java class with get and set func-
tions, as you would do when developing a business ob-
ject, write a mapping file to map Java object fields to a
database table and column, and then use the Castor inter-
face to save and restore objects from the database.

The Castor library has the obvious advantage of simplify-
ing database access, but because it eliminates database
logic from the business objects it is possible to write unit
tests that just use the business objects without using a
database. Alternative strategies have used mock objects
to test business objects without the database [9]. Unfor-
tunately this Castor feature was not exploited in this
project but will be explored in the future.

One very useful exercise that was not completed due to
lack of time was extracting project specific design pat-
terns for this mix of technologies. These would have
helped the project by speeding up the development of
other functionality.

37

While I'm not advocating writing infrastructure code and
potentially creating redundant code I believe architectural
choices must be made relatively early in the project, at
the very least a programming language must be chosen
which in itself will force other architectural decisions. In
addition existing infrastructure solutions should be exam-
ined as it is often more cost effective to reuse code rather
than reinvent it. Finally when working with teams of
more than about 2-3 people a basic architecture is re-
quired to provide a framework for developers to work
within. Of course decisions made early in the project
should still be subject to refactoring like any other code
decision.

Extreme Programming
Of course the main reason for the project was to teach
XP. There were varying degrees of success with the XP
practices [1].

The Planning Game
This was probably the most successful part of the project.
It brought requirements issues into open discussion and
focused attention on each two week iteration. Neither
students nor lecturers had any problems with this prac-
tice.

Small Releases
Two week iterations were used for development with
some degree of success. Unfortunately some of the early
iterations achieved much less than expected due to unfa-
miliarity with technology. With a more experienced team
this would have been less of an issue, but nevertheless
this highlights the amount of time needed to start a more
complex project.

Metaphor
Nobody really understood this practice which is hardly
surprising. We eventually settled on a concert booking
metaphor. With more experience of software develop-
ment the idea of metaphor would have been more rele-
vant.

Simple Design
The interesting thing about short iterations is that it
forces simple design on the software simply due to time
constraints. None of the team members used UML or
other techniques to design their software, even though the
rest of the MSc course focuses on design.

Testing
Everyone agreed that testing was a good idea, especially
test first design. In practice a lot less testing was done
than should have been. One difficulty was that unfamili-
arity with technology meant some experimentation was
necessary to solve a problem, and inevitable tests were
not carried out.

Testing is one of those things everyone agrees should be
done but not many people actually do it. In a less disci-
plined student environment testing becomes secondary to
working code. Furthermore most students have not had
the experience to see the value of a comprehensive set of
tests so they are less disposed to testing than they should
be.

Refactoring
Only small amounts of refactoring were achieved. This
seemed to be due to lack of time bought on by the need
to complete an iteration and lack of experience in seeing
good designs. Unfortunately, students don't have enough
knowledge to do this effectively early in their career. In
addition it is difficult for less experienced people to see
the value of refactoring until they have had the experi-
ence of having to modify complex unfactored code.

Continuous Integration
The project did not achieve anything like the continuous
integration required in XP. This regrettably was a failure,
primarily on my part, as we didn't use a configuration
management tool, but also because there was an element
of competition between the students as the results of their
work would be assessed for their final marks. Conse-
quently, there was a reluctance to share and integrate
code. In fact the problem became so severe that students
worked on their own towards the end.

Collective Ownership
Due to problems concerning ownership of code for ex-
amination purposes there was very little collective own-
ership of code. I guess it is one of the unfortunate aspects
of modern education that students must succeed for
themselves. This attitude extends into work after gradua-
tion making collective ownership of code or working in a
team more difficult to establish. It is a pity that sharing
and co-operation are difficult to teach and encourage in a
competitive educational environment.

Pair Programming
None of the students really took to pair programming,
one of the more psychologically challenging aspects of
XP. Part of the problem was personality clashes, but also
exam orientated competition (see Continuous Integration
above) and the fear of looking like a fool in front of col-
leagues. Unfortunately, unless you've had the misfortune
to struggle at length with a problem and then seen how
quickly a problem can be solved by discussing it with
someone else it is difficult to persuade less experienced
students to see the value of this practice.

40-hour Week
Not surprisingly this was followed reasonably closely.

On-Site Customer
One major failing was the lack of on-site customer. Un-
fortunately I had other projects to do and could not spend
enough time on site as I should have. I knew this was
going to happen so I set up a Wiki [13] to collect the user
stories and log any issues. We also used the Wiki for
iteration planning. To a small degree the Wiki together
with email compensated for the lack of on-site customer,
but only partially, as questions requiring an immediate
response were delayed, issues weren't logged in the Wiki
and the communication constraints allowed the wrong
coding assumptions to be made.

Coding Standards
Sun's Java coding standards were adopted but interest-
ingly some of the students could not see the value in
consistent naming and layout. Once again lack of experi-

38

ence on larger projects made this practice less used than
it should have been.

RECOMMENDATIONS
It is obvious the project did not go as well as expected
and the XP practices were not followed properly due to a
variety of factors. Nevertheless, teaching XP should be
relatively easy in a university environment. The students
are intelligent and keen to learn. However, there is more
to learning XP than sitting in a lecture and learning some
facts. It is more important that students come away with
an understanding of why XP works. This understanding
does not come easily as it requires plenty of practice and
experience against which to compare XP. Practice is easy
to organise, but experience is harder to obtain.

Obtaining the necessary experience to judge XP can take
years so unfortunately, as with other methods taught at
universities, the benefits must be learnt rather than appre-
ciated through experience. In fact it can be argued that
XP cannot be properly appreciated until you've suffered
the pain of alternative heavy weight methods or indeed
no methods at all. In other words "no pain, no XP".

I would like to finish with some teaching recommenda-
tions to help university students gain a better understand-
ing of XP,

• teach XP and other methods formally in a class-
room,

• devise a suitably sized XP project which is go-
ing to be hard to complete in time,

• ensure the students have experienced software
development using non-agile methods,

• ensure the project environment is stable and the
students understand it,

• run the XP project for at least 3 iterations and at
least 6 weeks full time,

• ensure the customer is readily available,
• support the project with experienced mentors or

coaches that know both the environment and
XP,

• conduct regular debriefs to discuss the process
and devise improvements,

• compare and contrast XP with other methods
during the formal teaching and the project,

• mark the students as a team as well as individu-
als.

ACKNOWLEDGMENTS
I'd like to thank the Brighton University students in-
volved in the project and in particular Garth Glynn who
supported the idea.

REFERENCES
1. Beck. K. Extreme Programming Explained – Em-

brace Change, Addison-Wesley, 1999.

2. Castor object relational mapping tool. On-line at
http://castor.exolab.org/.

3. HttpUnit web page unit testing tool. On-line at
http://httpunit.sourceforge.net/

4. Java Server Pages (JSP). On-line at
http://java.sun.com/products/jsp/index.html

5. Java Servlets. On-line at
http://java.sun.com/products/servlet/index.html

6. JBuilder development environment. On-line at
http://www.borland.com/jbuilder.

7. Jeffries R., Anderson A., Hendrickson C., Extreme
Programming Installed, Addison-Wesley, 2001.

8. JUnit Java unit testing tool. On-line at
http://www.junit.org/.

9. MySQL. On-line at
http://www.mysql.com/.

10. Struts Model View Control Java. On-line at
http://jakarta.apache.org/struts/index.html

11. Tomcat web server and servlet / JSP engine. On-line
at
http://jakarata.apache.org/tomcat/index.html

12. Mackinnon T., Freeman S., Craig P. Endo-Testing:
Unit Testing with Mock Objects, Proceedings
XP2000.

13. Wiki respository for storing free text. On-line at
http://www.c2.com/cgi/wiki?

