
24

Introducing Extreme Programming – An Experience Report

Daniel Karlström
Dept. Communication Systems,

Lund University,

Box 118, SE-221 00 Lund,

Sweden.

Daniel.Karlstrom@telecom.lth.se

Abstract
This paper presents a single case study reporting the
experiences of introducing extreme programming (XP)
in a small development project at Online Telemarketing
in Lund, Sweden. The project was a success despite the
fact that the customer had a poor idea of the system
required at the start of the development. This success is
partly due to the introduction of practically all of the
XP practices. The practices that worked best were the
planning game, collective ownership and customer on
site. The practices that were found hard to introduce
and not so successful were small releases and testing.

INTRODUCTION
Extreme programming (XP) [1] is a methodology

that has received much attention during 2000 and 2001.
XP is a package of several practices and ideas, most of
which are not new. The combination and packaging of
all of these is, however new. One of the features that
makes XP different to most other methodologies is that
it is centred on the developer and gives him or her more
responsibility in the creation of the product. This paper
provides an experience report from the introduction of
XP at Online Telemarketing in Lund, Sweden. The
company decided to use XP to develop a sales support
system for use in their principal line of business, tele-
marketing. The paper presents a brief introduction to
qualitative research methodology, which can be said to
be the research methodology used for this experience
report in Section 2. Section 3 contains a brief introduc-
tion to the company, followed by an introduction to the
development project in section 4. The experiences of
the XP practices are accounted for in section 5 and a
discussion of the quality of the conclusions is accounted
for in section 6. Finally the conclusions and a summary
are presented in section 7.

So far, relatively few experience reports have been
made available with regards to XP. Especially, well
structured reports of attempts to fully introduce XP are
rare. Experience reports not only provide insight into
specific situations in which the method may work and
not work, but also provide practical examples to illus-
trate the method. Organisations considering XP can gain
much needed prior experience of what to expect when
introducing practices, irrespective if they are imple-

menting one practice or implementing XP fully.

METHODOLOGY
The majority of the information presented in this ex-
perience report was gathered in two different ways. The
first way was by direct observation of the developers
during the course of the project, and the second was by
interviews with both the developers and the develop-
ment management. The interviews with the developers
gave a lot of information about attitudes towards differ-
ent XP practices, while the interviews with the man-
agement gave information mostly about how the prac-
tices were being followed.

As the information presented is of a qualitative na-
ture, a brief discussion of qualitative methodology and
threats is in order. It should be mentioned that the study
performed is not intended to be a complete formal
qualitative investigation and that auditing is not used to
validate the results [7]. This kind of validation is only
applicable and practical in much larger studies. By
addressing the methodology behind the research tech-
niques we can at least make an informed attempt at
improving the quality of the information obtained.

 In qualitative research the trustworthiness of the in-
vestigation, which is usually called validity in quantita-
tive research, can be addressed using four criteria:
credibility, transferability, dependability and confirm-
ability [6].

These criteria are briefly summarised below. Further
information can be found in the works of Lincoln [6],
Robson [7], and Miles and Huberman [8]. References
are made in the summaries below to corresponding
criteria in quantitative validity theory. Wohlin et al. [9]
contains a comprehensive quantitative validity section.

• Credibility corresponds to internal validity in
quantitative research. The aim of this criterion
is to ensure that the subject of the enquiry has
been accurately identified and described. This
can be achieved by, for example, triangulation
of sources or methods.

• Transferability corresponds to external validity
in quantitative research. This criterion ad-
dresses how far outside the observed domain
the results are applicable.

25

• Dependability addresses whether the process
of the study produces the same results, inde-
pendent of time, researcher and method.

• Confirmability addresses the issue of re-
searcher biases and ensures that the researcher
affects the results as little as possible.

An attempt to evaluate the study according to these four
criteria is performed in the quality of conclusions sec-
tion, section 6.

ONLINE TELEMARKETING
Online Telemarketing is a small company specialising
in telephone-based sales of third party goods. The com-
pany has its head office in Lund, Sweden, and regional
branches in Uppsala, Visby and Umeå. Recently the
company has expanded internationally with operations
in Denmark, Norway and Finland. The company con-
sists of a small core of fulltime staff that manages and
supports a large number of temporarily employed staff.
This implies that the company has a very flat organisa-
tion. The primary task of the temporary staff is perform-
ing the actual sales calls.

Management realised in the autumn of 2000 that a
new sales support system would be required and started
planning for a system for use within the company.
‘Commercial off the shelf’ (COTS) alternatives were
evaluated but discarded due to being too expensive and
due to the fact that it would be both difficult and expen-
sive to incorporate specialised functionality. The man-
agement at Online Telemarketing had several novel
ideas for features not present in the systems available on
the market that they considered crucial for the future
expansion and business success of the company.

The person responsible for systems development at
Online Telemarketing realised that the lack of detailed
requirements from management and the fact that no
similar systems had been created before meant that
traditional development with a big up-front design and
detailed requirements documents would prove expen-
sive and not very efficient. An alternative was found in
XP [1].

THE DEVELOPMENT PROJECT
Project overview
Online Telemarketing decided on a strategy for devel-
oping the product that involved using their own system
responsible person and employing part time developers
to perform the coding work. To start with, four systems-
engineering students were employed part time in paral-
lel with their coursework at the university. After three
months a further four people were employed and inte-
grated into the development team in order to increase
the absolute velocity of the project. The developers
were employed as regular employees and there was no
connection whatsoever between their position at Online
and their university course-work. The employees were
selected by interviewing applicants answering adverts

placed throughout the student community both virtual
and real.

The product was coded using Microsoft Visual Basic
and SQL in a Microsoft development environment. The
customer for the project was internal at Online Tele-
marketing and no considerations were made for eventu-
ally selling the product outside the company.
The size of the product is estimated to approximately 10
000 lines of code after all the initial functionality has
been developed. The development was started in De-
cember 2000 and the first functional system was
launched in mid April 2001. The system has been in full
commercial operation since the end of August 2001.

Roles
The traditional XP roles described by Beck in [1] were
assigned to the various members of the team at the start
of the project. The employed developers assumed the
roles of programmer. They also assumed the roles of
testers, working together with the customers to create
and run functional tests. The senior management at
Online assumed the role of customer, as they were the
people who had the original idea of the system. The
tracker’s responsibilities were assumed by the IT execu-
tive at Online as he had a good overview of the work
performed by the group and was in direct contact with
the developers daily. The coach role was assumed
mainly by the IT executive, but at the beginning of the
project, when XP was new to the team, the author
shared some of the coach’s responsibilities. Finally the
Online senior management also assumed the roles of
bosses for the project as they were providing all means
for the development, such as computers, location and
funding.

Configuration management
The configuration management was solved by a

simple solution. As there were no branches in the con-
figuration management and the system was relatively
small, the team used a checkout directory to copy
source code manually instead of using a tool for this
purpose. This solution proved effective during the first
part of the project when only two pairs of programmers
were working. Common sense, combined with the fact
that all the developers were in the same room, made
sure that the configuration management worked well.
As the product grew, and the number of developers
doubled, problems did arise on occasion. One of the
effects of the problems was work being deleted on a few
occasions due to versions overwriting each other be-
cause of misunderstandings. When this showed to be
causing problems for the developers, a quick and dirty
solution was introduced. Using simple text files to ad-
ministrate copies to checkout directories, the problem
was solved.

Awareness of what was happening in the product
was intended to be handled by the developers sitting in
the same room and communicating all the time. The
problem that became apparent with this strategy was

26

when people were absent or working different sched-
ules.

Code is integrated continuously several times a day
and several times for each task. The alternative of em-
ploying a tool for the configuration management might,
in retrospect, have been a more effective solution. The
basic system of copying files to checkout folders solves
the basic issues addressed by these tools and, as no
configuration branches were to be used at all, the simple
solution worked once the communication problems
were fixed.

EXPERIENCES OF THE XP PRACTICES
This section discusses the experiences gathered through
the observations and interviews made at Online Tele-
marketing practice by practice. This strategy of struc-
turing the experiences seemed at the time to provide the
most complete account for describing the experiences
gained. If the experiences were not structured by prac-
tice it was thought that experiences not thought vital for
this group might not be included and thereby not avail-
able to other groups.

The developers were introduced to XP by a half-day
seminar with an introduction and an extreme hour exer-
cise [10]. The developers had guidance from the coach
regarding how they should implement XP at all times.
XP books [1, 11, 12] were also made available to them.
The developers were also instructed to look at XP web-
sites to keep up to date on recent developments in the
XP community [10, 13, 14, 15].

The planning game
Using story cards proved to be one of the greatest suc-
cesses of all the XP practices. The story cards provided
all parties involved with a picture of the status of the
work and an overview of the product as a whole. Ap-
proximately 150 stories have been implemented in total.
The stories were written by the customer and then pri-
oritised together with the development manager as he
had the best overview of the technical status of the
product. The estimation worked well once the manage-
ment understood the three levels of prioritisation [1, 2,
3].

New stories were added continuously during the
whole project. This was due to the fact that the man-
agement did not have a clear picture of the product at
the start of the project. This meant that functionality
was continuously added during the entire project. The
time estimation of the stories was difficult at first due to
the lack of practical experience of estimating, but after a
few weeks the estimating worked very well according
to the group members. The estimation quality was not
confirmed using quantitative methods. The whole group
performed estimations together during planning meet-
ings.

Breaking the stories into tasks was difficult for the
developers to grasp. The developers ended up drawing

flow charts for the work, which was not the idea. Some
of the story cards were very similar to tasks, i.e. at a too
detailed a level for story cards. The problem was
thought to be due to the difficulty of setting some kind
of a common detail level for the stories.
The developers selected the stories to develop in con-
junction with the development manager. This way of
working with stories and tasks is an area that was con-
tinuously looked at and improved during the course of
the project.

Small releases
Creating a minimal framework for each part of the sys-
tem proved to take longer than the following smaller
releases. The very first iteration took much more time
than intended due to lack of experience in using the XP
methods and traditional development thinking dominat-
ing. Once a complete bare working system was imple-
mented, however, small releases were easier to imple-
ment.

During the long initial releases it was important to
keep good communication between the customers and
developers so that the project did not proceed in the
wrong direction. As an afterthought, this practice seems
fundamental to the success of XP. Maybe more effort
should have been exerted to keep the initial release time
shorter.

Metaphor
The system metaphor created before the actual start of
the development was a little too detailed. It was almost
an attempt at a complete requirements document. This
was partly due to the fact that this document was writ-
ten before the XP methodology was first thought of for
the project. The document was not altered after XP was
selected as the preferred development method. The
metaphor document was also not properly updated as
the system evolved during the course of the project.
This is most probably also due to the too detailed level
of the system metaphor. A common picture of the sys-
tem was gained throughout the project by looking at the
system directly and discussing individual cards. This
common picture could have been improved by creating
an accurate system metaphor.

Simple design
The development team has strived to implement the
simplest possible solution at all times in accordance
with this XP practice. A further evaluation of this prac-
tice was deemed to be difficult to perform in a reason-
able amount of time.

The philosophy of always assuming simplicity was
thought to have saved time in the cases where a much
larger solution would otherwise have been imple-
mented. Time was also believed to have been saved due
to the fact that developers did not have to cope with a
lot of unnecessarily complicated code.

27

Testing
Test-first programming was difficult to implement at
first. Determining how to write tests for code proved
difficult to master. The developers thought that the tests
were hard to write and they were not used to thinking
the test-first way. It was found difficult to see how
many tests were enough to satisfy that the desired func-
tionality would be implemented correctly.

The VB Unit test structure [12, 13] was used to cre-
ate the automatic unit tests. VB Unit takes quite a long
time to get used to and set up according to the develop-
ers. The unit tests that were written take less than one
minute to run in total. The whole set of tests were run
each time new code was integrated. During the course
of the project the developers started to ignore writing
tests first, especially when the project came under time
pressure a few months in. The developers understood
why tests are important but thought it involved too
much work and did not see the short term benefits. It is
believed that this was due to the inexperience of the
developers. A more rigorous approach to the testing
practices would most probably have been preferable.

The developers found programming by intention dif-
ficult. Programming by intention involves deciding the
functionality and structure of the code in advance so
that the test cases can be created beforehand. The de-
velopment manager, who is experienced in coding these
kinds of systems, found this way of working natural. He
actually found that the way he usually worked was very
close to the way described by XP. It was found that
database code was much easier to write test code for
than business rule code. The graphical user interface
(GUI) code was also, as expected beforehand, hard to
write automated tests for. Because of the limited nature
of the GUI it was decided that an automated test tool for
GUI testing would probably take longer to take into
practice than manual user testing.

As the project came under pressure to release the
fully operational version, the test first method of work-
ing ceased completely. The time pressure was due to the
expansion of the company into a new region earlier than
first expected. This meant that a portion of the new
system was desired to go into operation earlier than the
initial planning.
The functionality of the system was tested by the cus-
tomer before each release as well as spontaneously
during the development. When the functionality was not
as the customer had intended it, a correction card was
written. At first the customer just interrupted the devel-
opers when they found the functionality inconsistent
with the desired functionality, but this was found to be
too disruptive so a correction card strategy was adopted.
The functional testing provided a good view of how the
product is progressing.

Refactoring
No tools for refactoring were used in the project. All

project members performed minor refactoring continu-
ously. No major refactoring of the code was performed,
but assessment of the code was performed continuously
regarding the benefits of a major refactoring in case it
was necessary. No education or training was given
either beforehand or during the course of the project in
refactoring methods or theory such as those presented
by Fowler [16].

Pair programming
The developers used pair programming at all times. The
only exceptions were when illness intervened or the
developers had demanding schedules at the university.
The developers adopted pair programming cautiously at
first, but then gradually started to work naturally and
effectively in the pairs.

 The fact that the developers had no prior professional
experience probably made the introduction of pair pro-
gramming much easier than if they had been used to
working in a traditional single-programmer manner.

When alone, the programmers often seemed to seize
and get stuck when solving a problem. Also the ten-
dency to carry on with a nonworking solution seemed
more frequent. The developers found it easier to keep
their concentration on the task at hand when working in
pairs.

The development leader estimates that the pair pro-
gramming produced the code faster than if the same
programmers would be working separately. However
the inexperience of the developers made them much
slower than experienced professionals.
The pair programming worked excellently when intro-
ducing new people into the project. For the first part of
the project the pairs were been fixed so that the devel-
opers could synchronise their schedules easily, but
during the second phase of the project when 8 people
were working full time on the project, the pairs were
changed continuously. The original 4 developers also
chose their own pair-programming buddy, but the sec-
ond group were assigned into pairs by management.

Collective ownership
Collective ownership worked well in the project. This
contributed to solving some minor irritation among the
developers due to defects found in the code. When the
programmers thought of defects as a group issue, rather
than someone else’s ‘private’ defect the irritation disap-
peared and a constructive atmosphere was created. The
only problem observed in this practice was due to the
configuration management or rather lack of effective-
ness in the communication in the handling of the con-
figuration management. The developers were on occa-
sion afraid to change parts of the code due to the risk of
loosing work if not in direct contact with the other pairs.

28

Continuous integration
Continuous integration proved to be natural in the de-
velopment environment created for the project. As soon
as code was finished it was integrated into the product.
The ease with which this practice was implemented is
notable in itself.

40-hour week
As the developers all worked part time, 20-hours per
week, this practice was adjusted to accommodate this.
Only the development manager and senior management
worked full time.

On site customer
The customer was available throughout the course of
the project. This worked very well. The only problems
were the flexible work hours of both developers and
management and everyone’s busy schedules. While the
senior management of the company had the role of
customer, they were not been able to devote all of their
available time to this project, because of other meetings
and responsibilities in running the company. At the start
of the project the customer had many opinions on the
functionality in the product. As soon as a release was
made the customer wanted to modify or add to it. This
decreased during the course of the project, partly due to
the system evolving into what the customer wanted and
partly due to that the customer became better at writing
story cards describing the desired functionality to the
developers more efficiently.

Coding standards
A coding standard document was created at the start of
the project. This was used extensively at first and added
to when needed. After a while the developers became
more relaxed and used the coding standard less. This
was at the time identified as an issue and was re-
enforced with success. The outcome of this practice has
however not been evaluated by comparing sections of
the actual code with the coding standard.

QUALITY OF CONCLUSIONS
In this section the criteria discussed in section 3, meth-
odology, are discussed with regards to the research
methodologies employed in this paper.

• Credibility
The fact that both interviews and observations were
used in the study increases credibility. The result-
ing observations do not seem to be incredible. The
resulting observations seem to be correct when re-
viewed by the development manager at Online
Telemarketing.

• Transferability
The experiences from introducing XP in this pro-
ject should be of considerable help to other projects

introducing XP, either in part or fully. Considera-
tion should be taken to the facts that the developers
were working part time and were otherwise univer-
sity students, not full time, experienced profession-
als.

• Dependability
Due to the limited nature of the study in this ex-
perience report it is difficult to assess the depend-
ability of the study.

• Confirmability
The confirmability is increased by the review by
the development manager at Online Telemarketing.

The quality of the conclusions is increased by the trian-
gulation of qualitative research methods. Both inter-
views and direct observations were used and the results
were reviewed by a representative of the participating
subjects.

SUMMARY AND CONCLUSIONS
In conclusion, the project at Online Telemarketing was
a success. The product was created and is now function-
ing live. The experiences of the actual XP practices are
a mostly successes, but also a few failures. All of these
experiences are relevant to projects considering intro-
ducing XP.

The planning game was easy to introduce and effec-
tive. This can be partly due to the fact that the extreme
hour, used to initially introduce XP, focuses on the
planning game, as does extensive parts of the XP litera-
ture [e.g. 1, 11, 12].

Small releases proved difficult for the first releases
for each part of the system. Even though they were
expected to take a little longer than the other releases,
they took longer than planned. An increased focus on
only creating an absolute minimal framework system
might help this.

The system metaphor was too complicated to start
with. This resulted in a metaphor document that did not
evolve with the system. It should not be difficult to keep
the metaphor up to date if it is simple from the start.

Simple design was thought to work well, but was not
verified by code inspections. The developers believed
that by thinking in terms of simple solutions as much as
possible, they saved a lot of time by not having to try to
understand unnecessarily complicated code.

Testing was found to be one of the hardest practices
to implement. It requires careful preparation of the
testing unit and also a strict discipline among the testers
to always write the tests first. The testing practice was
the first practice to cease when the project came under
pressure.

Refactoring was performed on a small scale all the
time. This is, however, natural in normal programming.
Larger scale refactoring was not performed, although
the possibility of large scale refactoring was continu-
ously evaluated.

29

Pair programming worked excellently for the de-
velopers in the project. It seemed to help them solve
difficult problems faster and identify potential dead-end
solutions earlier. The pair programming also worked
very well when introducing new people into the project

Although it was different from what the developers
were used to from the start, collective ownership proved
to be effective for the team spirit.

Continuous integration was not hard to implement
and was found a natural way to work in the develop-
ment environment created in the project.

The on-site customer practice worked well. The cus-
tomer solved many misunderstandings of functionality
early and was available to complete or clarify any
poorly written story cards. As the customer did not
really know the full extent of the product at the start of
the project, this practice appears to be one of the major
reasons for the success of the project.

The coding standard practice worked well. When
the developers started to get sloppy in the middle of the
project, the development manager enforced the coding
standard again.

Keeping in mind the issues raised in the quality of
conclusions section, section 7, these experiences should
be of interest to any development team considering
introducing XP.

ACKNOWLEDGEMENTS
This work was partly funded by The Swedish Agency
for Innovation Systems (VINNOVA), under a grant for
the Center for Applied Software Research at Lund Uni-
versity (LUCAS). The author would also like to thank
Johan Norrman (Online Telemarketing) and Per Rune-
son (LTH) for their contributions to the paper.

REFERENCES
 [1] Beck, K., Extreme Programming Explained: Em-
brace Change, Addison Wesley, 1999.

[2] Beck, K., “Embracing Change with Extreme Pro-
gramming”, IEEE Computer, October 1999, pp. 70-77.

[3] Martin, R., C., “Extreme Programming Develop-
ment through Dialog”, IEEE Software, July/August 2000,
pp.12-13.

[4] Haungs, J., “Pair Programming on the C3 Project”,
IEEE Computer, February 2001, pp. 118-119.

[5] Hicks, M., XP Pros Take it to the Extreme, ZDNet
eWeek News, last confirmed 010903,
http://www.zdnet.com/eweek/stories/general/0,11011,271434
2,00.html .

[6] Lincoln, Y., S., Guba, E., G., Naturalistic Inquiry,
Sage Publications, 1985.

[7] Robson,C., Real World Research, Blackwell Pub-
lishers, Oxford, 1993.

[8] Miles, M.B., Huberman, A.M., Qualitative Data
Analysis, Sage Publications, 1994.

[9] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.,
Regnell, B., Wesslén, A., Introduction to Experimentation in
Software Engineering, Kluwer Academic Publishers, 2000.

[10] Multiple Authors, The Extreme Programming
Roadmap, last confirmed 010903,

http://www.c2.com/cgi/wiki?ExtremeProgramming
Roadmap .

[11] Beck, B., Fowler, M., Planning Extreme program-
ming, Addison Wesley, 2000.

[12] Jeffries, R., Anderson, A., Hendrickson, C., Extreme
Programming Installed, Addison Wesley, 2000.

[13] Jeffries, R., (Ed.), XProgramming.com, last con-
firmed 010903, http://www.xprogramming.com .

[14] Wells, D., Extreme Programming: A Gentle Intro-
duction, last confirmed 010903,
http://www.extremeprogramming.org/ .

[15] Multiple authors, Extrem Programmering, (in
Swedish), last confirmed 010903,
http://oops.se/cgi-bin/wiki?ExtremProgrammering .

[16] Fowler, M., Refactoring: Improving the Design of
Existing Code, Addison Wesley, 2000.

