
71

The Video Store Revisited -
Thoughts on Refactoring and Testing

 Arie van Deursen Leon Moonen
 CWI CWI
 The Netherlands the Netherlands
 http://www.cwi.nl/~arie/ http://www.cwi.nl/~leon/
 arie@cwi.nl leon@cwi.nl

Abstract
Testing and refactoring are core activities in extreme
programming (XP). In principle, they are separate activi-
ties where the tests are used to verify that refactorings do
not change behavior of the system. In practice however,
they can become intertwined when refactorings invali-
date tests. This paper explores the precise relationship
between the two. First, we identify which of the published
refactorings affect the test code. Second, we observe that
if test-first design is a way to arrive at well-designed
code, “test-first refactoring” is a way to arrive at a better
design for existing code. Third, some refactorings im-
prove testability, and should therefore be followed by
improvements of the test code. To emphasize this, we
propose the notion of “refactoring session” which in-
cludes changes to the code followed by changes to the
tests. To guide the developer in the steps to take, we pro-
pose to extend the description of the mechanics of indi-
vidual refactorings with consequences for the corre-
sponding test code.

Keywords
Refactoring, unit testing, extreme programming.

INTRODUCTION
Two key activities in extreme programming (XP) are
testing and refactoring. In this paper, we explore the
relationship between these two.

In XP, tests are fully automated, self-checking the valid-
ity of their outcome. Besides for checking correct behav-
ior, tests are intended for documentation purposes. A test
case is a simple scenario with a known outcome, and can
be used to understand the code being tested. Since the
tests are required to be run upon every change, their
documentation value is guaranteed to remain up to date
[3]. Code development in XP is done through test-first
design: Structuring the test cases guides the design of the
production code.

Extreme programmers improve the design of the system
through frequent refactoring. Refactorings improve the
internal structure of the code without changing its exter-
nal behavior.

This is done by removing duplication, simplification,
making code easier to understand, and adding flexibility.
“Without refactoring, the design of software will decay.
Regular refactoring helps code retain its shape.” [5, p.55].

One of the dangers of refactoring is that a programmer
unintentionally changes the system’s behavior. Ideally, it
can be verified that this did not happen by checking that
all the tests pass after refactoring. In practice however,
there are refactorings that will invalidate tests (e.g., when
a method is moved to another class and the test still ex-
pects it in the original class). In this paper, we explore the
relationship between unit testing and refactoring. In Sec-
tion 2, we provide a classification of the refactorings
described by Fowler [5], identifying exactly which of the
refactorings affect class interfaces, and which therefore
require changes in the test code as well. In Section 3 we
take the video store example from [5], and assess the
implications of each refactoring on the test code. In Sec-
tion 4, we propose test-first refactoring, which analyzes
the test code in order to arrive at code level refactorings.
In Section 5, we discuss the relationship between code-
level refactorings and test-level refactorings. In Section 6
we integrate these results via the notion of a refactoring
session which is a coherent set of steps resulting in refac-
toring of both the code and the tests. In Section 7 we
present a summary and draw our conclusions.

TYPES OF REFACTORING
Refactoring a system should not change its observable
behavior. Ideally, this is verified by ensuring that all the
tests pass before and after a refactoring [1, 5].

In practice, it turns out that such verification is not al-
ways possible: some refactorings restructure the code in
such a way that tests only can pass after the refactoring if
they are modified. For example, refactoring can move a
method to a new class while some tests expect it in the
original class (in that case, the code will probably not
even compile). Nevertheless, we do not want to change
the tests together with a refactoring since that will make
them less trustworthy for validating correct behavior
afterwards.

In the remainder of this section, we will look in more
detail at the refactorings described by Fowler [5] to ana-
lyze in which case problems might arise because the
original tests need to be modified.

72

Change Bi-directional Association to Unidirectional Remove Assignments to Parameters Preserve Whole Object
Replace Magic Number with Symbolic Constant Replace Data Value with Object Remove Control Flag
Replace Nested Conditional with Guard Clauses Introduce Explaining Variable Substitute Algorithm

Consolidate Duplicate Conditional Fragments Replace Exception with Test Introduce Assertion
Replace Conditional with Polymorphism Change Reference to Value Extract Class

Replace Delegation with Inheritance Split Temporary Variable Inline Temp
Replace Inheritance with Delegation Decompose Conditional
Replace Method with Method Object Introduce Null Object

Table 1. Compatible refactorings (type B)

Consolidate Conditional Expression Pull Up Constructor Body Extract Superclass Pull Up Method
Replace Delegation with Inheritance Replace Temp with Query Extract Interface Pull Up Field
Replace Inheritance with Delegation Duplicate Observed Data Push Down Method

Replace Record with Data Class Self Encapsulate Field Push Down Field
Introduce Foreign Method Form Template Method Extract Method

Table 2. Backwards compatible refactorings (type C)

Taxonomy
If we start with the assumption that refactoring does not
change the behavior of the system, then there is only one
reason why a refactoring can break a test: because the
refactoring changes the interface that the test expects.
Note that the interface extends to all visible aspects of a
class (fields, methods, and exceptions). This implies that
one has to be careful with tests that directly inspect the
fields of a class since these will more easily change dur-
ing a refactoring. 1

So, initially, we distinguish two types of refactorings:
refactorings that do not change any interface of the
classes in the system and refactorings that do change an
interface. The first type of refactorings have no conse-
quences for the tests: since the interfaces are kept the
same, tests that succeeded before refactoring will also
succeed after refactoring (if the refactoring indeed pre-
serves the tested behavior).

The second type of refactorings can have consequences
for the tests since there might be tests that expect the old
interface. Again, we can distinguish two situations:

Incompatible: the refactoring destroys the original inter-
face. All tests that rely on the old interface must be
adjusted.

Backwards Compatible: the refactoring extends the
original interface. In this case the tests keep running
via the original interface and will pass if the refactor-
ing preserves tested behavior. Depending on the
refactoring, we might need to add more tests cover-
ing the extensions.

A number of incompatible refactorings that normally
would destroy the original interface can be made into

1 In fact, direct inspection of fields of a class is a test smell that could
better be removed beforehand [4].

backwards compatible refactorings. This is done by ex-
tending the refactoring so it will retain the old interface,
for example, using the Adapter pattern or simply via
delegation. As a side-effect, the new interface will al-
ready partly be tested. Note that this is common practice
when refactoring a published interface to prevent break-
ing dependent systems. A disadvantage is that a larger
interface has to be maintained but when delegation or
wrapping was used, that should not be too much work.
Furthermore, language features like deprecation can be
used to signal that this part of the interface is outdated.

Classification
We have analyzed the refactorings in [5] and divided
them into the following classes:

A. Composite: The four big refactorings Convert Proce-
dural Design to Objects, Separate Domain from
Presentation, Tease Apart Inheritance, and Extract
Hierarchy will change the original interface, but we
will not consider them in more detail since they are
performed as series of smaller refactorings.

B. Compatible: Refactorings that do not change the
original interface. Refactorings in this class are listed
in Table 1.

C. Backwards Compatible: Refactorings that change the
original interface and are inherently backwards com-
patible since they extend the interface. Refactorings
in this class are listed in Table 2.

73

Change Unidirectional Association to Bi-directional Separate Query from Modifier Remove Middle Man Add Parameter
Replace Parameter with Explicit Methods Introduce Parameter Object Remove Parameter Move Method

Replace Parameter with Method Parameterize Method Rename Method

Table 3. Refactorings that can be made backwards compatible (type D)

Replace Constructor with Factory Method Replace Type Code with Class Remove Setting Method Hide Delegate
Replace Type Code with State/Strategy Change Value to Reference Encapsulate Downcast Inline Method

Replace Type Code with Subclasses Introduce Local Extension Collapse Hierarchy Inline Class
Replace Error Code with Exception Replace Array with Object Encapsulate Field Hide Method

Replace Subclass with Fields Encapsulate Collection Extract Subclass Move Field

Table 4. Incompatible refactorings (type E)

D. Make Backwards Compatible: Refactorings that
change the original interface and can be made
backwards compatible by adapting the new inter-
face to the new one. Refactorings in this class are
listed in Table 3.

E. Incompatible: Refactorings that change the original
interface and are not backwards compatible (for
example, because they change the types of classes
that are involved). Refactorings in this class are
listed in Table 4.

Note that the refactorings Replace Inheritance with
Delegation and Replace Delegation with Inheritance are
listed both in the Compatible and Backwards Compati-
ble tables since they can be of either category, depend-
ing on the actual case.

REVISITING THE VIDEO STORE
In this section, we study the relationship between test-
ing and refactoring using a well-known example of
refactoring. We revisit the video store code used by
Fowler [5, Chapter 1], extending it with an analysis of
what should be going on in the accompanying video
store test code.

The video store class structure before refactoring is
shown in Figure 1. It consists of a Customer, who is
associated with a series of Rentals, each consisting of a
Movie and an integer indicating the number of days the
movie was rented. The key functionality is in the Cus-
tomer’s statement method printing a customer’s total
rental cost. Before refactoring, this statement is printed
by a single long method. After refactoring, the state-
ment functionality is moved into appropriate classes,
resulting in the structure of Figure 2 taken from [5, p.
51].

Figure 1. Classes before refactoring

Fowler emphasizes the need to conduct refactorings as a

sequence of small steps. At each step, you must run the
tests in order to verify that nothing essential has
changed. His testing approach is the following: “I create
a few customers, give each customer a few rentals of
various kinds of films, and generate the statement
strings. I then do a string comparison between the new
string and some reference strings that I have hand
checked” [5, p. 8]. Although Fowler doesn’t list his test
classes, this typically should look like the code in Fig-
ure 3.

Studying this string-based testing method, we can make
the following observations:

• The setup is complicated, involving the creation of
many different objects.

• The documentation value of the test is limited: it is
hard to relate the computation of the charge of 4.5
for movie m1 to the way in which charges are
computed for the actual movies rented (in this case
a children’s and a regular movie, each with their
own price computation).

• The tests are brittle. All test cases include a full
statement string. When the format changes in just a

Figure 2. Class structure after refactoring

very small way, all existing tests (!) must be ad-
justed, an error prone activity we would like to
avoid.

74

Unfortunately, there is no other way to write tests for
the given code. The poor structure of the long method
necessarily leads to an equally poor structure of the test
cases. From a testing perspective, we would like to be
able to separate computations from report writing. The
long statement method prohibits this: it needs to be
refactored in order to be able to improve the testability
of the code.

This way of reasoning naturally leads to the application
of the Extract Method refactoring to the statement
method. Fowler comes to the same conclusion, based on
the need to write a new method printing a statement in
HTML format. Thus, we extract getCharge for comput-
ing the charge of a rental, and getPoints for computing
the “frequent renter points”.

Extract Method is of type B, the compatible refactor-
ings, so we can use our existing tests to check the refac-
toring. However, we have created new methods, for
which we might like to add tests that document and
verify their specific behavior. To create such tests, we
can reuse the setup of movies, rentals, and customers
used for testing the statement method. We end up with a
number of smaller test cases specifically addressing
either the charge or rental point computations. Since the
correspondence between test code and actual code is
now much clearer and better focused, we can apply
white box testing, and use our knowledge of the struc-
ture of the code to determine the test cases needed.
Thus, we see that the getCharge method to be tested
distinguishes between 5 cases, and we make sure our
tests cover these cases.

Movie m1 = new Movie("m1", Movie.CHILDRENS);
Movie m2 = new Movie("m2", Movie.REGULAR);
Movie m3 = new Movie("m3",
Movie.NEW_RELEASE);
Rental r1 = new Rental(m1, 5);
Rental r2 = new Rental(m2, 7);
Rental r3 = new Rental(m3, 1);
Customer c1 = new Customer("c1");
Customer c2 = new Customer("c2");
public void setUp() {
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);
}
public void testStatement1() {
String expected =
"Rental Record for c1\n" +
"\tm1\t4.5\
"\tm2\t9.5\n" +
"Amount owed is 14.0\n" +
"You earned 2 frequent renter points";
assertEquals(expected, c1.statement());
}
...

Figure 3. Initial sample test code

This has solved some of the problems. The tests are
better understandable, more complete, much shorter,
and less brittle. Unfortunately, we still have the compli-
cated setup method. What we see is that the setup
mostly involves rentals and movies, while the tests
themselves are in the customer testing class. This is

because the extracted method is in the wrong class:
applying Move Method to Rental simplifies the set up
for new test cases. Again we use our analysis of the test
code to find refactorings in the production code.

The Move Method is of type D, refactorings that can be
made backwards compatible by adding a wrapper
method to retain the old interface. We add this wrapper
so we can check the refactoring with our original tests.
However, since the documentation of the method is in
the test, and this documentation should be as close as
possible to the method documented, we want to move
the tests to the method’s new location. Since there is no
test class for Rental yet, we create it, and move the test
methods for getCharge to it. Depending on whether the
method was part of a published interface, we might
want to keep the wrapper (for some time), or remove it
together with the original test.

Fowler discusses several other refactorings, moving the
charge and point calculations further down to the Movie
class, replacing conditional logic by polymorphism in
order to make it easier to add new movie types, and
introducing the state design pattern in order to be able
to change movie type during the life time of a movie.

When considering the impact on test cases of these
remaining video store refactorings, we start to recognize
a pattern:

• Studying the test code and the smells contained in
it may help to identify refactorings to be applied at
the production code;

• Many refactorings involve a change to the structure
of the unit tests of well: in order to maintain the
documenting value of these unit tests, they should
be changed to reflect the structure of the code being
tested.

In the next two sections, we take a closer look at these
issues.

TEST-FIRST REFACTORING
In test-first refactoring, we try to use the existing test
cases in order to determine the code-level refactorings.
Thus, we study test code in order to find improvements
to the production code.

This calls for a set of code smells that helps to find such
refactorings. A first category is the set of existing code
smells discussed in Fowler’s book [5]. Several of them,
such as long method, duplicated code, long parameter
list, and so on, apply to test code as well as they do to
production code. In many cases solving them involves
not just a change on the test code, but first of all a refac-
toring of the production code.

A second category of smells is the collection of test
smells discussed in our earlier paper on refactoring test
cases [4]. In fact, in our movie example we encountered
several of them already. Our uneasy feeling with the
test case of Figure 3 is captured by the Sensitive Equal-
ity smell [4, Smell 10]: comparing computed values to a
string literal representing the expected value. Such tests

75

depend on many irrelevant details, such as commas,
quotes, tabs, and so on. This is exactly the reason the
customer tests of Figure 3 become brittle.

Another test smell we encountered is called Indirect
Testing [4, Smell 8]: a test class contains methods that
actually perform tests on other objects. Indirect tests
make it harder to understand the relationship between
test and production code. While moving the getCharge
and getPoints methods in the class hierarchy (using
Move Method), we also moved the corresponding test
cases, in order to avoid Indirect Testing.

The test-first perspective may lead to the formulation of
additional test smells. For example, we observed that
setting up the fixture for the CustomerTest was compli-
cated. This indicates that the tests are in the wrong
class, or that the underlying business logic is not well
isolated. Another smell appears when there are many
test cases for a single method, indicating that the
method is too complex.

Test-first refactoring is a natural consequence of test-
first design. Test-first design is a way to get a good
design by thinking about test cases first when adding
functionality. Test-first refactoring is a way to improve
your design by rethinking the way you structured your
tests.

In fact, Beck’s recent article on test-first design [2]
contains an interesting example that can be transferred
to the refactoring domain. It involves testing the con-
struction of a mortality table. His first attempt requires a
complicated setup, involving separate “person” objects.
He then rejects this solution as being overly complex
for testing purposes, and proposes the construction of a
mortality table with just an age as input. His example
illustrates how test case construction guides design
when building new code; likewise, test case refactoring
guides the improvement of design during refactoring.

REFACTORING TEST CODE
In our study of the video store example, we saw that
many refactorings on the code level can be completed
by applying a corresponding refactoring on the test case
level. For example, to avoid Indirect Testing, the refac-
toring Move Method should be followed by “Move
Test”. Likewise, in many cases Extract Method should
be followed by “Extract Test”. To retain the documen-
tation value of the unit tests, their structure should be in
sync with the structure of the source code.

In our opinion, it makes sense to extend the existing
descriptions of refactorings with suggestions on what to
do with the corresponding unit tests, for example in the
“mechanics” part.

The topic of refactoring test code is discussed exten-
sively in [4]. An issue of concern when changing test
code is that we may “loose” test cases. When refactor-
ing production code, the availability of tests safeguards
us from accidentally loosing code, but this is not the
case when modifying tests. A solution is to measure
coverage before and after changing the tests. As an

example, this can be done through mutation testing
using a tool such as Jester [6]. Jester automatically
makes changes to conditions and literals in Java source
code. If the code is well-tested, such changes should
lead to failing tests. Running Jester before and after test
case refactorings helps to verify that the changes did not
affect test coverage.

REFACTORING SESSIONS
The meaningful unit of refactoring is a sequence of
steps involving changes to both the code base and the
test base. We propose the notion of a refactoring ses-
sion to capture such a sequence. It consists of the fol-
lowing steps:

1. Detect smells in the code or test code that need to
be fixed. In test-first refactoring, the test set is the
starting point for finding such smells.

2. Identify candidate refactorings addressing the
smell.

3. Ensure that all existing tests run.

4. Apply the selected refactoring to the code. Provide
a backwards compatible interface if the refactoring
falls in category D. Only change the associated test
classes when the refactoring falls in category E.

5. Ensure that all existing tests run. Consider applying
mutation testing to assess the coverage of the test
cases.

6. Apply the testing counterpart of the selected refac-
toring.

7. Ensure that the modified tests still run. Check that
the coverage has not changed.

8. Extend the test cases now that the underlying code
has become easier to test.

9. Ensure the new tests run.

The integrity of the code is ensured since (1) all tests
are run between each step; (2) each step changes either
code or tests, but never both at the same time (unless
this is impossible).

CONCLUSIONS
In this paper we have taken a close look at the interplay
between testing and refactoring. We consider the fol-
lowing as our most important contributions:

• We have analyzed which of the documented refac-
torings necessarily affect the test code. It turns out
that the majority of the refactorings are in category
D (requiring explicit actions to keep the interface
compatible) and E (necessarily requiring a change
to the test code).

• We have studied Fowler’s video store example
from the point of view of unit tests included for
documentation purposes. We have shown the test

76

case implications of each refactoring conducted.

• We have proposed the notion of test-first refactor-
ing, which uses the existing test cases as the start-
ing point for finding suitable code level refactor-
ings.

• We have argued for the need to extend the descrip-
tions of refactorings with a section on their impli-
cations on the corresponding test code. If the tests
are to maintain their documentation value, they
should be kept in sync with the structure of the
code.

• We have proposed the notion of a refactoring ses-
sion, capturing a coherent series of separate steps
involving changes to both the production code and
the test code.

Our observations and proposals help us in understand-
ing the interaction between testing and refactoring.
Moreover, they constitute valuable input when develop-
ing advanced refactoring tools that need to be tightly
integrated with (JUnit) test suites.

ACKNOWLEDGMENTS
We would like to thank Frank Westphal for valuable
feedback on our paper. We also would like to thank the
members of the University of Illinois Software Archi-
tecture Group for their feedback on our paper provided
through an MP3 recording of their discussion!

REFERENCES
[1] K. Beck. Extreme Programming Explained. Em-

brace Change. Addison Wesley, 2000.

[2] K. Beck. Aim, fire: Kent Beck on test-first design.
IEEE Software Community Chest, 18(5), Septem-
ber/October 2001.
http://www.computer.org/software/homepage/
2001/05Design/index.htm.

[3] A. van Deursen. Program comprehension risks and
benefits in extreme programming. In E. Burd, P.
Aiken, and R. Koschke, editors, Proceedings 8th
Working Conference on Reverse Engineering
(WCRE 2001), pages 176–185. IEEE Computer
Society, 2001.

[4] A. van Deursen, L. Moonen, A. van den Bergh, and
G. Kok. Refactoring test code. In M. Marchesi and
G. Succi, editors, Proceedings of the 2nd Interna-
tional Conference on Extreme Programming and
Flexible Processes in Software Engineering
(XP2001), pages 92–95, May 2001.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[6] I. Moore. Jester — a JUnit test tester. In M.
Marchesi and G. Succi, editors, Proceedings of the
2nd International Conference on Extreme Program-
ming and Flexible Processes in Software Engineer-
ing (XP2001), pages 84–87, May 2001.

