
193

Extreme Programming in a Customer Services Organization

Srinivasa Pulugurtha Jean-Noel Neveu Francis Lynch
 Customer Service Engineer Customer Service Manager Sr. Customer Service Engineer
 IONA Technologies IONA Technologies IONA Technologies
 200 West Street 200 West Street 200 West Street
 Waltham, MA 02451, USA Waltham, MA 02451 USA Waltham, MA 02451 USA
 +1 7819028128 +1 7819028274 +1 7819028189
 spulugur@iona.com pedron@iona.com flynch@iona.com

Abstract
IONA Technologies has embraced Extreme

Programming (XP), company wide. For its part, Cus-
tomer Services (CS) has played a considerable role as an
“on-site customer” to Product Development (PD) [2]. In
addition to this, CS has also been using the XP method-
ology to enhance its existing processes and to resolve
certain problems within the department. Since XP is not
tailored to solve CS issues, we have had to adapt its prac-
tices to suit our needs. This paper illustrates how CS is
taking advantage of the XP methodology.

Keywords

Extreme Programming (XP), Customer Services (CS)

1 INTRODUCTION
One of the primary roles of CS is to assist Cus-

tomers in resolving technical issues. This is mainly
achieved through writing test cases for reported prob-
lems, logging potential bugs and finding suitable work-
arounds for as many of these bugs as possible. With more
than 4500 customers developing and deploying CORBA
& J2EE applications on multiple platforms and pro-
gramming languages, this is not a trivial task for the 50 or
so personnel in the department. The department is spread
across 4 key locations worldwide in order to provide
24X7 support.

2 THE PROBLEMS WE WERE FACING
Traditionally CS has followed rigid processes

that allowed for very little deviation. Furthermore, IONA
Technologies has experienced rapid growth over the last
several years. Between the inflexibility of these proc-
esses and our rapid growth, we have not been well posi-
tioned to provide the type of support we would like to
offer. These processes consisted of “Service Level
Agreements” between departments that defined condi-
tions that had to be met for an issue to move between
departments. When these conditions were misjudged, the
issue would bounce back and forth between two depart-
ments resulting in a waste of time.

Because the processes in place would dictate the
next step there was very little communication between
the departments. For example, an engineer fixing a bug
in PD would often reject the bug, with reasons such as:
not a bug, vague specification, test case does not run or
reflect the bug, instead of discussing the issue with the
CS engineer who logged the bug. In this situation not

only were we using our time ineffectively, we were also
delaying patches to our customers.

 Another problem that we faced was the owner-
ship of issues within CS. Typically, each CS engineer
would be assigned customer Service Requests (SR), our
representation of a customer issue. In the past, one engi-
neer would work on an SR from inception to closure.
Depending on the team members’ areas of expertise and
the severity of open issues, the workload may need to be
redistributed. This results in frequent reassignment of
SR’s which can be very time-consuming as the new en-
gineer researches the history of the request. This was
inefficient and not much appreciated by customers, who
would wonder why they were being asked the same ques-
tions multiple times.

3 HOW WE ARE USING XP
Previously CS played a role as an "on-site cus-

tomer” to PD [2]. In order to better integrate with PD,
CS started to introduce some relevant XP practices to its
engineering-related tasks (e.g., bug queue management
and writing test cases). Following the successful intro-
duction of those practices CS decided to try and apply
them to its other, less engineering-related, functions such
as SR allocations, analysis and resolution of customer
issues, writing of technical articles for IONA’s knowl-
edge base. Since there are no earlier examples of a CS
organization following XP, we have had to try several
variations of these practices before we could find the
most suitable approach.

Stand-up meeting and planning game
 Requirements for CS change everyday through
the arrival of new issues reported by customers. The
priorities of existing issues change as well; for example, a
critical issue may displace an existing standard issue in
severity level. As a result, it is often required that an
issue be moved from one engineer to another with only a
quick hand over session between the two. To address
this and other problems related to SR transfers in general,
"stand-up meetings" were introduced.

At first, these would last the recommended 10
minutes and involve quick discussions on active issues.
For every issue put forward, members of the team would
offer ideas and suggestions and more than one engineer
would usually end up working off-line to further analyze
the problem at hand. Stand-up meetings also allowed
everybody in the team to be aware of what everyone else
was working on, thus facilitating the transfer of an issue
from one engineer to another. We found that very often

194

it was necessary to prolong the meetings to 30 minutes or
more in order to achieve the best results. Also the stand-
up meetings were clearly not addressing certain problems
that we were facing, like inbox management and SR
reviewing.

After a trial period of about six weeks we de-
cided to adapt our meetings to a more productive format.
In this format the meetings would be daily, seated, and
would last about 30 minutes or so. We would first dis-
cuss unassigned SRs in our inboxes; once a customer
issue is addressed as a group it turns out that it is much
easier for an engineer to take primary ownership of it. It
is also decided at this point if pairing is required and
assignment is done accordingly.

We would then bring to the table any existing is-
sues that engineers might judge worth discussing with the
team. These might include SRs they are currently work-
ing on that are causing difficulties, some interesting
knowledge that they want to share, pieces of information
they require from PD or any other customer-related prob-
lems that might be weighing on their minds while at-
tempting to solve them.

Every engineer walks out of the daily meetings
with an idea of the next step for each of his/her issues.
This prevents an engineer from feeling isolated and gives
him/her a sense of being part of the team.

As part of the interdepartmental communication
effort we also obtain the participation of PD in these
meetings. The primary advantage of this is that PD gets
to be aware, early in the game, if an issue is escalated. In
addition to giving their input to our discussions the PD
representative(s) sometimes pair up with CS engineers to
expedite resolution of a problem. CS also gains an in-
creased knowledge of the internals of the products, which
is extremely helpful when dealing with complex issues.

Collective ownership
The team owns the product inboxes. An engineer
need not own an issue alone; any issue assigned to a
particular engineer can at any moment be reassigned
to, or pair “programmed” with, a different engineer.
On top of that an engineer is encouraged to request
the participation of his/her peers in a brain-storming
session on any problematic issue that he/she is work-
ing on at any time during the day.

Pair Programming
Within CS the term “pair programming” takes a

slightly different meaning in that we often pair up on
non-programming tasks. These might include analysis of
customer issues, conference calls with customers, and
logging bugs. We found that working with another engi-
neer helps us analyze a problem better: hidden clues are
less likely to be missed, and engineers become more
aware of when extra information is required.

An individual issue can be divided into several tasks.
If the issue is complicated enough, a pair of engineers
can work separately on those tasks. Who pairs with
whom on an SR depends on the outcome of our daily

meetings. Some issues are simple enough that no
pairing is required. An engineer might pair with more
than one person in one day while working on multiple
issues.

Before an engineer logs a bug, another engineer
must review the bug report and pair programming of any
associated test case is strongly encouraged.

Regression and acceptance testing
We use Junit [3] & HTTPUnit [3] wherever we

can. We are currently working on porting and tailoring
CPPUnit [3] to our needs. We are also building a testing
framework that is run every time a patch is released.
This serves as an acceptance test suite for bug fixes and
also as a regression test framework, augmenting what QA
already uses.

On-site Customer
In the same way that we act as an on-site cus-

tomer to PD [2], our Technical Account Managers
(TAM) act as customer proxies to us. Part of their func-
tion is to report customer problems, maintain information
about customer's projects and work with management in
prioritizing issues. They play an important role in our
planning game.

4 BENEFITS FROM USING XP
We have not yet done a quantitative analysis of

the improvement achieved after embracing XP but the
results are self-evident through the following observa-
tions.

Communication within CS and with other de-
partments in IONA has improved considerably. This can
be observed from the fewer number of emails to internal
mailing lists asking technical questions. It was also ob-
served that PD has not yet rejected any of the pair pro-
grammed bugs, which was a frequent occurrence in the
past.

There is now next to no duplication of effort by two
CS engineers and transition of issues between people
is much smoother.

5 CONCLUSION
We have not fully implemented all XP practices

in our daily CS functions yet, but the ones that we have
so far have helped us realize its potential. We intend to
keep on experimenting with XP methodology in order to
adapt it as best as we can to our CS Organization.
REFERENCES
1. K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, Reading, Mass., 1999.

2. Charles Poole and Jan Willem Huisman, Using Ex-
treme Programming in a Maintenance Environment,
IEEE Software Nov/Dec 2001.

3. Junit, CPPUnit, HTTPUnit and other XUnit exten-
sions can be found at
http://www.junit.org/news/extension/index.ht

