
82

Paired Programming & Personality Traits
Andrew J. Dick Bryan Zarnett

 Red Hook Group Red Hook Group
 #708 33 Wood Street #708 33 Wood Street
 Toronto Toronto
 Ontario, Canada, M4Y 2P8 Ontario, Canada, M4Y 2P8
 +011 416 877 2249 +011 416 877 2249
 andrew@redhookgroup.com b@redhookgroup.com

Abstract
Paired programming is an essential element of extreme
programming – a methodology comprised of applying
best practices to software development. Not all develop-
ers are suited for paired development however, and care
should be taken when building a team for extreme pro-
gramming. The team members should be selected with
personality traits that are beneficial to paired program-
ming. These personality traits can be determined through
various interview techniques and the corresponding be-
havioral responses of the candidates.

Keywords
Extreme programming, paired programming, personality
traits, XP

INTRODUCTION
Extreme programming (XP) is a developmental method-
ology that enables rapid architectural development
through the application of a collection of best practices.
XP is dependant upon the combined use of these best
practices because each practice provides a counterbalance
to any detrimental characteristics of using a single best
practice by itself. Hence, it is important to ensure that
each best practice is utilized fully.

One of these best practices is paired programming in
which all production code is written by two developers
sitting at one machine [1]. Paired programming however,
is often the single practice that draws the ire of most XP
critics [2]. Commonly the criticism is leveled that two
developers working together cannot equal the productiv-
ity of the same two developers working in parallel.
However, several studies of paired programming have
demonstrated its merits [2][3]. Significantly, the idea
that two developers working together on the same task
will double the development cost is erroneous. In fact, it
has been statistically shown that paired programming
costs approximately 15% more time than traditional pro-
gramming [2]. When one factors in the benefits of a
simpler design and that errors are detected and corrected
earlier in the developmental cycle when they are orders
of magnitude less costly, pair programming can be
viewed as a significantly less expensive method of devel-
oping software [1][2][3].

Effective paired programming is difficult to achieve and
requires a careful cultivation of personalities within the
development team. This paper will briefly discuss the
importance of paired programming within the XP frame-

work. The authors will then discuss their experiences
with paired programming in relation to the observed
personalities of the developers involved. Finally, the
paper will discuss those characteristics deemed beneficial
to the successful pairing of developers and as a final
point will explore methods of selecting developers that
possess these characteristics.

PAIRED PROGRAMMING ELEMENTS
Paired programming requires all production code to be
written by two developers at a single machine. Each
developer has a role within this team: the first is respon-
sible for the typing of code (the driver); the second is
responsible for strategizing and reviewing the problem
currently being worked on (the navigator). These roles
can change dynamically as the keyboard is passed back
and forth. Moreover, the combinations of partners them-
selves can change on a daily basis depending on the cur-
rent task. This dynamic interaction provides an ideal
environment for inter-developer mentoring within the
team [3].

XP critics often claim that paired programming would be
too slow or that the developers would be in constant
disagreement. These detrimental effects of paired pro-
gramming are counterbalanced by other XP best practices
such as:

1. The use of a common metaphor to describe
the problem, which reduces misunderstand-
ings related to the problem domain.

2. A simple design that reduces the complexity
that causes confusion when the design re-
quires modification.

3. Unit tests which provide a clear understand-
ing of each task’s required function and
subsequently allow the developers to pro-
ceed with bold changes to the design with-
out impacting the behaviour.

4. Coding standards that eliminate problems
that arise from disparate coding styles of
different developers.

In the same manner, paired programming provides a
counterbalance to the adverse effects of several other XP
best practices:

1. Refactoring (the incremental improvement
of a component’s existing design without
changing the external behaviour [4]) can be

83

performed more rapidly due to the ongoing
code reviews of the navigator.

2. A simple design can be produced more ef-
fectively because of the ongoing interaction
between the two developers.

3. The concept of collective code ownership is
enhanced because the watchful eye of the
navigator minimizes code breakage that
might occur when a developer must modify
an unfamiliar software module.

4. Unit testing is accomplished faster and
more thoroughly due to the vigilance of the
developers on each other to fully define and
implement the requisite unit tests for a task.

Paired programming is clearly an integral part of the XP
methodology and consequently paired programming has
a significant role in the proper application of the various
best practices that comprise XP.

PAIRED PROGRAMMING OBSERVATIONS
The authors had the experience of developing a financial
application with a development team built expressly for
exploring the XP methodology. The authors had previ-
ously experienced the merits of paired programming,
both with each other and with other developers. The
authors had successfully practiced pair programming in a
traditional development environment before learning
about XP. Subsequently, the concept of pair program-
ming was easy to accept as one of the basic tenements of
XP, having experienced the benefits that it provides,
including better designs, fewer errors and a more enjoy-
able working environment.

The authors interviewed each candidate using a paired
approach and selected the team based on aptitude and
attitude as opposed to a list of technical experiences.
Although some groups advocate allowing the entire team
to interview prospective candidates, the authors felt that
the team’s lack of XP experience would prevent them
from contributing to the evaluation in a meaningful way.
The final team consisted of two senior developers
(greater than two years of development experience) and
four junior developers (less then one year of development
experience). In addition, the authors performed the XP
roles of coach and tracker [1,5]. The development envi-
ronment consisted of standard L-shaped desks with suffi-
cient room for the developers to sit side by side. Al-
though not an ideal layout compared to tables, both au-
thors had successfully paired in the same environment.

Each developer signed up for a set of tasks for an itera-
tion based on their personal velocity from the previous
three-week iteration. The developers estimated their
initial iteration velocity based on their respective experi-
ence levels. The development team was encouraged to
switch partners as tasks were completed to increase inter-
partner mentoring. Each day began with a quick stand-up

meeting to review the team’s status, select pairings and
discuss any unresolved problems.

The first problem noted was that the dynamic interchange
of roles (driver and navigator) was not taking place. One
developer would invariably drive and the second devel-
oper’s attention would drift away. This behaviour con-
tinued in spite of frequent intervention by the coach
(team lead). Interestingly this behaviour even occurred
with some of the junior-senior pairings as well as the
junior-junior pairings. The lack of an attentive navigator
allowed the pair to divert from the desired path of devel-
oping a simple design that met the task’s requirements.

The second problem was that the breakdown of each
pair’s interaction had an adverse effect on the desired
mentoring within the team that is necessary to properly
utilize the XP practices. The lack of knowledge transfer
subsequently meant that the team’s developmental speed
(velocity) was not increasing at the expected rate. To
counteract this problem, paired programming was tempo-
rarily eliminated after the fourth iteration so that each
developer was responsible for his or her own develop-
ment tasks for the current iteration. The result of this
directive was an immediate increase in inter-developer
communication and the resultant knowledge transfer.

The developers finished the remaining two iterations of
the project’s first phase working on their own tasks. A
significant portion of their time however, was spent dis-
cussing design directions and debugging problems in
pairs. Unfortunately, the client did not finance phase two
of the project for business reasons, which prevented the
opportunity of observing the team’s subsequent paired
programming performance.

One possible explanation for the noted observations is
that when two junior developers are paired, each assumes
the other developer understands the aspects of the current
task and is subsequently apprehensive about asking ques-
tions due to the fear of appearing ignorant. The navigator
is required to make continual course corrections for the
best design to evolve [3]. Consequently, the design ap-
peared to continually drift from the expected path. When
the developers were separated into the traditional single
developer environment, they were each forced to face the
limits of their knowledge. Hence, each developer had to
ask questions to ensure their comprehension of the task
as opposed to assuming their partner understood the
problem. Evidence of this hypothesis was the observed
surge in communication between the developers when
paired programming was discontinued.

The authors explored the possible reasons why paired
programming worked for them but not for the develop-
ment team. The conclusion was that the authors shared
personality traits that were lacking to various degrees in
the development team. These traits are examined in the
following section.

84

PERSONALITY TRAITS
The noted observation that some developers paired more
effectively led to the conclusion that certain personality
traits are beneficial for paired programming. This section
will discuss these traits and their impact on the dynamics
of paired programming.

Communication
The most obvious personality trait that is essential for
success in paired programming is communication.
Communication is clearly valuable in any development
environment, but in a paired programming environment,
the ability to communicate is crucial. The pair must be
able to communicate effectively in order to properly
analyze the merits of different design directions, discuss
strategy for testing, and correct errors that are caught by
the ever-watchful eye of the navigator. In essence, a lack
of communication between developers will diminish the
potential for the pair to work in harmony. A lack of
communication was observed in our project between the
driver and navigator resulting in substandard design.

Comfortable
The developer must be comfortable working directly with
other people. Pairs that are not comfortable with one
another will be reluctant to offer suggestions due to the
possibility (real or imagined) of being ridiculed. The fear
of appearing stupid decreases the number of bold propos-
als and ideas that are an essential element of XP. Con-
versely, pairs that are comfortable with each other will
offer intriguing suggestions and interesting strategies
with the knowledge that their counterpart feels comfort-
able doing the same [3]. Developers may also be uncom-
fortable working with individuals that have a different
standard of work ethic and professional etiquette (e.g.
personal hygiene).

Confidence
The developers must be confident in their abilities as well
as their competence as a team. XP requires the develop-
ers to manipulate both design and code throughout the
production code base. The pair must be confident in their
abilities to successfully add new functionality and con-
versely to judge where existing unused functionality can
safely be removed. Pairs that lack confidence will ma-
neuver around dead code and problem areas rather than to
continually simplify the design by removing the dead
code and resolving any problems encountered. Lack of
confidence was illustrated by the pairs of junior develop-
ers through their reluctance to refactor the production
code base.

Compromise
The ability to compromise completes the quartet of paired
programming personality traits. Developers that are too
confident often lack the ability to compromise and be-
come argumentative when paired. The primary purpose
of pairing is to work towards the best design possible,
regardless of from where or from whom the design origi-
nated. Good development pairs can discuss suggestions
without bias concerning its origin and deliberate solely
on the merits of the suggestion itself. From our observa-

tions, the senior developers were unwilling to compro-
mise their design ideals and subsequently ignored their
junior partner, which reduced mentoring.

A team comprised of developers that possess these four
personality traits is much more likely to fulfill the poten-
tial that XP offers. Although several other traits are in-
valuable to XP in general (such as creativity or attention
to detail), the four listed personality traits represent those
necessary to pair program successfully.

INTERVIEW TECHNIQUES
The four desirable personality traits – communication,
comfortableness within a team, confidence in one’s self
and the ability to compromise – can usually be gauged
during the interview process. The authors often found
that developers that would have been suitable for a tradi-
tional programming environment were not necessarily
desirable for the XP development environment. For
example, introverted developers can flourish in a tradi-
tional development environment where interpersonal
communication is not mandatory. Similarly, an ex-
tremely uncompromising developer that is technically
competent can thrive in a development environment
where they have absolute control over an individual
software module.

The authors reexamined their interview techniques to
ascertain if the desired personality traits could be as-
sessed in prospective development candidates. The re-
mainder of this section discusses approaches that may be
used to gauge a candidate’s suitability for paired pro-
gramming.

Communication
Determining a candidate’s ability to communicate during
an interview is not difficult. A key indicator of a candi-
date’s capacity for communication is their willingness to
elaborate on their interview answers beyond simple sen-
tences. Although candidates can be expected to be nerv-
ous during an interview, a candidate that provides exces-
sive information should be avoided to the same extent as
the candidate who provides too little information [2]. An
ideal candidate should possess the ability to explain each
answer succinctly.

Comfortable
It is possible to gauge a prospective candidate’s ability to
be comfortable working within a pair by providing them
with the opportunity to discuss their answers. An extro-
vert candidate will take advantage of the chance to dis-
cuss their answers in depth. Admittedly, it usually takes
time for two people to become comfortable working
together [3], however, a candidate that is personable
during an interview situation will predictably act in a
similar manner within the team environment. A candi-
date that cannot open up sufficiently during the interview
is unlikely to succeed in becoming comfortable with the
number of partners they will experience within the dy-
namic pairing of extreme programming.

85

Confidence
A candidate’s confidence can be determined through
questions that require analytical answers and problem
solving. Asking a candidate to solve a hypothetical non-
technical problem provides the opportunity for the candi-
date to demonstrate their confidence in breaking down a
problem, resolving any ambiguities through discussion
and explaining their proposed solution (i.e. locating the
most economical path between two arbitrary points in a
weighted, directed graph). Candidates that lack confi-
dence will usually be unable to adequately answer ques-
tions of this nature; conversely, candidates that possess
too much confidence will often question the need for
performing the exercise at all.

Compromise
A candidate’s willingness to compromise can be difficult
to ascertain during an interview where they will be ex-
pected to be presenting their best behaviour. However,
the discussion of the principle of adherence to a common
coding convention can often effectively illustrate this
trait. After explaining the merits of common coding
conventions, (e.g. allowing easy comprehension of all
production code regardless of the author) some candi-
dates will continue to argue that their coding style is
impeccable and demonstrate a strong resistance to con-
formance. Regardless of an argumentative candidate’s
technical skills (which are often high), this candidate
should be avoided for paired programming situations due
to the predictable conflicts that will arise over trivial
issues. Conversely, candidates that express an under-
standing of the merits of a common code convention and
the benefits of compromise are obviously highly desir-
able.

Perhaps the best way to gauge a candidate’s potential to
pair program is to integrate them into the team for half a
day or more. Although the cost in time might appear
prohibitive at first, the resulting feedback could far out-
weigh the ramifications of a poor hiring selection. This
method assumes of course that a development team that
can pair program already exists. Alternatively, the entire
development team may exist already, but paired pro-
gramming is only being introduced. The solution to this
problem is briefly discussed in Kent Beck’s second book
Planning eXtreme programming. Essentially, a small
core of pair programmers must be cultivated and then
slowly enlarged. The interview techniques described
above can be applied to the process of selecting which

team members should form the initial core of pair pro-
grammers.

SUMMARY
Extreme programming is comprised of best practices that
work well together but are ineffective on their own. Con-
sequently, for extreme programming to be effective, it is
imperative that all the elemental practices are applied
properly. One of these practices is paired programming
which involves two programmers developing all produc-
tion code on one machine. For two developers to pair
program effectively, several personality traits are benefi-
cial: effective communication, comfortableness working
with one another, confidence in one’s abilities and the
ability to compromise. These personality traits allow the
pair to collaborate effectively to realize the simplest de-
sign that fulfils each task’s requirements.

Interviews with prospective candidates can often be
geared towards determining whether the candidate has
the aptitude for paired programming. Building a devel-
opment team with the necessary personality traits that are
beneficial to pair programming will result in greater suc-
cess with extreme programming then a team built based
on technical skills alone.

INFORMATION AND QUESTIONS
For more information, contact info@redhookgroup.com
or visit http://www.redhookgroup.com.

REFERENCES
1. Beck, K. Extreme programming explained: embrace

change. Reading, Mass.: Addison-Wesley, 2000.

2. Williams, L., et al., “Strengthening the Case for Pair
Programming.” In IEEE Software. 2000.

3. Cockburn, A. and L. Williams. “The Costs and
Benefits of Pair Programming.” In Proceedings of
the First International Conference on Extreme Pro-
gramming and Flexible Processes in Software Engi-
neering. Italy, 2000.

4. Fowler, M. Refactoring: improving the design of
existing code. Reading, Mass.: Addison-Wesley,
1999.

5. Beck, K. and M. Fowler. Planning eXtreme pro-
gramming. Reading, Mass.: Addison-Wesley, 2001.

6.

