
16

Emergent Optimization in Test Driven Design

Michael Feathers
Object Mentor

 565 Lakeview Parkway, Suite 135
 Vernon Hills, IL 60061 USA
 +1 305 773 9698
 mfeathers@objectmentor.com

Abstract
Programmers are often scared that they won't be able to
optimize later. For that reason, they tend to optimize
early leading to brittle design. Test driven design can
lead to emergent optimization and code that is readily
optimizable. If programmers develop test first, many of
their upfront concerns about performance can be de-
ferred.

Keywords
Test driven design, test first design, code optimization,
extreme programming, emergent design

INTRODUCTION
Optimization is a favorite hobby of programmers. I
haven't yet met a good programmer who hasn't spent a
good deal of time thinking about optimization. As much
as many programmers love to consider the relative speeds
of different solutions, long time members of the pro-
gramming community point out that premature optimiza-
tion is one way to make a complete muddle of a design.
The best advice is often attributed to Michael Jackson via
his two laws of optimization [1]:

[The First Rule of Program Optimization]
Don't do it.

[The Second Rule of Program Optimization
---For experts only] Don't do it yet.

Despite Michael Jackson’s admonishment, programmers
often spend a large amount of time considering the costs
of various language constructs and implementation
strategies early in development. Some languages invite
this sort of analysis more than others by presenting a
large number of options of varying cost. However, atten-
tion to low-level performance is only worth the time if it
produces gains that cannot be realized later. Whether
those gains can be realized depends on the way that the
program is modularized.

Ken Auer and Kent Beck point out that better factoring
allows you optimization alternatives that you wouldn't
have otherwise [2]. In this paper, I’ll use an example to
show how incremental test driven design can lead to
optimizations that may not be considered in an upfront
analysis of performance. I’ll also show that in some
cases where code isn’t transparently optimized, it is read-
ily optimizable because of the modularization that results
from a test driven approach.

THE PROBLEM
I was designing a small parser for program-generated
documents in a subset of HTML. At the time that I
started it wasn't clear whether many of the features of
HTML would needed, so I decided that it would be
quicker to gravitate towards a solution via a small set of
tests rather than use a parser generator.

The code I was developing was in C++. I used CppUnit
[3] as the test harness.

My first task was to read a tag from an input stream and
pass it along to another part of the software. In the first
set of tests, I built up a little parser class that had the
ability to skip past text that was not a part of a tag. Here
is a test method on a test class:

void HTMLParserTest::TestSkipUntil()
{
parser.SetInput("
");

parser.SkipCharsUntil('<');
assert(parser.NextChar() == '<');

}

Later, I discovered that I was ready to start parsing tags,
so I decided to create a ReadTag method that returned a
tag from the input stream. But how could I determine
whether I really had a tag? One option was to start ask-
ing for the various parts of a tag. I knew that in one of
my tasks I would need to be able to see the name of each
tag, so I decided I needed a test like this:

void HTMLParserTest::TestReadTag()
{
parser.SetInput("
");

HTMLTag tag = parser.ReadTag();
assert(tag.GetName() == "BR");

}

This test shows that the parser should be able to read past
an HTML line-break tag and that we should be able to
determine the name of the tag read. But, does it really?
At this point it just shows that I should be able to get the
name of the tag. What is the simplest way of satisfying
the test? First of all, the HTMLTag class needs to know
the text that it is working from. I could have the parser
read the text into a string and pass it along to the con-
structor of the tag. If I am doing this intermediate step, I

17

should change the test. Maybe I should first verify that
the parser has read past the tag.

void HTMLParser::TestReadTag()
{
parser.SetInput("
");

HTMLTag tag = parser.ReadTag();
assert(parser.HasNextChar() ==

false);
// assert(tag.GetName() == "BR");

}

To satisfy that test, I wrote ReadTag like this:

HTMLTag HTMLParser::ReadTag()
{
SkipCharsUntil('<');
while(HasNextChar()

&& NextChar() != '>')
GetNextChar();

return HTMLTag("");
}

Then I enabled the other assert in the test and changed
ReadTag to this to make it pass.

HTMLTag HTMLParser::ReadTag()
{
SkipCharsUntil('<');

std::string tagText;
while(HasNextChar()

&& NextChar() != '>')
tagText += GetNextChar();

return HTMLTag(tagText);
}

Notice that at each step, I’ve written the simplest code
that I could to make each test pass, but I haven’t let effi-
ciency factor into my decision.

By conventional C++ standards, the code I’ve written so
far is clearly inefficient. I create an object and return it
by value, and then I create a fresh string to hold the tag
text. Is there any value in this plainly inefficient code?
Let's hold off for a little while longer and see.

How should we get the name of the tag? The simplest
thing would be to have the GetName method parse the
name out of the text:

std::string HTMLTag::GetName() const
{
std::string name;
for (int n = 1; n < tagText.size()

&& IsNameChar(tagText[n]); n++)
name += ::toupper(tagText [n]);

return name;
}

With this little method, the test passes, but look at the
downside. The name of each HTMLTag is going to be

calculated on demand; reparsed every time GetName is
called. That will be remarkably inefficient. But is it
bad? At this point, we don’t know. If efficiency became
a concern, we could use a profiler to determine whether
this string creation is really a bottleneck in the system’s
performance. If we discovered that it was, there are a
couple of optimizations we could perform. We could
move the parsing of name into the constructor of tag:

HTMLTag::HTMLTag(std::string tagText)
: tagText(tagText)

{
CreateNameFromText();

}

std::string HTMLTag::GetName() const
{
return name;

}
Or we could implement a lazy cache by having GetName
save its result to an instance variable and checking it so
that the parsing only happens on the first call:

std::string HTMLTag::GetName() const
{
if (name.size () != 0)
return name;

for (int n = 1; n < tagText.size();
&& IsNameChar(tagText [n]); n++)

name += ::toupper(tagText [n]);
return name;

}

The choice depends upon whether there will be some
clients of tag that don’t call GetName. If there are, then a
lazy cache might be the better choice.

As I moved forward, I used the same strategy for parsing
the tag attributes as well, attributes like “clear” in the
string “<br clear=all>” and then I was struck by a realiza-
tion:

On some tags, the attributes will never be accessed. By
parsing them on demand, the code was becoming unin-
tentionally optimized.

I thought back to my decision to do this parser by hand.
When I started, I thought that the grammar was far too
simple to use a parser generator, so I decided to proceed
test first. Interestingly, optimization was emerging as an
effect of my test decisions.

Surprisingly, the code looks rather robust in the face of
other possible optimizations as well. We can note the
fact that the input string is never modified and pass refer-
ences and offsets through the object structure. The fac-
toring that we’ve arrived at supports all of these optimi-
zations. With luck, we’ll never have to do them.

APPROACHES TO DEVELOPMENT
There are many different ways to approach problem solv-
ing, but one of the most natural is Divide and Conquer.
‘Divide and conquer’ was the approach that I was using

18

when I first considered the parser generator. The break-
down can be seen as follows:

1. Parse tags and tag internals
2. Use tag and tag internals

By decomposing a problem into small sequential chunks,
we can often get a good straw-man modularization for a
system. But, what are the qualities of that modulariza-
tion? Often it a decent view of the gross steps that can be
taken to solve a problem. The implicit sequencing (do 1,
then do 2) makes the solution easy to understand, and
communicate, but the work done in step 1 is anticipatory;
it may not be needed in all execution paths.

Let’s consider another example. In a transaction-based
payroll system, validation of the input data in a transac-
tion can occur as it is constructed from a transaction
source, or it can be deferred until the transaction is exe-
cuted. In a ‘divide and conquer’ design, there is no force
that leads to one solution over the other. However, defer-
ring validation can be more efficient if there are cases
where the validation does not have to occur. One exam-
ple would be a business rule that states that employees
cannot be changed from hourly to salaried status between
pay periods. If a ‘change employee’ transaction is exe-
cuted between pay periods, the system can discard it
without validating the data needed to perform the transac-
tion. However, if the validation is done prior to execu-
tion, it is wasted effort.

Relative Execution Times

0
5000

10000
15000
20000
25000
30000
35000

1 2 3 4 5 6

Trials

M
ill

is
ec

on
ds Divide and

conquer

Test driven

Figure 1

To demonstrate this quantitatively, I wrote two example
payroll applications. One was designed with the ‘divide
and conquer’ strategy. The other was designed test first.
In the ‘divide and conquer’ design case, it was reasonable
to validate transactions immediately. When I drove the
design of the system using tests, I was only confronted
with the need for validated input when I had to execute

the transaction. At execution time, the ‘change em-
ployee’ transaction checked the execution date first be-
fore performing its validation. As a result, the system’s
execution was faster.

Figure 1 shows a graph of timing information for the
‘divide and conquer’ solution and the test first solution.

Each trial consisted of sets of eight ‘change employee’
transactions applied one million times to the system from
an in-memory source. Half of the constructed transac-
tions had execution dates that were valid and half didn’t.
Postponing the implementation of validation led to the
opportunity to make it conditional during transaction
execution. In a real payroll system, the amount of time
saved would vary depending upon the proportion of
‘change employee’ transactions and the amount of vali-
dation that can be deferred.

CONCLUSION
In test first design, capability is only added to a system
on demand. Programmers work from the “outside in”,
asking themselves “what test do I need to show that I do
not have the result yet” and “what method do I need to
get this result?” This can lead to designs that have a
strong “calculate on demand” flavor. As we saw in an
earlier section, calculations can easily be cached or
moved to earlier points in the execution if the system
requires optimization.

While it is possible for developers to anticipate cases
where work is unnecessary during ‘divide and conquer
design,’ it appears that the implicit deference that hap-
pens in test first design can lead to more efficient solu-
tions without conscious optimization.

ACKNOWLEDGEMENTS
I’d like to thank Bob Martin, all of my fellow mentors
and especially Mike Hill, Bob Koss, and Erik Meade for
their support and valuable feedback.

REFERENCES
1. Jackson, Michael A. Principles of Program Design.

Academic Press, London and New York, 1975

2. Auer, K., Beck K. Lazy Optimization: Patterns for
Efficient Smalltalk. Pattern Languages of Program
Design 2, Addison Wesley, 19-42

3. CppUnit C++ Unit testing framework
http://cppunit.sourceforge.net

