
223

An agile modeling environment for partial models

Pär Emanuelson
Ericsson Softlab AB
Wallenbergs gata 4

SE-583 35 Linköping
Sweden

+46 13 235717
par.emanuelson@softlab.ericsson.se

ABSTRACT
Three major features are proposed for modeling tools to
be suitable for use in agile processes. Advantages are
described. The current state of UML tools and some of
our experiences are described with regard to these fea-
tures.

Keywords
Modeling, UML, model editor, partial models, incre-
mental development, development process, tool support.

INTRODUCTION
The use of modeling in software design is increasing,
since models capture important aspects of a system that
programming languages do not. Models may capture for
example requirements and architectural aspects and mod-
els can be executable as well.

Agile processes that promote early testing and design
iteration are getting more and more attention since many
organizations have experienced problems with processes
that promote heavy specification writing before any ex-
ecutable results are produced.

The modeling environments of today do not support agile
processes well and especially not early and incremental
testing. With the current environments:

• Testing is prevented until rather large and com-
plete models have been designed.

• The designer’s effort is spent on fixing irrele-
vant inconsistencies instead of thinking about
the problem to be solved.

• Time is wasted on recreating the test environ-
ment after each change to the model.

We think current modeling tools are unproductive and
that modeling should be done with constant feedback, in
the form of analysis and testing. This paper will concen-
trate on the testing aspect. We think that models can and
should be tested early in the development and we will
present the following features that we think are needed.

• Direct execution of models.

• Execution of partial models.

• Execution is incremental and ongoing in parallel
with the development of the model.

Such a modeling environment would support a more

productive development process and make stronger tool
support possible, for example:

• Development can be driven by (1) adding new
modeling elements, and (2) filling in the gaps,
which can be automated and be done by asking
the tool for inconsistencies and then eliminating
these. These phases interchange.

• Development is done in two stages (1) get a
model that works (2) make the model execute
efficiently. These two stages can be applied both
in a macro and micro perspective.

Integration of modeling and XP has been promoted in the
“extreme modeling” [1] and “agile modeling” [2] com-
munities. Executable models are promoted in [3] and [4].
The contribution of this paper is specifying certain quali-
ties that the environment for executing models should
have to be really productive. This goes beyond basic
problems of being executable at all which involves find-
ing modeling constructs that are enough well-specified to
be executable. The qualities we propose include the
treatment of partial models and incremental execution.
We do not know of any modeling environments that offer
such functionality. In the programming world, Lisp and
Smalltalk environments generally provide this but C++
and Java do not.

THE MODELLING ENVIRONMENT
Direct execution
Direct execution means that the model can be executed in
the modeling environment with minimal involvement of
interrupting and disturbing events, which would prevent
the user from thinking about the model and the expected
results of execution.

This means of course that the model contains all the in-
formation needed for execution such as action language
code for methods. To perform code generation to files
that have to be edited before execution is a major distur-
bance. The model does not have to be interpreted per se,
but there should be no visible compilation step that may
produce irrelevant errors or require irrelevant informa-
tion.

Generation of a target language program is a way to
make the model execute faster, which should be a sepa-
rate part of the design process.

224

Partial models
A model under development is seldom 100% complete
and consistent. A modeling tool should accept this and
allow execution although there are missing and conflict-
ing parts in the model. This should be the case regardless
of the choice of target programming language, which do
require varying degree of completeness.

The tool should for example allow models to contain
calls to procedures, which have no definition. As long as
these procedures are not invoked during the execution
there is no problem. If such a procedure is invoked a
dynamic error can be issued.

It is not trivial for a user to fix a model such that it does
not contain undefined procedures. When defining a pro-
cedure the user will define calls to other procedures that
are not defined and if the user then tries to define these
the same problems will arise again. The user may have to
define dozens of procedures before getting down to the
bottom.

The example of a missing procedure can be extrapolated
to missing classes, methods, attributes, exceptions, con-
stants, libraries, modules etc.

Executing a model with missing types is more complex,
but can also be much more rewarding for the user. In
short dynamic typing can be used for executing models
and static type checking can be used for code generation.

The benefit of allowing execution of partial models is
that the designer can concentrate on developing the
model step by step and make frequent tests that she is on
the right track. She is not disturbed by irrelevant error
messages and can defer fixing these inconsistencies until
later when she can ask the tool to display these and begin
to fix them.

Incremental execution
An execution is started when we start the model editing
session and is then going on in parallel with the devel-
opment of the model. When we make a modification of
the model, the tool might have to do the corresponding
changes to the execution. For example when we add an
attribute to a class, this attribute is added to the instances
in the execution as well.

CURRENT UML TOOLS
The current UML 1.4 version is too restricted for execu-
table models. Typically UML tools generate code stubs
into files. These files are then hand edited and action
code added in the target language. These files can then be
compiled and then executed.

Some commercial UML tools have proprietary additions
that can be used to make executable models. As far as we
know none of these tools allow execution without code

generation to a programming language (normally C or
C++) and they do not provide any of the three major
features described in this paper.

There is an experimental tool, which provides direct
execution, similar to what we describe here [3].

Models in the coming UML 2.0 version will be executa-
ble. One may expect that some tools will offer direct
execution and execution of partial models but probably
very few if any will offer incremental execution.

PREVIOUS EXPERIENCES
We have experience from the design and implementation
of a development tool for an object oriented, strongly
typed, graphic based expert system language, with the
three major features described in this article. This was a
30+ man-year effort, which was used by 100+ users. That
experience showed that partially defined models can be
handled very well and that development can be very
interactive and fast even when the language is statically
typed.

Some UML tools provide an API towards the model,
which can be used to conveniently fetch any information
from the model that is needed for execution, this API also
provides model updates. By using such an API an inter-
preter can execute in parallel with the model editor and
information can be exchanged between the two worlds.

We have experience from doing a large UML profile for
a telecom programming language, where we used such an
API and the UML and Rational Rose customization fea-
tures to make a customized model editing and code gen-
eration environment [5].

CONCLUSIONS
We have described a modeling tool, which we think is
very different from current tools. We think that our tool
supports agile modeling very well, which the current
tools do not.

REFERENCES
1. Website, online at http://www.extrememodeling.org/

2. Website, online at http://www.agile-modeling.com/

3. Marko Boger, Toby Baier, Frank Wienberg, Winfried
Lamersdorf, Extreme Modeling, in Extreme Program-
ming and Flexible Processes in Software Engineering -
XP2000.

4. Ivar Jacobson, “UML all the way down”, talk at UML
World 2001.

5. Pär Emanuelson, Tony Olsson, Jerker Wilander: The
UP Project Experience, Ericsson Conference on Software
Engineering (ECSE99), Copenhagen, Denmark, 1999.

