
158

Extreme Programming of Knowledge-Based Systems

 Holger Knublauch
 Research Institute for Applied Knowledge Processing (FAW)
 Helmholtzstr. 16, 89081 Ulm, Germany
 +49-731 501 8918
 holger@knublauch.com

ABSTRACT
For most knowledge-based systems, knowledge must
necessarily be modeled evolutionary, in a close collabo-
ration between domain experts and engineers. While the
Knowledge Engineering literature suggests to follow
rather waterfall-based approaches, we argue that agile
development methodologies like Extreme Programming
have a huge potential to thrive and prosper in domains
like knowledge-based systems. Agile approaches are
optimized for projects with frequently changing require-
ments, provide explicit support for collaboration and rely
on a minimum of modeling artifacts with smooth transi-
tions between them.

Keywords
Agile methodologies, knowledge-based systems, ontolo-
gies

1 INTRODUCTION
Since knowledge-based systems (KBSs) are software
artifacts that use an explicit, formal model of human
expertise, their construction requires the close involve-
ment of domain experts into the process. Research in
Knowledge Engineering (KE) aims at defining method-
ologies that allow to construct KBSs in a systematic and
controllable manner. However, although KE approaches
are rather waterfall-based, they provide little support for
the transitions between knowledge, knowledge models,
and the KBS’s remaining artifacts [1]. We argue that
such heavy-weight methodologies are often not suitable
for KBSs, because they induce high costs of change and
do not fully exploit the creative potential of collabora-
tion. Instead, we explore the application of agile ap-
proaches like Extreme Programming (XP), which are
geared for frequently changing requirements and models,
for the price of putting constraints on the size of the de-
veloping team. A major goal of this paper is to increase
the awareness that XP is highly relevant for KBS devel-
opment – and vice-versa.

2 THE NEED FOR COLLABORATION
Any non-trivial KBS development process will involve
people that take one of the following three roles. Domain
experts (e.g., clinicians) possess the domain expertise
needed for building, verifying, and validating knowledge
models. System developers build the overall software
system, including reasoning methods. Knowledge engi-
neers mediate between the informal domain world and
the system’s formal requirements. Each of these groups
has different logics and attitudes (cf. [5]). For example,
domain experts are usually oriented towards the individ-
ual case while knowledge engineers try to identify global
solutions. Complex and highly specialized domains such

as medicine are further characterized by a distribution of
knowledge between several domain experts (e.g., sur-
geons and anesthetists). Development methodologies
must reflect these different logics and individual view
points by appropriate languages and tools. Additionally,
they must not neglect human factors, because experience
shows that the bottleneck of building knowledge models
lies more in the social process than in the technology (cf.
[2]). The construction of a functioning collaborative
network between the developers is needed because
“Knowledge is commonly socially constructed.“ [6]

3 THE NEED FOR EVOLUTION
Human cognition and scientific theory construction are
iterative processes. Cognition is based on the construc-
tion of theoretical models that are exposed to experimen-
tal data from real or simulated worlds. Knowledge mod-
eling is a kind of theory construction in which human
experts construct formal theories about a domain and
expose the resulting knowledge models to real or simu-
lated worlds. Tests in both worlds produce feedback
which allows to revise the knowledge models. When
installed in the application scenario, the system even
changes the real world and thus produces new require-
ments, which recursively suggest changes to the knowl-
edge model.

There are other reasons why knowledge models will
almost necessarily evolve during KBS development (cf.
[5]). (1) Finding requirements is hard, because the poten-
tial users are often unable to assess the benefits or usage
scenarios of the new system, and because the system
modifies the work processes in which it is installed. (2)
The knowledge acquisition process itself can not be com-
pletely planned, because the various developers and
groups involved in the process face each other with dif-
ferent and unknown cognitive and social perspectives.
(3) Knowledge models are often based on wrong assump-
tions, because knowledge modeling requires the domain
experts to transparently expose their daily practice, but
this practice necessarily operates with deception. (4)
Knowledge – especially in non-deterministic domains
such as medicine – is inherently vague. For the new me-
dium, knowledge is being translated and reorganized and
evolves in the process of being encoded and formatted
for the system.

4 EXTREME PROGRAMMING OF KBS
Although XP is being widely used among mainstream
software developers, its ideas have not been transferred
into the KBS community yet. In the following subsec-
tions, we therefore present examples of how to adapt the
values, principles, and practices of XP to KBSs. We have

159

applied these successfully for the development of a
knowledge-based multi-agent system [3] and other KBSs.
Note that the size of this paper prevents us from going
into details.

Simplicity. We suggest to start with knowledge models
that are as simple as possible, and refine and evolve them
later when the requirements are better understood.
Knowledge models should only represent what is needed
to solve the given tasks, i.e. modeling should be driven
by the model’s purpose. Simple mechanisms such as
Ripple-Down-Rules, where knowledge modeling starts
with simple rules which are refined iteratively, do not
require a comprehensive analysis phase. The value of
simplicity can also be applied to the choice of a language
for the knowledge metamodels (ontologies). Formal
ontology languages from KE are relatively difficult to
learn and apply. Since industrial object-oriented lan-
guages feature most of the expressive elements found in
frame-based KE languages (namely classes, attributes,
and relations), they represent a simple alternative to for-
mal ontology languages and enable the developers to
follow the XP principle of Traveling Light to reduce the
cost of change and model transitions [4].

Communication. Most of the bottlenecks in KBS devel-
opment are concerned with the definition of suitable
ontologies [2]. Ontologies are the main link between the
domain world and the system world, which have partially
opposing requirements. Ontologies should be built in a
close collaboration between domain experts and knowl-
edge engineers (cf. [2]). Ontologies will usually evolve,
in particular when the domain experts have gathered
experience in building knowledge bases on top of them,
but in our projects we found that the collaboration be-
tween people with as different view points as program-
mers and anesthetists can lead to surprisingly stable
metamodels. The close collaboration between experts and
engineers also promotes learning from and teaching each
other. In contrast to ontologies (classes), the knowledge
bases (instances) can usually be modeled by the domain
experts alone, without assistance by engineers. Following
the very idea of XP, domain experts should model their
knowledge in pairs. Pair Modeling can significantly
improve model quality, since tacit knowledge and per-
sonal preferences are generalized, so that the domain
experts’ logic approaches the engineers’ logic. An impor-
tant communication aspect is Humility, because the col-
laboration of very different groups of people in a KBS
project enforces a different code of ethics than “normal”
software development projects.

Refactoring and Design Patterns. The XP practice of
Refactoring (i.e., improving the design of existing code
without breaking its functionality) can be applied to
knowledge modeling as well. On ontology (class) level,
refactoring means to apply the well-known refactoring

patterns from object-oriented programming. On knowl-
edge base (instance) level, refactoring can mean to com-
bine duplicate model elements, to improve visual models
(e.g., by rearranging nodes in a graph), or to extend the
documentation of elements that have proven to be stable
for various releases. The Theory Refinement community
has produced various approaches on how knowledge
models can be systematically simplified. The common
goal of all these activities is to keep the system as simple
and maintainable as possible. Another important applica-
tion scenario of refactoring is the generalization of exist-
ing knowledge models for future reuse. Further potential
for improving development efficiency lies in the applica-
tion of object-oriented Design Patterns to knowledge
modeling. For example, the Composite pattern is applica-
ble to many ontologies in which domain concepts form a
hierarchy. Annotating design decisions with Design Pat-
terns improves communication between modelers and
support reuse.

5 CONCLUSIONS
In this document, we have shown that evolution and
collaboration are key requirements in KBS development.
While these requirements are insufficiently supported by
conventional KE methodologies, the good news for the
agile community is that the seeds of XP have a huge
potential to thrive and prosper in the KBS development.

REFERENCES
1. Benjamins, R., Fensel, D., Pierret-Golbreich, C.,

Motta, E., Studer, R., Wielinga, B., and Rousset, M.-
C. Making knowledge engineering technology work.
Proc. 9th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE), Madrid, Spain
(1997)

2. Holsapple, C., and Joshi, K. A collaborative ap-
proach to ontology design. Communications of the
ACM, 45(2), 42-47 (2002)

3. Knublauch, H. Extreme Programming of Multi-
Agent Systems. Proc. Int. Joint Conf. on Autono-
mous Agents and Multi-Agent Systems (AAMAS),
Bologna (2002)

4. Knublauch, H., and Rose, T. Round-trip engineering
of ontologies for knowledge-based systems. Proc.
12th Int. Conf. on Software Engineering and Knowl-
edge Engineering (SEKE), Chicago, IL (2000)

5. Rammert, W., Schlese, M., Wagner, G., Wehner, J.,
and Weingarten, R.. Wissensmaschinen: Soziale
Konstruktion eines technischen Mediums. Das
Beispiel Expertensysteme (Campus Verlag,
Frankfurt, 1998)

6. Salomon, G. Distributed Cognitions: Psychological
and educational considerations (Cambridge Univer-
sity Press, Cambridge, UK, 1993)

