
48

eXtreme Programming In A Hostile Environment

 Graham Wright
 Workshare Technology
 New Loom House
 101 Back Church Lane
 London, E1 1LU, UK
 +44 20 7481 6100
 graham.wright@workshare.com

Abstract
As the use of XP grows a debate is emerging about what
type of software projects it can be successfully applied to.

This paper describes the successful adoption of XP in a
project combining five of the features that are generally
considered hostile to the implementation of XP; a large
team, a legacy code base, C++, COM and a GUI inten-
sive application. Such factors are generally presumed to
make XP practices such as refactoring and test first de-
sign difficult.

Despite these problems the company described has suc-
cessfully adopted XP, bringing products to market writ-
ten in Visual C++ and with a heavy GUI and COM reli-
ance. This was achieved with a programming team of
twenty and with a large legacy code base.

This experience demonstrates that XP can be applied to
projects not usually considered to be appropriate and
scaled up beyond the generally accepted limit. This suc-
cess is important to the XP community because these
features are common to many Microsoft based projects,
projects that form a significant proportion of today’s
software industry.

Keywords
C++, GUI, COM, legacy code, large teams.

THE TRANSITION TO XP
Workshare Technology [14] produces document change
management software.

The code base consists of 2 major Windows applications
sharing approximately 100 components. These contain
1200 classes and 185,000 lines of code. The software is
written in Visual C++ using MFC (Microsoft Foundation
Classes, the industry standard framework for developing
C++ Windows applications) and ATL (Active Template
Library, the corresponding framework for COM devel-
opment). The applications are GUI and COM intensive.

The development team initially consisted of 15 pro-
grammers, 8 product managers (the XP customers) and
10 QA/testing staff.

XP was adopted in February 2000, by which time the
majority of the final code base was already in place. The

transition was kick started by sending a mixed team of
programmers, customers and QA staff to a one-week XP
course run by ObjectMentor [13]. This company then
provided coaching over the following six months. Under-
standing that each reinforces the others and that the full
value of XP does not come until all are in place [1] we
adopted the XP practices wholesale and have tried not to
deviate from any of them. Our experience also leads us
to believe that such a transition requires external coach-
ing.

The transition to XP has been an unqualified success and
has resulted in several product releases within a short
period of time, a doubling of productivity and a four-fold
reduction in defect rate.

XP AND C++
XP grew out of the Smalltalk programming community
and has initially been adopted mainly by those working
with either Smalltalk or Java. It is generally supposed
that these languages are more amenable to XP than C++.

Large C++ programs can be rigid and resistant to change.
In these circumstances frequent refactoring is not possi-
ble as build times become a significant proportion of the
development effort and changes in one module ripple
throughout the code base resulting in program instability.
Such code prevents the adoption of XP practices such as
growing functionality using small incremental changes,
rapid integration of those changes and refactoring of the
code base whenever and wherever possible.

However XP can be combined with C++ as long as the
code is structured to minimize dependencies and coupling
between classes [12]. The techniques required to mini-
mize dependencies are not particular to XP and represent
the best practice that has accumulated over the last
twenty years for reducing the coupling within large C++
programs (see for instance [10] and the references in
[12]).

Specifically we restructured our code base to ensure that
only one class was defined in each header file, header
files did not include other header files and header files
referenced client classes by forward declaration and
pointers rather than by embedding that class. In addition
we also ensured that code imported COM definitions
from type libraries rather than from COM DLLs and
further reduced COM specific dependencies by separat-

49

ing structure and enumeration definitions previously
contained within IDL files into separate header files.
Finally the creation of wrapper classes required to facili-
tate the testing of COM and GUI classes, as described in
subsequent sections, further reduced dependencies and
coupling within the system.

As a result of these changes the compile time resulting
from an incremental change to the code base declined
dramatically and refactoring became feasible.

Parallel to reducing compile times we introduced an
automatic build script running on a scheduler twice a day
and on demand. Although falling short of the “continuous
integration” described by Fowler [7] this ensured that we
always had a working build and that any change made by
the team was within a build within half a day.

TESTING COM CODE
Unit testing was done using a derivative of CppUnit [5].

In addition to the complex dependencies discussed above,
factors such as the lack of reflection are considered to
make testing C++ code inherently more difficult than
testing Smalltalk or Java code. This is made worse in
many Windows applications as the functionality to be
tested is often deep within layers of GUI or COM wrap-
pers. However unless C++ code can be tested easily and
rapidly, XP practices of test first design, enhancing func-
tionality via small incremental changes and refactoring
become difficult or impossible.

The requirement to isolate the functionality to be tested
contradicts the code generated by frameworks such as
MFC and ATL, which embeds functionality within GUI
handlers and COM interface implementations. For in-
stance ATL code cannot be tested without instantiating
the COM coclass, making testing more complex than it
need be and preventing the testing framework from ac-
cessing any methods or member data not exposed by the
COM interface.

The first step in enabling testing is thus to refactor this
code to separate the functionality from the GUI or COM
framework. Essentially this involves implementing the
envelope - letter idiom [4] or bridge pattern [8] creating
an implementation class refactoring the code to move the
functionality into that class.

An example of such a change is shown below. In this
sample CFileVersion is a thin wrapper implementing the
COM interface and CFileVersionImp is the worker class
implementing the functionality that was originally in the
COM class before refactoring and to which the COM
wrapper class now delegates all its calls;

CFileVersion::FinalConstruct()
{
 m_imp = new CFileVersionImp;
 …

CFileVersion::get_BuildVersionNumber(long *pVal)
{

 hr = m_imp->get_BuildVersionNumber(pVal);
 …

 CFileVersionImp::get_BuildVersionNumber(long
*pVal)
{
 …

The benefit of this is that the implementation class may
be shared by both the original COM component and the
testing framework, enabling the tests full access to the
class without the overhead of COM. If necessary the
testing class may be made a friend of the implementation
class.

This design also has benefits in production code as it
encourages the storing of member data in the form of
standard data types rather than COM types such as
BSTRs and VARIANTs. This avoids a series of bugs
associated with storing member data in these COM for-
mats.

Essentially the outer COM class should contain no mem-
ber data other than a pointer to the implementation class
and merely exposes the COM interface to the outside
world.

Testing the COM layer
This COM wrapper still requires its own testing to verify
the handling of COM specific issues and the translation
of COM data types to and from the C++ types used by
the worker object. Such testing is achieved using mock
objects [11]. When tested in this way the COM wrapper
does not instantiate the normal worker object but a mock
object or stub.

In this configuration three issues can be tested. Firstly the
handling of invalid or missing parameters in the COM
calls, for instance empty or corrupt BSTRs. Secondly the
translation of COM data to and from the worker object,
for instance by having the mock object expect or return a
known data value. Thirdly the robustness of the COM
wrapper to errors in the worker class, for instance by
having the mock object throw an exception or generate an
access violation.

TESTING GUI CODE
Despite being nominally object oriented, frameworks
such as MFC do not completely separate
data/functionality from view/GUI. To some extent this
reflects the GUI intensive nature of most Window’s pro-
grams but the side effect is to make testing more difficult.
This coupling is integral to MFC, which maintains a map
between member data and the control displaying that data
through functions such as DoDataExchange. In refactor-
ing such code the aim is to make core functionality test-
able outside the GUI or, at a minimum, testable is such a
way that no human interaction with the GUI is required.

This refactoring is similar to the COM code described
above with the additional requirement of redirecting the

50

MFC generated data mappings. This results in code such
as;

CGuiTestDlg::CGuiTestDlg(CWnd* pParent
{
 m_pWorker = new CGuiTestWorker;
 …

void CGuiTestDlg::DoDataExchange(CDataExchange*
pDX)
{
 //{{AFX_DATA_MAP(CGuiTestDlg)
DDX_Text(pDX, ID1, m_pWorker->m_SomeData);
…

void CGuiTestDlg::OnOK()
{
 UpdateData(TRUE);
 m_pWorker->DoSomeWork();
 UpdateData(FALSE);

As with the refactoring of ATL generated code, the outer
GUI class contains no member data other than a pointer
to the worker class. The only unsatisfactory feature of
this solution is that the MFC data mapping still requires
direct access to the worker class’s member data, either by
making this data public or making the GUI class a friend
of the worker class.

Testing GUI dependent code
Some functionality is genuinely coupled to the GUI and
so cannot be tested in isolation from that GUI. In these
cases testing may only be possible using screen scraping
tools.

However before adopting screen scraping, which is noto-
riously fragile to even minor layout changes, other meth-
ods should be investigated. Driving the GUI using SDK
calls is often possible. Functions such as EnumWindow
and GetWindow can locate the target GUI element,
PostMessage can control that element and GetWindow-
Text can query the data displayed by that element. In
many cases the combination of these functions provides
the equivalent functionality as screen scraping without
the associated layout sensitivity.

Alternatively the GUI output may be redirected during
testing to an isolated Windows control. This scenario is
similar to using a mock object but differs in that a real
Windows control is used. Rather than substituting the
control with a mock object, the GUI output is captured in
a control within the test framework by changing the
method of instantiating the object under test.

Test first GUI design
Although in general unit tests should run automatically
without human interaction we found it useful to occa-
sionally switch on the testing of GUI components such as
dialogs. This enabled “test first GUI design” in which the
test framework allows dialog layout and functionality to
be modified in isolation from the application that the
dialog would normally be embedded in.

For instance a file save dialog may only appear in an
application after the user has completed a number of
complex steps. Using the test framework to host the
dialog independently of the application reduces the dura-
tion of this design test cycle dramatically.

The .Net framework
Over the coming years it is probable that Windows appli-
cations that would previously been written using either
MFC or ATL will be written using the .Net framework.
The code generated by this framework also combines
GUI and data and will require similar refactoring to en-
able testing.

WRAPPING LEGACY CODE
When we adopted XP we were faced with a paradox. We
wanted to refactor the legacy code but we had no unit
tests to verify any code changes we made. However we
could not easily write unit tests because of the structure
of that code.

Initially we wrote tests, often using scripting, to test
broad areas of application functionality. These large-scale
tests were not unit tests as generally understood in XP
and were closer to acceptance tests. However they gave
an immediate indication that code changes had not com-
promised the application’s core functionality and pro-
vided the team with the confidence to begin the initial
refactoring necessary to enable true unit testing. These
tests were retired as the proportion of code covered by
genuine unit tests increased.

Some legacy code was resistant to refactoring without
significant rewriting due to the complexity and instability
of the original code. Rather than rewrite such code its
functionality was treated as a black box and isolated from
the rest of the application by redirecting all calls to it via
wrapper classes. These wrapper classes were developed
using standard XP test first design and provide indirect
testing of that legacy code.

As well as isolating legacy code these wrappers have
significant advantages in hiding the complexity of the
original code, enabling the renaming of functions to more
closely describe their intention, providing a robust excep-
tion handling mechanism and the incorporation a stan-
dard error reporting module.

LARGE TEAMS
XP originated in small development teams and a team
size of between 2 and 10 is still considered to be ideal
[9]. Many development teams are bigger and the team
size limit beyond which XP will not scale is still to be
determined. Our development team contained 15 pro-
grammers when we adopted XP, has expanded to 20 and
is scheduled to grow to 28.

Much of the concern about scaling XP to larger teams
derives from the assumption that the communication and

51

management overhead always increases exponentially
with team size. The evidence for this assumption [2]
derives from projects with a heavier, more paper orien-
tated development process than XP. Its not yet clear if
this assumption is still correct when applied to the less
formal, mainly verbal communication that characterizes
XP. So far our own experience contradicts this assump-
tion. A key to this has been designating an individual
member of our 8 strong product management team as the
sole customer for each story within an iteration.

More problematic has been the psychological factors in
maintaining team cohesion. It is easier for people to iden-
tify with a programming team of 8 than one of 20. Main-
taining the feeling that all the programmers, customers
and QA are one 40 strong team is even harder. Essen-
tially our experience of scaling up XP has been the cen-
trality of maintaining morale and motivation within the
entire development team. Such concerns are not specific
to XP and are shared by any development methodology
dependent upon highly productive and coherent teams [6,
3].

At one point during the project we effectively split the
programming team into three teams, each team concen-
trating on a functional area within the product. Whilst
this had the positive effect of increasing the unity and
communication within each team it had the negative
effect of disrupting the cohesion of the entire develop-
ment group. It also became clear that the longer these
separate teams existed other negative effects would be-
come paramount such as a decrease in the understanding
of the other teams code and a decline in the morale of
those assigned to teams considered to have less desirable
stories. We reverted to a single programming team within
two months of this experiment and have retained a single
team since. An exception to this is the occasional forma-
tion of “swat teams” dealing with urgent problems. Such
teams exist only for the duration of a single iteration.

The only deviation from maintaining a single program-
ming team we have found useful is during iteration plan-
ning when breaking the team into smaller groups to dis-
cuss the detailed tasks of a story is more effective than
having the entire team involved. However the initial
presentations by customers of the iteration’s stories are
still made to the programming team as a whole.

INFORMATION AND QUESTIONS
For more information, contact: gra-
ham.wright@workshare.com

ACKNOWLEDGEMENTS
Visual C++, Windows, MFC, ATL and .Net are regis-
tered trademarks of Microsoft Corporation.

REFERENCES
1. Beck, Kent, Extreme Programming Explained, 149-
150. (Addison-Wesley 2000).

2. Brooks, F. The Mythical Man-Month, 14-26 (Addison-
Wesley 1975, 1995)

3. Cockburn, Alistair. Agile Software Development, 75-
111. (Addison-Wesley 2001)

4. Coplien, James O. Advanced C++ Programming
Styles and Idioms, 133-134. (Addison-Wesley 1991)

5. CppUnit. C++ Unit testing framework.
http://cppunit.sourceforge.net/

6. Demarco, T and Lister, T. Peopleware: Productive
Projects and Teams (Dorset House 1987, 1999)

7. Fowler, Martin. Continuous Integration. (Thought-
Works) http://www.thoughtworks.com/Continuous Inte-
gration.pdf

8. Gamma, E, Helm, R, Johnson, J and Vlissdes, J.
Design Patterns, 151-161. (Addison-Wesley 1995).

9. Jeffries, R. When should Extreme Programming be
Used? http://www.extremeprogramming.org/when.html

10.Lakos, John S. Large Scale C++ Software Design, 1-
95. (Addison-Wesley 1995)

11. Mackinnon, T, Freeman, S and Craig, P. Endo-
Testing: Unit Testing with Mock Objects in Extreme
Programming Examined (Addison-Wesley 2001).

12. Martin, Robert C. Can XP be used with C++. (Object
Mentor, 2000)
http://www.objectmentor.com/xp/xpwithc.html

13. ObjectMentor. http://www.objectmentor.com/

14. Workshare Technology. http://www.workshare.com/

