
19

Frameworks and Testing

 Stefan Roock
Apcon Workplace Solutions &

 University of Hamburg
 Vogt-Kölln-Str. 30
 22527 Hamburg, Germany
 +49 40 42883 2302
 roock@jwam.de

Abstract
Testing is one of the main XP practices (cf. [1]) and
becomes more and more understood for application de-
velopment. But when it comes to frameworks, testing is
more manifold. We have experienced a lot of difficulties
and some solutions in this area based on the last three
years of developing the JWAM framework (cf. [4], [5]).
This paper presents four categories of tests relevant for
framework development. Design and construction guide-
lines for the test categories are given.

Keywords
Testing, Framework, Acceptance Test, Test Framework,
Test Center

INTRODUCTION
Testing becomes more and more understood for applica-
tion development. But when it comes to frameworks,
testing is more manifold. A number of questions arise:

• How can one do acceptance testing for frameworks?
What what aspects differ framework acceptance tests
from framework unit tests?

• The interaction between an application and the used
framework is often hard to test. What support is nec-
cessary to test this interaction?

• How can one test the application’s conformance with
the framework?

During the development of the JWAM framework (cf.
[4]) with XP we discovered that it is useful to have four
test categories. Unit Tests cover the implementation of
the framework and differ from application unit tests in
few aspects.

Acceptance Tests are well known from application devel-
opment. Transferring the concept of acceptance criteria
from applications to frameworks isn’t trivial. If we as-
sume a framework product manager who specifies the
acceptance criteria for the framework, isn’t he specifying
the whole framework design already?

Often frameworks hinder testing of applications based on
the framework since necessary framework APIs aren’t
available or difficult to use. Beneath the required frame-
work API the framework should provide a Test Frame-
work to support application testing. The test framework
provides a set of utility classes and operations to ease

testing application components highly integrated with the
framework.

Application classes based on the framework have to fol-
low certain protocols. A Test Center bundled with the
framework supports testing the protocol of application
classes derived from the framework. The test categories
are shown in the following table.

Test Category Main Purpose

Unit Test Framework developers
check their code

Acceptance Test Framework Product Manag-
ers specify acceptance crite-
ria for the framework

Test Framework Support for application de-
velopers when writing unit
and acceptance tests for
applications.

Test Center Test conformance of appli-
cation classes with the
framework

Since unit tests for frameworks differ from unit tests for
applications in only a few minor aspects I will not discuss
them in this paper.

ACCEPTANCE TEST
Framework acceptance tests define the acceptance crite-
ria for framework functionality. At a first glance it seems
impossible and perhaps unnecessary to separate accep-
tance from unit tests. But if the two test categories aren’t
separated from each other, important design decision are
very difficult to make. In this case the framework devel-
opers have only soft factors to decide which functionality
of the framework may be changed or even deleted with-
out affecting the acceptance criteria. They have to have
detailed knowledge about the applications based on the
framework. Only then they may guess which functional-
ity may be refactored or deleted without violating the
acceptance criteria for the framework.

Let’s think about a very simple framework: A desktop
based tool works on a set of business objects (cf. Fig. 1).
Complex tools may be composed from simpler ones.

20

Tool

BusinessObject

0..n

Fig. 1: Sample Framework

The acceptance tests for this tiny framework should not
define the exact classes and methods of the framework.
The definition of the concrete classes and methods is the
task of the framework developers. Acceptance tests
should only define the functionality of the framework.
Therefore the acceptance tests have to be formulated in
an abstract way. Hence the acceptance tests are pro-
grammed with imaginary framework classes. The user
story for the framework may be formulated in few sen-
tences:

“Every business object has a name which may change. A
tool may be equipped with different business objects
during its lifetime. A complex tool may be composed from
simple tools.”

Fig. 2 shows an according code fragment for an accep-
tance test (a JUnit type of test support is assumed, cf.
[3]).
public class FrameworkAcceptanceTest {

public void testBusinessObject() {
DummyBO bo = new DummyBO(“MyBO”);
assertEquals(“MyBO”, bo.getName();
bo.rename(“NewName”);
assertEquals(“NewName”, bo.getName();

}

 public void testSimpleTool() {
 DummyBO bo1 = new DummyBO(“BO1”);
 DummyBO bo2 = new DummyBO(“BO2”);
 DummyTool tool = new DummyTool();
 assertFalse(tool.hasBusinessObject());
 tool.equip(bo1);
 assertEquals(bo1,
 tool.getBusinessObject());
 tool.equip(bo2);
 assertEquals(bo2,
 tool.getBusinessObject());
 }
public void testComplexTool() {
DummyBO bo1 = new DummyBO(“BO1”);
DummyBO bo2 = new DummyBO(“BO2”);
DummyComplexTool tool =

new DummyComplexTool();
assertFalse(tool.hasBusinessObject());
assertEquals(1, tool.getSubTools().

length);
assertEquals(tool.getSubTools()[0]

instanceof DummyTool);
tool.equip(bo1);

assertEquals(bo1,
tool.getBusinessObject());

assertEquals(bo1,
tool.getSubTools()[0].

getBusinessObject());
}

}

Fig. 2: Acceptance Test

The DummyBO, DummyTool and ComplexDummyTool
classes are programmed by the acceptance test author
with dummy operations. Acceptance tests have to be
compilable but needn’t succeed with the dummy classes.

After the acceptance tests are defined the framework
developers have the task to make the acceptance test
succeed without modifying the test itself. For the given
example the following code makes the tests succeed (cf.
Fig. 3).
public class BusinessObject {

public void rename(String name) {
_name = name;

}

public String getName() {
return _name;

}

public boolean equals(Object o) {
boolean eq =

o instanceof BusinessObject;

if (eq) {
BusinessObject bo =
(BusinessObject) o;

eq = bo.getName().equals(getName()
);

}

return eq;
}

private String _name;
}

public class Tool {

public void equip(BusinessObject bo) {
_bo = bo;
Iterator iter = _subTools.iterator();

while (iter.hasNext()) {
Tool t = (Tool) iter.next();
t.equip(bo);

}
}

public boolean hasBusinessObject() {
return _bo != null;

}

public BusinessObject getBusinessOb-
ject(){

return _bo;
}

protected void setParent(Tool t) {
_parent = t;

}

protected void addSubTool(Tool t) {

21

_subTools.add(t);
t.setParent(this);

}

private BusinessObject _bo;

private Tool _parent;

private Collection _subTools =
new ArrayList();

}

public class DummyBO extends BusinessOb-
ject
{}

public class DummyTool extends Tool
{}

public class DummyComplexTool extends Tool
{

public DummyComplexTool() {
addSubTool(new DummyTool());

}
}

Fig. 3: Framework Implementation

In this case the dummy classes are mainly empty since
the imagined method names match the method names
choosen by the framework developers. This needn‘t be
the case. Then the adapter pattern (cf. [2]) may be used.
In the example the framework developers have choosen
to add the method addSubTool for tool composition.

TEST FRAMEWORK
Often frameworks hinder testing of applications based on
them. To support application testing frameworks should
provide a test framework. Often this test framework can
be realized as subclasses of TestCase (in the case of
JUnit). These subclasses often provide additional conven-
ience methods specialized for the framework. In the case
of our example framework testing the combination of
tools can be supported. Let’s assume that subtools use the
observer pattern (cf. [2]) to notify their parent tool about
state changes. Then a special TestCase superclass may
look like Fig. 4.
public class ToolTestCase extends TestCase
implements Observer {

public void notify() {
_notifications++;

}

protected void resetNotifications() {
_notifications = 0;

}

protected void getNotificationCount() {
return _notifications;

}

protected void setUp() {
super.setUp();
resetNotifications();

}

private int _notifications;
}

public interface Observer {
public void notify();

}

Fig. 4: ToolTestCase

Concrete tool test cases now can be developed in a more
convenient way. Let’s assume a simple management tool
for visiting cards. The VisitingCardManager has the
subtool VisitingCardEditor. While the VisitingCardMan-
ager works on a VisitingCardBox the VisitingCardEditor
uses a VisitingCard (see Fig. 5).

VisitingCardManager VisitingCardBox

VisitingCard

0..n

VisitingCardEditor

Fig. 5: Example tool

When the VisitingCardEditor stores a changed Visiting-
Card in the VisitingCardBox the VisitingCardEditor
notifies the VisitingCardManager. Then the Visiting-
CardManager redraws the list with the visiting cards in
the VisitingCardBox. Therefore the VisitingCardEditor
only works correcly if it notifies its parent tool when its
state changes (cf. Fig. 6).

public class VisitingCardEditorTest
 extends ToolTestCase {
public void testTool() {
VisitingCardEditor editor =

new VisitingCardEditor();
editor.setParent(this);
editor.storeCard();
assertEquals(1, getNotification-

Count());
}

}

Fig. 6: Concrete tool test case

TEST CENTER
The test center is delivered together with the framework.
It helps application developers to check the consistency
of framework based application classes with the frame-
work. In the case of the above example the consistency of
the VisitingCardManager is determined by the ToolTest-
Center (see Fig. 7).
public class ToolTestCenter extends Assert
{

public void test(ToolTestContext con-
text){

Tool t = context.getNewTool();

t.equip(context.getNewBusinessObject());
assertTrue(t.hasBusinessObject());

}
}

22

public interface ToolTestContext {

public Tool getNewTool();
public BusinessObject
getNewBusinessObject();

}

Fig. 7: Test center

The ToolTestContext provides the objects used by the
test center. Often it is tedious or even impossible to sup-
ply all needed objects as parameters up front.

The test case of the VisitingCardManager is then ex-
tended by a call to the test center (cf. Fig. 8).
public class VisitingCardManagerTest
extends ToolTestCase
implements ToolTestContext {

public void testManager {
VisitingCardManager manager =

new VisitingCardManager();
new ToolTestCenter().test(manager);

}

public Tool getNewTool() {
return new VisitingCardManager();

}

public BusinessObject
getNewBusinessObject() {
return new VisitingCardBox();

}
}

Fig. 8: Usage of the test center

TOOL SUPPORT
All described test categories can be easily developed with
JUnit or a similar test framework and test tool. It is con-
venient to extend JUnit with the concept of test catego-
ries to separate at least unit from acceptance tests. This is
relatively easy by extending the class TestCase (see Fig.
9)

public class XTestCase extends TestCase {

 protected void setCategory (String cat) {
 _category = cat;
 }

 protected String getCategory () {
 return _category;
 }

 public String toString() {
 return getCategory() + ”: ” +

 super.toString();

 private String _category = UNIT_TEST;

 protected final static String
 UNIT_TEST = ”Unit Test”,
 ACCEPTANCE_TEST = ”Acceptance Test”;
}

Fig. 9: JUnit extension

The usage of these extensions is straightforward.
public class FrameworkAcceptanceTest
extends XTestCase {

 public void testBusinessObject() {
 setCategory(ACCEPTANCE_TEST);
 DummyBO bo = new DummyBO(“MyBO”);
 ...
 }
 ...
}

Fig. 10: Usage of JUnit extensions

It is obvious that these extensions provide nothing more
than documentation, but that is exactly what is needed.
Application and framework developers must be able to
separate the different test categories from each other
since these are used in different ways.

ACKNOWLEDGEMENTS
I like to thank all my collegues at Apcon Workplace
Solutions for their support in applying testing to frame-
works.

REFERENCES
1. K. Beck: eXtreme Programming explained: Embrace

Change. Reading, Massachusetts, Addison-Wesley.
2000.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides: De-
sign Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

3. Junit Web Site: http://www.junit.org

4. The JWAM framework: http://www.jwam.org

5. M. Lippert, S. Roock, H. Wolf, H. Züllighoven:
JWAM and XP - Using XP for framework develop-
ment. In: [6]. S. 103-117.

6. G. Succi, M. Marchesi (Eds.): Extreme Pro-
gramming Examined. Reading, Massachusetts, Addi-
son-Wesley, 2001.

