
77

Refactoring Browser for UML

Marko Boger, Thorsten Sturm
Gentleware AG

Vogt-Kölln-Str. 30
22527 Hamburg, Germany

{Marko.Boger, Thorsten.Sturm}
@gentleware.de

Per Fragemann
Universität Hamburg, AG VSIS

Vogt-Kölln-Str. 30
22527 Hamburg, Germany

per@hamburg.de

Abstract
Refactoring is a corner stone in XP as well as other agile
processes. Tools for an automatic support are beginning
to appear, usually referred to as refactoring browser.
Most of these are extensions to editors or IDEs and oper-
ate on code. This paper discusses how the idea of refac-
toring can be extended to UML models and presents a
refactoring browser integrated in a UML modeling tool.
Refactorings for the static architecture as well as dynamic
behaviour models are presented.

Keywords
Refactoring, refactoring browser, development tool,
UML

INTRODUCTION
Refactorings have gained wide attention, especially in the
XP and agile process community. The idea was first
formalized in the work of Opdyke [11] and Brant [5],
made popular by Beck[2] and described in depth by
Fowler [6]. Refactorings are techniques or recipes to
improve the inner structure of software without changing
its outward behaviour. XP and other agile processes pro-
pose to develop software in two iterative steps (or wear-
ing two different hats). First, the desired behaviour
should be implemented and secondly the structure of the
code should be improved without changing any behav-
iour. This way, making changes later on becomes easier
since the code structure becomes simpler and thus the
developer is more agile.

Refactorings describe what can be changed, how this
needs to be changed without altering the semantics, and
what problems to look out for when doing so. A refactor-
ing browser can help to automate the described steps and
warn about possible conflicts.

Until now, refactorings have usually been discussed in
the context of program code. All refactoring browser (to
our knowledge) operate on code. Surprisingly though,
refactorings themselves are often explained using UML
notations. For us, this led to the question whether refac-
torings can directly be defined on the level of models
rather than on code and whether refactoring browser
could be implemented in the context of UML CASE tools
rather than IDEs. This paper describes the outcome of
this research work and discusses our findings.

In section 2 we discuss what refactorings make sense on
the level of models and what additional refactorings can
be found that make no sense on the code level but help on

the model level. Section 3 describes how these refactor-
ings were implemented in a tool. Section 4 gives an ex-
ample how such refactorings and an according refactor-
ing browser can be applied and section 5 rounds off with
a conclusion.

REFACTORINGS FOR UML
Round trip engineering has reached a level of maturity
that UML models and program code can be perceived as
two different representations of the same thing, in the
following simply called software. With such an environ-
ment in mind, the concept of refactoring can be general-
ized to something improving the structure of software
instead of just its code representation.

For some refactorings it is natural to apply them on the
code representation level. A refactoring like extract
method, intended to separate code blocks from long
method bodies into own methods, naturally applies to
code. Others, like rename class or move method up have
an identical effect whether they are applied to program
code or a UML model. Others, like replace inheritance
by delegation or replace type key with state or strategy,
seem to fit better to a UML representation.

Defining the later kinds of refactorings on models and
providing a refactoring browser for UML tools for these
could be beneficial to more graphically oriented develop-
ers. But further more, since refactorings have only been
thought of in the context of code, there might be new
refactorings and benefits in tool support if applied to
models. This paper focuses on such refactorings that
apply to structure information of software that is not
apparent from the code.

Conflict Detection
Detection of possible conflicts is a crucial part in the
process of refactoring. Martin Fowler encourages the use
of unit tests to prevent unwanted side effects from slip-
ping into working code. But he leaves it up to the user to
find out which side effects might be present in a specific
situation.

In our work we focus on the automatic detection of con-
flicts. Each refactoring may introduce lots of errors into
code if applied incorrectly. Therefore each of the pro-
posed refactorings discussed below has been closely
examined to determine likely conflicts caused by its po-
tential use.

Conflicts are divided into warnings and errors. Warnings

78

indicate that a refactoring might cause a side effect, while
leaving the model in a well-formed state. For example,
renaming a method so that it overrides a superclass’s
method may be behaviour-preserving in some cases, but
a major unwanted design change in others. The code will
in either case remain compilable. Errors on the other
hand indicate that an operation will cause damage to the
code or model.

Some UML-refactorings are very likely to produce con-
flict warnings, even if the intended refactoring will not
alter the models behaviour. Others will mainly report
major model-changes. We have come to the conclusion
that while all conflicts have to be presented to the user,
he must be able to override the refactoring browsers
conflict warnings. This enables him to perform several
refactorings in a row, where single ones are not behav-
iour-preserving but the sum of them is, or to correct con-
flicts by other means.

Static Structure Refactorings
UML class diagrams are used to design and visualize the
static architecture of a software system. It is clear that
some refactorings that are known from code-oriented
refactoring can directly be applied to class diagrams. But
while code is a linear representation and may not display
the dependencies and structure well, UML is a two di-
mensional and graphical representation. Improvements to
the architectural structure may be simpler to spot in a
class diagram than a code editor. Also, after a possible
refactoring is identified, consequences of its application
may be better overviewed in UML.

Due to the mesh of dependencies of object-oriented soft-
ware structures, many refactorings like renaming, dele-
tion, moving of methods, classes or attributes have more
effects than just the local change. Often such problems
are caused by inheritance and polymorphism. Renaming
a method, for example can have the effect that a method
higher in the inheritance hierarchy now is overridden (by
the new name) or not overridden anymore (by the old
name).

Refactorings that change the structure, like the replace-
ment of inheritance by delegation or the extraction of a
common interface from a set of classes are more apparent
on a model level.

But it is important to note that UML consists of more
than just the class diagram. Class diagrams are probably
the most important and certainly the most used part of
UML but there is more to it. Most refactorings described
in the literature so far apply to the static structure and
their effects would become apparent in the class diagram
only. However, the class diagram is not able to express
the dynamic behaviour nor a business process or business
requirements. Also code is not the optimal choice to
express these aspects of software.

UML offers mechanisms to express these with the help of
several different diagram types. The view that software
not only consists of code but that these aspects belong to
software as well is spreading. We want to restrict our-

selves to activity and state diagrams next to class dia-
grams in this paper.

State Machine Refactorings
State diagrams are often used to express the protocol of
how the set of operations for a class should be used. That
is, it defines in what order operations should be called
and what order of calls are not allowed. Refactoring such
a protocol means changing the way the protocol is pre-
sented without changing the protocol itself.

The following are a selection of refactorings on state
diagrams that we were able to identify as well as imple-
ment:

• Merge States is used to form a set of states into a
single one. Inner transitions between the states are
removed, external transitions are redirected to the
new state, internal transitions and actions are moved
into the new state. Warnings are generated if (among
others) more than one of the selected states has got
transitions out of the group, or if the only entry-
action found was not located in the "virtual initial
state" of the selected group.

• Decompose Sequential Composite State moves the
contained elements of a composite state out of it and
removes it afterwards. Entry- and exit-actions are
moved to the appropriate states, transactions leaving
or reaching the composite state are redirected or cop-
ied if necessary. Warnings have to be issued for ex-
ample if entry- and exit-actions are detected, or if a
do-activity will be removed. This refactoring is
mainly used in conjunction with form composite
state.

• Form Composite State creates a new composite state
and moves the selected states into it. Common transi-
tions are extracted to the border of the new state, and
appropriate default and completion states are linked
to the initial state and the completion transition.
Warnings have to be generated if no default state can
be found, or if more than one candidate for default
state or completion state are equally suitable.

• Sequentialize Concurrent Composite State creates
the product automaton for a concurrent state and re-
moves the contained elements from the concurrent
state. It is mainly used in conjunction with merge
states to simplify complex models while preserving
behaviour. This refactoring is only applicable to
wellformed concurrent states, therefore it checks for
initial states if a region is not targeted by a fork di-
rectly, for example.

Activity Graph Refactorings
Activity diagrams are often used to describe the business
process. They can also be used to describe algorithms in
a more graphical way. But while the later is usually better
expressed in code, there is no adequate way to express
the business process in code. The value of a clear under-
standing of this process is undoubted and activity dia-
grams are a good means to model them. Refactorings of

79

these do not change the process but only the way it is
represented in the model. Here is the selection of imple-
mented refactorings:

• Make Actions Concurrent creates a fork and a join
pseudostate, and moves several sequential groups of
actions between them, thus enabling their concurrent
execution. The refactoring detects whether the modi-
fication leads to a wellformed model by checking for
errors like transitions between two groups, or states
having no transition-path to the last state of a group.
Warnings have to be issued if one group writes to a
variable that is accessed by another group.

• Sequentialize Concurrent Actions removes a pair of
fork and join pseudo states, and links the enclosed
groups of action states to another. Warnings are gen-
erated if commonly used variables are found (a real
concurrent algorithm cannot simply be sequential-
ized), and the detection suite also checks for non-
wellformed transitions.

A REFACTORING BROWSER FOR UML
The refactorings described above have been implemented
in a refactoring browser for UML. Some of the imple-
mentation aspects and a description on the developed
interface are described in this section.

UML is more than a graphical notation and UML tools
are (usually) more than just specialized drawing tools.
While code editors are usually simply advanced text
editors, UML editors already have a semantically rich
internal representation, a repository, which (for some
tools at least) is even based on a standardized UML meta
model [10]. Refactorings on UML models can exploit
and operate on this meta model structure. This makes the
implementation of a UML refactoring browser more
straight forward than a code based one for which a prede-
fined meta structure may not exist.

The implementation described here is done as part of the
Gentleware tool Poseidon for UML [9], which originates
from the open source project ArgoUML [1]. Its reposi-
tory is directly generated from the UML 1.3 meta model
[10]. Refactorings are implemented as controllers on this
model.

The user interface of most code based refactoring brows-
ers are simply implemented as context menus. We have
chosen differently and implemented it as a pane that can
be seen at the same time as the diagram and the naviga-
tion pane. It consists of three compartments.

In the first compartment refactorings are proposed based
on the current selection. If, for example, a method is
selected, it proposes the refactoring rename method. If at
the same time a superclass is also selected, the proposer
suggests the refactoring move up method. Selecting a
refactoring displays a short description of the refactoring
and its effects as well as a dialog for entering parameters
(like the new name or application to derived methods) are
displayed. The third section shows possible conflicts that

can occur if the refactoring is executed. It also holds the
button to execute a refactoring as well as (in the future)
to undo it again.

AN EXAMPLE
Some small examples should show how refactorings for a
UML model can help to improve a design and how the
usage of a refactoring browser helps to avoid refactoring
pitfalls by addressing possible conflicts. The overall
scenario is taken from the default example that is shipped
with Gentleware’s Poseidon for UML. An imaginary
company called Softsale is selling digital products over
the internet. The handling of orders and customer rela-
tions are modeled by the sample UML model. For this
context, the example is limited to modeling the verifica-
tion of a new customer.

Part of the UML model is the modeling of the customer
itself. There are two classes, a Customer that has two
associations to a DeliveryAddress. The role names
of these associations are deliveryAddress and in-
voiceAddress (see Fig. 1).

Client

DeliveryAddress

+invoiceAddress +deliveryAddress+invoiceAddress +deliveryAddress

Fig. 1 Class diagram before rename class.

Having multiple associations to the class Customer
with one role name equal to the class name itself, it looks
like the name for the class DeliveryAddress is not
the perfect one. Using the refactoring rename class, the
name of the class will be changed to Address to better
reflect its usage (see Fig. 2). For this is a rather simple
refactoring, no conflicts are expected to occur.

Client

Address

+deliveryAddress+invoiceAddress +deliveryAddress+invoiceAddress

Fig. 2 Class diagram after rename class.

The verification of a new customer’s delivery address is
started by requesting the appropriate address and valida-
tion of the received information. Therefore, the address
starts in the state not verified, goes through the
verification process (requested, received) and
either returns to not verified or moves to veri-

80

fied, depending of the result of the verification (see
Fig. 3).

not verified requested

entry / createRequestTicket()
exit / openRequestTicket()

retrieved

verified

 [else]

 [infoIsValid()]

Fig. 3 State diagram before merge state.

not verified

verified

verifying

entry / createRequestTicket()
exit / openRequestTicket()

 [else]

 [infoIsValid()]

Fig. 4 State diagram after merge state.

The states requested and received are sequential
and merging them would not change the logic of the
process. The refactoring merge states merges them to a
new state named requested,received. To better
reflect its purpose, we changed the name to verifying
in a second step without using the refactoring browser
(see Fig. 4).

Fig. 5 Warnings as presented by the tool.

The state requested has an entry action as well as an exit
action. Having an exit action here causes a conflict in the
refactoring, that is displayed in the refactoring browser
along with a short explanation. Now it’s up to the user to
either rethink what he wants to do or to execute the refac-
toring and solve the conflict afterwards. In this case, we
ignore the conflict, because the exit action can be used
for the merged state as well.

verify email

verify delivery
address

confirm customer
information

 / verification=0

 [else]

 / verification=verification+1

 [emailIsValid() && delAddrIsValid()]

 / verification=verification+1

 / verification=0

 / verification=verification+1

 [emailIsValid() && delAddrIsValid()]

 / verification=verification+1

 [else]

Fig. 6 Activity diagram before make actions concurrent.

The complete process of the verification of a new cus-
tomer is expressed in an activity diagram. The verifica-
tion starts with verifying the email address, followed by
verifying the delivery address (see Fig. 6).

Because both parts of the verification process have no
dependencies upon each other, the refactoring make ac-
tions concurrent can be used to improve the model (see
Fig. 7).

81

verify email verify delivery
address

confirm customer
information

 / verification=0

 [else]

 / verification=verification+1 / verification=verification+1

 [emailIsValid() && delAddrIsValid()]

 / verification=0

 [else]

 / verification=verification+1 / verification=verification+1

 [emailIsValid() && delAddrIsValid()]

Fig. 7 Activity diagram after make actions concurrent.

Because the action states verfify email and ver-
ify delivery address both use a variable called
verification, the refactoring browser detects a con-
flict here. Because the variable verification is used
to increment it, we can ignore the conflict here and con-
tinue the refactoring.

Fig. 8 Warnings as presented by the tool.

The example shows, that there is room for improvement
by using refactorings not only in the static structure of the
model, but also in state and activity diagrams.

CONCLUSION
Refactoring as the disciplined process of improving the
structure of program code without changing its behaviour
can be generalized to also be applied to UML models.

Many known refactorings can directly be transferred and
implemented in CASE tools. Finding possible refactor-
ings for the static structure may be simpler in a two di-
mensional graphical representation. In addition new
refactorings for activity graphs or state machines can be
found.

The described work is fully implemented in a demon-
stratable prototype. Details are described in [8]. It will be
further developed to become a plug-in for the UML
CASE-tool Poseidon for UML which is distributed by
Gentleware.

REFERENCES
1. ArgoUML. ArgoUML, Object-oriented design tool

with cognitive support, Open Source Project, at
http://www.argouml.org.

2. Beck, Kent. Extreme Programming explained: Em-
bracing Change. Reading, Mass., Addison-Wesley,
1999.

3. Boger, Marko et al. Extreme Modeling, in Succi, G
and Marchesi, M. Extreme Programming Examined,
p.175, Addison-Wesley, 2000.

4. Boger, Marko and Sturm, Thorsten. Tools-support for
Model-Driven Software Engineering, in Evans, A. et
al. Proceedigs of Practical UML-Based Rigorous De-
velopment Methods. Workshop at <<UML>>2001
conference. Gesellschaft für Informatik, 2001.

5. Brant, John and Roberts, Don. Refactoring Browser,
at http://st-
www.cs.uiuc.edu/~brant/RefactoringBrowser.

6. Fowler, Martin. Refactoring, Improving The Design
of Existing Code, 1999.

7. Fowler, Martin. Refactoring Home Page, at
www.refactoring.org.

8. Fragemann, Per. Refactoring von UML-Modellen.
Diploma Thesis (to be published). University of
Hamburg, Germany, 2002.

9. Gentleware AG. Poseidon for UML, a UML CASE
tool based on ArgoUML, at
http://www.gentleware.com.

10. Object Management Group. Unified Modeling Lan-
guage, Version 1.3, at http://www.omg.org.

11. Opdyke, William F. Refactoring Object-Oriented
Frameworks. Dissertation, University of Illinois at
Urbana-Champaign, 1992.

