
113

Framework XP –Building Frameworks using XP

Gerard Meszaros
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 560-2408

gerard@clrstream.com

Jennitta Andrea
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 264-5840

jennitta@clrstream.com

Shaun Smith
ClearStream Consulting

250 6th Ave SW
Suite 1200

Calgary, Alberta Canada
1 403 264-5840

shaun@clrstream.com

ABSTRACT
This paper describes our experiences using eXtreme
Programming (XP) to build frameworks and how we
have had to modify XP to better suit this purpose. We
call this variant of XP Framework XP. It builds on ideas
first described in the XP books and augments them with
concrete suggestions for dealing with the key issues
such as how to derive the framework stories from the
user stories..

Keywords
eXtreme Programming, XP, Software Frameworks

1 INTRODUCTION
eXtreme Programming
Extreme Programming has its roots in Information
Technology (IT) systems development where it was
conceived as a way to make the IT organization (“de-
velopment”) much more responsive to the needs of the
business (represented by the “customer”), by letting the
customer select exactly those stories (features) that they
need implemented for a particular release of the system.
By making the stories small and concrete, an initial
version of the software system can typically be built and
deployed in just a few months. Additional functionality
is then added in subsequent releases. The design
evolves over multiple releases as more and more stories
are built. Over time, frameworks may emerge as the
common implementation of many related stories. This
process is described in detail in the various books on
XP, starting with [1].

Frameworks
A software framework is a mechanism used to signifi-
cantly reduce the amount of software that needs to be
developed when a system contains many examples of
similar behavior. Frameworks [2] are typically charac-
terized by:

1. Reusable, common behavior (typically do-
main-specific), into which one inserts

2. pluggable customized behavior, which is

3. called by the framework (“inversion of con-
trol”)

Examples include testing frameworks such as JUnit or
SUnit, IDE frameworks such as IBM’s Eclipse or appli-
cation frameworks such as IBM’s San Francisco.

There are several key circumstances in which frame-
works are crucial:

1) A single system requires many instances of similar
functionality. A software framework makes build-
ing these variations more efficient.

2) A software company is building a collection of
products for different markets or types of custom-
ers. The products share a set of common behaviors
and each has it’s own peculiarities. A software
product line framework allows the members of the
product line[3] (or family) to share a significant
amount of software thus reducing development and
maintenance costs as well are reducing the time it
takes to bring a new product to market.

3) A software company recognizes a market exists for
a framework product that will make it easier for it’s
clients to put functionality into their own systems.

Frameworks vs. XP
In “classic XP”, frameworks are built by refactoring the
software built in response to user stories with similar
yet possibly conflicting requirements. The framework
“emerges” as more user stories are built and the com-
mon software is factored out into reusable classes which
call “plug-ins” that provide the different behavior. This
approach depends on collective ownership wherein the
clients of the emerging framework can be refactored
simultaneously with the framework [1].

 Traditional XP addresses single system frameworks
quite effectively and will even work for product line
frameworks as long as the product line is not so large
that XP cannot be used to develop it.

But in cases where the product line is too large to be
built by an XP team practicing collective ownership or
when building a framework product, the “classic” user-
story-driven approach to XP doesn’t work because we
can neither afford to wait for all the user stories nor can
we refactor all the client code as we evolve the frame-
work.

In these cases, we need a way to apply XP practices to
defining and prioritizing the functionality of the frame-
work distinct from the products or applications that will
be built upon it. Yet the principles of YAGNI (“You
aren’t going to need it”) and “build the simplest thing

114

that could possibly work” would appear to be in direct
conflict with what we need to achieve.

ClearStream Consulting Background
ClearStream Consulting has experience building a
number of domain-specific frameworks that are in use
by numerous customers[4]. We have recently applied
XP techniques in the building of several frameworks.
We have also been engaged in XP mentoring of clients
that build frameworks. From these two perspectives we
have discovered several ways we need to modify and
enhance ‘pure’ XP.

2 FRAMEWORK CHALLENGES
Building a software framework for delivery to multiple
customers, whether internal (product line framework) or
external (framework product) is quite different from
building a single system for a single customer. Amongst
the differences are:

• Lack of a single customer
• Story concreteness vs. generality
• Difference in definition of “business value”
• Up-front vs. emergent design

Lack of a Single Customer
When the objective is to build a framework for sale or
delivery to many other organizations, there will not be a
single customer who can describe what the framework
needs to do and decide on the prioritization of the capa-
bilities. Often, the end customer isn’t even willing to
share details of what they want to build using the
framework lest the information fall into the hands of
their competitors. The requirements and prioritization
coming from multiple customers often conflict and
contradict each other.

Story Concreteness vs. Generality
One of the frustrations that have been commonly ex-
pressed by people trying to build frameworks using XP
is the concrete and instance-based nature of user stories.
Framework developers say things like “We are paid to
generalize; that is the value we provide to the com-
pany!” The concreteness of user stories tends to get in
the way. They are also too far removed from the capa-
bilities to be delivered by the framework.

Difference in Definition of “Business Value”
The framework product supplier is evaluated on the
ability of the customer to produce many different sys-
tems based on the framework. Being able to build a
single concrete implementation often has no business
value as it can only be sold to a single customer. Thus,
the focus on delivering a simple and very concrete sub-
set of the system functionality as early as possible (thus
requiring very little analysis and design up front) is just
not valuable. The framework provider typically wants
to facilitate the ability to do several similar things with
the framework to demonstrate flexibility right away. An
example would be the need for a commerce framework
to be able to accept both cash and credit card payments
in the first release.

Explicit vs. Up-front Design
An XP project generally progresses one story at a time,
with no explicit need to worry about the ordering of the
stories. The system architecture and any underlying
infrastructure evolve as more stories are implemented.
The solution is generalized as time goes on through
refactoring. This gradual evolution works well for one-
off solutions. However, to build a successful software
framework product, a bigger picture view is required up
front in order to understand where the similarities are
and where the points of customization are located (a,k.a
flexibility points or hot spots[6]) This is how the
framework supports variability.

3 ADAPTING ING XP FOR FRAMEWORKS
XP needs to be adapted in several ways in order to
successfully support building framework products. We
call this variant of XP Framework XP. We need to
recognize that stories occur at two levels: user stories
and framework stories. As a result, the traditional XP
role of customer needs to be split into two roles: end-
customer and framework manager. Additionally, the
planning game needs to be augmented with several new
“moves” to reconcile the gap between user stories and
frameworks stories.

Building software frameworks requires a great deal of
abstraction and generalization. Many different usage
scenarios need to be examined before the best design
can be selected. The key to making XP work when
building frameworks is to resolve the tension between
the concreteness of the stories that describe examples of
what the user wants to do and the level of generality
required of a framework.

XP Roles for Framework Building
End-Customer
There are typically many end-customers of a framework
product; these are the individual developers who will
use the framework and the organizations they work for.

Framework Manager
For a framework product, someone within the organiza-
tion building the framework needs to play the role of
customer in the planning game[1,5]. Typically in the
framework product case, the product manager plays this
role, but it could also be a framework architect or an
analyst who understands the clients’ domain.

Development
Development may need to help the framework manager
extract the framework stories from the user stories or to
come up with additional user stories to demonstrate the
desired flexibility..

Story Levels
When the objective is to build a framework for sale or
delivery to another organization, the XP stories should
fall into one of two levels:

1) Stories that describe a concrete instance of what the
end-user would build using the framework. We call
these user stories.

115

2) Stories that describe a single capability of the
framework itself. We call these framework stories.

The problem is that the framework manager often can-
not write the framework stories directly. The best they
can do is to collect the concrete requirements (user
stories) from the various end customers and feed them
to development during the planning game. Imagine this
as development responding to the customer by stapling
a number of user stories together and saying, “We be-
lieve these are all the same story; we estimate the cost
to be x.”

Abstract End-User Story
Another way of describing flexibility is the “abstract
story” in which the customer describes how something
might vary. In classic XP, such abstract stories are dis-
couraged; the customer is asked to write the specific
stories that describe each way they want it to work. In
framework XP, it would be up to the framework man-
ager (possibly assisted by development) to fill in the
specific stories.

Creating Framework Stories from User Stories
While the simple metaphor of stapling a number of user
stories together into a single framework story is appeal-
ing, it is often not quite this straight-forward. More
typically, a set of user stories will collectively imply a
set of framework stories with each user story possibly
requiring several framework stories to be realized. If the
framework manager is not technical enough to be able
to derive the framework stories herself, the develop-
ment team may need to help her understand the deriva-
tion from the user stories so that the framework man-
ager can choose the sequence of framework stories that
provide the most business value.

Testing Framework Stories
A framework requires two levels of acceptance tests:
those that verify the framework stories and those that
verify one or more concrete user stories. In classic XP,
the latter would typically be written by the customer
and executed while building the application that is
based on the framework product. But it is better if the
development team writes a very small sample applica-
tion, which exercises the framework and allows direct
testing of the user stories that demonstrate the flexibility
supported by the framework.

4 MODIFIED PLANNING GAME
In effect, we add several new moves to the exploration
phase of the planning game in addition to the traditional
ones of “write a story” and “split a story” (the cus-
tomer) and “estimate a story” (development) and pri-
oritize stories (customer). The new moves are:

• Analyze variability (to extract implied frame-
work capabilities)

• Define framework stories

These two moves create the framework stories that are
used in the release-planning phase of the planning
game.

Analyze Variability
In this move, development analyses each concrete user
story and extracts a set of concrete framework capabili-
ties that would be needed by the customer to achieve
their goal. The key is to have the framework manager
put enough user stories in front of the developers so that
they can generalize them into framework stories, which
they then estimate. The framework manager can then
decide which framework release to place the framework
story into. The first step is to partition the story into
those things that could possibly be provided by the
framework, and those that must be supplied by the cus-
tomer. The second step is to define the capabilities that
the framework provides. At this point, these can be
thought of as a “wish list” such as: “It would be great if
the framework could automatically determine when to
invoke the user logic.”

One technique we have found useful is to sift through
the user stories looking for candidate topics that a
framework might provide help with and cross-reference
the user stories with the topics. This topic list then be-
comes the starting point for discovering the framework
stories. When we find places where otherwise similar
user stories conflict, we have identified candidate “hot
spots” or “flexibility points” needed in our framework.

Define Framework Stories
In this move, development collects the extracted con-
crete framework capabilities (“wish list”) and defines
the simplest set of framework stories that would provide
the required capabilities. This step requires enough user
stories to imply the nature of the framework services
that will be required. In this case, “the simplest thing
that could possibly work” is more complex than for a
single system reflecting the very nature of a framework.

This move corresponds roughly to the analysis phase of
traditional software engineering processes and results in
what could be called the use cases of the framework.
These often correspond to the “change cases” of the
applications that would be built using the framework
product. While defining the framework stories may
require defining the API of the framework, one need not
design the framework implementation yet.

Framework Release Planning
To remain faithful to the XP principles, it is important
for the framework manager (the “surrogate customer”)
to retain control of the development sequence and pri-
orities by choosing the framework stories for develop-
ment in each release of the framework. Since the end
customer is not involved in the planning game, it is up
to the framework manager to make the difficult trade-
offs between the possibly conflicting priorities of the
end customers and present a single voice to develop-
ment.

5 EXAMPLE
In this example, we provide a set of user stories for a
gas pipeline billing system and the framework stories
for a billing framework that were derived from them.

116

Abstract End-User Story
The following abstract story might expand into the user
stories that follow.

Flexible Rate Calculation
I want to be able to change the way the rates are cal-
culated as my business changes.

User Stories
Flat Rate Calculation, Using Volume

The charge against the customer’s account is calcu-
lated by multiplying the number of million cubic
feet of gas moved on the pipeline regardless of
where it was received and where it was delivered.

Fixed Monthly Charge, Using Volume
The customer may be charged a flat monthly fee for
the contracted capacity whether or not they use it.
These are in addition to any usage based charges
(which are typically lower than for contracts that
don’t have any capacity charge.)

Contract Based Rate Calculation, Using Volume
The charge calculated for the volume of gas moved
on the pipeline is computed using the rate specified
in the customer contract associated with the point at
which the gas was received.

Distance Based Rate Calculation, Using Energy
The charge is calculated by multiply the energy con-
tent (in Kilo Joules) of the gas moved on the pipe-
line by the published distance between the receipt
point and the delivery point.

Variability Analysis
These user stories have several key points of conflict.
Assuming they are all true statements of requirements,
these points of conflict become our points of variability.

• Several stories talk about the units for usage upon
which the charges are based (volume vs. energy
content of the gas)

• Several stories talk about different usage multipli-
ers (single rate, receipt point, contract specific,
distance of haul)

• One story implies a flat monthly fee regardless of
usage while the remainder only talk about usage

These lead us to define a framework story for each of
these variability points.

Framework Stories
The following framework stories describe the specific
dimensions of flexibility seen in the preceding user
stories.

Flexible Charge Calculation Algorithm
The charge calculation has a fixed monthly compo-

nent and a usage based component.

Flexible Usage Charge Calculation
The usage-based charge may be calculated using a
single rate, a rate determined based on: the receipt
point, the customer’s specific contract, or the pub-
lished distance between the receipt and delivery
points.

Usage Charges Based on Energy or Volume
The amount of the usage charge may be based on ei-
ther the volume of gas moved or the energy content
of the gas moved.

6 CONCLUSIONS
XP can indeed be used to develop frameworks for de-
livery to multiple, possibly anonymous, customers but it
must be modified to be effective. It is important to dis-
tinguish between the user stories that describe concrete
situations and the framework stories that describe the
framework capabilities (that in turn support the general
cases of the user stories.) This requires additional
moves in the planning game for turning user stories into
framework stories and a framework manager role to act
as the single customer who prioritizes the functionality
to be developed.

ACKNOWLEDGEMENTS
The authors would like to thank the clients who’s pro-
jects gave us the opportunities to gain the experiences
described here as well as the colleagues who acted as
guinea pigs while we tried out these ideas.

REFERENCES
1. Beck, Kent Extreme Programming Explained -

Embrace Change. Addison Wesley 1999.

2. Roberts, D. and Johnson, R. Evolving Frame-
works: A Pattern Language for Developing
Object-Oriented Frameworks in "Pattern Lan-
guages of Program Design 3", Addison-
Wesley, 1997

3. Northrop, L What is a Software Product Line?
http://www.sei.cmu.edu/plp/frame_report/what
.is.a.PL.htm

4. Meszaros, Gerard et al “Business Object
Framework as an Enabler of Business Appli-
cation Development”, OOSPLA’98

5. Beck, Kent, and Martin Fowler Planning XP
Addison Wesley

6. Pree, W Design Patterns for Object Oriented
Software Development, Addison Wesley, 1994

