

28

Code Redemption - XP as a Means of Project Recovery
Peter Schuh

ThoughtWorks
Suite 600

651 W. Washington
Chicago, IL 60661
+1 312 373 8433

peschuh@thoughtworks.com

ABSTRACT
The paper discusses an actual project that had fallen into
developmental disarray, details the steps taken to turn it
around, and analyzes how the gradual institution of XP
facilitated the project’s ultimate recovery. In its
introduction, the paper briefly discusses the project’s
history and its state when the diagnosis was critical. The
second section details the two-month-long death march
that initially saved the project, and why and how it was
undertaken. With the patient stabilized, the paper then
explains how principles of XP were gradually
administered to reform the codebase, retool the build and
testing process, and restore the project to good health.
The fourth section distills the lessons learned from this
project into a set of general guidelines that may be
applied to other projects in similar or less-dire straits. The
paper concludes that XP, given in small and gradually-
increasing doses, can recover a project; however,
depending on the severity of the project’s distress, XP
alone may not be enough.

Keywords
eXtreme Programming, code recovery, project
turnaround, phasing in XP, build process, JUnit,
ObjectMother

1 INTRODUCTION
Near the close of 1999, my current employer,
ThoughtWorks, had run into a bit of a jam with one of its
newer projects. The development process was dearly
behind schedule. The consultancy that had preceded us
had spent a year defining and architecting to requirements
that were already out-dated. Acknowledging that they had
switched horses midstream, the client was willing to scale
back on functionality; however, they refused to budge on
the delivery date. ThoughtWorks had two months to turn
the project around and to deliver a business-ready
application. For the purposes of this paper, we will say
that due date was February 2nd, Groundhog Day.

The application under construction was web-enabled and
ejb-powered, with a code base that was consistently
inflexible and temperamental. While the system was
architected in a smart n-tier fashion, its innards were
seriously ill. The business objects served as little more
than mappers to the database. The session bean methods,
the brain-trust of the application, were super-long tendrils
of procedural code. The servlets were little more that

pages of html stuffed into StringBuffers and wrapped in
Java. Tests, where they existed, were expected to fail.
Commenting was sparse and undependable. Building and
deployment were a near-mystery to over half the
development staff.

Possibly due to the sheer size and pervasiveness of the
problem, ThoughtWorks had been slow to realize how
fundamentally bad things were. Even when the danger
was apparent to the consultants on site, the team lead and
project manager had to compete with several other
projects for overstretched resources. As is the case with
many a dire emergency, the situation had to become one
in order to receive the attention it needed.

2 DAMAGE CONTROL
I was one of four “resources” that began flying to the
client site in December, just two months prior to the
application’s immutable go-live date. We joined six
developers who were already on site. Our mandate was to
slap the application into shape, no matter the cost. By the
middle of January, conference-room dinners were the
norm, all-nighters customary and weekends worked
through. Although Extreme Programming Explained[1]
books were ordered and distributed and even read,
practically every principle (from the 40-hour work week
to testing to simplifying the build process) was
disregarded.

We felt that the impending deadline did not allow us the
luxury of XP. Instead, the application was cut up and
parceled out by areas of expertise: servlets, doc gen,
business engines, database, and so on. Because it was
deemed untenable, the servlet package was all but
rewritten. Elsewhere, refactoring was an opportunist’s
endeavor. If it was thought that refactoring would take
less time than complimenting ugly code with more of the
same, then refactoring was undertaken. Otherwise,
developers sucked it up and coded ugly.1 Commenting
and test-writing were goals one aspired to, and
occasionally met. In lieu of an object model or static
documentation, the database was scrubbed clean and
reverse-engineered into a data model. This was regularly
maintained and served as the most reliable high-level

1 Engendering such memorable comment tags as: “It’s 3:30 in
the morning. Please forgive me.” This was found atop a 150 line
switch statement.

29

specs for the application.

The 70-plus hour work-weeks would likely have never
continued if developer-pampering had not been
administered by both he PM (Project Manager) and the
top levels of ThoughtWorks management. Sushi was
catered in for conference-room dinners. The PM
graciously made two a.m. ice-cream runs. Last minute,
full-fare tickets were bought for hurried trips home. It
was made clear, through words, acts and expenditures,
that ThoughtWorks understood and genuinely appreciated
the sacrifices that the team was making.

In the end, it all came together the last week of January.
The application did its part by bursting nearly every seam
on the 30th, forcing a 24 hour go\no-go decision. Efforts
were redoubled. Things improved. Functional tests
passed. The last build was performed six hours prior to go
live. Five thousand rows of data were snuck into the
database four hours later. After eight weeks the system
was delivered—minus some requirements and plus a few
too many bugs—on time. There was one member of the
team who best expressed the general consensus: “I’m
glad I did that once. I never want to do that again.”

3 THE NUTS AND BOLTS OF CODE REFORM
On January 3rd the system was live and we were all well
aware of its shortcomings. The client had a long list of
functionality to be added, not to mention the requirements
that had been dropped to meet go-live. Meanwhile, the
team was determined to refactor the application into
something we weren’t embarrassed to leave our names
on. The team lead and PM negotiated with the client for
time to apply “ease of maintenance” to the system. 2 The
team—or some members of it, at least—decided that this
refactoring phase would be an opportune time to begin
adopting XP.

Walking Out of the Starting Gate
The switch to XP was a slow, unsteady process. Not only
was the current code base a reluctant conspirator, but only
perhaps a third of the team really supported the adoption
of XP. Another third was impartial and, as one might
expect, the final third was quietly but vehemently wishing
that all this extreme nonsense would just go away.

Each XP-proponent on the team began to advocate one or
two of the main principles. Steps toward XP were
sometimes made by lone developers, sometimes
advocated by pairs, and eventually pushed by the team as
a whole. Single -handed accomplishments were made in
testing and building. As mentioned earlier, the tests that
did exist were unreliable, largely because they were based
on non-restorable data that had either been altered or
dropped from the database. One developer set out to base
the existing tests on data that could be replenished, then
bundled those tests into a JUnit-based test suite[4].

2 The term was proposed by a senior developer, and future team
lead, in response to the suggestion that the word “refactoring”
not be put on timesheets.

Another developer streamlined the build process,
reducing it to a few simple steps that could be quickly
learned, allowing every developer on the team to perform
his own build. Some developers paired up to take on
more traditional development tasks. The buggiest sections
of the application were attacked first. Because we knew
new functional requests were not a long away off,
refactoring, for the most part, was pursued gently.
Mediocre code was improved upon when convenient,
while truly untenable code was gutted and rewritten.
From a team-wide perspective, senior developers were
advocating JavaDoc[3] comments and unit tests for all
refactored or new code.

Learning from Successes and Building on Momentum
Shortly after Groundhog Day, two developers began
applying a constants pattern to the application. Because
the constants, as they are wont to be, were used
throughout the application, the switch-over was neither
smooth nor painless. The general consensus was that the
refactoring job was necessary and the pattern was solid
both for current use and extensibility. It was agreed,
however, that better communication was needed for
future refactoring,. The result was an increase in e-mail
“advisories”, pick-up development discussions and
regularly scheduled code reviews.

The team’s analysts had readily accepted the story card as
their new document, both as a way to distribute
functionality-requests to the developers and as a basis on
which to negotiate with the client. When the first batch of
cards was handed to development, some pairs and some
individuals began cleaning up the portions of the
application associated with their cards. Tests began to
appear in the newly-refactored areas of code, and these
were added to the main suite. The build process was
made portable, so developers could build locally, prior to
checking in. The team’s build machine was moved from
an occupied developers space to an otherwise empty
cube. The number of builds per day increased. The
number of broken builds plummeted.

Making It Up As You Go Along
By April nearly all of the functionality originally
promised to the client had been coded into the application
and passed UAT (user acceptance testing). Once it was
clear the project was no longer in imminent danger, a few
team members turned their attention to the more
fundamental aspects of development. As a result,
innovations helped to further our adoption of XP.

When the test-suite was initially linked up to the build
process, and the JUnit results e-mailed out, developers
were spammed with redbars3. It took weeks to whittle the

3 For the uninitiated, JUnit is most commonly run in its GUI
(Graphical User Interface) incarnation on the developers
machine. While running its tests, the tool graphically represents
its progress as a status bar. As each test passes, this green bar
increments ever-closer to completion. If a test fails, the entire
bar goes read (under the assumption that no test has truly passed

30

error log down and see out first greenbar. When this
occurred, a calendar was tacked to the wall alongside the
build machine, and the result of the last build of the day
was recorded with a red or green sticky note.4 With this
highly visible measure of performance to serve as a
reminder, developers began to work toward nightly
greenbars. Then, about a month after its posting, the
calendar veered dangerously into the red just as a major
delivery date was approaching. After five days of
consistent redbars, one developer pulled the alarm by e-
mailing a team-wide plea for a greenbar. Once aware of
the situation, the analysts and PM put pressure on
development to promote only those builds that
greenbarred, and the days on the calendar moved back
into the green. In the end, the calendar served two
benefits. First, by providing a simple, straightforward
metric, it gave development a clear and attainable
performance goal. Second, because it was viewable and
easily understood by the rest of the team, it served as a
failsafe mechanism for development. When
development—albeit, in a heads-down coding frenzy—
failed to follow their own rules, the remainder of the team
was able to push them back in line.

The build process, itself, was again improved upon, and
push of a button builds finally became a reality.5 Possibly
more important, build promotion from the development
environment to analyst-testing to UAT was automated.
Push-of-a-button started with code-checkout and ended
with the e-mailing of unit-test results. It meant that even
an analyst could do it, and they did. With the guidance of
the automated test results (which were run on every
build) an analyst could promote the latest greenbar build
into a testing environment. This saved development the
hassle of having to be on call to perform the task, and
resulted in quicker feedback on new functionality and bug
fixes.

Finally, several developers teamed together to devise and
code an object-generator, dubbed ObjectMother[5]. This
utility could provide a complete and valid structure of
business objects (think of an invoice, its lines and all
related charges) via a handful of simple method calls.
ObjectMother had numerous benefits. First, by drastically
simplifying the creation of test data within code,
developers were much less likely to “cheat” and base
their tests on supposedly persistent data in the test
database. Second, the ease with which test data could be

until all tests pass). Hence, a suite of tests that completes
successfully gives a “greenbar”, or “greenbars”. Alternatively, a
test suite that fails ”redbars”.
4 It should be noted that the calendar idea was actually, and
shamelessly, stolen from another ThoughtWorks project, where
it had been previously used with great success. This project, and
their practice of XP, has been documented in Cutter IT
Journal.[6]
5 For more information on how set up a build process in this
manner, and why you would bother to do it, see another
ThoughtWorks inspired article, “Continuous Integration.”[2]

created via ObjectMother greatly simplified the task of
converting existing tests that did rely on persistent data in
the database. Third, by making the test suite database-
independent, we gained the ability to swap UAT and even
production databases into and out of the development
environment, allowing development to code and debug
against real data. Finally, because it had become easy to
create test data, developers began writing more tests.

Past the Finish Line, and Still Running
In order to reduce travel costs, the project began rolling
off some of its more experienced resources in late March
(only three months after the cavalry was sent in). The
junior developers who had proven their mettle were given
greater responsibility. And fresh, impressionable recruits
were introduced into the project. Good practices were
passed along, and XP-based development gained more
momentum. Within six months, the project had risen from
well-deserved infamy to one of ThoughtWorks better
respected.

4 IF WE HAD TO DO IT ALL OVER AGAIN
 (GOD HELP US)
Notwithstanding everything said above, what saved the
project was not XP. Instead, it was a well-financed and
tremendously successful death march. The client’s refusal
to budge on the delivery date was the single greatest
contributing factor to this outcome. Groundhog Day
meant that the team could not step back and reassess the
situation. It meant that the course of development could
only be adjusted by degrees, not turned on its head. There
was no time for developers new to XP to learn to program
in pairs. More often than not, bad code could not be
refactored. Too often, the hack won out over the simplest
thing that could possibly work. The irony of it, however,
is that Groundhog Day took the code live, and XPers
prefer to work with live code.

While extreme programming wasn’t the team’s
immediate salvation, it was, in the end, what made the
application sustainable beyond February 2nd. It was the
gradual adoption of XP that recovered, retooled and
rejuvenated the code base. Due to the nature of the
project, there were many aspects of XP that I believe
were correctly put on hold during the first months of
rehabilitation. But there were other principles, such as
improving the build and test processes, that we could
have introduced much earlier. In the end, it was important
that we all understood that we couldn’t change the world
in a day. If someone hasn’t written it in already, drawing
knowledge from previous experience should be included
among the principles of XP.

So, it’s two months to go-live, the team methodology to-
date has been waterfall, the project is a month and a half
behind schedule, and Beelzebub is banging at the front
door. What do you do? Lock the door. Okay, what next?

What You Should Do Right Away
Non-XP Essentials
For starters, I cannot stress enough how essential

31

ThoughtWorks’ support was to the initial success of the
project. I do not believe the project would have ever met
its original goal without serious moral and financial
commitments. First, employees simply are not going to
give up their lives for two months, and deliver the
impossible on a silver platter, if they are not constantly
reminded how important the matter is and how valuable
they are. Furthermore, ThoughtWorks contributed to our
initial success by ma king intelligent staffing decisions.
When it is clear that a project is in danger and extra
developers are required, additional resources must be
targeted at the specific needs of the project. Finally, it
always helps to promise a reward in the event of success.6

Target the Build Process
This is one of the absolutely first things we should have
done. Developers are keen to those things that get the
greatest benefit from the least amount of effort. A long,
arduous build process discourages developers from taking
responsibility for the code they check in. Conversely, the
simpler it is to perform a build, the less time it takes, the
more likely a developer will want to know that new code
integrates successfully. Making the build process
portable, so it can be run on individual’s machines,
further encourages responsible check-ins.7 Assuming the
process is easy and not time -consuming, what developer
wouldn’t check out the latest code, perform a clean
compile, and check in with confidence. The build process
does not have to be true push-of-a-button at this stage, but
it must be streamlined to only a handful of steps. The
benefit to the team is obvious, and measurable. There are
few things that are more discouraging in software
development than to spend an entire day trying to make a
clean build.

Organize a Test Suite
Even if it’s the first working test class to go into the code-
base, an AllTests class should be written and run at the
end of every build. Any existing tests that do pass, or can
easily be made to pass, should be added to AllTests.8 A
build that redbars should be treated no different than one
that fails to compile; you will need to sell this to the
analysts —or client—as well. Developers should be
encouraged to write tests and add them to the test suite,
but test-writing shouldn’t be shoved down their throats (at
least not yet).

6 In our case, the entire team was flown to Vegas, put up in the
Mirage and given stake money. Bonuses, raises, and better
future assignments also work well.
7 This does go against the XP notion of employing a build
machine or build token. At ThoughtWorks we tend to forgo this
rule and, in its stead, stress local builds and testing prior to
check in. This alternative process has been very successful.
8 I recommend against including old tests that fail, even if it is
the team’s intention to get them working some time in the
future. I believe there is something psychological in seeing or
wanting to see a greenbar. A redbar that is a “virtual” greenbar,
because “those test never pass anyway,” isn’t the same.

Write an ObjectMother
Writing an object-generator is not a trivial task, but it
pays for itself by shortening the time spent writing new
tests and fixing broken ones. The utility reduces the
effort-versus-benefit ratio for test-writing. A developer is
much more likely to write a test when an invoice and all
its associated objects can be acquired from one simple
method call, and much less likely to write the same test
when the invoice, its lines and charges, the customer and
his billto address and perhaps the associated assets all
have to be instantiated and bound together before calling
getTotal(). ObjectMother also makes it easier to maintain
tests when their associated business objects change,
because the instantiations are all centered in one place
instead of being spread across the application.

XP Principles to Phase-in Early
Gentle Refacoring
Refactoring is good, but at this stage in a project’s
recovery, it must be tempered for several reasons. First,
on the customer side, it may be difficult to get client buy-
in. Second, the worse the code base is, the less likely it is
to follow object-oriented ideas of abstraction, the more
difficult it will be to isolate portions for retooling. Third,
at least in the beginning, you are likely not to have either
a quick build process nor dependable test results as an
indicator of success. Nonetheless, gentle refactoring must
be pursued from the start. Insufferable portions of code
should be removed. Any refactoring task that offers low-
risk and high-value should also be undertaken.

Code Commenting
This is an easy thing to encourage without spending too
much time or effort. It’s even better when you have a
standard like JavaDoc that you can simply pass (or e-
mail) around and occasionally refer to during discussions.
If someone is really hot on this topic, they could
incorporate the generation of JavaDocs directly into the
build process.

Stand-up Meetings
We never introduced these, and I believe it was a major
mistake. Quick daily face-to-face meetings keep
developers informed as to what others on the team are
doing. They help to keep people from stepping on each
other’s toes. They keep the team lead informed as to who
is ahead and who is behind on their tasks. They air new
ideas and keep people for duplicating work.

Mind the Database
Okay, this isn’t an XP principle, but it’s definitely as
important as one. The database is an essential component
of nearly every business application; neglect it at your
peril. Nothing good will come of a database that is
architected without thought of conversion or reporting.
Similarly, a database where schema is updated for new
attributes and entities but not deleted ones, and where test
data is allowed to pile up and atrophy, will be
cantankerous to develop with, hard to test on, and
difficult to alter. Conversely, a well-architected and

32

maintained database, through intelligent and efficient
organization of data, can guide good development.
Finally, as mentioned earlier, in lieu of an object model or
other documentation, a data model can make for an
extremely handy overview of the application.

Principles to introduce once the pressure lets up
Step Back and Relax
Once the project has met some of its immediate goals (a
major delivery or go-live date) it’s a good idea for the
development team to step back and get everything into
perspective. If the time has come to begin serious
refactoring, what parts of the application should be put
through the grinder first? How is the adoption of XP
coming along—who is resisting and who is welcoming it?
How is the mental health of the team? If the last couple
months have been a bloodbath, are there exhausted
resources who need to be rolled off the project?9 Would
the project benefit from new recruits and some fresh
perspective?

Roll in the Rest of XP
Once the pace of the project returns to something akin to
normal, the remaining elements of XP should be
introduced. When functionality is added in poorly-written
areas of the application, as a rule, the code should be
refactored. The team should start looking at patterns.
What parts of the application might benefit from their
use? Pair programming should be strongly encouraged
(and changes to the workspace made in order to
encourage it if necessary). Story cards need to become the
means by which functionality is proposed, deliberated
upon and built into the application. Finally, the build
process should be made push-of-a-button, and if it is
portable then the test suite should be made portable as
well, allowing developers to run the full suite on new
code before they check in.

Communicate, Communicate, Communicate
If you have so-far managed to avoid instituting stand-up
meetings, put them in place now. Whenever possible, XP
principles should be propagated from the bottom up, not
imposed from the top down. Ideally, this means that the
team as a whole should decide what principles of XP it is
going to introduce and get serious about first. Involve the
entire team in estimation. All of these things foster a
sense of collective ownership, not only of the code but of
the general well-being of the project.

5 CONCLUSION
Were we to do it all over again, and were the client
willing, many members of our team would have razed the
code base and started again from step one. But few clients
are so giving and few projects so fortunate. Furthermore,
who is to say the project will not falter again, for similar
or wholly different reasons? In such situations, in the end,

9 This is not intended to be negative. It is well understood that
death marches can take their toll on developers. At the end of
one, a change of scenery may be in order.

little is achieved without a lot of hard work.

The upshot is that a downtrodden project can be turned-
around with the gradual institution of XP, and a seriously
troubled project can be recovered via XP with sufficient
high-level support, encouragement and incentive (but this
sort of redemption doesn’t come cheap). The guidelines
listed above are based on the process that worked for us.
Like XP itself, they would have to be tailored to the needs
and particulars of any other project. And, ultimately, it is
not so much XP that brings the project around, but the
efforts of individual developers and the team as a whole.

ACKNOWLEDGEMENTS
Credit must first and foremost be given to the fellow
ThoughtWorkers with whom I endured the worst
death march I ever wish to be a party to. I am quite
grateful to have worked with such a team. Much
thanks, also, to Martin Fowler for suggesting the
topic of this paper and providing the nagging
necessary to ensure that it was written.
REFERENCES
1. Beck, Kent. Extreme Programming Explained.

Addison-Wesley, 1999.

2. Fowler, Martin and Matthew Foemmel.
“Continuous Integration.” Online at
http://www.martinfowler.com/
articles/continuousIntegration.html.

3. JavaDoc Tool Homepage, online at
http://java.sun.com/j2se/javadoc/index.html

4. JUnit Website, online at: http://www.junit.org/

5. Schuh, Peter and Stephanie Punke.
“ObjectMother:: Easing Test Object Creation in XP.”
Pending publication.

6. Taber, Cara and Martin Fowler. “An Iteration in
the Life of an XP Project.” Cutter IT Journal 13, 11
(November, 2000).

