

10

A Methodology for Incremental Changes

Václav Rajlich

Computer Science Department
Wayne State University

Detroit, MI 48202
1-313-577-5423

rajlich@cs.wayne.edu

ABSTRACT
Incremental change is one of the key principles of
Extreme programming. This paper presents a
methodology and a case study of incremental changes
using a small application written in UML and Java.
Domain concepts play a key role in this methodology.

Keywords
Incremental programming, Extreme programming,
software evolution, domain concepts, change propagation

1 INTRODUCTION
Extreme programming is based, among several other
things, on the fast delivery of small releases [1]. They
provide valuable feedback about the direction and
progress of the project and allow timely adjustments of
the project’s goals and schedules. By this method,
Extreme programming substantially lessens the inherent
risk in the project.

This paper deals with incremental change, which is the
foundation of small releases. Incremental change
introduces new functionality into the program. It is
different from other kinds of changes that preserve,
retract, or modify existing functionality.

The paper presents a methodology for incremental
change. The methodology is aimed more at a novice
rather than at an experienced programmer. It deals with
domain concepts and their role in incremental changes.

Section 2 explains the methodology. Section 3 describes
the case study. Section 4 summarizes the experience.
Section 5 relates this work to other research, and section
6 contains conclusions and future work.

2 THE BASICS OF THE METHODOLOGY
Incremental change adds new functionality to the
application. We observed that it implements one or
several closely related domain concepts. For example, the
Point-of-Sale application needs to deal with several forms
of payment and hence there is an incremental change that
introduces “credit cards”, “checks”, etc.

We also observed that the new concepts introduced in an
incremental change are not entirely new. Usually they are
already present in the code, though only in a primitive or
implicit form. For example, before the introduction of
credit cards and checks, the concept “pay” was already a

part of the program. However, the concept was in a
primitive form, allowing only cash, represented as just
one number. The incremental change implements the
respective concepts explicitly and fully. Hence the
domain concepts play a substantial role in the selection
and implementation of incremental changes.

The concepts that are dependent on each other must be
implemented in the order of their dependency. For
example, the concept “tax” is dependent on the concept
“item” because different items may have different tax
rates and tax without an item is meaningless. Therefore,
the implementation of “item” must precede the
implementation of “tax”. If several concepts are mutually
dependent, they must be implemented in the same
incremental change.

Mutually independent concepts can be introduced in
arbitrary order, but it is advisable to introduce them in the
order of importance to the user. For example, in the
Point-of-Sale program it is more important to deal
correctly with taxes than to support several cashiers. An
application with correct support for taxes is already
usable in stores with one cashier. An opposite order of
incremental changes would postpone the usability of the
program.

Each incremental change follows the following sequence
of steps:

1. Select the domain concepts to be introduced or
further developed.

2. Select the test cases for the new concepts and
implement the new concepts as new classes.

3. In the old code, find where the concepts are already
present (often primitively or implicitly).

4. Refactor old code if the old concepts are delocalized
and can be localized into fewer classes.

5. Change old classes that contain old concepts so that
they properly interact with the new classes.

6. Propagate the change through the remaining old code
as far as necessary.

11

Figure 1

The methodology is illustrated by a case study of the next
section.

3 CASE STUDY: POINT-OF-SALE
The case study deals with development of a Point-Of-Sale
application that sells products in small stores. It uses
UML in combination with Java.

The initial development started from scratch. The goal
was to implement a working program that keeps an
inventory of products, sells them, receives delivery, and
supports a cash register. These concepts are closely tied
together and must be present in any meaningful program.
In keeping with the philosophy of Extreme programming,
the classes were designed and implemented at a minimal
level of functionality, see Figure 1.

In the second incremental change, we implemented
support for credit cards and checks. We encapsulated all
forms of payment in a base class payment and introduced
subclasses for cash and authorized payments, with further
subclasses for checks and credit cards. This class
hierarchy was plugged into the original system through
the interaction between the old class sale and the new
class payment. Class sale was changed and a secondary
change was done also in class register.

The third incremental change introduced support for price
fluctuations. Products can have different prices at
different times, for example limited time sales. We
implemented this feature in classes price and promoPrice,
which were plugged into the system through the
interaction with class item. Class item was changed and

the change propagated through old classes store,
saleLineItem, and sale.

The fourth incremental change introduced the
complexities of sale taxes. This incremental change is
described in more detail in the Figures 2 through 6.

sale

register

saleLineItem

store item

cash

payment

check charge

authorizedPayment

price

promoPrice

taxCategory

Figure 2

Different products may have different sales tax,
depending on state law. This is done by a new class
taxCategory, which is plugged into the program through
interaction with class item, see Figure 2. The arrow points
to the class that has to be fixed, in this case class item.
(The old class item does not deal with taxCategory and
must be changed to support this interaction.) The mark is
denoted by bold arrow in the diagram, indicating the
inconsistency and the direction in which it propagates.
For simplicity, the diagram does not contain class

1 1..*

0..*

1

item
UPC : long

Description : String
Price : double
Tax : double
Quantity : int

getItem()
setItem()

1

store
Name : String

acceptDelivery()
registerNewItem()
openStore()
closeStore()

1 1..* 1

1 1..*

saleLineItem

getTax()
getSubTotal()

0..*

1 1

register
Balance : double

startSale()
commitSale()
openRegister()
closeRegister()
totalSales()

1 1

0..*

sale
Date : Calendar

getTax()
getSubTotal()
getTotal()
sellItem()
setPayment()
payForSale()

1 1..*

1

0..*

12

members or adornments. The notation is self-explanatory
and it is based on [9].

In order to fix the inconsistency, the programmer visited
class item and introduced a list of applicable taxes and
relevant methods. These changes influenced classes store,
saleLineItem, and price, see Figure 3. The visit to class
price revealed that it does not need any changes and does
not propagate the change further.

sale

register

saleLineItem

store item

cash

payment

check charge

authorizedPayment

price

promoPrice

taxCategory

Figure 3

We then visited class store and modified it. The modified
class can create new taxCategory instances for particular
items. The next class, register, was visited but did not
need any modification and the change did not propagate
in that direction. The resulting diagram is in Figure 4.

sale

register

saleLineItem

store item

cash

payment

check charge

authorizedPayment

price

promoPrice

taxCategory

Figure 4

The next class we visited was saleLineItem. After the
changes were performed, class sale could be influenced
by the changes. Thus class sale is marked; see Figure 5.

Class sale required only one small change. Still, because
it interacts with two other neighboring classes, there is a
possibility that they may need a change, see Figure 6.

sale

register

saleLineItem

store item

cash

payment

check charge

authorizedPayment

price

promoPrice

taxCategory

Figure 5

Class payment did not have to be changed and the change
did not propagate further. Class register did not use the
tax information contained in the sale class and relies upon
prices supplied by the sale class. Therefore, there is no
change in register and we unmarked it, without
propagating the change further. This completed the fourth
incremental change.

sale

register

saleLineItem

store item

cash

payment

check charge

authorizedPayment

price

promoPrice

taxCategory

Figure 6

4 THE EXPERIENCE
The incremental changes of the case study introduced or
substantially refined concepts of the application domain.
We experimented with the size of the incremental
changes and observed that excessively small changes
usually do not decrease the number of classes to be
visited. They lead to multiple class visits and the result is
decreased efficiency of the work along with an increased
likelihood of errors.

On the other hand, changes that are too big may overload
the cognitive capabilities of the programmers, because the
programmers must deal with too many issues at once.
Hence, there is an optimal size of the incremental change.
In this case study, all incremental changes introduced one
to five new classes into the program, visited between
three and seven old classes, and modified up to four of
them.

During the change propagation, when a class was visited
but not changed, should its neighbors have been visited
also? There are several factors that influence this

13

decision. To miss possible change propagation means to
introduce a subtle error into the code that will be hard to
find later. Therefore we chose to be cautious, inspecting
more classes than absolutely necessary. Still, the
propagation must stop somewhere – otherwise every class
of the program would be visited for every incremental
change. The decision whether to propagate is based on
properties of the underlying code. For example, it is more
likely that a class that references the changed class will
also need a change, rather than a class that is referenced
by the changed class.

5 RELATION TO OTHER WORK
Extreme programming is described in [1]. In our view, it
is a part of the life-cycle stage of software evolution, see
[10].

When Extreme programming is used, it is often necessary
to refactor already existing code [1], [8]. Authors of [5],
[6], [7] study refactoring of C and C++ code. In this
paper, we did not present refactoring change but
recognize its importance.

In [9], the author defines evolving interoperation graphs
that are used as a theoretical model of change
propagation. They were used in Section 3 to describe
change propagation related to one of the incremental
changes.

There is much literature on software change during a later
stage of software lifecycle called servicing [10] or legacy
systems. During software servicing, the knowledge of
software decreases and the emphasis of software change
shifts towards program comprehension. The impact of a
change on the program becomes an important issue.
Change impact analysis is summarized in [2]. In [4] the
authors describe how to locate concepts using computer-
assisted search of software dependence graph.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a methodology and a case
study of incremental changes. We observed the role
domain concepts play in incremental changes.

Future work is to study the optimal size and optimal
sequence of incremental changes depending on the
relationship, coupling, and complexity of the domain
concepts. The purpose is to minimize the change impact
and rework during the change.

We are also planning to study changes that are not
incremental, i.e. the changes that retract the functionality
or merely modify it without adding significant new
concepts. An issue is the relationship between refactoring
and change propagation. The purpose of refactoring is to

minimize the propagation. However, is it always possible
to shorten the change propagation by refactoring, or are
there certain changes that always delocalized and are
“refactoring resistant”?

It is expected that the studies of incremental change will
improve the current situation where the incremental
change is largely a self-taught art, and will allow the
accumulation of knowledge in this important field.

Acknowledgement

Milos Besta, a graduate student in Computer Science of
Wayne State University, conducted the case study.

REFERENCES
1. Beck, K. Extreme programming explained. Addison-

Wesley, 2000.

2. Bohner, S.A., Arnold, R.S. Software Change Impact
Analysis. IEEE Computer Society Press, Los
Alamitos, CA, 1996.

3. Booch, G., Rumbaugh, J., Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, MA, 1998.

4. Chen, K., Rajlich, V., Case Study of Feature
Location Using Dependency Graph. In Proceedings
of 8th International Workshop on Program
Comprehension , 2000, 241-249.

5. Fanta, R., Rajlich, V. Reengineering an Object
Oriented Code. In Proceedings of IEEE International
Conference on Software Maintenance, 1998, 238-
246.

6. Fanta, R., Rajlich, V. Removing Clones from the
Code. Journal of Software Maintenance, 1999, 223 -
243.

7. Fanta, R., Rajlich, V. Restructuring Legacy C Code
into C++. In Proceedings of IEEE International
Conference on Software Maintenance, 1999, 77-85.

8. Fowler, M. Refactoring Improving the Design of
Existing Code. Addison-Wesley, Reading, MA, 1999.

9. Rajlich, V. Modeling Software Evolution by
Evolving Interoperation Graphs, In Annals of
Software Engineering, Vol. 9, 2000, 235-248.

10. Rajlich, V.T., Bennett, K.H. The staged model of the
software lifecycle. IEEE Computer, July 2000, 66-
71.

