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ABSTRACT 
Incremental change is one of the key principles of 
Extreme programming. This paper presents a 
methodology and a case study of incremental changes 
using a small application written in UML and Java. 
Domain concepts play a key role in this methodology. 
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1 INTRODUCTION 
Extreme programming is based, among several other 
things, on the fast delivery of small releases [1]. They 
provide valuable feedback about the direction and 
progress of the project and allow timely adjustments of 
the project’s goals and schedules. By this method, 
Extreme programming substantially lessens the inherent 
risk in the project.  

This paper deals with incremental change, which is the 
foundation of small releases. Incremental change 
introduces new functionality into the program. It is 
different from other kinds of changes that preserve, 
retract, or modify existing functionality.  

The paper presents a methodology for incremental 
change. The methodology is aimed more at a novice 
rather than at an experienced programmer. It deals with 
domain concepts and their role in incremental changes.  

Section 2 explains the methodology. Section 3 describes 
the case study. Section 4 summarizes the experience. 
Section 5 relates this work to other research, and section 
6 contains conclusions and future work.  

2 THE BASICS OF THE  METHODOLOGY 
Incremental change adds new functionality to the 
application. We observed that it implements one or 
several closely related domain concepts. For example, the 
Point-of-Sale application needs to deal with several forms 
of payment and hence there is an incremental change that 
introduces “credit cards”, “checks”, etc. 

We also observed that the new concepts introduced in an 
incremental change are not entirely new. Usually they are 
already present in the code, though only in a primitive or 
implicit form. For example, before the introduction of 
credit cards and checks, the concept “pay” was already a 

part of the program. However, the concept was in a 
primitive form, allowing only cash, represented as just 
one number. The incremental change implements the 
respective concepts explicitly and fully. Hence the 
domain concepts play a substantial role in the selection 
and implementation of incremental changes. 

The concepts that are dependent on each other must be 
implemented in the order of their dependency. For 
example, the concept “tax” is dependent on the concept 
“item” because different items may have different tax 
rates and tax without an item is meaningless. Therefore, 
the implementation of “item” must precede the 
implementation of “tax”. If several concepts are mutually 
dependent, they must be implemented in the same 
incremental change.  

Mutually independent concepts can be introduced in 
arbitrary order, but it is advisable to introduce them in the 
order of importance to the user. For example, in the 
Point-of-Sale program it is more important to deal 
correctly with taxes than to support several cashiers. An 
application with correct support for taxes is already 
usable in stores with one cashier. An opposite order of 
incremental changes would postpone the usability of the 
program.  

Each incremental change follows the following sequence 
of steps:  

1. Select the domain concepts to be introduced or 
further developed. 

2. Select the test cases for the new concepts and 
implement the new concepts as new classes.  

3. In the old code, find where the concepts are already 
present (often primitively or implicitly). 

4. Refactor old code if the old concepts are delocalized 
and can be localized into fewer classes. 

5. Change old classes that contain old concepts so that 
they properly interact with the new classes.  

6. Propagate the change through the remaining old code 
as far as necessary. 
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Figure 1 

The methodology is illustrated by a case study of the next 
section. 

3 CASE STUDY: POINT-OF-SALE  
The case study deals with development of a Point-Of-Sale 
application that sells products in small stores. It uses 
UML in combination with Java.  

The initial development started from scratch. The goal 
was to implement a working program that keeps an 
inventory of products, sells them, receives delivery, and 
supports a cash register. These concepts are closely tied 
together and must be present in any meaningful program. 
In keeping with the philosophy of Extreme programming, 
the classes were designed and implemented at a minimal 
level of functionality, see Figure 1. 

In the second incremental change, we implemented 
support for credit cards and checks. We encapsulated all 
forms of payment in a base class payment and introduced 
subclasses for cash and authorized payments, with further 
subclasses for checks and credit cards. This class 
hierarchy was plugged into the original system through 
the interaction between the old class sale and the new 
class payment. Class sale was changed and a secondary 
change was done also in class register. 

The third incremental change introduced support for price 
fluctuations. Products can have different prices at 
different times, for example limited time sales. We 
implemented this feature in classes price and promoPrice, 
which were plugged into the system through the 
interaction with class item. Class item was changed and 

the change propagated through old classes store, 
saleLineItem, and sale.  

The fourth incremental change introduced the 
complexities of sale taxes. This incremental change is 
described in more detail in the Figures 2 through 6. 
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Figure 2 

Different products may have different sales tax, 
depending on state law. This is done by a new class 
taxCategory, which is plugged into the program through 
interaction with class item, see Figure 2. The arrow points 
to the class that has to be fixed, in this case class item. 
(The old class item does not deal with taxCategory and 
must be changed to support this interaction.) The mark is 
denoted by bold arrow in the diagram, indicating the 
inconsistency and the direction in which it propagates. 
For simplicity, the diagram does not contain class 
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members or adornments. The notation is  self-explanatory 
and it is based on [9]. 

In order to fix the inconsistency, the programmer visited 
class item and introduced a list of applicable taxes and 
relevant methods. These changes influenced classes store, 
saleLineItem, and price, see Figure 3. The visit to class 
price revealed that it does not need any changes and does 
not propagate the change further. 
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Figure 3 

We then visited class store and modified it. The modified 
class can create new taxCategory instances for particular 
items. The next class, register, was visited but did not 
need any modification and the change did not propagate 
in that direction. The resulting diagram is in Figure 4. 
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Figure 4 

The next class we visited was saleLineItem. After the 
changes were performed, class sale could be influenced 
by the changes. Thus class sale is marked; see Figure 5.  

Class sale required only one small change. Still, because 
it interacts with two other neighboring classes, there is a 
possibility that they may need a change, see Figure 6.  
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Figure 5 

Class payment did not have to be changed and the change 
did not propagate further. Class register did not use the 
tax information contained in the sale class and relies upon 
prices supplied by the sale class. Therefore, there is no 
change in register and we unmarked it, without 
propagating the change further. This completed the fourth 
incremental change. 
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Figure 6 

4 THE EXPERIENCE  
The incremental changes of the case study introduced or 
substantially refined concepts of the application domain. 
We experimented with the size of the incremental 
changes and observed that excessively small changes 
usually do not decrease the number of classes to be 
visited. They lead to multiple class visits and the result is 
decreased efficiency of the work along with an increased 
likelihood of errors. 

On the other hand, changes that are too big may overload 
the cognitive capabilities of the programmers, because the 
programmers must deal with too many issues at once. 
Hence, there is an optimal size of the incremental change. 
In this case study, all incremental changes introduced one 
to five new classes into the program, visited between 
three and seven old classes, and modified up to four of 
them.  

During the change propagation, when a class was visited 
but not changed, should its neighbors have been visited 
also? There are several factors that influence this 
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decision. To miss possible change propagation means to 
introduce a subtle error into the code that will be hard to 
find later. Therefore we chose to be cautious, inspecting 
more classes than absolutely necessary. Still, the 
propagation must stop somewhere – otherwise every class 
of the program would be visited for every incremental 
change. The decision whether to propagate is based on 
properties of the underlying code. For example, it is more 
likely that a class that references the changed class will 
also need a change, rather than a class that is referenced 
by the changed class. 

5 RELATION TO OTHER WORK 
Extreme programming is described in [1]. In our view, it 
is a part of the life-cycle stage of software evolution, see 
[10]. 

When Extreme programming is used, it is often necessary 
to refactor already existing code [1], [8]. Authors of [5], 
[6], [7] study refactoring of C and C++ code. In this 
paper, we did not present refactoring change but 
recognize its importance. 

In [9], the author defines evolving interoperation graphs 
that are used as a theoretical model of change 
propagation. They were used in Section 3 to describe 
change propagation related to one of the incremental 
changes. 

There is much literature on software change during a later 
stage of software lifecycle called servicing [10] or legacy 
systems. During software servicing, the knowledge of 
software decreases and the emphasis of software change 
shifts towards program comprehension. The impact of a 
change on the program becomes an important issue. 
Change impact analysis is summarized in [2]. In [4] the 
authors describe how to locate concepts using computer-
assisted search of software dependence graph. 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a methodology and a case 
study of incremental changes. We observed the role 
domain concepts play in incremental changes. 

Future work is to study the optimal size and optimal 
sequence of incremental changes depending on the 
relationship, coupling, and complexity of the domain 
concepts. The purpose is to minimize the change impact 
and rework during the change.  

We are also planning to study changes that are not 
incremental, i.e. the changes that retract the functionality 
or merely modify it without adding significant new 
concepts. An issue is the relationship between refactoring 
and change propagation. The purpose of refactoring is  to 

minimize the propagation. However, is it always possible 
to shorten the change propagation by refactoring, or are 
there certain changes that always delocalized and are 
“refactoring resistant”? 

It is expected that the studies of incremental change will 
improve the current situation where the incremental 
change is largely a self-taught art, and will allow the 
accumulation of knowledge in this important field.  
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