
Automating Acceptance Tests for GUI Applications
in an Extreme Programming Environment

Malte Finsterwalder
University of Hamburg

Bundesstrasse 74
20144 Hamburg

Germany
+49-40-41338955

finsterwalder@acm.org

ABSTRACT
Extreme Programming (XP) is focused on the fast and reli-
able delivery of high quality business value to the customer.
In order to ensure that the expectations of the customer are
met, the customer specifies acceptance test criteria. In XP,
ideally, all tests should be automated, but it is not always
worth automating every test. In particular the creation of
automated acceptance tests for interactive graphical applica-
tions is far from trivial. I will make suggestions as to what
to consider when automating acceptance tests. GUI Cap-
ture/Playback Test Tools try to cater for the above mentioned
difficulties by providing facilities to exercise a GUI automat-
ically and they include validation checks on the GUI level. In
this paper, I will address problems with these tools and show
how to avoid them. I will discuss ways of how the test tools
can be incorporated into an XP project. Possible alternatives
for test automation will also be described.

Keywords
Acceptance Test, Automated testing, GUI testing, Test Tools,
Extreme Programming

1 INTRODUCTION
Acceptance Tests, being one of the core practices of XP, play
a vital role in an XP project. They test whether the developed
application delivers all the functionality the customer has re-
quested. Acceptance tests need to be repeatable and should
be run at least once a day. This way, any defects that have
been introduced into the application can be detected and cor-
rected as soon as possible. Tests which are performed manu-
ally, are not likely to be run this often. When the outcome of
a test is manually verified by inspection, it could happen that
errors are being overlooked. In order to prevent this from
happening, the tests need to be automated as much as possi-
ble.

However, it is difficult to automate tests that involve GUI-
intensive interactions. To test the application in its entirety,
tests should actually exercise the GUI of the application and
verify that the shown results are correct. In order to verify
these results, different attributes of the shown GUI widgets,
like color or text, must be examined. But automated control
and inspection of GUI widgets is not easily possible. GUI
test tools try to address this problem by providing mecha-
nisms for capturing GUI interactions while a user exercises

the application. The tools play the interactions back later and
verify the outcome by inspecting GUI widgets or database
entries.

However, the abilities of GUI test tools are limited. Espe-
cially when the GUI is changed, the tests must be adapted.
It can be a great effort to automate some tests. Therefore the
tool should be used with certain guidelines in mind, which
are explained later.

This work is based on my experience with TeamTest by Ra-
tional and WinRunner by Mercury Interactive.

2 ACCEPTANCE TESTS
In the beginning of XP, acceptance tests were called func-
tional tests (cf. [1]). Since the entire developed application
is being tested by acceptance tests, the test literature also
refers to them as system tests (cf. [2]). These are technical
terms specifying what to test: The functionality of the whole
system.

It is important to understand that in XP, acceptance testing
is not just about finding out whether the application works
as expected or not. In XP, the customer writes down small
user stories to capture the requirements. For each user story
the customer specifies acceptance tests as well. These tests
are implemented and run frequently during the development
process. By doing so, the customer gains confidence in the
functionality of the developed application. The amount of
successful tests is also used as a measure of progress. As the
application is more and more completed during the course
of the project, the number of successful tests should steadily
increase.

At the end of an iteration a story is only accepted by the cus-
tomer, if the acceptance tests for this user story demonstrate
that the developed application is providing the requested
functionality correctly. Thus the term “acceptance” tests. If
some tests for a story fail, the story will have to be reworked
in a later iteration.

3 TEST AUTOMATION
In XP, acceptance tests should be automated. But it is not
always worth automating every test. As Brian Marick writes
(cf. [9]):



Key issuesin automatedtesting are:

• deciding which testsareworth automating.

• findingandimplementing an automation ap-
proachthatinsulatestestsagainst change.

Sometimes the extra effort put into automating a test does not
pay off. This effort, the test’s usefulness as well as its life-
time differ greatly from the technique that is used to imple-
ment the test. There are two major concerns when choosing
a technique for automating a test:

• how expensive is it to implement the test with this tech-
nique?

• how will the test behave when the application changes
and how likely is it to break?

Often the easiest and least expensive way is to implement
the tests in the same language as the developed application
itself. That way there is no initial cost for the developers
for learning a new language or using a new test tool. It is
easy to control the application and access all parts of it for
verifications. When the interfaces that are used by the tests
change, for example during refactoring (cf. [3]), the tests can
easily be kept up to date by altering them with the interface
they use. That way the tests are less likely to break.

The disadvantages are that not everything can easily be tested
within the applications. Questions like “Is the right dialog
box shown?” are not easily answered. The tests are writ-
ten on the same level of abstraction as the application itself.
There is no special support for testing purposes. All the tests
need to be programmed by hand which can be a major effort
and requires programming skills. A testing framework and
auxiliary functions need to be implemented to facilitate the
testing effort.

To guide the decision which tests are worth automating,
Brian Marick writes up three criteria (cf. [8]):

1. Automating this test and running it oncewill
cost more than simply running it manually
once.How muchmore?

2. An automated testhasa finite lifetime, dur-
ing which it must recoupthatadditionalcost.
Is this test likely to diesooneror later?What
eventsarelikely to end it?

3. During its lifetime, how likely is this testto
find additional bugs(beyondwhatever bugs
it foundthe first time it ran)?How doesthis
uncertain benefit balanceagainst the cost of
automation?

Item 1 reminds one to think about the extra cost that is in-
volved in automating a test. Only when you have a feel for
how much extra effort you have to invest in the automation
of a test, you can decide if this extra effort will pay for itself.

Especially in the light of refactoring, as it is incorporated in
XP, item 2 and 3 get a different emphasis. Since the code is
evolving and being refactored all the time, the lifetime of an
automated test is likely to be shorter. But at the same time,
the tests will be refactored as well in order to cope with the
changes of the underlying application, which is extending
their lifetime again. It is an extra cost to keep the tests up to
date during refactoring.

As the code is constantly refactored, it is quite possible that
defects appear in areas of the software which worked prop-
erly before. The likelihood of an automated test to find a
defect not just on the first run, but also on a consecutive run,
is much higher. Thus regression tests are more important
when refactoring is used.

4 GUI CAPTURE/PLAYBACK TEST TOOLS
GUI Capture/Playback Test Tools support application test-
ing. They capture user interactions done to the application
under test while they are being performed. The user inter-
actions are recorded in scripts. The scripts can be played
back repeatedly simulating the user’s interactions captured
in them.

Some of the benefits of using these test tools are:

realistic The test tools exercise the application in exactly the
same way as a real user would do. The running test is
said to be as realistic as possible.

capturing The tests can be created by capturing the normal
usage of the application. Tests do not need to be pro-
grammed by hand.

data-driven test design The same tests can be run repeat-
edly with different values. The different values can be
given e.g. in an Excel-spreadsheet.

comparison support The tools support the comparison of
all kinds of attributes of GUI widgets, database entries
and bitmaps with stored correct values.

large test suitesTests can be grouped into test suites which
can be exercised together unattended.

synchronization The tests can be synchronized with the ap-
plication by the use of wait conditions and timers.

scripting The test tools use flexible high level script lan-
guages with special support for accessing all kinds of
GUI widgets.

bug tracking Bug tracking and reporting is included in the
tools.

test planning The tools incorporate test planning and man-
agement.

On the other hand, the major drawback is that the tools ex-
ercise the application through the GUI. The GUI usually
changes as time goes by. Changes in the GUI can break the
tests. When the GUI of the application under test is changed
significantly, the tests break down and need to be either fixed
or completely reworked. Also, not all interactions can be

115



captured properly. Sometimes it is difficult for the tools to
detect and to control certain GUI widgets, especially cus-
tom made widgets. The test tools can be extended to cope
with the custom built GUI widgets, but this can be a lot of
work. The attributes that can be inspected are limited as well.
The standard comparison functions can only compare the at-
tributes with previously stored values or a range of possible
values. More complex comparisons have to be programmed
by hand.

The normal way to create a test with a test tool would be
to capture each test independently. This way, every test that
needs to open a file includes a portion that captures the GUI
interactions needed to open a file. This results in a lot of
duplicate code. When the way to open a file is changed, for
example because the menu layout is rearranged, all the tests
need to be adapted to cope with the change in the application
under test.

To mitigate this problem, it is helpful to use “framework-
based test design” (cf. [6]). With this approach, a small
framework specific to the application under test is con-
structed inside the test tools scripting language. For every
feature that can be exercised in the application under test, a
small function is constructed which is written in the test tools
scripting language. When the function is called, the feature
is exercised. Instead of including all the GUI interactions
needed to open a file in each script, a simple function call can
now be included. This way the tests stick to the “Once and
Only Once”-rule (cf. [1]). When the application changes,
only one place in the code needs to be adopted to cope with
the change.

This implies that the test scripts are programmed by hand.
Only the functions for the framework can be captured. But
in most cases, the captured scripts need to be enhanced man-
ually to create usable functions. The captured functions can
be used as a starting point and are then refactored to what is
needed. The benefit of easily capturing tests is lost.

5 HOW TO USE THE TEST TOOLS WITH XP
One of the XP mantras is to “do the simplest thing that could
possibly work”. Using the test tools may not be the simplest
thing. They require quite some time getting used to. If tests
are created before the application which is to be tested, and
if “framework-base test design” is used, some of the benefits
that the tools advertise are lost. For reasonable testing ef-
forts, the naive capturing of user interaction as advertised by
the tool vendors, as well as the mechanisms provided for ver-
ification of correct results are often not sufficient. Therefore
manual programming of test scripts is often required.

It is said that acceptance tests should be specified by the cus-
tomer and that it would be best if the customer developed the
tests himself. The distributors of GUI Capture/Playback Test
Tools claim that it is possible for an unexperienced person to
use the test tools for the recording of simple tests. From my
experience, this is not easily possible. The recording process

is very fragile and requires a lot of planning and understand-
ing: At least a GUI prototype is needed, extra functionality
is not as necessary. It is desirable, however, to sit down with
a customer and to capture some tests which are used as a
starting point and are then refined. The customer tells the
tester what interactions to do and what results he would ex-
pect. The interactions as well as the verifications are then
captured.

Since the tests are rather fragile when the GUI of the appli-
cation changes, it may become a lot of work to keep the tests
synchronized with the GUI of the application. Therefore it is
better not to build all the tests depending on the GUI of the
application.

In a well-designed system, there should be a thin layer which
does only the GUI handling. Apart from this, there is very
little functionality in this layer. The underlying functionality
is realized in different parts of the application. The Fac¸ade-
Pattern (cf. [4]) can be used to wrap the underlying function-
ality. The GUI-layer accesses this functionality through the
façade only. If this is done throughout the application, most
of the functionality can be tested from within the application
code by calling methods in the fac¸ade. This could be done
e.g. by using one of the xUnit testing frameworks (cf. [10]).
These tests cannot verify, of course, that the GUI itself works
correctly. This is, where the test tools can support the testing
effort. If the underlying functionality has already been tested
extensively, it suffices to create tests for just a few features
with the test tools, showing that the GUI is attached correctly
to the underlying functionality. Additionally, some manual
testing of the application could support this process before
delivering it to the customers.

The creation of a thin layer for GUI handling can become
difficult, especially for Web applications. Web applications
generate HTML-output which is then loaded and interpreted
by a Web browser. Often additional infrastructure, like Java
Server Pages (JSP), is used to facilitate the generation of
HTML-output. In such a setting, a major part of the under-
lying functionality can still be tested through a fac¸ade. How-
ever, the process of generating the HTML-output, which is
partly done by the infrastructure, can not be tested this way,
but only by sending an HTTP-request to the application. The
returned HTML-output can then be compared with a saved
HTML-file which is known to be correct. A problem with
this approach is that HTML-files are often changed to ad-
just the design or to change included text and graphics, even
though the underlying application does not change. In such
a complex environment, it is difficult to test whether a Web
page functions correctly, or not, without exercising the Web
page inside an actual Web browser. This holds even more
true when active components like JavaScript are embedded
into the Web page. The test tools can control a real Web
browser in order to support the testing of Web applications.
Small changes in the design of Web pages are ignored by the
tools.

116



For each user story, there need to be acceptance tests. These
tests should be implemented no later than in the iteration
where the user story is implemented. The acceptance tests
are needed at the end of the iteration in order to verify that the
user story is finished and fulfilling its requirements correctly.
It is even better if the acceptance tests are implemented be-
fore or shortly after the part of the application that supports
it. Then they can be used by the developer during develop-
ment to confirm that he has finished implementing the user
story. The tests can be used in the iteration as a measure of
progress.

It is not possible to record a test when the underlying appli-
cation does not yet support the feature which is to be tested.
At least the GUI needs to exist. If the functionality behind
the GUI does not yet exist, it takes extra effort to specify the
expected results. The test tools are not optimized for this
type of testing. They are optimized for testing an already
performing application.

Despite these obstacles it is possible to create the tests almost
at the same time as the application itself. When “framework-
base test design” is used extensively, the test themselves can
be programmed in advance. The tests are written using “pro-
gramming by intention” (cf. [5]). While doing so, functions
which are assumed to exist are being used.

If not many tests are automated with the test tool and the
GUI is not likely to change often, it may be enough to just
capture the user interactions necessary for the tests and not
to invest much extra effort. If the tests break because the
GUI of the application has changed, the tests are repeated
with the new GUI and this is captured again. This keeps the
initial investment into the creation of tests to a minimum,
but increases the cost if the application under test changes.
The additional cost increases with the number of tests created
with the test tool.

If you do not want to invest in test tools, William Wake de-
scribes how GUI testing in Java can be done inside the ap-
plication code using jUnit (cf. [5]). In his paper, he de-
scribes how to access the GUI widgets from within the Java-
Application. This practice is transferable to other languages
as well.

6 CONCLUSION
The focus of XP is to travel light and to do only things that
help develop high quality software. Automated acceptance
tests are one of the things that are helpful.

For most of my testing it was sufficient to code the tests in
the same language as the application, calling the application
code through a façade. This implies that the application is
designed so that no business logic is mixed with the GUI
handling code. The verification that the thin GUI layer is
working well can often be done manually. If the tests which
are to be performed manually are described in prose text,
it can be assumed that the tests can be performed several

times with little variation. Verifications of correct results
may be automated with small test applications, so that over-
sights by the tester are minimized. This requires discipline
by the tester. Especially for GUIs that change often it does
not pay off to invest in GUI test automation.

If GUI test tools are used, they should be used sparingly. I
would automate only the most important tests which are to
be run often in order to see whether the basic functionality
of the application is working correctly. In my opinion, these
automated tests should be supported by a suite of tests which
are performed manually on a regular basis, for example twice
per iteration. Since manual inspection is cumbersome and
error prone, small check programs that do the verifications
should be created.

Only what is supported by the tool should be automated. If
the test tools fail to handle certain GUI widgets, time to ex-
tend the tools should not be invested, unless the extension is
trivial or it is essential to have automated tests for this part
of the application. If the verification mechanisms do not suf-
fice, I would not use the tools.

REFERENCES

[1] Kent Beck. Extreme Programming Explained.
Addison-Wesley, 1999.

[2] Robert V. Binder.Testing Object-Oriented Systems:
Models, Patterns and Tools.Addison-Wesley, 1999.

[3] Martin Fowler.Refactoring.Addison-Wesley, 1999.

[4] Erich Gamma, Richard Helm, Ralph Johnson, John
VlissidesDesign PatternsAddison-Wesley, 1995

[5] Ronald E. Jeffries, Ann Anderson, Chat Hendrick-
son.Extreme Programming Installed.Addison-Wesley,
2000.

[6] Cem Kaner.Improving the Maintainability of Auto-
mated Test Suites.Paper Presented at Quality Week
1997.<http://www.kaner.com/lawst1.htm>

[7] Malte Finsterwalder Studywork: Erstellen und
durchf̈uhren von Anwendungstests mit GUI Cap-
ture/Playback Testtools.
<http://www.bigfoot.com/ kroeger/publications.html>

[8] Brian Marick. When Should a Test Be Auto-
mated? Paper presented at Quality Week 1998.
<http://www.testing.com/writings/automate.pdf>

[9] Brian Marick. A Survey and Discussion of Automated
Testing. <http://www.testingcraft.com/automated-
testing-survey.html>

[10] The xUnit Testing Frameworks can be found at:
http://www.XProgramming.com/software.htm

117


	114: 114


