

105

Simple Design and Unit Testing with Enterprise JavaBeansTM:
The Box Metaphor

Vera Peeters
Tryx bvba

Colomastraat 28
B-2800 Mechelen

Belgium
+ 32 15 41 80 49

vera.peeters@tryx.com

ABSTRACT
Introducing Enterprise JavaBeans™ (EJBs) in your
system adds a level of complexity. Whether or not using
EJBs has its advantages is not in the scope of this paper.
But when you do decide to use them, for whatever reason,
there are some simple rules you can take into account.
The Box Metaphor will help you keep the business logic
in your system simple and clean and, most of all,
independent from the technology layer (EJB). This will
make it easier to develop all your code in a test harness
[1], especially the business logic, which is most important
to you.

Keywords
Enterprise JavaBeans, EJB, Simple Design, Unit Tests,
JUnit, DIP, Boxes, Metaphor, DTSTTCPW,

1 INTRODUCTION
Enterprise JavaBeans (EJBs) are components that live in
a Container inside an Application Server. The Container
is responsible for managing the EJB’s lifetime,
transactions, persistence, load balancing…. If you use
EJBs, you get some pre-defined functionality. If you
happen to need exactly these functionalities, the EJB
framework may help you develop software.

However, using EJBs will always be more complex than
not using EJBs. You need to understand how the
framework works, what kind of services the container
offers you and how it does that. You have to write your
components in a very specific way, and you have to pre-
compile them and deploy them explicitly. There are of
course environments where this entire process can be run
very smoothly. But even when that’s the case, it can still
be useful to be able to take the EJB layer out any time
and replace it by some other technology that might be
better suited for your new situation.

That’s the point: there’s no problem in using EJBs, but
they should be no more than a layer, a tool you use to
make certain things easier for you.

2 SIMPLE DESIGN AND EJB
Using EJB is definitely not the simplest thing to do. So
how do EJBs fit with the XP process and with the “Do
The Simplest Thing That Could Possibly Work”
principle?

Well, to be honest, I think they don’t. If you start
developing a new system, chances aren’t very high that
you have a good reason to start using EJBs.

After some cycles, it may turn out you need complex
technical features like clustering, complex transactional
behaviours, maybe across multiple databases, or security.

The most important reason you can have to start using
EJBs is probably a strategic one: your customer asks for
it. EJB is hot. I’ve seen it happen several times that a
customer demands you to use EJBs. So in that case, it’s a
Story.

Another possibility is that you introduce XP in an
environment where there’s legacy code that already uses
EJBs.

So, even if EJBs are not the simplest thing to do, it’s still
possible that you end up in a situation where you have XP
and EJB simultaneously.

3 UNIT TESTING AND EJB
Testing Frameworks for Server Side Java Code
There are several Xunit testing frameworks that are
designed for Unit Testing server side java code.
Currently, three extensions are available for JUnit:
J2EEUnit, JunitEE, HttpUnit [7].

J2EEUnit is an extension of JUnit that can test code
called by a Servlet or JSP and that need valid HTTP
request, HTTP response and HTTP session objects. In
many architectures, the Servlets and JSPs call EJBs [6],
and that makes J2EEUnit especially fit to test the
integration between the presentation layer (Servlets/JSPs)
and the business logic layer (implemented in the session
EJBs).

JunitEE is basically a TestRunner that outputs HTML and
a servlet that can be used as an entry point.

HttpUnit is an extension of JUnit that accesses websites.
It can play the role of a browser. I find it particularly
useful to test the java code in a JSP page. It can be used
in the same way as J2EEUnit for some kind of integration
test between presentation and business layers.

Requirements of a Unit Test Environment
The things that are important in a Unit Test environment

106

are:

- It must be easy to write the tests, because
otherwise you will ‘forget’ to write them

- It must be easy to run the tests, because
otherwise you won’t run them often

- It must be easy to set up the tests. Otherwise,
you won’t run them often.

- It must be possible to develop the code in a Test-
First-Design way: write a few lines of test-code,
make the test work, refactor, in cycles of a few
minutes.

Problems for Unit Testing EJBs
In most environments several steps have to be executed to
deploy the EJBs. Some application servers and IDE’s
even require you to restart the server if you make changes
in the code of the EJB or in any code that’s used by the
EJB in an indirect way. And that can be time -consuming.

There is a certain ironical contradiction in the marketing
message, which says it’s an advantage that the
deployment of the J2EE components can be done in a
later phase, independent of the development and by
another person. It is precisely this separation of
development and deployment that makes it difficult to
swiftly run through the tes t/code cycle. If it takes several
minutes to deploy the EJBs, it’s impossible to run the
Unit Tests every ten minutes.

In some IDE’s there are some problems debugging the
EJBs.

If you use one of the Server-Side-Java Xunit Testing
environments, you still have these problems.

Unit Testing EJBs
In my opinion, Unit Tests should concentrate on another
level of the code.

The above-mentioned XUnit frameworks are mostly
dedicated to the server side java aspect of the code under
test. In my opinion, they are effective, but more for some
kind of Functional Tests.

It should be possible to develop and test the functional
layer in a simpler way, even if you’re stuck with EJBs.

Unit tests should be simple, so that you run them often.

4 THE BOX METAPHOR
Ejb: only a technology
EJB is nothing more than a technology. If you choose to
use EJBs, you should treat them as a technology layer.
You should never entangle the EJBs in your system.

The most important part of your system is the business
logic. It’s important that your business logic layer is
reusable. Business logic layers should never depend upon
any technology layers. You would never want to rewrite
your business logic because you want to switch to another
technology.

Therefore, Business Logic should never be implemented
inside EJBs.

It is necessary to test the technical layer to a certain level.
It is also necessary to test the integration of your
functional layer with the technical layer. But when you
write unit tests for the business logic layer, it’s much
easier if you can stub out the technical layer. The same
thing has been described for the persistence layer in [3].
I think you should stub out the EJB layer in a similar
way.

Thin EJBs
If you don’t want to implement business logic inside the
EJBs, but you do want to use EJBs anyway, for whatever
reason, what can you do?

You can use the EJB as a facade into the business
logic layer.
This means you implement all the important business
logic in simple java classes. You never implement
something important in the EJB classes.

Generally, the only thing an EJB class would implement
is a redirection to the business logic layer.

If you want to implement your business logic independent
from the EJB technology layer, there are some rules you
should follow. An easy way to remember those rules is
the Box metaphor.

The Box
A Box is a vertical slice in the system.

A system contains several Boxes. Each Box is
responsible for a certain aspect of the functionality of the
system. You could say that each Box is responsible for a
more or less independent part of business logic.

Calling it a Box helps to remember the rules that tell you
where to put a particular part of code. That’s why I think
you could say it’s a technical metaphor that reminds you
of the way the different classes in the system collaborate.

Contents of the Box
A Box contains several parts. We usually implement the
different parts in different java packages. The java
packages can be thought of as different layers. The
accessibility of the layers is top down.

107

Persistence

Business Logic

Facade Implementat ion

Facade Interface

The Business Logic (+ Unit Tests)
This is the package that is important to you. This package
should be implemented in a Test-First-Design way, so
that the Test Harness covers each path through the code.
This package should be reusable if you ever decide to use
some other technology.

The Persistence Layer (data source classes + Unit Tests)
The Persistence layer is used by the Business Logic layer,
but in such a way that it’s easy to stub it out.

Facade into the Box
The Facade [2] is not considered as part of the box. The
Facade lies on top of the Box. The client can access the
Facade, but it can never directly access the contents of the
Box.

The Facade-Interface Layer (Interface + raw-data
classes)
The Facade provides a way for the client of the Box to
access the functionalities that the Box delivers. We divide
the actual Facade in two parts: an abstract interface, and
an implementation. The clients don’t know anything
about the way the Facade is implemented.

Raw-Data Objects
The Facade Interface layer also defines some Raw-Data
Objects. These are simple objects, with almost no
behaviour. The clients of the Box will use these objects.
They will be acting as parameters of the functions in the
Facade-Interface.

The Facade-Implementation Layer (EJBs + Unit Tests)
The EJB implements the Facade into the Box.

This must be done in such a way that the clients don’t
have to know anything about EJB technology in order to
use the Box-Interface. We define a factory that the client
will call.

5 THE RULES
Box contents are private.
The Boxes contain the classes that implement the
Business Logic, and some classes that are responsible for
persistence. Each Box owns one or more tables in the

system.

The contents of a Box should never be accessed from
someone outside the Box. A client of the Box that wants
to use the functionalities delivered by the Box, must use
the Facade.

Facade can use the contents of its own Box
The implementation of the Facade can use the contents of
its Box. The imple mentation of the functions in the EJB
should not contain any business logic. It should redirect
the request to the code in the Business Layer.

Box content is locked up in the box
The contents of a Box should not access anything outside
the Box. The façade should pass in any information that
the contents of the Box need from outside its own Box.

The Facade can talk to other Boxes
If the contents of a Box need some information from
other Boxes, the Facade can talk to the Facades of the
other Boxes, retrieve the necessary information, and pass
it into the contents of the Box.

Box content shouldn’t know anything about the
Facade
The contents of a Box should never call any function
from its own facade. The facade can be used from outside
the Box only.

Box content doesn’t know anything about EJB
The Box content should not import anything from
technology specific packages. It should work with
interfaces only.

Box client doesn’t know anything about EJB
The Box client talks to the Facade interface, but the
Facade interface should be implemented in such a way
that the client doesn’t need to know by which technology
it’s implemented.

6 CONSEQUENCES FOR UNIT TESTING
Test the contents of the Box
The contents of the Box implement the business logic,
which is of most value for you. This means it is vital that
the contents of the box are unit tested in a very complete
way.

The contents of the Box are simple java classes, that
don’t depend on EJBs. Therefore, it’s easy to develop
them Test-First.

Test the facade
The EJB is only a facade into the box. It acts as glue code
between the technical layer (all the things that the EJB
technology provides) and the business logic code.

Testing glue code is necessary. However, the tests don’t
need to be very detailed. You already know that the
underlying classes work well: the contents of the Box are
developed in a test harness. You only want to prove that
it’s possible to glue all the pieces together. If the separate
pieces do what you expect, you can be pretty sure that the
whole will work too. At least that’s what you can expect

108

if you integrate continuously.

7 OTHER CONSEQUENCES
Bipolar EJBs
If you follow the Box metaphor, you can define bipolar
EJBs [4]. A Bipolar EJB is an EJB that can be
instantiated as normal EJB or as a local object that lives
on the client side. The clients don’t have to be aware that
the EJBs can be local or remote. This can be achieved by
defining the EJB’s Remote Interface as an extension of
the Facade-Interface.

The clients ask a factory to deliver an instance of the
Facade Implementation. The factory will decide what
kind of implementation it will return.

This can be of great help if you have to work in an
environment where it is difficult to deploy or debug the
EJBs.

This technique is very easy for stateless session beans. I
don’t think it’s worth to apply it for entity beans, because
in that case the Container has a lot of responsibilities that
should be mimicked by the local bean, which makes
things too complicated to be of any use.

It is possible to define Mock Entity EJBs, so that it
becomes easier to write tests for the local Session EJBs.

Dependency Inversion Principle
If you want to replace the EJB with another technology,
or if you want to refactor the EJBs out, it’s not very
difficult to do so. The only place you have to change is
the Facade-implementation layer. The rules that are
expressed by the Box metaphor reduce the EJBs to being
a technology.

Box metaphor with other technologies
The Box metaphor can be used with similar technologies
like COM Components or CORBA components.

8 CONCLUSION
In some situations it is possible that you choose to use
EJBs, although it’s not the simplest thing that could
possibly work.

If you decide to use EJBs, it’s important that you keep the
EJB technology separate from the business logic of your
system. The Box metaphor is a simple way of structuring
your system in a way that ensures you that the business
logic won’t depend upon the technological layer. It helps
you to keep the design of the system as simple as
possible, despite the use of the complex EJBs.

If you structure your system using the Box metaphor, it
will be much easier to Unit Test your business logic
classes.

ACKNOWLEDGEMENTS
Thanks to Pascal Van Cauwenberghe for reviewing this
paper.

REFERENCES
[1] Fowler, Martin et al, Refactoring: Improving the

Design of Existing Code, Addison-Wesley, 1999.

[2] Gamma, Erich et al., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison–
Wesley, 1995.

[3] Mackinnon, Tim, Freeman, Steve, Craig, Philip,
Endo-testing: Unit Testing with Mock Objects, 2000.
(http://www.sidewize.com)

[4] Mak, Ronald, Bipolar CORBA Objects in Java, Java
Report 9/1999.

[5] Martin, Robert C, The Dependency Inversion
Principle, C++ Report, May 1996.

[6] Matena, Vlada & Hapner, Mark, Enterprise
JavaBeans™ Specification, v1.1, 1999
(http://java.sun.com/).

[7] JUnit extensions, (www.junit.org)

