

84

Jester - a JUnit test tester.

Ivan Moore
Connextra Ltd

Studio 312, Highgate Studios
53-79 Highgate Road

London NW5 1TL, England
+44 (0)20 7692 9898
ivan@connextra.com

ABSTRACT
Extreme programmers have confidence in their code if it
passes their unit tests. More experienced extreme
programmers only have confidence in their code if they
also have confidence in their tests. A technique used by
extreme programmers to gain confidence in their tests is
to make sure that their tests spot deliberate errors in the
code. This sort of manual test testing is either time
consuming or very superficial.

Jester is a test tester for JUnit tests; it modifies the source
in a variety of ways, and checks whether the tests fail for
each modification. Jester indicates code changes that can
be made that do not cause the tests to fail. If code can be
modified without the tests failing, it either indicates that
there is a test missing or that the code is redundant. Jester
can be used to gain confidence that the existing tests are
adequate, or give clues about the tests that are missing.

Jester is different than code coverage tools, because it can
find code that is executed by the running of tests but not
actually tested. Jester will be compared with conventional
code coverage tools. Results of using Jester will be
discussed.

Keywords
unit testing, testing, JUnit, mutation analysis, error
seeding, failure testing

1 INTRODUCTION
Extreme programmers[1] have confidence in code if it
passes tests, and have confidence in tests if they catch
errors. Many extreme programmers temporarily put
deliberate errors in their code to check that their tests
catch those errors, before correcting the code to pass the
tests. In some project teams, a project saboteur[4] is
appointed, whose role is to verify that errors that they
deliberately introduce to a copy of the code base are
caught by the tests. Jester performs similar test testing
mechanically, by making some change to a source file,
recompiling that file, running the tests, and if the tests
pass Jester displays a message saying what it changed.
Jester makes its changes one at a time, to every source
file in a directory tree, making many different changes to
each source file. The different types of change made are

discussed later. Note that each change is undone before
the next change is made, i.e. changes are made
independently of each other.

Jester can modify not only the code that the tests are
testing, but also the test code itself. If a test is modified
but does not fail when run then the test may be redundant
or erroneous.

Jester currently only works for Java code with JUnit[6]
tests; the same approach could be used for other
languages and test frameworks. Java and JUnit were
chosen as the author uses both, and JUnit is probably the
most widely used unit test framework by extreme
programmers[3].

The ideas of mutation analysis[2] or automated error
seeding[5] are not new, but Jester is able to be more
widely applicable than other tools because of the
widespread use of JUnit. In order for Jester, or any other
similar tool, to work, it needs to be able to modify the
source code, recompile that source code, and run the tests.
Modifying the source code and recompiling it is quite
straightforward. It is the ability to run the tests
programatically that makes the use of JUnit so important
both to the simple implementation of Jester, and its wide
applicability.

2 MODIFYING AND RECOMPILING SOURCE

CODE
Jester modifies Java source code in very simple
ways, which do not require parsing or changes to
more than one source file at a time.
The modifications are:

o modifying literal numbers; e.g. 0 is changed to 1
o changing true to false and vice-versa
o changing if(to if(true ||
o changing if(to if(false &&

The last two have the effect of making the condition of
the if statement always true or always false respectively.
The reason for these replacements rather than the
apparently simpler if(true) and if(false)
respectively is to avoid needing to find the end of the

85

condition, which would require some parsing and hence
not be as simple to implement. There is no possibility of
making two changes that cancel each other out as the
changes are applied one at a time, being undone before
the next change.

These simple modifications have been found to be quite
effective, as shown later. More sophisticated
modifications will be tried in future versions of Jester.

To recompile the modified source code, Jester uses
Runtime.getRuntime().exec("javac ... to
invoke the java compiler. This means that the java
compiler is not running directly in java but in the
underlying operating system. Jester could potentially be
modified to work for other languages by changing the
compiler that it invokes.

3 RUNNING THE TESTS
Jester uses a modified version of the class
textui.TestRunner included in JUnit 3.2. This has
been modified to simply print PASSED or FAILED
having run the tests; no other details are needed by Jester.
In order to run the tests using the modified classes, Jester
uses ...exec("java jester.TestRunnerImpl
... to run the tes ts in a new instance of a java virtual
machine, using the modified test runner. The tests cannot
simply be run directly by Jester in the same virtual
machine that it is running in, as once a class has been
loaded into a Java virtual machine it will not be replaced
by simply recompiling its source, and Jester requires that
the modified code is executed; there would be no point
having Jester running the tests if they were not executing
the modified code.

To use Jester for another language or another test
framework would require the existence of a test runner
that can be executed in the same way, and give the
expected result of PASSED or FAILED.

4 USING JESTER
Jester needs to know the JUnit test class (a subclass of
TestCase that can be used by the JUnit TestRunners) and
the directory that contains the source code that Jester
changes to try to find if the tests are not covering those
changes.

The test class is the one that is expected to show up any
changes to code in the source directory. Typically, this
test class would be the TestAll class of a package, and the
source directory would be the subdirectory that contains
the code being tested by that TestAll class.

For any change that Jester was able to make without the
tests failing, it prints the name of the file changed, the
position in the file of the change, and some of the original
source file from roughly 30 characters before to 30

characters after so that the change can be easily identified
within the source file.

5 RESULTS
The results of applying Jester to a small but interesting
test suite and associated code is presented here, followed
by observations of the use of Jester on a larger amount of
code for a publicly available product.

The Money samples of JUnit 3.2 give a small example of
how to use JUnit. There is an interface IMoney and two
classes that implement the interface, Money and
MoneyBag, and a test class MoneyTest which includes
tests for both Money and MoneyBag. Including
comments, there are about 400 lines of code in total.

Jester made 47 separate modifications (including to the
test class itself), of which, 10 did not make the tests fail;
i.e. they were changes that indicated possible missing
tests or redundant code. This was a much higher
percentage than expected. The version of Jester used
ignores comments; a version which included
modifications to comments made many more
modifications, revealing comments that included literal
numbers, which is of debatable usefulness. As each
modification requires recompilation and running all the
tests this took a long time to run considering the amount
of code. On a Pentium 133MHz (an old machine) Jester
took 12 minutes to complete the run.

The 10 modifications that did not cause the tests to fail
will now be described. Three of the modifications were in
the equals method of the Money class:

public boolean equals(Object anObject)
{
 if (isNull())
 if (anObject instanceof IMoney)
 return
((IMoney)anObject).isNull();
 ...

Jester reported that:

o if (isNull()) can be replaced by
if (false && isNull())

o if (anObject instanceof
IMoney) can be replaced by
if (true ||

anObject instanceof
IMoney)

o if (anObject instanceof

IMoney) can be replaced by
if (false &&

anObject instanceof
IMoney)

86

The first of these shows that either isNull() is always
false in the tests (hence there is a test missing for the
case where isNull() is true), or, it could show that it
makes no difference to the running of the tests whether
the isNull() branch is executed. In fact, there is no
test of equals for a ‘null’ Money. (The method
isNull has been renamed isZero in JUnit 3.4).
Without further examination of the code, the possibility
that the branch of code does not make any difference to
the correct running of code should not be discounted.
This could happen if the isNull() branch was a
behaviour neutral optimization.

The second and third modifications reported indicate that
either that if statement is not executed, or it makes no
difference to the running of the code, i.e. it doesn’t matter
whether the value of the condition is true or false. In
this case, this code is not executed by the tests. A
conventional code coverage tool would be able to spot
this.

The other 7 modifications that Jester made which did not
cause the tests to fail were all for the MoneyBag class.
One of these was changing the construction of a vector
from new Vector(5) to new Vector(6). This had
no effect on the correct running of the code, as the effect
of this number is on the initial internal size of the
constructed vector, which can have an effect on
performance but does not effect the vector’s behaviour.
Another change was to modify the hashCode value of
an empty MoneyBag. This has no effect on the correct
running of the code, and can be considered a ‘false hit’ by
Jester.

Three of the other mo difications are similar to those for
Money; they show that the equals method is not tested
for ‘null’ MoneyBags.

The remaining two modifications both relate to the
equals method for the special case that two
MoneyBags that contain a different number of Money
objects are not equals. There are no unit tests for this
special case code.

Jester has also been applied to parts of Sidewize[7], a
browser companion built by Connextra. It successfully
identified where tests were missing, and where code had
become redundant and needed removing. However, it
took considerable analysis of the results to identify
whether the modifications reported by Jester represented
missing tests, redundant code, or were simply ‘false hits’,
i.e. represented behaviour preserving changes to the code.

6 COMPARISON WITH CODE COVERAGE
TOOLS

Code coverage tools indicate which code is not executed
by the test suites. This can be very useful for indicating
either redundant code or missing tests, and in some of the
cases described above would be simpler to understand
than the results from Jester. However, tests can cause
code to execute even if its results are not checked, which
means that code coverage tools can easily miss important
test ommissions. For example, in the testing of the
equals method of MoneyBag, it would have been very
easy to have missed out a test for equality with something
other than another MoneyBag. A code coverage tool
might not indicate this missing test, because the missing
test is not revealed by a branch of an if statement not
being executed but rather by that branch always being
executed (some code coverage tools can be used to spot
this). Furthermore, Jester can give more of a clue about
the sort of test that is missing, by showing how the code
can be modified but stil l pass the tests.

7 CONCLUSIONS
Jester can reveal code that has not been tested, or is
possibly redundant. However, Jester takes a long time to
run, and the results take some manual effort to interpret.
Nevertheless, in comparison to a code coverage tool,
Jester can spot untested code even if it is executed.

The value of using Jester is the benefit from the discovery
of missing tests or redundant code minus the cost of using
it. The cost of using Jester is the time it takes to run
(mostly machine time) plus the time to interpret its results
(developer time). The cost of missing tests can be
enormous if there are bugs that would otherwise have
been found. Redundant code can also be expensive
because it wastes developers’ time whenever it is read or
modified (for example, to keep it compilable). Therefore,
Jester’s net value depends upon the state of the code that
it is used on.

Jester uses a simple text based find-and-replace style
approach to modifying the original source code. This was
simple to implement, and has proven adequate so far.
However, if Jester were to use a parsed representation of
the source code (either using a parser on the source code
or possibly working on class files) then more
sophisticated modifications, and better reporting of its
modifications, would be made easier to implement. Using
a parsed representation would, for example, allow Jester
to remove complete statements from methods, and to
report its changes per method rather than by character
index.

Jester is publicly available on a ‘free software’ licence[8]
and efforts will continue to improve Jester, in particular
to provide results that are easier to interpret and to try to
avoid ‘false hits’.

87

ACKNOWLEDGEMENTS
Many thanks to all those at the eXtreme Tuesday Club in
London (England), for testing Jester and for comments on
early drafts of this paper; in particular, special thanks to
Keith Braithwaite, Paul Simmons, Duncan Pierce,
Tamara Galloway and Tim Bacon. Also thanks to
Connextra for providing a useful testing ground for
Jester.

REFERENCES
1. Kent Beck. eXtreme Programming Explained:

Embrace Change. Addison-Wesley, 1999.

2. Michael A. Friedman and Jeffrey M. Voas. Software
assessment: reliability, safety, testability. New York:
John Wiley & Sons, Inc., 1995.

3. Erich Gamma and Kent Beck. Test infected:
programmers love writing tests. The Java Report,
3(7):37-50, July 1998.

4. Andrew Hunt and David Thomas. The Pragmatic
Programmer. Addison-Wesley, 1999.

5. Brian Meek and K.K.Siu. The effectiveness of error
seeding. ACM Sigplan Notices, Vol 24 No 6, pp81-89,
June 1989.

6. http://www.junit.org

7. http://www.sidewize.com

8. http://www.jesterinfo.co.uk

