

79

Integrating Unit Testing Into A Software
Development Team’s Process

Randy A. Ynchausti

President, Monster Consulting, Inc.
845 South Main Street, Suite 24

Bountiful, Utah 84010 USA
+1 801 243 0694

randy@monsterconsulting.com

ABSTRACT
Unit testing was integrated into the software development
process of a five-member programming team using a test-
during-coding training module. The training approach
and module are briefly described. Individual and pair
developer performance was measured before and after the
training module was presented. The improvements in
quality achieved by the team ranged from 38% to 267%
fewer defects.

Keywords
extreme programming, software development process,
test-during-coding, unit testing

1 INTRODUCTION
Recent attention focused on extreme programming has
heightened the awareness of unit testing as an important
process element for software development. Unit testing is
the common name for a set of practices that result in
increased confidence and reliability in developed source
code. Some key practices of unit testing are:

• Unit tests are automated so they are easy to run and
re-run to validate the production software system.

• Unit tests are created for every class in the
production system.

• Unit tests are implemented for every method that
could break in the production system.

• Unit tests are written before or in conjunction with
writing the production code.

• Unit tests are coded in the most simple and direct
way possible.

• Unit tests are created so that nuclear concepts and

constructs are expressed only once.

• Each unit test returns a value indicating that the test
passed or failed.

• All unit tests must pass before new code is released.

• Unit tests are maintained with the production code
and used by every developer working on the
software.

An effective way of integrating these practices into a
development team’s process is by teaching them as part
of a training module that provides coding exercises to
illustrate and reinforce their value. Developers willingly
continue to use them once they are convinced of their
value. This work describes how these practices were
integrated into a software development team’s process
successfully and highlights the benefits and results that
were achieved.

2 TARGET SOFTWARE DEVELOPMENT
TEAM
The target software development team consisted of five
software engineers. Four of these engineers worked as
two sets of pair programmers. The fifth engineer worked
individually. The average age of team members was
approximately 33 years. The average length of service for
team members was over seven years.

Past studies of extreme programming led the team to
adopt the practice of pair programming, more than one
year prior to the work reported herein, as a means for
improving product quality and cross-training. During that
period, the team also spent time developing a test
framework for unit testing. However, they concluded that
the architecture of their software did not lend itself to unit
testing and thereby discontinued further development and
use of their testing framework.

80

The diversity of this software development team and their
work assignments presented some unique challenges for
training and unit testing, but also enhanced the value of
the observations and measured results and benefits
achieved.

3 TEST-DURING-CODING TRAINING
MODULE
In order to symbolize and emphasize the desired end-
result, the training module was titled the “Test-During-
Coding Training Module.” The test-during-coding
training module focused on accomplishing several
objectives, including: 1) cope with the change that results
when implementing new development practices and
methodologies; 2) understand why the test-during-coding
approach is a prerequisite for high-quality, professional
software development; 3) teach the test-during-coding
process; 4) assess and analyze the benefits and drawbacks
of the test-during-coding approach for the target software
development team. Some of the key elements of the test-
during-coding training module were:

• Base-line coding game

• Lost traveler video

• Process improvement principles

• Test-during-coding process

• Practice coding game

• Production code guidelines that facilitate testing

• Post-training coding game

• Training module assessment

The elements designed to accomplish the first and
second objectives were the lost traveler video and
process improvement principles. The lost traveler
video element is an eight-minute video presentation
that provides an outstanding metaphor for software
development and teaches the value of adopting and
practicing the sage advice of the industry experts.
The process improvement principles element is
primarily based on John P. Kotter’s eight-stage
process for leading change [1]. During this element
software developers work through the first four
stages to develop a sense of urgency regarding unit
testing, develop a sense of teamwork, and
understand how unit testing will impact the entire
team and development process.

The elements designed to accomplish the third objective

were the test-during-coding process, practice coding
game, and production code guidelines that facilitate
testing. These elements teach developers which
production code to unit test and how to test it during
development. The practice coding game is an exercise
that allows developers their first opportunity to flex their
unit testing muscles. After developers have practiced unit
testing by playing the practice coding game, coding
principles and approaches that facilitate unit testing were
reinforced in the production code guidelines that facilitate
testing element.

The elements designed to accomplish the fourth objective
were the base-line coding game and post-training coding
game. The base-line coding game has individual and pair
programmers use their current best practices to write a
program that solves the problem posed in the game. The
post-training coding game has individual and pair
programmers use the skills learned during the test-during-
coding training module to write a program that solves the
problem posed in that game. Comparison of the program
and development process metrics for the solutions to both
coding games allows the benefits and drawbacks of unit
testing to be assessed and analyzed for the target software
development team. Data and a discussion from that
comparison are provided below.

4 BASE-LINE AND POST TRAINING
CODING GAME COMPARISON
Figure 1 provides a graph comparing the program size for
the base-line and post-training coding game solutions
submitted by each individual or programmer pair. Data
for the post-training solution with and without unit test
code is included. The post-training coding game solution
for Developer 1 was approximately 80% larger than the
solution for the base-line coding game. The Developer 2-
3 pair produced a post-training coding game solution that
is approximately 63% larger than the solution produced
for the base-line coding game. The Developer 4-5 pair
submitted a solution to the post-training coding game that
was more than 200% larger than the solution produced
for the base-line coding game.

Figure 1. Program Size Comparison for the Base-Line and Post-Training Coding
Games

0
100
200
300
400
500
600
700
800
900

1000

Developer 1 Developer 2 / Developer 3 Developer 4 / Developer 5

Developer / Developer Pair

P
ro

gr
am

 S
iz

e,
 (

L
L

O
C

)

Base-Line Post-Training Post-Training Less Test Code

81

Figure 1 also shows that the program size of the solution
for both coding games is essentially equivalent for
Developer 1 and the Developer 2-3 pair. The Developer
4-5 pair produced a solution containing approximately
33% more code for the post-training coding game.

Figure 2 shows the development time taken by the
individual and pair programmers to complete both coding
games. Developer 1 required approximately 60% more
time to complete the post-training coding game than the
base-line coding game. The Developer 2-3 pair required
approximately 187% more time to complete the post-
training coding game as compared to the base-line coding
game. The Developer 4-5 pair required approximately
116% more time to complete the post-training coding
game as compared to the base-line coding game.

Many software development managers, and even
developers, feel the additional development time is a high
price to pay for essentially the same amount of
production code. However, this line of thinking is
problematic in that it neglects the amount and value of the
unit testing code. The unit tests prove that the production
code works. A product with a high level of coverage from
unit tests allows developers to evolve the software more
rapidly and with more confidence [2].

Figure 2. Development Time Comparison for the Base-Line and Post-Training
Coding Games

0

50

100

150

200

250

300

Developer 1 Developer 2 / Developer 3 Developer 4 / Developer 5

Developer / Developer Pair

D
ev

el
op

m
en

t
T

im
e,

 (
m

in
)

Base-Line Coding Game Post-Training Coding Game

This confidence comes from being able to change or
improve any part of the production code and then retest
the entire system. Software development teams that have
unit tests are able to modify or replace problematic code
without great concern that they will introduce subtle bugs
and undesirable side effects [3]. Therefore, the production
code becomes less brittle and stale because any part of the
system can be refactored and improved as it is being
worked on.

One of the ways to help managers and developers
understand the impact on coding when adopting a test-
during-coding approach is to track the code productivity
rates for the software development team members. A

simple productivity metric used in this study was the
number of logical lines of source code produced divided
by the development time required to produce that code.
Consider the comparison, illustrated in Figure 3, of the
productivity of each individual and pair programmers for
the base-line coding game and the post-training coding
game.

The productivity of the developer working alone
improved more than 12% and the Developer 4-5 pair
improved by more than 40%. Understanding that an
improvement in productivity is often achieved using test-
during-coding processes will help most managers and
developers overcome the feeling that unit testing
excessively slows the development of production code.

The Developer 2-3 pair, however, did not exhibit the
normal increase in productivity. Their productivity
actually decreased by about 43%. The reasons for this
will be examined after presenting the productivity data in
Figure 4.

Figure 4 shows the quality test pass rate percentage for
each of the individual and pair developers of the target
software development team for the base-line and post-
training coding games. The quality improvement
achieved by the individual developer, Developer 1, was
approximately 38%. The quality improvement for the
Developer 2-3 pair was infinite since they did not pass a
single quality test for the base-line coding game. The
quality improvement recorded by the Developer 4-5 pair
was about 267%. Furthermore, the Developer 4-5 pair
was able to achieve a perfect quality test passing rate of
100%.

Figure 3. Productivity Comparison for the Base-Line and Post-Training Coding
Games

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Developer 1 Developer 2 / Developer 3 Developer 4 / Developer 5

Developer / Developer Pair

P
ro

du
ct

iv
it

y,
 (

L
L

O
C

/h
ou

r)

Base-Line Coding Game Post-Training Coding Game

82

Figure 4. Quality Test Pass Rate Comparison for the Base-Line and Post-Training
Coding Games

0.0

10.0
20.0

30.0
40.0

50.0
60.0

70.0
80.0

90.0
100.0

Developer 1 Developer 2 / Developer 3 Developer 4 / Developer 5

Developer / Developer Pair

Q
ua

lit
y

T
es

t
P

as
s

R
at

e,
 (

%
)

Base-Line Coding Game Post-Training Coding Game

Contrasting the data of Figure 2, Figure 3 and Figure 4
for the Developer 2-3 pair provides an understanding of
why their productivity went down when unit testing.
Notice that the Developer 2-3 pair produced the base-line
solution in less time (approximately 35% -- Figure 2)
than did the Developer 4-5 pair even though the size of
their base-line program was larger (about 15% -- Figure
3). Additionally, the Developer 2-3 pair produced a
solution to the base-line coding game that did not pass a
single quality test (Figure 4). The net effect was that the
Developer 2-3 pair wrote an application that ran, but did
not produce the correct results even for the test data that
was supplied in the coding game assignment. Therefore,
their low quality product negated any of the value of their
high productivity rate measured for that coding game.
This provides a striking example of the value of unit
testing. The Developer 2-3 pair improved the quality of
their software solutions to the training module coding
games infinitely because of the test-during-coding
training and implementing unit testing into their software
development process.

The time spent by a software development team writing
unit tests during coding is usually much less than the time
spent to correct only a fraction of the defects remaining in
the system after development. Almost all software
developers spend time testing their code before releasing
it. Spending this time writing unit tests that are always
available to check and re-check the quality of the
production code is more valuable than typical debugging
or manual testing. As an illustration of this, consider how
much more time the Developer 2-3 pair would have
required to isolate and correct the defects which
prevented any of the quality tests to pass. During the
training module, when the pair learned that none of the
quality tests passed, they spent over an hour to find a
problem with the index of a loop. The correction they
made only allowed 27% of the quality tests to pass.
Additional time was required to correct the other defects
in their code. A unit test could have prevented the index
problem and would have taken only a few minutes to
generate. Additional unit tests could have been written
with the remaining portion of that hour.

5 BENEFITS AND IMPROVEMENTS
One of the most important aspects of this work was to
overcome the negative impressions held by the target
software development team regarding the test-during-
coding approach. During planning meetings before
beginning the training module, members of the target
development team were very candid about their feelings
that their software architectures were not testable.
Additionally, the target software development team had
tried to implement test-during-coding processes, but these
attempts did not produce lasting changes. This experience
reinforced the belief that their software could not be
tested. In providing training module content that dealt
with the impact of change on people, each member of the
development team was prepared to overcome the past
experiences and worked hard to implement test-during-
coding processes in a relatively short period of time.

The training module was structured to implement test-
during-coding into the team’s software development
process in a few days. The training module was
completed in three working days, but was taught over a
four-day period where only a fraction of the first and last
day was used.

Every member of the target software development team
was convinced of the benefits and improvements that
would be achieved by implementing the test-during-
coding processes. One of the most avid developers who
suggested that their architecture was not testable
recommended to corporate managers that the test-during-
coding processes be adopted throughout the entire
corporation.

In general terms, the initial impact of the test-during-
coding process for the target software development team
is that they will spend between 60% and 100% more time
implementing 100% more code in the form of unit tests.
This result correlates well with the recommendation that
good software processes will allow developers to spend
25% to 50% of their time developing tests [4]. As they
practice these skills, the time required to write unit tests
during development will likely decrease.

It is expected that the quality of the commercial software
will mimic the improvements measured using the base-
line and post-training coding games. Therefore,
improvements in quality ranging from approximately
38% to about 267% fewer defects are expected. This
improvement in quality is staggering and well worth the
additional effort of implementing test-during-coding

83

processes.

6 CONCLUSIONS
Implementing unit testing using test-during-coding
processes was very successful for the target software
development team. Team members were able to
overcome their past experiences and reservations
regarding the testability of their products. Coding games
at the beginning and end of the training module allowed
the initial benefits of the test-during-coding approach to
be measured. Members of the target development team
can expect to spend up to 100% more time implementing
unit tests in conjunction with the production code being
written. Improvements of up to 267% fewer defects can
be achieved through the test-during-coding processes.

REFERENCES

1. Kotter, J. P. “Leading Change,” Harvard Business
School Press, 1996, ISBN 0875847471

2. Jeffries, R. E. “Extreme Testing – Why aggressive
software development calls for radical testing
efforts,” Software Testing & Quality Engineering,
April 1999

3. Cockburn, A. “Balancing Lightness with
Sufficiency,” American Programmer Editorial
Guidelines, Online at
http://members.aol.com/acockburn/papers/barelysuffi
cient.htm

4. Beck, K. “Simple Smalltalk Testing: With Patterns,”
Online at http://www.xprograming.com/testfram.htm

