

62

The 5 reasons XP can’t scale and what to do about them

Ron Crocker
Motorola, Inc.

1501 W. Shure Drive
Arlington Heights, IL 60004 USA

Ron.Crocker@Motorola.com

ABSTRACT
XP seems to be a good method for small teams to develop
high-power software system. There are concerns about
the ability of the method to scale to scopes any larger
than 12 developers. It only takes a small numb er of
changes in the set of practices comprising XP to make it
into a method scaleable to quite large scope. Indeed,
modifying 5 practices and adding in a few new ones
resolves the issues.

Keywords
scaling

1 INTRODUCTION
I have this belief about XP (and perhaps other “agile”
development processes) about why they can't scale up, It's
similar to why I had problems with heavyweight
development process (think CMM) scaling down. In both
cases, the approaches focus on a set of problems that exist
in the target environment (small-scale development for
XP) that don't exist in the other environment and miss
important problems that don't exist in the intended
environment but do exist in the other environment. In
either case, you can't take the process and simply add
more people (or in the case of CMM, take people away)
and expect it to work.

Hypothesis: The current set of twelve practices
commonly referred to as eXtreme Programming (XP), as
defined in Beck [2] and Jeffries et al. [6], does not scale.

To prove a negative is difficult, often approaching
impossible. We are left, therefore, with a proof by
contradiction – we assume the hypothesis and show that it
can’t be achieved. Such is the case with this hypothesis.
In this paper I argue that XP as the four values is
inherently scalable, but these twelve particular practices
prevent the values from scaling. I then propose some
new practices that alleviate the failings of the existing
practices in the particular case of large projects. No
comments are made relative to these approaches for small
projects.

2 THE FIVE REASONS
In particular, the five reasons XP can’t scale are:

• Pair Programming expands quadratically

• Planning Game is too introspective

• Collective Ownership leads to chaos

• Metaphor is too weak

• No means to effectively coordinate multiple
teams exists in the other practices

When I use the term “scale” above, I mean for teams and
problems of a size larger than XP was intended. I don't
know what this number is, but let's say it's somewhere
between 10 and 20 team members and some number of
function points (or other metric) in a period of time that is
beyond the capacity of a given team. There is likely a bias
in this discussion toward a model of scaling XP that
implies multiple (roughly) co-equal teams. I recommend
against a scaling of XP into one large team, as it seems to
magnify the issues without providing a means of
mitigating them. Indeed, Brooks[3] notes the issues
associated with building teams too large.

Pair programming expands quadratically
Pair programming (PP) is too broad of a term to claim it
doesn't scale. In fact, there's likely nothing about PP alone
that doesn't scale, as long as it only focuses on the
programming task itself – the arrangement of two
programmers collaborating in real time to solve a
problem. The part of PP that doesn't scale is its use in XP
beyond the programming task itself. PP in XP is used to
provide a medium to communicate design as well as
familiarize developers with the code base. The pair-wise
communication paths of a team grow as the square of the
number of members in the team; double the team size,
quadruple the communication paths.

As the team grows in size, it may become distributed to
other buildings, other cities, or even other countries.
Complexity is added to the pairing process - we have to
coordinate across sites, time zones, and languages. Local
cliques will creep in; teams will focus on parts of the
system and avoid others. A partitioning of system
knowledge has occurred, but not a rational one. The
system has now become N interacting systems and N
interacting teams, yet there is no reasoned approach to
this interaction, and there is no mechanism for
coordination.

Planning Game is too introspective
The planning game is a means to ensure that the team
works on the most important tasks at any time. As the
team grows, the number of tasks will grow as well. As the

63

project grows in scope, the amount of important work
will grow correspondingly. As both grow, their effects
multiply. Combine this with distributed teams and we
have a problem: There is no means to ensure that each
team is working on the right things relative to the other
teams. You can use the cop out answer that “the customer
coordinates this by picking what's important for each
iteration,” but would you want the customer to be
exposed to this degree of your development process? Is it
really the customer's responsibility to help you resolve
your development difficulties? I don't think so – go back
to one of the tenets of the approach: Customers make
business decisions; engineers make technical decisions.

It is likely (and occurred several times in my experiences)
that a team needs to work on a less-important (from the
business perspective) task to ensure that an important
system-wide behavior is available. Alas, there is no XP
means to do this, as there is no overall coordination role
defined in XP.

Collective Ownership leads to chaos
Collective ownership is a good thing in XP. It allows
work to proceed without it being dependent on a single
particular individual to do the work. That individual may
know the area better than others, but the risk of that
individual becoming a bottleneck is reduced through the
use of collective ownership. Unfortunately, as the scale
grows, collective ownership changes from a benefit to a
potential source of churn and complexity. The churn
comes from two developers (or two pairs) adding
conflicting features to the code base. The complexity
comes from resolving the interactions of these new
features, even when they're not directly conflicting but
only cohabiting. Add to this the requirements on tools to
support this type of problem resolution, and a huge
potential risk has been added to the technical side of the
project. Bring on the bonus of no overall coordination and
it's game over.

Metaphor is too weak
Metaphor is the least well defined of the XP
practices. My reading of Metaphor indicates it uses
as a general compass for understanding the solution
space. This use of metaphor is sufficient because PP
reinforces the metaphor continually.
Metaphor is insufficient as design, though, as its
relationship to the solution is often rather loose.
Indeed, as the team size grows, the ability for the
metaphor to be sufficient decreases. Combine this
with the decreasing ability of PP to meet the
communication needs of the team leads to a team
that can quickly diverge instead of converge.
No means to effectively coordinate multiple teams in
the other practices
As was noted above, there is no notion of coordination
across teams in XP because XP is oriented at a single
team. This is one of those items left out of XP because it
was not an issue in the target environment of XP.

However, this leaves a dilemma for scaling XP: Scale XP
by making a single large team and risk collapse under the
communication burden; scale XP by growing several
collaborating teams, and risk collapse due to lack of
coordination.

3 SOLUTIONS
I've heard it stated that “[t]o point out issues without
providing solutions is whining,” and since I don't want to
whine, here are some recommendations for new practices
to add to XP (replacing existing practices) that allows XP
to scale successfully.

Based on my experiences, the following new practices are
required to support a multi-team XP environment:

• Loosely coupled teams

• Team coordination layer

Loosely coupled teams
It seems clear to me that to effectively scale XP requires
choosing the latter of the options presented above,
specifically to create a collection of loosely coupled
collaborating teams. This is both a practice and a
philosophical position. The practice part comes from
breaking the project into these teams; the philosophical
part is that you have to keep these teams focused and
functioning. It could be argued that this practice replaces
Pair Programming, Collective Ownership and Coding
Standards in the highest-level of the project, and imposes
requirements for a new practice.

My experiences in multiple -team development lead me to
a strong recommendation: the “prime” team should not
dictate or impose a process on the "subcontracting"
teams.1 However the “prime” team should indeed impose
the feature roll-out plan (the equivalent of the XP
“Release Plan”) on the teams. Our approach imposed the
order of deliverables and used a consensus of the
development teams to decide the dates, and adjusted the
dates as necessary to meet the business objectives.

This position leads to a collection of subcontractors, each
with their own development process but with shared dates
and deliverables. As the teams have their own
development processes, there's no real way to coordinate
any of the rules of the game – specifically rules that could
be used to share development across the teams, such as
the coding or CM rules. As there's no real way to ensure
the same rules across the teams, it is unlikely that any
coding can occur across teams, obviating the need for
Pair Programming or Collective Ownership at the “across
the teams” level.

Team coordination layer
To resolve the issue with coordination, a coordination

1 This recommendation is counter to that proposed by
Carmel[4], but this type of dictation is almost a guarantee
for failure; see [1] for further explanation.

64

layer is added (arguably outside the scope of XP) to the
project to support the team interactions. This can be
viewed as a layering the project structure, where at the
highest level in the hierarchy there is a collection of
teams being coordinated. At the bottom are the individual
teams that are doing the work. This type of structure can
go on as necessary, allowing the projects to scale to
enormous scope.

The Team Coordination layer replaces the Metaphor, Pair
Programming, Collective Code Ownership, and On-site
Customer practices with “Architecture Lite,” adds a role
(“Liaison”) and augments Planning Game to work with
multiple teams, keeping the project needs in full focus at
all times.

Up-front Architecture Lite
The division of tasks among the various teams must
be rational – a team should work a problem for a
reason. That reason can be availability of workers,
but that should be the last reason on the list. Indeed,
the tasks should be allocated to teams in such a way
as to minimize the required day-to-day
communication between the teams to get their job
done. This, in turn, requires that some structure be
provided to the solution space to direct this
allocation. Traditionally, this would be the role of
the “Architect” and architecture in the project.
To meet the needs of the project, though, often a full
“architecture” is not required. Rather, an “Architecture
Lite”[5],[7] is more appropriate. An Architecture Lite
fully describes the system architecture but at a high level
of abstraction. The description includes both structural
and behavioral aspects of the system. In our use of this
approach, we used the architecture lite to define and use a
few strongly held key principles. Abstractly, these are:

• Low coupling among the elements

• Well defined interfaces

• Concise semantics for the element behaviors.

This Architecture Lite replaces Metaphor and Pair
Programming, the latter from the perspective of its use to
share system design information. One of the keys in my
experiences was to provide a stronger metaphor than
Metaphor typically provides. Indeed, we defined a
partitioning of functionality and behavior into "boxes"
that formed the architecture. This allowed us to then
carve up the work and assign it to the teams in a way that
leveraged their particular strengths (which include not
only their capabilities but any conveniences caused by
their location) maximally.

We rely on these principles to guide us when a behavior
emerges. Since the elements behavior and interfaces are
well defined, they could be developed in a context that
was shared among the teams. As the network elements
had low coupling, each team could run independently of

both any other team as well as the architect. The net result
of managing complexity at this level is that we are free to
distribute the development of any element to any team.

Note also that one of the roles of the Pair Programming
practice was to ensure that design knowledge permeated
the team. The Architecture Lite replaces this role at the
highest level in the project, explicitly acknowledging the
loss in fidelity of the information.

Liaison
The role of liaison was one we stumbled on, but is one
that is critical to success in a multi-team environment[1].
Liaisons are members of the various teams that join
forces to develop the Architecture Lite. By collaborating
on the foundation of the system, each of the liaisons has
intimate knowledge of the rules of the system – the
principles of the system. Since each team has a liaison,
this person can act as the conscious of the Architecture
Lite, to ensure that the principles are kept. The Liaisons
allow the teams to work independently by filtering the
required communication among the teams, as they have
intimate understanding of the roles of the other teams. As
the project evolves and emergent behaviors cause the
Architecture Lite to become invalid, the Liaisons initiate
changes to the Architecture Lite to continue to be a useful
tool.

The Liaisons also fulfill an important role abdicated by
the Architecture Lite – they are the keepers of the high-
resolution knowledge of the code that implements the
Architecture Lite. In sub-teams that are XP, any member
should be able to fill this role, reducing overall project
risk (by reducing the team’s “Bus Number”).

Team-wise planning game
The Architecture Lite allows for a rational distribution of
work across the teams and the Liaisons allow each team
to proceed without much interaction, but neither of these
resolves the issue of coordinating when such work is
completed. Planning across teams is a difficult problem;
each team can have its own set of issues. A Team-wise
Planning Game (TPG) is similar in many ways to the
existing Planning Game practice, so it is more correctly
viewed as an enhancement to that practice rather than a
new practice.

The key aspect of this approach is to agree to participate
in the approach throughout the project; the TPG
coordinates the development of those features across the
teams. Each individual team is represented in the TPG –
much as the individual developer is represented in the
PG. However, instead of representing an individual, they
represent the team. They sign up for the work associated
with their team, based on the structure provided under the
“Architecture Lite.” If the new work breaks the
architecture, the architecture is reworked for the next
iteration (as the Liaison role notes).

In the project discussed in [1], we had a team of drivers
of this coordination. In a certain sense, this team

65

interacted with the customer to determine what the
important business feature was, and then interacted with
the multiple development teams (as proxy customer?) to
coordinate their activities. In the role of proxy customer,
the coordination team could ensure the teams worked on
what was important from the global perspective.

We had weekly teleconferences among the teams to
ensure information about progress was being shared, and
to understand the impacts of any late team on any other
teams progress. Often the tasks were inter-dependent at
the system level, in the sense that some portion of the
system required both teams to complete their work to
support some system-wide behavior. We used the weekly
meetings to remind the teams of these dependencies.

This approach works best where the sub-teams are XP, as
they are best able to respond to changes in requirements
from iteration to iteration.

4 CONCLUSION
Presented above are the five reasons that project of
sufficiently large scope, larger than that of a single
team, will not be successful with XP. Also presented
are the ways to improve their chances of being
successful. These ways include the addition of some
up-front coordination work and active management
of multi-team issues, both of which are beyond the
scope of the currently defined XP. Therefore, it is
my conclusion that for XP to be successfully scaled,
these practices must be included in the method. It is
possible (even likely) that other changes are
required. In that sense, these changes are only
necessary but not sufficient to guarantee success.

5 REFERENCES

[1] Battin, R., R. Crocker, J. Kreidler, K. Subramanian,
“Leveraging Resources in Global Software
Development,” IEEE Software, March 2001.

[2] Beck, K. Extreme Programming Explained.
Addison-Wesley, 1999.

[3] Brooks, F. The Mythical Man-Month, Anniversary
Edition . Addison-Wesley, 1995.

[4] Carmel, Erran. Global Software Development Global
Software Teams: Collaborating Across Borders and
Time Zones. Prentice Hall PTR, 1999.

[5] Coleman, Derek, “Architecture for Planning
Software Product Platforms,” Tutorial presented at
The First Software Product Line Conference, August
30 – September 1, 2000, Denver, CO.

[6] Jeffries, R., A. Anderson, C. Hendrickson. Extreme
Programming Installed. Addison-Wesley, 2000.

[7] Toft, P., D. Coleman, J. Ohta, “A Cooperative Model
for Cross-Divisional Product Development for a
Software Product Line,” in Proc., First Software
Product Lines Conference (SPLC1), August 31-Sept.
1, 2000, Denver, CO.

[8] Williams, Laurie, Robert R. Kessler, Ward
Cunningham, and Ron Jeffries,“Strengthening the
Case for Pair Programming,” IEEE Software, July
2000.

