

42

Managing the Bootstrap Story in an XP Project

Jennitta Andrea
ClearStream Consulting Inc.

 1200 – 250 – 6th Avenue S.W.
Calgary, Alberta
Canada T2P 3H7
+1 403 264 5840

jennitta@clrstream.com

ABSTRACT
An ideal XP project is composed of stories defined by the
customer that are of the right size and focus to plan and
manage according to XP principles and practices. The
reality of many XP projects is that the key story in the
first release, the bootstrap story, is much larger than the
rest of the stories. The bootstrap story represents the
smallest deliverable kernel of the system that subsequent
stories build upon incrementally. A large story creates a
variety of problems: it does not fit into an iteration; there
are a large number of tasks that are difficult to coordinate;
and/or is too large to test adequately at the
story/functional level. Teams new to XP find managing
the bootstrap story especially challenging because they
lack the experience required to deal with the additional
planning complexity. A number of strategies exist to
mitigate the problems caused by a large story. This
experience report explains how our team considered
adapting XP practices in order to successfully manage a
bootstrap story.

Keywords
Chapter, Bootstrap Story, Iteration Planning, Story, Story
Granularity, Story Refactoring

1 INTRODUCTION
We have found a common pattern amongst a number of
our XP projects: the first release of a system requires at
minimum a thin slice of the core business process that the
system supports. The key to this recurring pattern is that
the customer describes the thin slice of behavior as a
single story because they cannot conceive of any smaller
unit of useful functionality to be delivered. We call this
the bootstrap story because the end result is a minimal
functioning system.

The bootstrap story feels much larger and covers a wider
breadth of the system than other stories, which
incrementally add focused features to this established
core. For example, the core business process supported
by a billing system is to apply a costing formula to usage
data based on business rules, and generate an invoice for
each customer. The bootstrap story for the billing system
describes the full business process within the simplest
possible parameters: assume error free data, use the most

basic costing formula, and generate a simple invoice with
a single fixed format. Other stories incrementally build on
this core to introduce more depth and breadth to the
system: specific data validation, different costing
formulas, processing corrections to previous invoices, and
customizing the invoice formatting.

The focus of this paper is to share our experiences with
managing the bootstrap story within XP projects. The
problems in managing the bootstrap story in the first
release of an XP project are described, followed by an
overview of several techniques for mitigating these
problems. A more detailed example is provided based on
our current work on a billing system.

2 PROBLEMS
To understand the problems that are generally
experienced with a bootstrap story, a quick review of the
XP concept of a story is helpful. The term story describes
an individual feature that represents real business value to
the customer. The customer is responsible for defining
the stories for their system. From a planning perspective,
the story is the unit of prioritization, scheduling, and
progress tracking that is visible to the customer. An XP
project has frequent small releases, each of which
contains a number of time boxed iterations. Iteration
planning involves scheduling one or more stories in a
particular iteration, based on the priority and size of the
story. The entire story must be finished within the
iteration it is scheduled for.

The root of all the problems created by the bootstrap story
is that it is too large. The proble ms arise in three areas:

Iteration Planning
The first problem that a bootstrap story creates for an XP
team is in iteration planning. Although the bootstrap
story is expressed in the simplest possible terms,
implementing the thin slice of the process generally
touches the system from end to end. While the effort to
implement the bootstrap story may fit within the time box
for the release, it generally does not fit into the time box
for a single iteration. This makes iteration planning of
the bootstrap story more challenging than for other
stories. Typically the team must treat the bootstrap story
as a special case. From the perspective of a team new to

43

XP, this is particularly vexing because the techniques
they use on the first iteration don’t necessarily help them
on subsequent iterations. Or, put another way, the first
iteration is much harder to plan and the team has few if
any of the skills and/or experience necessary for dealing
with the additional planning complexity. Double-
Whammy!

Task Coordination
Task coordination is the second area that problems can
arise. The bootstrap story is a large story that generates a
large number of tasks. The tasks cover a relatively broad
set of the core business processes, and require most of the
depth of the architecture and technical infrastructure. We
have found that our XP projects typically do not require
micro -management of tasks to the extent that detailed
grouping and dependencies of the tasks have to be
worked out. For the bootstrap story, our typical approach
of team members anarchistically selecting tasks defined
for the current story, has resulted in integration
difficulties because tasks are not well coordinated. It is
not enough to ensure that everyone selects tasks from the
same story because there is only one story. Extra
overhead must be incurred to orchestrate the sequencing
of cohesive tasks to ensure that the team makes progress
towards a common sub-goal at any one point in time
within the iteration.

Story Testing
The third problem experienced is that the granularity of
the story testing is too large. The focus of a
story/functional test is to validate the final, business-level
output that the process generates from the input and the
environmental context. The customer is responsible for
specifying and signing off on functional tests. The
bootstrap story is composed of many internal processing
steps, which are not functionally tested in detail at the
story level. While it is true that unit testing will ensure
that individual internal processing steps function
correctly, the customer is typically not involved at that
level of testing.

3 PROBLEM MITIGATION
There isn’t a ‘one size fits all’ solution for a project.
Each project operates in its own context: team size,
experience level, competit ive pressures, development
tools, etc. The context influences how the project is
affected by particular bootstrap story problems. Each
project needs to be assessed in terms of which of the
problems exist, and which ones have the biggest impact.
This section describes a number of techniques can be
used to mitigate the bootstrap story problems.

Simplify
Do the simplest thing possible. In defining the
scope for the bootstrap story, reduce the necessary
core down to absolute bare bones. Ask questions
like:
• Are there any steps in the process that can be

done manually for the first release? If so, then

remove the manual steps from the story. Make
automating each of the manual steps a new
story. This is typically the most successful
approach to simplifying a bootstrap story
because there is no overall reduction in
behavior, but rather a redistribution of manual
and automated steps.

• Are any of the steps in the process optional? If
so, then remove the optional steps from the
story. Make each of the optional steps a new
story.

• Does this story describe a single situation? If
not, then focus the story on a single goal or
situation. Make each of the other goals or
situations a new story.

• Are we dealing with the simplest possible data
formats? If not, define the simplest possible
data formats for the story. If possible, assume
that the data is error free, so that the story does
not deal with data validation and/or cleanup.
Define other stories that deal with the variations
in data format and data validation.

Refactor
Divide and conquer. As opposed to simplification, which
attempts to make a large story skinnier, refactoring
endeavors to split a single large story into smaller
individual stories. This step is especially challenging
because it often forces the customer to reevaluate their
definition of business value. Good facilitation skills, an
open mind, and a bit of creative thinking are key to
successful story refactoring, especially for the bootstrap
story. For each candidate new story, ask:

• Does this story deliver true business value to the
customer? If the customer answers ‘yes’, it is a
legitimate story.

Keep in mind that for the bootstrap story, the answer to
the first question is often ‘no’. If so, then keep probing:

• What is missing from the story in order for it to
deliver true business value?

Progressively add pieces back onto the candidate story,
asking the above questions again. The end result will
either be the original bootstrap story, which has been
proven to be unfactorable, or a set of smaller stories, each
of which provide business value.

Cheat
Necessity is the mother of invention. If the simplest
possible bootstrap story still exceeds the time box for the
iteration, the development team may be left with no
choice but to treat the story as a special case – in other
words, cheat! Cheating really amounts to innovating to
overcome barriers to project success. Cheating can take
many forms:

44

• Adjust the size of a single iteration so that the
bootstrap story will fit into it (ie. the guideline that
iterations should be roughly the same size is the
barrier).

• Allow the bootstrap story to span multiple iterations
(ie. the guideline that stories should be completed
within an iteration is the barrier).

• Refactor the bootstrap story into pieces that do not
necessarily have business value to the customer (ie.
the guideline that the customer refactors stories and
ensures that each one has business value is the
barrier).

• Expand the customers responsible to include the key
unit tests for the sub processes contained in the
bootstrap story (ie. the guideline that the customer is
responsible for story/functional tests is the barrier).

4 EXAMPLE
Our team for the billing system project was composed of
two full time customers and three senior Object Oriented
(OO) developers. The customers were all new to both XP
and OO. One of the developers was lead on several
previous XP projects, so was designated as our XP coach.
The other developers were familiar with XP concepts but
had not practiced them before. This project possessed
many of the necessary characteristics to succeed using an
XP approach: short initial deadline, small initial scope,
vague requirements (both initial and future), a trusting
customer willing to try new things, and a development
team experienced in the domain, the development tools,
and with each other.

The core process for the billing system is to receive usage
data in several formats and generate customer invoices
based on the data and a variety of business rules (costing
strategies, allocation strategies, etc). The customer
wanted the kernel of the billing system delivered in the
first release. The first story defined for the system was:

Story 1: Calculate Benchmark Charge and Save In
Standard Format
Load raw data from input files into the data warehouse.
The data is assumed to be error free, so no data
validation is required. Roll up the raw data into hourly
intervals, and multiply each interval by the associated
hourly price. These hourly charges are summed for the
billing period to create a single charge per customer.
The hourly prices are assumed to be available and error
free. Output the generated charge into a simple file
format. One file is generated per customer.

This was the simplest possible definition of the core of
the system. It consisted of the simplest form of input
data, the simplest fixed costing strategy, and generated a
simple form of invoice. The story is significantly bigger
than the other stories that the customer defined.

Because this was the first XP project for most of the
team, we struggled with this first story. We were more

familiar with describing system requirements as use
cases, and were trying to get our footing with the concept
of what made a story different from a use case. Story1
felt too much like a use case, in that it covered the steps
along the main path of the business process, rather than
being a singularly focused feature. The team attempted to
decompose the story into smaller stories, but continued to
return to the fact that the customer did not see any
business value in anything less. Once we were convinced
that this was a legitimate story, we rapidly discovered the
problems it created for us. The first problem we faced
was iteration planning, so we innovated (cheated) in order
to finish our plan.

One way that the development team cheated was to
internally refactor the bootstrap story. Since the
development team did the refactoring, we did not call the
new entities stories, but rather called them chapters (also
known within the XP community as zero-functionality
releases). The term chapter made it clear that it was a
portion of a story rather than a legitimate story defined by
the customer. We revised our processes for the first
release:

• The large bootstrap story was assigned to the entire
release instead of a single iteration, and its progress
was tracked with the customer throughout the entire
release.

• Each chapter was assigned to a separate iteration to
provide the development team finer grained control
over progress tracking and task allocation.

• Functional tests were created for the overall story as
well as for each chapter. Both of these types of
functional tests were the responsibility of the
customer

The development team broke the bootstrap story into
three chapters:

Chapter 1: Load Data into Data Warehouse

Load raw data from input files into the data
warehouse. The data is assumed to be error free, so
no data validation is required.

Chapter 2: Create Benchmark Charge

Roll up the raw data into hourly intervals, and multiply
each interval by the associated hourly price. These
hourly charges are summed for the billing period to
create a single charge per customer. The hourly prices
are assumed to be available and error free.

Chapter 3: Output Benchmark Charge to Standard
Format
Output the generated charge into a simple file format.
One file is generated per customer.

Breaking the bootstrap story into chapters turned out to
have an unexpected result for our project. When the
development team reviewed the chapters with the

45

customer in order to explain how we were going to
manage the large bootstrap story, the customer began to
see some business value in individual chapters. The
customer reached the conclusion that the chapters could
be promoted to individual stories if they were reorganized
slightly. The customer then re-prioritized the new stories.
We ended up with three stories in place of our original
bootstrap story:

Story 1: Rollup 15 Minute Interval Data into 1 Hour
Intervals
Load raw data from input files into the data warehouse.
The data is assumed to be error free, so no data validation
is required. Roll up the raw data into hourly intervals.

This is a combination of chapter 1 and part of chapter 2.
The significant realization by the customer was that there
is business value in rolling up the raw data into hourly
intervals. Because the costing algorithm was so simple,
it could be done manually as long as the hourly interval
data was available. This story became the minimum
acceptable functionality for the first release, i.e. it became
the new bootstrap story for the system. This new
bootstrap story did not have any of the problems that the
original one did because it is a more manageable size and
has a more focused goal.

Story 2: Create Benchmark Charge
Multiply each interval by the associated hourly price.
These hourly charges are summed for the billing period
to create a single charge per customer. The hourly
prices are assumed to be available and error free.

This is the same as chapter 2, with the exception that the
rollup step was moved to story 1.

Story 3: Output Benchmark Charge to Standard Format
Output the generated charge into a simple file format.

One file is generated per customer.

This is the same as chapter 3.

Each of these new stories fit within the iteration
time box, so our iteration planning problems were
resolved. We scheduled each story into sequential
iterations. Our anarchistic task sign-up strategy was
once again workable, because each story has its own
set of cohesive tasks. Customer involvement at the
functional level testing for each story was sufficient
to cover all of the key processes. In our case, it

made sense for the customer to adopt our chapters as
stories. If they hadn’t done so, the development
team would have carried out our revised processes
for the first release with the chapters we defined.
5 CONCLUSION
The story is the foundation for describing, planning, and
managing an XP project. While the only dogma in XP is
that there is no dogma, XP projects should endeavor to
define and manage stories according to several simple
guidelines:

• A story has business value to the customer.

• A story is prioritized by the customer.

• The tests for a story are defined by the customer.

• A story must be implemented entirely within an
iteration.

XP teams should strive to not treat large stories, like the
bootstrap story, as special cases. The process of
simplifying and refactoring large stories opens up a
dialog that often brings more clarity of the problem space
to both the customer and the development team.
Thinking creatively outside of the traditional boundaries
of business processes will help shed light on where the
true business value of the system lies. When all else fails,
the last resort is to ‘cheat’ in order to remove barriers to
success. We should not discourage cheating in XP,
because after all the goal is to deliver a high quality
working system, not to be a slave to set of principles and
practices which merely guide us and keep us on track.

ACKNOWLEDGEMENTS
The author would like to thank all the ClearStream
colleagues who shared their experiences and insights in
managing stories on a variety of XP projects. Much
appreciation goes to Gerard Meszaros and Shaun Smith,
who provided insightful feedback on earlier drafts of this
paper. Thanks go out especially to the clients whose
systems provided the opportunities for these experiences.

REFERENCES
1. Beck, Kent. Extreme Programming Explained:

Embrace Change, Addison-Wesley, 2000; ISBN 201-
61641-6.

2. Beck, Kent. Martin Fowler, Planning Extreme
Programming, Addison-Wesley, 2001; ISBN 0-201-
71091-9.

