Domain Types*

Endurants

Dines Bjgrner

Fredsvej 11, DK-2840 Holte, Danmark
DTU, DK-2800 Kgs. Lyngby, Denmark
E—Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/~dibj

Abstract. We put forward a new set of concepts. techniques and tools
for analysing and describing software application domains. We focus on
endurants leaving treatment of perdurants to another paper. Briefly, en-
durants are either discrete (and are called parts) or are continuous (and
are then called materials). Discrete parts are either atomic, that is, are
considered to not consist of proper subparts, or are composite. Parts
may be mereologically related: are uniquely identified and may be re-
lated to some other parts. Parts and materials can additionally be char-
acterised by attributes. Endurant attributes are here considered to be
non-manifest properties (other than unique identification and mereol-
ogy) which can be observed, but are otherwise intangible. The above
concepts give rise to a number of entity, endurant, perdurant, discrete-
ness, continuity, atomicity and composition analysers, and abstract part,
concrete part, unique identifier, mereology, and attribute observers.

1 Introduction 6

Before we can design software? (for some application) we must have a reasonable
understanding of its requirements. Before we can prescribe requirements® (for
that application) we must have a reasonable understanding of the domain of
the requirements, that is, the domain in which the software is to be inserted.
So we see software development containing elements of domain description (D),
requirements prescription (R) and software design (S) such that D,S E R,
that is we can prove correct implementation (S) of requirements (R) under
assumptions of the domain (D).

We shall focus on techniques and tools for analysing and describing domains.

* Vertical grey margin bars designate changes with respect to an October 2013 version
of this paper.

! Margin numbers coordinate with slide page numbers of a lecture slides version of
this paper.

2 Software includes the code that executes on a computer.

3 Requirements: the properties that the software must fulfill.

11

12

14

Describing domains prior to requirements prescription is like researching physics
before engineering. Nobody in their right mind would employ space rocket en-
gineers who are not well educated in fluid mechanics — or radio transmission
engineers who are not well educated in Maxwell’s Equations.

2 Endurants 9

2.1 Domains

A domain is characterised by its observable, i.e., manifest entities and their
qualitiese *

Example 1 Domains. a canal complex, a road net (a canal complex modulo ma-
terials), a container line, a pipeline, a hospitala 5

2.2 Sorts, Types and Domain Analysis 10

By a sort (or type — which we take to be the same) we shall understand the
largest set of entities all of which have the same qualities® e

Example 2 Sorts. Links” of any road net constitute a sort. So does hubs®. The
largest set of (well-formed) collections of links constitute a sort. So does similar
collections of hubs. The largest set of road nets (containing well-formed collec-
tions of hubs and links) form a sortm

By domain analysis we shall understand a process whereby a domain analyser
groups entities of a domain into sortse The rest of this paper will outline a
class of domain analysis principles, techniques and tools — focusing on endurant
entities.

2.3 Entities and Qualities 13

By an entity we shall understand a phenomenon that can be observed, i.e., be
seen or touched® by humans, or that can be conceived as an abstraction of an
entity'® e The method can thus be said to provide the domain analysis prompt:
is_entity where is_entity(6) holds if 0 is an entity.

Example 3 Entities. (a) a road net, (b) a link of a road net, (c) a hub of a road
net; and (d) insertion of a link in a road net, (e) disappearance of a link of a road
net, and (f) the movement of a vehicle on a road netm

4 Definitions start with a single quoted ‘term’ and conclude with a e

5 Examples conclude with a m

6 Taking a sort (type) to be the largest set of entities all of which have the same
qualities reflects Ganter & Wille’s notion of a formal concept [26].

7 A link: a street segment between two adjacent hubs

8 A hub: an intersection of street segments

9 An entity which can be seen or touched is thus a physical phenomenon. If an entity
has the quality the colour red, it is not the red that is an entity.

10 There is no “infinite loop” here: a concept can be an abstraction of (another) concept,
etc., which is finally an abstraction of a physical phenomenon.

Qualities. By a quality of an entity we shall understand a property that can be
given a name and whose value can be precisely measured by physical instruments
or otherwise identified e

Example 4 Quality Names. Name, Owner, Length, Location, Cadestral Hub
Location, Hub State, Hub State Space'!, etceteram

Example 5 Quality Values. the name of a road net, the ownership of a road net,
the length of a link, the location of a hub, etceteram

2.4 Endurants and Perdurants 17

Entities are either endurants or are perdurants.

By an endurant entity (or just, an endurant) we shall understand anything
that can be observed or conceived, as a “complete thing”, at no matter which
given snapshot of time. Were we to “freeze” time we would still be able to ob-
serve the entire endurant e Thus the method provides a domain analysis prompt:
is_endurant where is_endurant(e) holds if entity e is an endurant.

Example 6 Endurants. Items (a—b—c) of Example 3 on the facing page are en-
durants; so are the pipes, valves, and pumps of a pipeline.

Perdurants. By a perdurant entity (or just, an perdurant) we shall understand
an entity for which only a fragment exists if we look at or touch them at any given
snapshot in time, that is, were we to freeze time we would only see or touch a
fragment of the perdurant e Thus the method provides a domain analysis prompt:
is_perdurant where is_perdurant(e) holds if entity e is a perdurant.

Example 7 Perdurants. Items (d—e—f) of Example 3 on the preceding page are
perdurants; so are the insertion of a hub, removal of a link, etceteram

2.5 Discrete and Continuous Endurants 21

Entities are either discrete or are continuous.

Discrete Endurants. By a discrete endurant we shall understand something
which is separate or distinct in form or concept, consisting of distinct or separate
partse We use the term part for discrete endurants, that is: is_part(p)=
is_endurant(p)Ais.discrete(p)e Thus the method provides a domain analysis
prompt: is_discrete where is_discrete(e) holds if entity e is discrete.

Example 8 Discrete Endurants. The examples of Example 6 are all discrete
endurantsm

15

16

18

19

20

26

27

28

29

Continuous Endurants. By a continuous endurant we shall understand some-
thing which is prolonged without interruption, in an unbroken series or pattern e
We use the term material for continuous endurants e Thus the method provides
a domain analysis prompt: is_continuous where is_continuous(e) holds if en-
tity e is continuous.

Example 9 Continuous Endurants. The pipes, valves, pumps, etc., of Exam-
ple 6 on the previous page may contain oil; water of a hydro electric power
plant is also a material (i.e., a continuous endurant)s

We are not covering perdurants in this paper.

2.6 Parts and Materials 25

Atomic and Composite Discrete Endurants. Discrete endurants are either
atomic or are composite.

Atomic Endurants. By an atomic endurant we shall understand a discrete
endurant which in a given context, is deemed to not consist of meaningful,
separately observable proper sub-partse The method can thus be said to provide
the domain analysis prompt: is_atomic where is_atomic(p) holds if p is an
atomic part.

Example 10 Atomic Parts. Examples of atomic parts of the above mentioned
domains are: aircraft (of air traffic), demand/deposit accounts (of banks), con-
tainers (of container lines), documents (of document systems), hubs, links and
vehicles (of road traffic), patients, medical staff and beds (of hospitals), pipes,
valves and pumps (of pipeline systems), and rail units and locomotives (of rail-
way systems)m

Composite Endurants. By a composite endurant we shall understand a discrete
endurant which in a given context, is deemed to indeed consist of meaningful,
separately observable proper sub-partse The method can thus be said to provide
the domain analysis prompt: is_composite where is_composite(p) holds if p is
an a composite part.

Example 11 Composite Parts. Examples of composite parts of the above men-
tioned domains are: airports and air lanes (of air traffic), banks (of a finan-
cial service industry), container vessels (of container lines), dossiers of docu-
ments (of document systems), routes (of road nets), medical wards (of hospi-
tals), pipelines (of pipeline systems), and trains, rail lines and train stations (of
railway systems)m

23

24

30

It is the domain analysers who decide whether an endurant is atomic or
composite. In the context of air traffic an aircraft might very well be described
as an atomic entity; whereas in the context of an airline an aircraft might very
well be described as a composite entity consisting of the aircraft ‘body’, the
crew, the passengers, their luggage, the fuel, etc.

Part Observers. From atomic parts we cannot observe any sub-parts. But from
composite parts we can.
For composite parts, p, the domain description prompt

observe_part_sorts(p)

yields some formal description text according to the following schema'?:

m Pl, PQ, . Pn;IS
value obs_P;: P—P;, obs_Ps: P—P5,....0obs_P,,: P—P,:1*

where sort names Pq, Po, ..., P,, are chosen by the domain analyser, must denote
disjoint sorts, and may have been defined already, but not recursively A proof
obligation may need be discharged to secure disjointness.

Example 12 Abstract Canal Complexes.

1. A canal complex consists of a cluster of canal links and a cluster of canal

hubs.

type

1. CC, CH, CL

value

1. obs_.CH: CC — CH, obs_.CL: CC — CL

This example will be continued in Examples 13, 14, 15, etcetera.

Sort Models. A part sort is an abstract type. Some part sorts, P, may have a
concrete type model, T. Here we consider only two such models: one model is
as sets of parts of sort A: T = A-set; the other model has parts being of either
of two or more alternative, disjoint sorts: T=P1|P2|...|PN. The domain analysis
prompt:

has_concrete_type(p)
holds if part p has a concrete type. In this case the domain description prompt

observe_concrete_type(p)

31

32

33

35

36

yields some formal description text according to the following schema,

* either
type P1,P2, .., PN, T = £(P1,P2,..PN)
value obs_T: P — T16

where £(...) is some type expression over part sorts and where P1,P2,....PN
are either (new) part sorts or are auxiliary (abstract or concrete) types!”;

*

or:
type
~ T =P1|P2]|..|PN
Py, Po, ..., Py,
P1 :: mkP1(Py), P2 :: mkP2(P5), ..., PN :: mkPN(P) 19
value

obs_T: P — T20

Example 13 Concrete Canal Clusters. We continue Example 12.

2. A cluster of canal links is a set of links.
3. A cluster of canal hubs is a set of hubs.

type

2-3. L, H, CLS = L-set, CHS = H-set

value

2-3. obs_.CLS = CL—CLS, obs_.CHS = CH— CHS

Material Observers. Some parts p of sort P may contain material. The domain
analysis prompt

has material(p)

1 with values being the set of all hub states over time.

2 Throughout this paper the description texts are formulated in the RAISE [28] spec-
ification language RSL [27] — but other such model-oriented specification languages
could be used, e.g., Alloy [30], Event B [1], VDM [18, 19, 23], or Z [40].

13 This RSL type clause defines Py, P, ..., P, to be types.

14 Thus RSL value clause defines n function values. All from type P into some type P;.

15 The concrete type definition T = E(P1,P2,...,PN) define type T to be the set of
elements of the type expressed by type expression £(P1,P2,...,PN).

16 0bs_T is a function from any element of P to some element of T.

' The domain analysis prompt: sorts_of(t) yields a subset of {P1,P2,... PN}.

18 AIB is the union type of types A and B.

9 Type definition A :: mkA(B) defines type A to be the set of elements mkA(b) where
b is any element of type B

20 obs_T is a function from any element of P to some element of T.

34

holds if composite part p contains one or more materials. The domain description
prompt

observe material _sorts(p)
yields some formal description text according to the following schema:

type M17 M27 ceey Mm7
value obs_M;: P — My, obs_Ms: P — Moy, ..., obs_M,,,: P — M,,;

where values, m;, of type M; satisfy ismaterial(m) for all i; and where My,
M, ..., M,,, must be disjoint sorts.

Example 14 Canal Complex Materials.

4. Canal links and hubs contain (more or less) water.
5. Wo designates no water.

type

4. W

value

4. obsW: (LIH) — W
5. Wo:W

Some material m of sort M may contain parts. The domain analysis prompt
has_parts(m)

holds if material m contains one or more parts. The domain description prompt
observe_part_sorts(m)

yields some formal description text according to the following schema:

type Pla P2) ceey Pn7
value obs_P;: M—Pq, obs_Py: M—Ps,...,0bs_P,,,: M—P,,;

where values, p;, of type P; satisfy is_part(p;) for all 4; and where sort expres-
sions P1, Po, ..., P, must designate disjoint sorts.

Example 15 Canal Boats.

6. Canal water (also Wo) contains zero or more boats.

type
6. B
value
6. obs_Bs: W — B-set

37

38

39

42

a4

45

2.7 Endurant Properties 40

We have already, above, treated the following properties of endurants: is_di-
screte, is_continuous, is_atomic, is_composite and has material. We may
think of those properties as external qualities. In contrast we may consider the fol-
lowing internal qualities: has_unique_identifier (parts), has_mereology (parts)
and has_attributes (parts and materials).

2.8 Unique ldentifiers 4

Without loss of generality we can assume that every part has a unique identi-
fier’L. A unique part identifier (or just unique identifier) is a further undefined,
abstract quantity. If two parts are claimed to have the same unique identifier
then they are identical, that is, their possible mereology and attributes are (also)
identical e« The domain description prompt:

observe unique_identifier(p)
yields some formal description text according to the following schema:

type PI;
value uid_P: P — PI,;

Example 16 Unique ldentifiers. A road net consists of a set of hubs and a set
of links. Hubs and links have unique identifiers. That is: type HI, LI; value
uid_H: H—HI, uid_L: L—LI; =

2.9 Mereology 43

By mereology [33] we shall understand the study, knowledge and practice of
parts, their relations to other parts and “the whole” e

Part relations are such as: two or more parts being connected, one part being
embedded within another part, and two or more parts sharing (other) attributes.

Example 17 Mereology. The mereology of a link of a road net is the set of the
two unique identifiers of exactly two hubs to which the link is connected. The
mereology of a hub of a road net is the set of zero or more unique identifiers of
the links to which the hub is connectedm

The domain analysis prompt: has mereology(p) holds if the part p is related to
some others parts (pq,pv, .- .,pc). The domain description prompt:

observe_mereologY(P)

can then be invoked and yields some formal description text according to the
following schema:

2! That is, has_unique_identifier(p) for all parts p.

type MT = &(PI4,Plp,...,Ple);
value mereo_P: P — MT;

where £(...) is some type expression over unique identifier types of one or more
part sorts. Mereologies are expressed in terms of structures of unique part identi-
fiers. Usually mereologies are constrained. Constraints express that a mereology’s
unique part identifiers must indeed reference existing parts, but also that these
mereology identifiers “define” a proper structuring of parts.

Example 18 Mereology Constraints. Canal Complezes:

7. A link connects exactly two distinct hubs, and this is expressed by associating
with each link a set of the two distinct hub idenfiers of the hubs they connect.

8. A hub connects to a set of links, and this is expressed by associating with
a hub set set of the zero, one or more identifiers of the links to which it
connects.

value
t7. mereo_L: L — Hl-set axiom Y [:Lecard mereo_L(l)=2
t8. mereo_H: H— Ll-set

9. The unique hub identifiers of a link mereology must designate existing hubs,
and
10. the unique link identifiers of a hub mereology must designate existing links.

axiom

t9. 'V cc:CC,ch:CH,cl:CL hs:Chs,ls:CLs

19. ch=0bs_CH(cc)Acl=0bs_CL(cc)Ahs=obs_CHs(ch)Als=obs_CLs(cl)=
(9. V1Ll els =

19. 3 h,h":H « {h,h}ChsAmereo_L(1)={uid_H(h),uid_-H(h")}
t10. AV h:Heh € hs =
10. ¥ li:LIeli € mereo H(h) » 3 LLel € IsAuid_L(l)=li .

Two parts, p;:P; and p;:P;, of possibly the same sort (i.e., P,=P;) are said to
refer one to another if the mereology of p; contains the unique identifier of p;
and vice-versae The parts p; and p; are then said to enjoy part overlape We
refer to the concept of shared attributes covered at the very end of this section.

2.10 Attributes 51

Attributes are what really endows parts with qualities. The external properties??
are far from enough to distinguish one sort of parts from another. Similarly with
unique identifiers and the mereology of parts. We therefore assume, without loss
of generality, that every part, whether discrete or continuous, whether, when
discrete, atomic or composite, has at least one attribute.

22 is_discrete,is_continuous,is_atomic,is_compositehas_material.

46

47

48

49

50

52

53

54

55

10

By an emdurant attribute, we shall understand a property that is associated
with an endurant e of sort E, and if removed from endurant e, that endurant
would no longer be endurant e (but may be an endurant of some other sort
E’); and where that property itself has no physical extent (i.e., volume), as the
endurant may have, but may be measurable by physical meanse The domain
description prompt

observe_attributes(p)

yields some formal description text according to the following schema:

type Al, AQ, ceey An, ATTR,
value attr_A,:P—Aq, attr_As:P—As, ..., attr_A,,:P—A,,
attr _ATTR:P—ATTR,;

where for V p:P, attr_A;(attr_.ATTR(p)) = attr_A;(p).
Example 19 Canal Complex Attributes.

11. Links are endowed with attributes such as lengths and widths, locations,
names, etc., and hubs can likewise be endowed with properties such as lo-
cations, names, etc.

12. Hubs are endowed with the additional attribute of ‘hub state’. A hub state
models the directions that traffic may, in time intervals, proceed through a
hub. We abstract a hub state as a set of pairs of link identifiers.

type

11. LEN, WID, LOC, NAM, ...

value

11. attr.LEN: L—LEN, attr_WID: L— WID,
attr-LOC: (L|H)—LOC, attr-NAM: (L|H)—NAM, ...

type

12. HX = (LIxLI)-set

value

12. attr-HY: H— HY

13. Directional flow is a concept of unit volume of water per unit time. Flows are
directionaless directional flows. Flows are observed at the interfaces between
links and hubs (from a link to a hub or vice versa), and at the interfaces
between links or hubs and a further undefined exterior.

14. An interface is either from a hub to a link (hlif, or reverse: from a link to a
hub??, Ihif) or between a hub or link and an outside.

15. Water may (directionally) flow across a hub/link (or a link/hub) interface
(in various and varying quantities).

23 The reverse direction of an interface designates the same interface with opposite
direction flows (for non-null flows); see axiom ¢18 (Page 11).

11

16. Water may leak from links and hubs (evaporate into the air?* or “sink” into
the ground?®),
17. A nd water may precipitate from the air into hubs and links, or otherwise

enter these from possibly underground sources.

type
113. F
value
I F: F
—F—=F, +— FxF=F
axiom
\ fZF'O]:—i-f:f—i-O]::f:O]:—f:f—O}‘
type
(14, TF == hlif(hi:HL1i:LI) | Ihif(li:LI,hi:HT)
value
15, attr F: IF - CC — F
(16. attr_Leak: (Li|Hi) - CC — F
(17. attr_Prec: (Li|Hi) — CC — F

Laws of Material Flow: We shall focus on laws of stead state flows, that is, flows
which for which the volumes of water in links and hubs are unchanged.

18. The flow across a link to hub interface is the numerically the same as the
flow across the “same” 26, but now reversed link to hub interface,

118. V cc:CC,cl:CL,1s:CLs » cl=0bs_CL(cc)Als=obs_CLs(cl)=
118. V1Lel €ls =

118, let li = uid_L(1),

(18. ¥ hi:HI « hi € mereo_L(1)

(18. = attr_F(hlif(hi,li))(cc) = — attr_F(lhif(li,hi))(cc)
L18. end

19. The flow of water from a hub into a designated, that is, a connected link
plus the precipitation along the link equals the flow of water from that link
into “the other connected” hub plus the leak from that link.

axiom
t19. ¥ ¢cc:CC,cl:CL,1s:CLs « cl=0bs_CL(cc)Als=obs_CLs(cl)=
19. V1Lel €ls =

¢19. let li = uid_L(1), {hi,hi’} = mereo_L(l) in
¢19. attr_F (hlif(hi,li))(cc) + attr_Prec(li)(cc)
119. = attr_F(lhif(li,hi"))(cc) + attr_Leak(li)(cc)

t19. end

60

61

62

63

12

20. The flow of water into a hub from (all) its connected links plus the precipita-
tion at the hub equals the flow of water from the hub into (all) its connected
links plus the leak from that hub.

21. The flow into and out of a hub is expressed by the summation function
sum_F.

axiom
120. V cc:CC,ch:CH,hs:Chs » ch=o0bs_CH(cc)Ahs=obs_CHs(ch)=
120. V h:Heh € hs =

120. let hi = uid_H(h), lis = mereo_H(h) in

120. sum_F(lis,;hi)(cc) + attr_Prec(li)(cc) = attr_Leak(hi)(cc)
120. end

value

t21. sum_F: Ll-set x HI - CC — F
21, sum_F({},hi)(cc) = O
21, sum_F({li}U lis,hi)(cc) = attr_F(li,hi)(cc) U sum_F(lis,hi)(cc)

Shared Attributes. A final quality of endurant entities is that they may share
attributes. Two parts, p;:F;,p;:P;, of different sorts are said to enjoy shared
attributes if P; and P; have at least one attribute name in commone In such
cases the mereologies of p; and p; are expected to refer to one another, i.e., be
commensurable.

Example 20 Shared Attributes. Assume a road net, i.e., a canal complex mod-
ulo water. Assume that the road net domain (besides hub and link clusters) also
include fleets of busses and a global bus monitoring part which embodies a global
bus timetable as an attribute. Each bus is supposed to run according to that global
bus timetable — which we assume that the bus has a copy of — as a bus attribute.
Then the global bus monitoring part and the bus timetables of the bus parts of
the fleet part are sharedm

Attribute Categories. One can suggest a hierarchy of endurant attribute cate-
gories: discrete or continuous (including chaotic) values, static or dynamic values
(and within the dynamic value category: inert values or reactive values or ac-
tive values (and within the dynamic active value category: autonomous values
or biddable values or programmable values)).

We now review?” these attribute value types. (The review is inspired by [31,
M.A. Jackson)].)

24 We do not model the ‘air’.

25 We do not model the ‘ground’.

26 See footnote 23 on Page 10.

2T The margin bar stretches this review. The review can be omitted in order to comply
with a 15 page maximum for FM 2014 contributions.

13

Attributes are either discrete or continuous or chaotic attributes. An at-
tribute is said to be a discrete attribute, is_discrete_attribute, if it takes
on a finite or countably infinite number of distinct or unconnected elements. An
attribute is said to be a continuous attribute, is_continuous_attribute, if a
suitable abstract model describes it as a continuous function from some point
set value type A (A could be time) to some not necessarily point set value type
(B): A — B. We shall not explain concepts of chaotic attributes.

Discrete or continuous part attributes are either constant or a variable, i.e.,
static or dynamic attributes. By a static attribute is_static_attribute, we
shall understand an attribute whose values are constants, i.e., cannot change. By
a dynamic attribute, is_dynamic_attribute, we shall understand an attribute
whose values are variable, i.e., can change.

Dynamic attributes are either inert, reactive or active attributes. By an inert
attribute, is_inert_attribute, we shall understand a dynamic attribute whose
values only change as the result of external stimuli where these stimuli prescribe
exactly these new values. By a reactive attribute, is_reactive_attribute, we
shall understand a dynamic attribute whose values, if they vary, change value
in response to the change of other attribute values. By an active attribute,
is_active_attribute, we shall understand a dynamic attribute whose values
change (also) of its own volition.

Example 21 Inert and Reactive Attributes. Busses (i.e., vehicles) have a time-
table attribute which is dynamic, i.e., can change, namely when the operator of
the bus fleet decides so, thus the bus timetable attribute is inert. Pipeline valve
units include the two attributes of valve opening (open, close) and internal
flow (measured, say gallons per second). The valve opening attribute is of the
programmable attribute category. The flow attribute is reactive (flow changes
with valve opening/closing).

Active attributes are either autonomous, biddable or programmable attributes.
By an autonomous attribute, is_autonomous_attribute, we shall understand a
dynamic active attribute whose values change value only “on their own volition”.
The values of an autonomous attributes are a “law onto themselves and their
surroundings”. By a biddable attribute, is_biddable_attribute (of a part)
we shall understand a dynamic active attribute whose values may be subject
to a contract as to which values it is expected to exhibit. By a programmable
attribute, is_programmable_attribute. we shall understand a dynamic active
attribute whose values can be accurately prescribed.

Example 22 Static and Dynamic Link Attributes.

22. Some link attributes
a (link) length,
b (link) name, e.g., Fifth Ave. between 50th and 51st Streets),
can be considered static,
23. whereas other link attributes
a (link) state (one-way: say from 51st to 50th),

64

65

66

67

68

69

70

71

74

14

b (link) state space (one single state, one-way: say from 51st to 50th)
can be considered programmable,
24. Finally link attributes
a link state—of-repair,
b date last maintained,
can be considered inert.

type 23a. obs_ LY: L — LY
22a. LEN type

value 23b. L'=L>-set

22a. obs_LEN: L. — LEN 23b. LO={|lw:L§2 + card lw = 1|}
type value

22b. Name 23b. obs_Lf2: L — LS?
value type

22b. obs_Name: L — Name 24a. LSoR

type 24b. DLM

23a. LXY'=(HIx HI)-set value

23a. LY={|lo:LXY « card lo < 2|} 24a. obs_LSoR: L — LSoR
value 24b. obs_DLM: L. — DLM

Example 23 Autonomous and Programmable Hub Attributes. We continue
Ezample 22. Time progresses autonomously, Hub states are programmed (traffic
signals): changing from red to green via yellow, in one pair of (co-linear) direc-
tions, while changing, in the same time interval, from green via yellow to red in
the “perpendicular” directions.

The attribute categories must not be confused neither with the external endurant
properties nor with the endurant attributes.

2.11 Summary 72

Endurant sort names denote a usually infinite set of entities. Endurant mereol-
ogy, when discrete, and attributes — for either discrete or continuous endurants
— designate entity qualities.

We usually do not define endurant entities, that is, instances of endurants,
but their sorts, mereology types and attribute types.

3 Perdurants 73

We give a very cursory summary of perdurant entities: actions, events and be-
haviours; their signatures (i.e., names and types) and qualities.

15

Perdurants, although of temporary nature, usually leave an effect. The effect
is that of changing a state. One can consider any collection of “disjoint” en-
durants that each contain dynamic attributes to form a state. That is, the state
is then represented by the possibly varying values of the dynamic attributes
of state endurants e Perdurants are, for pragmatic purposes, classified as either
actions, events, or behaviours. An action is what happens when a function is
deliberately applied to some arguments and a statee An event is what happens
when a function with a non-deterministic outcome is surreptitiously “applied”
to a statee A behaviour is a sequence of zero or more actions, events and be-
haviourse Since perdurants (potentially) change some notion of state we shall
basically ascribe functional values to perdurants — with these values charac-
terised by type and properties. Perdurant types are basically over states, that
is, X — X, and with arguments that are either parts, materials or attributes,
or designate parts (i.e., their unique identifiers). Thus part, material, attribute
and unique identifier types occur in the function signatures.

We usually do not define perdurant entities, that is, instances of perdurants,
like specific actions, specific events or specific behaviours, but we define their
signatures: names and types and their qualities. Usually endurant qualities are
given by defining pre/post conditions. Each perdurant definition then usually
denotes an infinity of perdurants: actions, events or behaviours,

We can postulate a normal form behavioral CSP [29] description of a domain
as follows: With each part, p:P, we associate a CSP process: value P: Pl x
ATTRIBS?® — in ... out ... Unit. And with each unique identifier, 7/, in the
mereology of a part p:P (whose unique identifier is 7) we associate a CSP channel
ch[{m, pi’}] between processes p:P and p":P’. Details are given in [10].

4 Conclusion 80

It is time to conclude.

4.1 What Have We Achieved ?

We have put forward a proposal for analysing and describing endurant entities of
domains. The proposal hinges on the notions of atomic and composite parts and
of materials, and on their analysis and description in terms of their sorts (types)
and observers. Based on parts and materials the proposal then proceeds with
the notions of mereology, including unique identifiers of parts, and with attributes
of parts and materials, and their observer uid, mereo and attr names and
their types. We claim that this approach to the analysis and description of
endurants is new. In [14, Sect.4.1] (See Sect.4.3 below) we substantiate this
claim. In other words: the present paper presents an altogether different set of

28 ATTRIBS are the attributes of P.

75
76

7

78

79

81

83

84

85

88

16

endurant concepts and thus an altogether different approach to the analysis and
description of endurants, (parts, materials, unique identification, mereology, and
attributes) than heretofore published.

4.2 On Relations to Philosophy 82

Already the very first (definitional) phrase of Sect. 2.3 on Page 2 reveals a
problem. The definition is not mathematically precise. It cannot be made so.
This is so since it we are dealing with reality. And reality, we take as a dogma,
cannot be described precisely. The philosophical papers [38,39] addresses this
dilemma,

But it is not only the definition of entity (Sect. 2.3 on Page 2) which is
necessarily imprecise. So are the definitions of quality (Sect. 2.3 on Page 3),
endurant (Sect. 2.4 on Page 3), perdurant (Sect. 2.4 on Page 3), discrete endurant
(Sect. 2.5 on Page 3), continuous endurant (Sect. 2.5 on Page 4), atomic endurant
(Sect. 2.6 on Page 4), composite endurant (Sect. 2.6 on Page 4), etcetera.

But it is not only aspects of parts, atomicity and compositionality whose
“reality” orders strongly on philosophical issues, so does issues of part-hood,
that is mereology [20]. and attributes. The analysis and description of attributes
is subject to much philosophical debate and discussion as witnessed by [35, 25].

In other words: Describing domains can never be a precise activity. It depends
on the pragmatics of the analyser cum describer. But with the given observers
(obs_---, uid_- - -, mereo._- - -, and attr_---) the descriptions become precise!

We can therefore postulate that the domain analysis and description method
of this paper sum up what can be described !

4.3 Comparison to Other Works 86

[14] contains a detailed, 4+ page, comparison to seminal works relating to domain
analysis. We do not repeat this comparison here other than give references to
the most important of this ‘other work’: [2,22,3,21,24,32,34, 36, 37]. .

4.4 Future Work 87

[13, Draft] proposes an approach to the analysis & description of domain perdu-
rants that is commensurate with the ideas of the present paper.

Other ongoing work relates to the modelling of the analysis and description
process. [14, April 2014] formalises some of the aspects of the process presented
in this paper. [11, Draft] formalises remaining process aspects.

The state-of-the-art with respect to the modelling of of combined continuous
and discrete systems is somewhat deficient. A case in point is that of the dynamic
flows of canal complexes. Examples 12, 14, 18 and 19 suggest models of the
dynamic flow of water through a canal complex — for example “integrating”
Bernoulli and Navier-Stokes equations with the discrete RSL specifications. We
pose this kind of modelling as a challenge.

17

4.5 Domain Description Sketches 89

A number of sketches of domains based on the principles of this paper have been
carried out. Some are: container lines (J/container-paper), platoons & pla-
tooning (U/platoon-p), road transport (J/road-p), pipelines (U/pipe-p), doc-
uments (U/doc-p), window and web-based systems: transaction processing (U/wf-
dftp), stock exchanges (U/tse-1), the market: consumers, retailers, wholesaler,
producers (U/themarket), logistics (0/logistics), and licensing (U/1license-
-languages) — where U/file abbreviates www.imm.dtu.dk/"db/file.pdf.

4.6 Acknowledgements 90

I thank the very many colleagues around the world who have kindly invited me
to lecture on domain science and engineering (domain analysis & description) in
recent years:Jin Song Dong, Dominique Méry, Franz Wotawa, Jimmy Ho Man Lee,
Wolfgang J. Paul, Alan Bundy, Tetsuo Tamai, Jens Knoop, Lars-Henrik Ericsson,
Magne Haveraaen, Sun Meng and Zhu Hui Biao. The present form of domain
analysis and description by means of prompts was spurred by some remarks of
Magne Haveraaen.

5 Bibliography 91

5.1 Notes

This conference contribution is part of a series of papers on the topic of domains. [4-
10,12,14-17]. In [5, 2008] we show how to “derive” requirements prescriptions from
domain descriptions. In [6, 2008] we show techniques for describing domain facets:
intrinsics, support technologies, rules & regulations, management & organisation as
well as human behaviour. In [9, 2011] we illuminate such concepts as simulation,
demos, monitoring and control. In [12, 2013] we speculate on various issues of
“computation for humanity” (!). In [10, 2013] we relate our modelling of mereology
to the classical axiom systems for mereology.

5.2 References

1. J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England,
1996 and 2009.

2. C. Bachman. Data structure diagrams. Data Base, Journal of ACM SIGBDP, 1(2),
1969.

3. V. Benjamins and D. Fensel. The Ontological Engineering Initiative (KA)2. In-
ternet publication + Formal Ontology in Information Systems, University of Ams-
terdam, SWI, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands and Uni-
versity of Karlsruhe, AIFB, 76128 Karlsruhe, Germany, 1998. http://www.aifb.uni-
karlsruhe.de/WBS /broker/KA2.htm.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Bjgrner. Domain Theory: Practice and Theories, Discussion of Possible Research
Topics. In ICTAC'2007, volume 4701 of Lecture Notes in Computer Science (eds.
J.C.P. Woodcock et al.), pages 1-17, Heidelberg, September 2007. Springer.

. D. Bjgrner. From Domains to Requirements. In Montanari Festschrift, volume 5065

of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and
José Meseguer), pages 1-30, Heidelberg, May 2008. Springer.

D. Bjgrner. Domain Engineering. In P. Boca and J. Bowen, editors, Formal Methods:
State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages
1-42, London, UK, 2010. Springer.

D. Bjgrner. Domain Science & Engineering — From Computer Science to The Sciences
of Informatics, Part | of Il: The Engineering Part. Kibernetika i sistemny analiz,
(4):100-116, May 2010.

. D. Bjgrner. Domain Science & Engineering — From Computer Science to The Sciences

of Informatics Part Il of II: The Science Part. Kibernetika i sistemny analiz, (2):100—
120, May 2011.

. D. Bjgrner. Domains: Their Simulation, Monitoring and Control — A Divertimento of

Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Mau-
rer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg
and A. Saloma), pages 167-183. Springer, Heidelberg, Germany, January 2011.

D. Bjgrner. A Réle for Mereology in Domain Science and Engineering. Synthese Library
(eds. Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands,
October 2013.

D. Bjgrner. Domain Analysis: A Model of Prompts (paperzg, slides30). Research Report
2013-6, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Fall 2013.

D. Bjgrner. Domain Science and Engineering as a Foundation for Computation for
Humanity, chapter 7, pages 159-177. Computational Analysis, Synthesis, and Design
of Dynamic Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter
J. Mosterman).

D. Bjgrner. Domain Analysis & Description: Perdurants. Research Report, DTU
Compute and Fredsvej 11, DK-2840 Holte, Denmark, Fall/Winter 2014,

D. Bjgrner. Domain Analysis: Endurants — An Analysis & Description Process Model.
In S. lida, J. Meseguer, and K. Ogata, editors, Specification, Algebra, and Software:
A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

D. Bjgrner. Domain Engineering: Technology Management, Research and Engineering.
A JAIST Press Research Monograph # 4, 536 pages, March 2009.

D. Bjgrner. The Role of Domain Engineering in Software Development. Why Current
Requirements Engineering Seems Flawed! In Perspectives of Systems Informatics, vol-
ume 5947 of Lecture Notes in Computer Science, pages 2—-34, Heidelberg, Wednesday,
January 27, 2010. Springer.

D. Bjgrner and A. Eir. Compositionality: Ontology and Mereology of Domains. Some
Clarifying Observations in the Context of Software Engineering in July 2008, eds. Mar-
tin Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem
Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lec-
ture Notes in Computer Science, pages 22-59, Heidelberg, July 2010. Springer.

D. Bjgrner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

D. Bjgrner and C. B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

2 http://www.imm.dtu.dk/~dibj/da-mod-p.pdf
30 http://www.imm.dtu.dk/~dibj/da-mod-s.pdf

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

19

R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT
Press, 1999.

P. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM
Trans. Database Syst, 1(1):9-36, 1976.

E. A. Feigenbaum and P. McCorduck. The fifth generation. Addison-Wesley, Reading,
MA, USA, 1st ed. edition, 1983.

J. Fitzgerald and P. G. Larsen. Modelling Systems — Practical Tools and Techniques
in Software Development. Cambridge University Press, The Edinburgh Building, Cam-
bridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

M. Fowler. Domain Specific Languages. Signature Series. Addison Wesley, October
20120.

C. Fox. The Ontology of Language: Properties, Individuals and Discourse. CSLI
Publications, Center for the Study of Language and Information, Stanford University,
California, ISA, 2000.

B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations.
Springer-Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US$
44.95.

C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen,
S. Prehn, and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen.
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International, 1985. Published electronically: http://www.using-
csp.com/cspbook.pdf (2004).

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

M. A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Foda: Feature-oriented domain analysis. Feasibility Study CMU/SEI-90-TR-
021, Software Engineering Institute, Carnegie Mellon University, November 1990.
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm.

E. Luschei. The Logical Systems of Lesniewksi. North Holland, Amsterdam, The
Netherlands, 1962.

N. Medvidovic and E. Colbert. Domain-Specific Software Architectures (DSSA). Power
Point Presentation, found on The Internet, Absolute Software Corp., Inc.: Abs [S/W],
5 March 2004.

D. H. Mellor and A. Oliver, editors. Properties. Oxford Readings in Philosophy. Oxford
Univ Press, May 1997. ISBN: 0198751761, 320 pages.

R. Prieto-Diaz and G. Arrango. Domain Analysis and Software Systems Modelling.
IEEE Computer Society Press, 1991.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

B. Russel. “Preface,” Our Knowledge of the External World. G. Allen & Unwin, Ltd.,
London, 1952.

B. Smith. Ontology and the Logistic Analysis of Reality. In G. Haefliger and P. M.
Simons, editors, Analytic Phenomenology. Dordrecht/Boston /London: Kluwer, Padua,
Italy, 1993.

20

40. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

