
i

A Tutorial edition of this ↑ November 2021 publication October 19, 2022: 10:18 am

© Dines Bjørner. October 19, 2022: 10:18 am i The TUV Lectures, Vienna, Austria, October–November 2022

ii

TU Wien Lectures

• Day # 1 von Neumann Monday 24 Oct. 2022 • Seminar & Example, I • 10:15–11:00,
11:15–12:00

⋄⋄ Domain Overview 25–34
⋄⋄ Example: Road Transport 131–149

• Day # 2 von Neumann Tuesday 25 Oct. 2022 • Endurants, I • 8:15–9:00, 9:15–10:00

⋄⋄ External Qualities, Analysis 35–50
⋄⋄ External Qualities, Synthesis 51–57

• Day # 3 von Neumann Thursday 27 Oct. 2022 • Endurants, II • 8:15–9:00, 9:15–10:00

⋄⋄ Internal Qualities, Unique Identifiers 59–66
⋄⋄ Internal Qualities, Mereology 67–71

• Day # 4 von Neumann Friday 28 Oct. 2022 • Endurants, III • 8:15–9:00, 9:15–10:00

⋄⋄ Internal Qualities, Attributes 72–89

• Day # 5 von Neumann Monday 31 Oct. 2022 • Example, II • 8:15–9:00, 9:15–10:00

⋄⋄ Example: Pipelines 151–168

• Day # 6 von Neumann Thursday 3 Nov. 2022 • Perdurants, I • 8:15–9:00, 9:15–10:00

⋄⋄ The “Discrete Statics” 99–107

• Day # 7 Gödel Friday 4 Nov. 2022 • Perdurants, II • 8:15–9:00, 9:15–10:00

⋄⋄ The “Discrete Dynamics” 107–116
⋄⋄ Summary Discussion 117–122

von Neumann and Gödel Lecture Rooms and 3rd floor Laboratory:
https://www.tuwien.at/fileadmin/Assets/dienstleister/gebaeude und technik/FS/Plaene 2/Favoritenstrasse 9-
11 1040 HA-HI IP 09012020.pdf

© Dines Bjørner October 19, 2022: 10:18 am

The TUV Lectures, Vienna, Austria, October–November 2022 ii © Dines Bjørner. October 19, 2022: 10:18 am

iii

Dines Bjørner

Domain Science & Engineering

A Tutorial1

1 – first inteded for an M.Sc./Ph.D. course at the Technical University of Vienna, 24.10–4.11, 2022

© Dines Bjørner. October 19, 2022: 10:18 am iii The TUV Lectures, Vienna, Austria, October–November 2022

iv

Dines Bjørner

DTU Compute
Technical University of Denmark
DK-2800 Kgs.Lyngby, Denmark

Fredsvej 11, DK-2840 Holte, Denmark

The TUV Lectures, Vienna, Austria, October–November 2022 iv © Dines Bjørner. October 19, 2022: 10:18 am

v

Preface
The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.

Domains – What Are They ?

By a domain we shall understand a rationally describable segment of a discrete dynamics
segment of a human assisted reality, i.e., of the world, its solid or fluid entities: natural [“God-
given”] and artefactual [“man-made”], and its living species entities: plants and animals
including, notably, humans. Examples of domains are: rail, road, sea and air transport; water,
oil and gas pipelines; industrial manufacturing; consumer, retail and wholesale markets;
health care; et cetera.

Aim and Objectives

• The aim of this monograph is to contribute to a methodology for analysing and describing
domains.

• The objectives – in the sense of ‘how is the aim achieved’ – is reflected in the structure
and contents and the didactic approach of this monograph.

• The main elements of my approach – along one concept-axis – can be itemized:

⋄⋄ There is the founding of our analysis & description approach in providing a base
philosophy, cf. Chapter 2.

⋄⋄ There is the application of ideas of taxonomy to understand the possibly hierarchical
structuring of domain phenomena respectively the understanding of properties of
phenomena and relations between them.

⋄⋄ There are the notions endurants and perdurants – with endurants being the phenom-
ena that can be observed, or conceived and described, as a “complete thing” at no
matter which given snapshot of time [116, Vol. I, pg. 656], and perdurants being the
phenomena for which only a fragment exists if we look at or touch them at any given
snapshot in time [116, Vol. II, pg. 1552].

⋄⋄ There is the introduction of base elements of calculi for analysing and describing
domains.

⋄⋄ There is the application of ideas of ontology to understand the possibly hierarchical
structuring of these calculi.

⋄⋄ And finally there is the notion of transcendental deduction, cf. Sect. 2.1.2, for “mor-
phing” certain kinds of endurants into certain kinds of perdurants, Chapter 6.

• Along another conceptual-axis the below are further elements of our approach:

⋄⋄ We consider domain descriptions, requirements prescriptions and software design spec-
ifications to be mathematical quantities.

⋄⋄ And we consider them basically in the sense of recursive function theory [138, Hartley
Rogers, 1952] and type theory [125, Benjamin Pierce, 1997].

© Dines Bjørner. October 19, 2022: 10:18 am v The TUV Lectures, Vienna, Austria, October–November 2022

vi

Methodology

By a method we shall understand a set of principles2 and procedures3 for selecting and
applying a set of techniques4 and tools5 to a problem in order to achieve an orderly
construction of a solution, i.e., an artefact.

By methodology we shall understand the study & application of one or more methods.
By a formal method we shall understand a method whose decisive principles include that

of considering its artefacts as mathematical quantities; whose decisive procedures include
those of whose decisive techniques include those of whose decisive tools include those of
one or more formal languages

By a language we shall here understand a set of strings of characters, i.e., sentences,
sentences which are structured according to some syntax, i.e., grammar, are given meaning
by some semantics, and are used according to some pragmatics.

By a formal language we shall here understand a languages whose syntax and semantics
can both be expressed mathematically and for whose sentences one can rationally reason
(argue, prove) properties.

We refer to Chapter 1 of [49] for an 8 page, approximately 50 entries set of concept defini-
tions such as the above.

We refer to the ‘Method’ index, Sect. D.3 on page 204.

•••

In this tutorial we shall use the formal specification language, RSL, the RAISE6 Specification
Language, RSL [84] – and we shall notably rely on RSL’s adaptation of CSP, Tony Hoare’s
Communicating Sequential Processes [100]; and we shall propagate a definitive method for
the study and description of domains.

An Emphasis

When we say domain analysis & description we mean that the result of such a domain
analysis & description is to be a model that describes a usually infinite set of domain instances.
Domains exhibit endurants and perdurants. A domain model is therefore something that
defines the nouns (roughly speaking the endurants) and verbs (roughly speaking the) –
and their combination – of a language spoken in and used in writing by the practitioners of
the domain. Not an instantiation of nouns, verbs and their combination, but all possible and
sensible instantiations.

2 By a principle we mean: a principle is a proposition or value that is a guide for behavior or evaluation
[Wikipedia], i.e., code of conduct
3 By a procedure we mean: instructions or recipes, a set of commands that show how to achieve some result,
such as to prepare or make something [Wikipedia], i.e., an established way of doing something
4 By a technique we mean: a technique, or skill, is the learned ability to perform an action with determined
results with good execution often within a given amount of time, energy, or both [Wikipedia], i.e., a way of
carrying out a particular task
5 By a tool we mean: a tool is an object that can extend an individual’s ability to modify features of the
surrounding environment [Wikipedia]
6 RAISE: Rigorous Approach[es] in Software Engineering, [85]

The TUV Lectures, Vienna, Austria, October–November 2022 vi © Dines Bjørner. October 19, 2022: 10:18 am

vii

A Caveat

Experienced RSL [84] readers might observe our, perhaps cavalier (offhand), use of RSL.
Perhaps, in some places, the syntax of RSL clauses is not quite right. Our non-use of RSL’s
module (Scheme, Class and Object) constructs force me to declare channels in the same
way types, values and variables are introduced.

October 19, 2022: 10:18 am

© Dines Bjørner. October 19, 2022: 10:18 am vii The TUV Lectures, Vienna, Austria, October–November 2022

Contents

Preface . v

1 Introduction . 1
1.1 Why This Primer ? . 1
1.2 Structure . 2
1.3 Prerequisite Skills . 2
1.4 Abstraction . 3
1.5 Software Engineering . 3
1.6 The Structuring of The Text . 4
1.7 Self-Study . 5
1.8 Two Examples . 5
1.9 Relation to [49] . 5
1.10 The RAISE Specification Language, RSL, and RSL+ . 5
1.11 Closing . 6

2 Kai Sørlander’s Philosophy . 7
2.1 Introduction . 7
2.2 The Philosophical Question . 10
2.3 Three Principles . 11
2.4 The Deductions . 12
2.5 Philosophy, Science and the Arts . 22
2.6 A Word of Caution . 23

3 Domains . 25
3.1 Domain Definition . 26
3.2 Phenomena and Entities . 26
3.3 Endurants and Perdurants . 26
3.4 External and Internal Endurant Qualities . 27
3.5 Prompts . 30
3.6 Perdurant Concepts . 31
3.7 Domain Analysis & Description . 32
3.8 Closing . 33

4 Endurants: External Domain Qualities . 35
4.1 Universe of Discourse . 36
4.2 Entities . 38
4.3 Endurants and Perdurants . 39
4.4 Solids and Fluids . 41

ix

x Contents

4.5 Parts and Living Species . 42
4.6 Some Observations . 53
4.7 States . 54
4.8 An External Analysis and Description Procedure . 55
4.9 Summary . 57

5 Endurants: Internal and Universal Domain Qualities . 59
5.1 Internal Qualities . 61
5.2 Unique Identification . 62
5.3 Mereology . 67
5.4 Attributes . 72
5.5 SPACE and TIME . 83
5.6 Intentional Pull . 89
5.7 A Domain Discovery Procedure, II . 96
5.8 Summary . 98

6 Perdurants . 99
6.1 Part Behaviours – An Analysis . 100
6.2 Domain Channel Description . 101
6.3 Behaviour Definition Description . 101
6.4 Domain Behaviour Initialisation . 107
6.5 Discrete Dynamic Domains . 107
6.6 Domain Engineering: Description and Construction . 114
6.7 Domain Laws . 114
6.8 A Domain Discovery Procedure, III . 115
6.9 Summary . 116

7 Closing . 117
7.1 Axioms, Well-formedness and Proof Obligations . 117
7.2 From Programming Language Semantics to Domain Models 118
7.3 Domain Specific Languages . 118
7.4 The RAISE Specification Language, RSL . 118
7.5 Two Issues . 118
7.6 Domain Facets . 119
7.7 Requirements Engineering . 119
7.8 Possible [PhD] Research Topics . 121
7.9 Acknowledgments . 122
7.10 Epilogue . 122

8 Bibliography . 123
8.1 Bibliographical Notes . 123
8.2 References . 123

A Road Transport . 131
A.1 The Road Transport Domain . 132
A.2 External Qualities . 132
A.3 Internal Qualities . 135
A.4 Perdurants . 142
A.5 System Initialisation . 148

The TUV Lectures, Vienna, Austria, October–November 2022 x © Dines Bjørner. October 19, 2022: 10:18 am

Contents xi

B Pipelines . 151
B.1 Endurants: External Qualities . 151
B.2 Endurants: Internal Qualities . 152
B.3 Perdurants . 161
B.4 Index . 166
B.5 Illustrations of Pipeline Phenomena . 168

C A Raise Specification Language Primer . 171
C.1 Types and Values . 173
C.2 The Propositional and Predicate Calculi . 177
C.3 Arithmetics . 179
C.4 Comprehensive Expressions . 179
C.5 Operations . 182
C.6 λ-Calculus + Functions . 188
C.7 Other Applicative Expressions . 190
C.8 Imperative Constructs . 192
C.9 Process Constructs . 194
C.10 RSL Module Specifications . 196
C.11 Simple RSL Specifications . 196
C.12 RSL+: Extended RSL . 196
C.13 Distributive Clauses . 197

D Indexes . 199
D.1 Definitions . 199
D.2 Concepts . 201
D.3 Method . 204
D.4 Symbols . 204
D.5 Examples . 204
D.6 Analysis Predicate Prompts . 206
D.7 Analysis Function Prompts . 206
D.8 Description Prompts . 206
D.9 Attribute Categories . 206
D.10 RSL Symbols . 207

© Dines Bjørner. October 19, 2022: 10:18 am xi The TUV Lectures, Vienna, Austria, October–November 2022

Chapter 1

Introduction

Contents
The Triptych Dogma . 1

1.1 Why This Primer ? . 1
1.2 Structure . 2
1.3 Prerequisite Skills . 2
1.4 Abstraction . 3
1.5 Software Engineering . 3

1.5.1 Domain Science & Engineering . 3
1.5.2 Software Engineering . 3

1.5.2.1 Domain Engineering: 2016–2022 . 4
1.5.2.2 Requirements Engineering . 4
1.5.2.3 Software Design . 4

1.6 The Structuring of The Text . 4
1.7 Self-Study . 5
1.8 Two Examples . 5
1.9 Relation to [49] . 5
1.10 The RAISE Specification Language, RSL, and RSL+ . 5
1.11 Closing . 6

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.

This tutorial is both a significantly reduced version of the scientific monograph [49] and a
revision of some of its findings.

1.1 Why This Primer ?

This tutorial is intended as a textbook. The courses that I have in mind are, in the lectures,
to focus on Chapters 3–6, i.e., Pages 25–116. The serious students, whether just readers
or actual, physical course lecture attendants, are expected to study Chapters 1–2 as well as
Chapter 7 and the Bibliography (Chapter 8) and the appendices on their own !

1

2 1 Introduction

The tutorial is about how to analyse & describe man-made domains (including their pos-
sible interaction with nature). We emphasize the ampersand: ‘&’.7 We justify competency
in Domain Science & Engineering for two reasons. (i) For reasons of proper engineering
software development – as indicated by the above Triptych Dogma. In possible proofs of
software properties references are made, not only to the software code itself and the require-
ments, but also to the domain, the latter in the form of assumptions about the domain. In
our mind no software development project ought be undertaken unless it more-or-less starts
with a proper domain engineering phase. And (ii) for reasons of scientifically understanding
our own everyday practical world: financial institutions, the transport industry (road, rail
and air traffic, shipping), feeder systems (such as oil, gas, water and other such pipeline
systems), etc.

1.2 Structure

The tutorial, beyond the present chapter, has, syntactically speaking, three elements:

1 Chapter 2 covers the philosophy of Kai Sørlander [145, 146, 147, 148, 149].
Yes, a major contribution of [49] and this tutorial is to justify important domain concepts
by their sheer inevitability in any world description.

2 Chapters 3–6 presents the methodology of domain engineering. It is split into four chap-
ters for practical and pragmatic reasons. Chapter 3 gives a “capsule introduction” into
Chapters 4–6.

3 Chapters 7–8 and Appendices A–D cover such things as ‘closing remarks’ (7), a ‘bibli-
ography’ (8), a ‘Road Transport’ example (A), a ‘Pipeline System’ example (B), an ‘RSL
formal specification language’ primer (C), and ‘Indexes’ to definitions, concepts, etc. (D).

1.3 Prerequisite Skills

The reader is expected to possess the following skills:

• To be reasonably versed in discrete mathematics: mathematical logic and set theory.
• To have had, even if only a fleeting, acquaintance with abstract specifications in the style

of VDM [56, 57, 79], Z [158], CafeObj [81], Maude [118, 67], or the like – and thus to enjoy
abstractions8.

• To have reasonable experience with functional programming a la Standard ML or F
[122, 94, 90] respectively [91] – or similar such language.

• To have reasonable experience with CSP [99, 101, 100, 139, 143].

The reader is further expected to possess the following mindset:

• To basically consider software as mathematical objects. That is: as quantities about which
one can (and must) reason logically.

• To think and “act” abstractly. An essence of abstraction is expressed in the next section.

7 By not writing ‘and’, but ‘&’, we shall emphasize that in A&B we are dealing with one concept which
consists of both A and B “tightly interacting”.
8 Some say: “Mathematics is the Science of Abstractions” ! Others say that both “Mathematics and Physics
are Abstractions of Reality”.

The TUV Lectures, Vienna, Austria, October–November 2022 2 © Dines Bjørner. October 19, 2022: 10:18 am

1.5 Software Engineering 3

• To act responsibly9, that is to make sure that You have indeed understood Your domain,
that You have indeed reasoned about adequacy of your requirements, and You have indeed
model-checked, proved and formally tested your specifications.

1.4 Abstraction

Conception, my boy, fundamental brain-work,

is what makes the difference in all art

D.G. Rossetti10: letter to H. Caine11

Abstraction is a tool, used by the human mind, and to be applied in the process of
describing (understanding) complex phenomena.

Abstraction is the most powerful such tool available to the human intellect.
Science proceeds by simplifying reality. The first step in simplification is abstraction.

Abstraction (in the context of science) means leaving out of account all those empirical data
which do not fit the particular, conceptual framework within which science at the moment
happens to be working.

Abstraction (in the process of specification) arises from a conscious decision to advocate
certain desired objects, situations and processes as being fundamental; by exposing, in a
first, or higher, level of description, their similarities and — at that level — ignoring possible
differences.

[From the opening paragraphs of [98, C.A.R. Hoare Notes on Data Structuring]]

1.5 Software Engineering

1.5.1 Domain Science & Engineering

This tutorial covers only the Domain of software development. There are two things to
say about that. One is that facets of requirements, essential ones, is covered in [49, Chapter
8], general ones in [21, Software Engineering, III, Part V]; the other is that the pursuit of
developing domain models is not just for the sake of software development, but also for the
sake of just understanding the man-made world around us. Domain science and engineering
can thus be pursued in-and-by itself. Such as [the study of] most basic and theoretical physics.

1.5.2 Software Engineering

In 2006 I published these books: [19, 20, 21]:

9 In is, today, 31 July 2022, very fashionable to propagate messages of ‘ethics’ to programmers – without even
touching upon issues such as “have You understood your application domain thoroughly ?”, or “have You
reasoned about adequacy of your requirements ?”, or “have You model-checked, proved and formally tested
your specifications (descriptions and prescriptions) and Your code ?”, etc.
10 Dante Gabrielli Rosetti, 1828–1882, English poet, illustrator, painter and translator.
11 T. Hall Caine, 1853–1931, British novelist, dramatist, short story writer, poet and critic.

© Dines Bjørner. October 19, 2022: 10:18 am 3 The TUV Lectures, Vienna, Austria, October–November 2022

4 1 Introduction

1.5.2.1 Domain Engineering: 2016–2022

The first inklings of the domain science and engineering of [49] appeared in [31, 35, 2010].
More-or-less “final” ideas were published, first in [42, 2017], then in [45, March 2019]. The
book [49] with updates in this tutorial, then constitutes the most recent status of our work in
domain science & engineering.

[21, Software Engineering, III, Part V] does not cover the Domain Engineering material
covered in [49, Chapter 8]. that latter was researched and developed between the appearance
of [21] and, obviously, [49].

Part V of [21], except for Chapters 17–18 is still relevant. Chapters 17–18 of [21] are now to
be replaced in any study by Chapters 4–7 of [49] or this tutorial !

1.5.2.2 Requirements Engineering

This tutorial does not show You how to proceed into software development according to the
Triptych Dogma. This is strongly hinted at in [49, Chapter 9]. (That chapter is an adaptation
of [23, May 2008].) Our approach to requirements engineering is rather different from that of
both [114, A. van Laamswerde] and [108, M. A. Jackson] – to cite two relevant works. It is, I
strongly think, commensurate with these works. I wish that someone could take up this line
of research: making more precise, perhaps more formal, the ideas of projection, intialisation,
determination, extension and fitting; and comparing, perhaps unifying our approach with
that of Lamsweerde and Jackson.

1.5.2.3 Software Design

For the software design phase, after requirements engineering, we, of course, recommend
[19, 20, Software Engineering vols. 1–2]

1.6 The Structuring of The Text

The reader will find that this text consists of “diverse” kinds of usually small paragraphs
of texts: definitions – properly numbered and labeled; examples – properly numbered and

The TUV Lectures, Vienna, Austria, October–November 2022 4 © Dines Bjørner. October 19, 2022: 10:18 am

1.10 The RAISE Specification Language, RSL, and RSL+ 5

labeled; analysis predicate, function, and description prompt “formalisations”; method
principle, procedure, technique and tool paragraphs; – all of these delineated by closing s;
– with short, usually one or two small paragraphs of introductory or otherwise explaining
texts. All of this is “brought to You in living colours” !12 So be prepared: Study such paragraphs:
paragraph-by-paragraph. Each form a separate “whole”.

1.7 Self-Study

This tutorial is primarily intended to support actual, physical lectures. For self-study by
B.Sc. and M.Sc. students and practicing novice software engineers we recommend to use this
tutorial in connection with its “origin” [49]. For self-study by Ph.D. students and graduated
computer scientist we recommend going directly to the source: [49].

1.8 Two Examples

There are around 80 examples, scattered all over the first 120 pages. In addition we bring two
larger examples:

• Road Transport, Appendix A, pages 131–149,
• Pipelines, Appendix B, pages 151–168.

1.9 Relation to [49]

This tutorial is based on [49, Nov. 2021]. Chapter 2 is a complete rewrite of [49, Chapter 2].
Chapters 4–6 is a “condensation” of [49, Chapters 4–7]: [49, Chapter 6] has been shortened
and appears in this tutorial as Sect. 2.1.2. From [49, Chapter 4] we have, in Chapter 4, omitted
all material on – what is there referred to as Conjoins. And we have further sharpened
the notion of type names. We have sharpened the focus on methods: principle, procedures,
techniques and tools. You will find, in the Indexes section, Sect. D.3 on page 204, a summary
of references to these. Work is still in progress on highlighting more of the method steps.
Section 6.5 is new.

1.10 The RAISE Specification Language, RSL, and RSL+

The formal notation (to go with the informal text) of this tutorial is that of RSL [84], the RAISE
Specification Language, where RAISE stand for Rigorous Approach to Industrial Software
Engineering [85]. Other formal notations could be used instead. Replacement examples could
be VDM [56, 57, 79], Z [158], or Alloy [106]. We are more using the RAISE specification language,
RSL than using the method. And we are using it in two ways:

• Informally, to present and explain the domain analysis & description methods of this
tutorial, and

• formally, to present domain descriptions.

12 – as the NBC Television Network programmmes would “proudly” announce in he 1960s !

© Dines Bjørner. October 19, 2022: 10:18 am 5 The TUV Lectures, Vienna, Austria, October–November 2022

6 1 Introduction

The informal RSL is an extended version, RSL+.13 The two ways are otherwise not related. One
could use another specification language for either the informal or for the formal aspects.

1.11 Closing

The purpose of this introduction is to place the present tutorial in the context of my other
books on software development

and possible lectures and self study.

13 See Appendix Sect. C.12 on page 196.

The TUV Lectures, Vienna, Austria, October–November 2022 6 © Dines Bjørner. October 19, 2022: 10:18 am

Chapter 2

Kai Sørlander’s Philosophy

Definition 1 . Philosophy 14 is the study of general and fundamental questions, such as
those about existence, reason, knowledge, values, mind, and language15

2.1 Introduction

In philosophising questions are asked. One does not necessarily get answers to these ques-
tions. Questions are examined. Light is thrown on the questions and their derivative ques-
tions.

Philosophy is man’s endeavour, our quest, for uncovering the necessary characteristics of
our world and our situation as humans is that world.

We shall focus on the issues of existence, i.e., metaphysics.
The treatment in this chapter is based very much on the works of the Danish philosopher

Kai Sørlander (1944) [145, 146, 147, 148, 149, 1994–2022] both in contrast to and inspired by
the German philosopher Immanuel Kant (1724–1804) [87].

The reason why I, as a computer scientist, is interested in philosophy, is that philosophers
over more than 2500 years16 have thought about existence: why is the world as it is – and
computer scientists, like other scientists (notably physicists and economists), repeatedly
model fragments of the world; and the reason why I focus on Kai Sørlander, is that his
philosophy addresses issues that are crucial to our understanding how we must proceed
when modelling domains – and, I think, in a way that helps us model domains with a high
assurance that our models are reasonable, can withstand close scrutiny. Kai Sørlander thinks
and writes logically, rationally. The area of his philosophy that I am focusing on here is
metaphysics.

14 From Greek: φιλoσφια, philosophia, ’love of wisdom’
15 Many of the ‘definitions’ in this tutorial are in the style used in philosophy. They are not in the ‘precise’
style commonly used in mathematics and computer science. You may wish to call them characterisations.
In mathematics and computer science the definer usually has a formal base on which to build. In domain
science & engineering we do not have a formal base, we have the “material” world of natural and man-made
phenomena.
16 – starting, one could claim, with:

7

8 2 Kai Sørlander’s Philosophy

2.1.1 Metaphysics

The branch of philosophy that we are focusing on is referred to as metaphysics. To explain
that concept I quote from [Wikipedia]:

“Metaphysics is the branch of philosophy that studies the fundamental nature of reality,
the first principles of being, identity and change, space and time, causality, necessity, and
possibility.17 It includes questions about the nature of consciousness and the relationship
between mind and matter, between substance and attribute, and between potentiality and
actuality.18 The word “metaphysics” comes from two Greek words that, together, literally
mean ”after or behind or among [the study of] the natural”. It has been suggested that
the term might have been coined by a first century CE editor who assembled various small
selections of Aristotle’s works into the treatise we now know by the name Metaphysics (µǫτα
τα φυσικα, meta ta physika, lit. ’after the Physics’, another of Aristotle’s works) [69].

Metaphysics studies questions related to what it is for something to exist and what types
of existence there are. Metaphysics seeks to answer, in an abstract and fully general manner,
the questions:19

• What is there ? • What is it like? ?

Topics of metaphysical investigation include existence, objects and their properties, space
and time, cause and effect, and possibility. Metaphysics is considered one of the four main
branches of philosophy, along with epistemology, logic, and ethics” en.m.wikipedia.org/-
wiki/Metaphysics.

• Thales of Milet 624–545 [everything originates
from water] [123];

• Anaximander 610–546 [‘apeiron’ (the ‘un-differ-
rentiated’, ‘the unlimited’) is the origin] [70];

• Anaximenes 586–526 [air is the basis for every-
thing] [120];

• Heraklit of Efesos 540–480 [fire is the basis
and everything in nature is in never-ending
‘‘battle’’] [5];

• Empedokles 490–430 [there are four base ele-
ments: fire, water, air and soil] [159];

• Parminedes 515–470 [everything that exists is
eternal and immutable [97]];

• Demokrit 460–370 [all is built from atoms] [1];
• the Sophists: Protagoras, Gorgias (fifth and fourth

centuries BC),
• Socrates (470–399) [2],
• Plato (424–347) [77],
• Aristotle (384–322) [6],

• etcetera.

After more than 1800 years came

• René Descartes (1596–1650) [74],
• Baruch Spinoza (1632–1677) [150],
• John Locke (1632–1704) [117],
• George Berkeley (1685–1753) [9],
• David Hume (1711–1776) [104],
• Immanuel Kant (1724–1804) [111],
• Johan Gottlieb Fichte (1762–1814) [109],
• Georg Wilhelm Friedrich Hegel (1770–1831) [95],
• Friedrich Wilhelm Schelling (1775–1864) [8],
• Edmund Husserl (1859–1938) [105],
• Bertrand Russel (1872–1970) [141, 154, 140, 142],
• Ludwig Wittgenstein (1889–1951) [156, 157],
• Martin Heidegger (1889–1976) [96],
• Rudolf Karnap (1891–1970) [128],
• Karl Popper (1902–1994) [128, 129],
• etcetera.

(This list is “pilfered” from [148, Pages 33–127].) [148] presents an analysis of the metaphysics of these

philosophers. Except for those of Russel, Wittgenstein, Karnap and Popper, these references are just that.
17 www.encyclopedia.com/philosophy-and-religion/philosophy/philosophy-terms-and-concepts/metaphy-
sics
18 Metaphysics. American Heritage Dictionary of the English Language (5th ed.). 2011.
19 What is it (that is, whatever it is that there is) like? Hall, Ned (2012). ”David Lewis’s Metaphysics”. In
Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy (Fall 2012 ed.). Center for the Study of
Language and Information, Stanford University.

The TUV Lectures, Vienna, Austria, October–November 2022 8 © Dines Bjørner. October 19, 2022: 10:18 am

2.1 Introduction 9

2.1.2 Transcendental Deductions

A crucial element in Kant’s and Sørlander’s philosophies is that of transcendental deduction.
It should be clear to the reader that in domain analysis & description we are reflecting

on a number of philosophical issues; first and foremost on those of ontology. For this chapter
we reflect on a sub-field of epistemology, we reflect on issues of transcendental nature.
Should you wish to follow-up on the concept of transcendentality, we refer to [87, Immanuel
Kant], [103, Oxford Companion to Philosophy, pp 878–880], [4, The Cambridge Dictionary of
Philosophy, pp 807–810], [64, The Blackwell Dictionary of Philosophy, pp 54–55 (1998)], and
[148, Sørlander].

2.1.2.1 Some Definitions

Definition 2 . Transcendental: By transcendental we shall understand the philosophical
notion: the a priori or intuitive basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but
also determines rational thought.

Definition 3 . Transcendental Deduction: By a transcendental deduction we shall under-
stand the philosophical notion: a transcendental “conversion” of one kind of knowledge
into a seemingly different kind of knowledge

2.1.2.2 Some Informal Examples

Example 1 . Transcendental Deductions – Informal Examples: We give some intuitive
examples of transcendental deductions. They are from the “domain” of programming lan-
guages. There is the syntax of a programming language, and there are the programs that
supposedly adhere to this syntax. Given that, the following are now transcendental deduc-
tions.

The software tool, a syntax checker, that takes a program and checks whether it satisfies
the syntax, including the statically decidable context conditions, i.e., the statics semantics –
such a tool is one of several forms of transcendental deductions.

The software tools, an automatic theorem prover and a model checker, for example
SPIN [102], that takes a program and some theorem, respectively a Promela statement, and
proves, respectively checks, the program correct with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.
Yes, indeed, any abstract interpretation [72, 62] reflects a transcendental deduction:

firstly, these examples show that there are many transcendental deductions; secondly, they
show that there is no single-most preferred transcendental deduction.

A transcendental deduction, crudely speaking, is just any abstraction that can be “linked” to
another, not by logical necessity, but by logical (and philosophical) possibility !

Definition 4 . Transcendentality: By transcendentality we shall here mean the philosoph-
ical notion: “the state or condition of being transcendental”

Example 2 . Transcendentality: We20 can speak of a bus in at least three senses:

(i) The bus as it is being "maintained, serviced, refueled";

© Dines Bjørner. October 19, 2022: 10:18 am 9 The TUV Lectures, Vienna, Austria, October–November 2022

10 2 Kai Sørlander’s Philosophy

(ii) the bus as it "speeds" down its route; and
(iii) the bus as it "appears" (listed) in a bus time table.

The three senses are:

(i) as an endurant (here a part),
(ii) as a perdurant (as we shall see, a behaviour), and
(iii) as an attribute21

The above example, we claim, reflects transcendentality as follows:

(i) We have knowledge of an endurant (i.e., a part) being an endurant.
(ii) We are then to assume that the perdurant referred to in (ii) is an aspect of the endurant

mentioned in (i) – where perdurants are to be assumed to represent a different kind of
knowledge.

(iii) And, finally, we are to further assume that the attribute mentioned in (iii) is somehow
related to both (i) and (ii) – where at least this attribute is to be assumed to represent yet a
different kind of knowledge.

In other words: two (i–ii) kinds of different knowledge; that they relate must indeed be based
on a priori knowledge. Someone claims that they relate ! The two statements (i–ii) are claimed
to relate transcendentally.22

2.1.2.3 Bibliographical Note

The philosophical concept of transcendental deduction is is a subtle one. Arguments of
transcendental nature, across the literature of philosophy, does not follow set principles and
techniques. We refer to [4, The Cambridge Dictionary of Philosophy, pages 807–810] and
[64, The Blackwell Companion to Philosophy, Chapter 22: Kant (David Bell), pages 589–606,
Bunnin and Tsui-James, eds.] for more on ‘transcendence’.

2.2 The Philosophical Question

Sørlander focuses on the philosophical question of “what is thus necessary that it could
not, under any circumstances, be otherwise ?”.

To study and try answer that question Sørlander thinks rationally, that is, reasons, rather
than express emotions. The German philosopher Immanuel Kant (1724–1804) suggests that
our philosophising as to the philosophical question above must build on “something which
no person can consistently can deny, and thus, something that every person can rationally
justify, as a consequence of be able to think at all”. Kant then goes on to build his philosophy
[111] on the possibility of self-awareness – something of which we all are aware. Sørlander
then, in for example [148], shows that this leads to solipsism23, i.e., to nothing.

20 I first came across this example when it was presented to me by Paul Lindgreen, an early Danish computer
scientist (1936–2021) – and then as a problem of data modelling [115, 1983].
21 – in this case rather: as a fragment of a bus time table attribute.
22 – the attribute statement was “thrown” in “for good measure”, i.e., to highlight the issue !
23 Solipsism: the view or theory that the self is all that can be known to exist.

The TUV Lectures, Vienna, Austria, October–November 2022 10 © Dines Bjørner. October 19, 2022: 10:18 am

2.3 Three Principles 11

2.3 Three Principles

2.3.1 The Possibility of Truth

Instead Sørlander suggests that the possibility of truth be the basis for the thinking of an
answer to the highlighted question above. The possibility of truth is shared by all of us.

2.3.2 The Principle of Contradiction

Once we accept that the possibility of truth cannot be denied, we have also accepted the
principle of contradiction, that is, that an assertion and its negation cannot both be true.

2.3.3 The Implicit Meaning Theory

We must thus also accept the implicit meaning theory.

Definition 5 . The Implicit Meaning Theory implies that there is a mutual relationship
between the (α) meaning of designations and (β) consistency relations between assertions

As an example of what “goes into” the implicit meaning theory, we bring, albeit from the
world of computer science, that of the description of the stack data type (its endurant data
types and perdurant operations).

Example 3 . The Implicit Meaning Theory.: Narrative:

α The Designations:

1 Stacks, s:S, have elements, e:E;
2 the empty S operation takes no arguments and yields a result stack;
3 the is empty S operation takes an argument stack and yields a Boolean value result.
4 the stack operation takes two arguments: an element and a stack and yields a result stack.
5 the unstack operation takes an non-empty argument stack and yields a stack result.
6 the top operation takes an non-empty argument stack and yields an element result.

β The Consistency Relations:

7 an empty S stack is empty, and a stack with at least one element is not;
8 unstacking an argument stack, stack(e,s), results in the stack s; and
9 inquiring the top of a non-empty argument stack, stack(e,s), yields e.

Formalisation.

The designations:

type
1. E, S
value
2. empty S: Unit→ S
3. is empty S: S→ Bool
4. stack: E × S→ S
5. unstack: S

∼
→ S

6. top: S
∼
→ E

The consistency relations:

axiom
7. is empty(empty S()) = true
7. is empty(stack(e,s)) = false
8. unstack(stack(e,s)) = s
9. top(stack(e,s)) = e

© Dines Bjørner. October 19, 2022: 10:18 am 11 The TUV Lectures, Vienna, Austria, October–November 2022

12 2 Kai Sørlander’s Philosophy

2.3.4 A Domain Analysis & Description Core

The three concepts: (i) the possibility of truth, (ii) the principle of contradiction and (iii) the
implicit meaning theory thus form the core – and imply that (a) the indispensably necessary
characteristics of any possible world, i.e., domain, are equivalent with (b) the similarly
indispensably necessary conditions for any possible domain description.

2.4 The Deductions

2.4.1 Assertions

Definition 6 . Assertion: An assertion is a declaration, an utterance, that something is the
case

Assertions may typically be either propositions or predicates.

2.4.2 The Logical Connectives

Any domain description must necessarily contain assertions. Assertions are expressed in
terms of negation, ∼, conjunction, ∧, disjunction, ∨, and implication,⇒.

2.4.2.1 ∼: Negation

Negation is defined by the principle of contradiction. If an assertion, a, holds, then its nega-
tion, ∼a, does not hold.

2.4.2.2 Simple Assertions

Simple assertions, i.e., propositions, are formed from assertions, f.x. a,b, by means of the
logical connectives.

2.4.2.3 ∧: Conjunction

The simple assertion a∧b holds if both a and b holds.

2.4.2.4 ∨: Disjunction

The simple assertion a∨b holds if either or both a and b holds.

2.4.2.5 ⇒: Implication

The simple assertion a⇒b holds if a is inconsistent with the negation of b.

The TUV Lectures, Vienna, Austria, October–November 2022 12 © Dines Bjørner. October 19, 2022: 10:18 am

2.4 The Deductions 13

2.4.2.6 Model Theory Explication of The Logical Connectives

A model theory explication of the binary logical connectives is given on Page 178.

2.4.3 Modalities

2.4.3.1 Necessity

Definition 7 . Necessity: An assertion is necessarily true if its truth (”true”) follows from
the definition of the designations by means of which it is expressed. Such an assertion holds
under all circumstances

Example 4 . Necessity: “It may rain someday” is necessarily true.

2.4.3.2 Possibility

Definition 8 . Possibility: An assertion is possibly true if its negation is not necessarily
true

Example 5 . Possibility: “it will rain tomorrow” is possibly true.

2.4.4 Empirical Assertions

Definition 9 . Empirical Knowledge: In philosophy, knowledge gained from experience
rather than from innate ideas or deductive reasoning is empirical knowledge. In the sciences,
knowledge gained from experiment and observation rather than from theory is empirical
knowledge

Example 6 . Expressing Empirical Knowledge: There are innumerable ways of express-
ing empirical knowledge.

a. There are two automobiles in that garage.24

b. The two automobiles in that garage are distinct.25

c. The two automobiles in that garage are parked next to one another.26

d. That automobile, the one to the left, in that garage is [painted] red.27

e. The automobile to the right in that garage has just returned from a drive.28

24 The automobiles are solid endurants, and so is the garage, that is, they are both parts.
25 Their distinctness gives rise to their respective, distinct, i.e., unique identifiers.
26 The topological ordering of the two automobiles is an example of their mereology.
27 The red colour of the automobile is an attribute of that automobile.
28 The fact that that automobile, to the right in the garage, has just returned from a drive, is a possibly
time-stamped attribute of that automobile.

© Dines Bjørner. October 19, 2022: 10:18 am 13 The TUV Lectures, Vienna, Austria, October–November 2022

14 2 Kai Sørlander’s Philosophy

f. The automobile, with Danish registration number AB 12345, is currently driving on the
Copenhagen area city Holte road Fredsvej at position ‘top of the hill’.29

g. The automobile on the roof of that garage is pink.

The pronoun ‘that’ shall be taken to mean that someone gestures at, points out, the garage
in question. If there is no such garage then the assertion denotes the chaos value ! State-
ments (a.–g.) are assertions. The assertions contain references to quantities “outside the
assertions” — ‘outside’ in the sense that they are not defined in the assertions. Assertion
(g.) does not make sense, i.e., yields chaos. The term ‘roof’ has not been defined

I: The Object Language. The language used in the above assertions is quite ‘free-
wheeling’. The language to be used in “our” domain descriptions is, i.e., will be, more
rigid

Definition 10 . Empirical Assertion: The domain description language of assertions, con-
tain references, i.e., designators, and operators. All of these shall be properly defined in
terms of names of endurants and their unique identifiers, mereologies and attributes; and in
terms of their perdurant “counterparts”

•••

From Possible Predicates to Conceptual Logic Description Framework. The ability to
deduce which type of predicates that a phenomena of any domain can be ascribed is thus
equivalent to deducing the conceptual logical conditions for every possibly possible domain
description.

•••

By a so-called transcendental deduction we have shown that simple empirical assertions
consist of a subject which refers to an independently existing entity and a predicate which
ascribes a property to the referred entity [148, π 146 ℓ 1–5].

The world, or as we shall put it, the domains, that we shall be concerned with, are
what can be described in simple assertions, then any possible such world, i.e., domain must
primarily consist of such entities [148, π 146 ℓ 5–7].

We shall therefore, in the following, explicate a system of concepts by means of which
the entities, that may be referred to in simple assertions, can be described [148, π 146 ℓ 8–11].

I: These concepts are those of entities, endurants, perdurants, unique identity, mereo-
logy and attributes.

2.4.5 Identity and Difference

We can now assume that the world consists of an indefinite number of entities: Different
empirical assertions may refer to distinct entities. Most immediately we can define two
interconnected concepts: identity and diversity.

29 The automobile in question is now a perdurant having a so-called time-stamped progammable event
attribute of the Copenhagen area city of Holte, “top of the hill”.

The TUV Lectures, Vienna, Austria, October–November 2022 14 © Dines Bjørner. October 19, 2022: 10:18 am

2.4 The Deductions 15

2.4.5.1 Identity

Definition 11 . Identical: “An entity referred to by the name A is identical to an entity
referred to by the name B if A cannot be ascribed a property which is incommensurable with
a property ascribed to B” [148, π 146 ℓ 14-23]

2.4.5.2 Difference

Definition 12 . Different: “A and B are distinct, differs from one another, if the can be
ascribed incommensurable properties.” [148, π 146 ℓ 23-26]

•••

“These formal definitions, by transcendental deduction, introduces the concepts of of identity
and difference. “They can thus be assumed in any transcendental deduction of a domain
description which, in principle, must be expressed in any possible language”. [148, π 147 ℓ 1-
5]

Definition 13 . Unique Identification: By a transcendental deduction we introduce the
concept of manifest, physical entities each being uniquely identified

We make no assumptions about any representation of unique identifiers.

2.4.6 Relations

2.4.6.1 Identity and Difference

Definition 14 . Relation: “Implicitly”, from the two concepts of identity and difference,
follows the concept of relations. “A identical to B is a relational assertion. So is A different
from B” [148, π 147 ℓ 6-10]

2.4.6.2 Symmetry

Definition 15 . Symmetry: If A is identical to B then B must be identical to A. This expresses
that the identical to relation is symmetric. And, If A is different from B then B must be
different from A. This expresses that the different from relation is also symmetric

2.4.6.3 Asymmetry

Definition 16 . Asymmetry: A relation which holds between A and B but does not hold
between B and A is asymmetric [148, π 147 ℓ 25–27]

2.4.6.4 Transitivity

Definition 17 . Transitivity: “If A is identical to B and if B is identical to C then A must be
identical to C. So the relation identical to is transitive” [148, π 147-148 ℓ 28-30,1-4]

The relation different from is not transitive.

© Dines Bjørner. October 19, 2022: 10:18 am 15 The TUV Lectures, Vienna, Austria, October–November 2022

16 2 Kai Sørlander’s Philosophy

2.4.6.5 Intransitivity

Definition 18 . In-transitivity: If, on the other hand, we can logically deduce that a relation,
R holds’ from A to B and the same relation, R, holds from B to C but R does not hold from A
to C then relation R is intransitive [148, π 148 ℓ 9–12]

2.4.7 Sets, Quantifiers and Numbers

2.4.7.1 Sets

The possibility now exists that two or more entities may be prescribed the same property.

Definition 19 . Sets: The “same properties” could, for example, be that two or more uniquely
distinguished entities, x, y, ...,z, have [at least] one attribute kind (type) and value, (t,v), in
common. This means that (t,v) distinguishes a set s(s,v) – by a transcendental deduction. A
fact, just t likewise distinguishes a possibly other, most likely “larger”, set st

From the transcendentally deduced notion of set follows the relations: equality,=, inequality,
,, proper subset, ⊂, subset, ⊆, set membership, ∈, set intersection, ∩, set union, ∪, set
subtraction, \, set cardinality, card, etc. !

2.4.7.2 Quantifiers

By a further transcendental deduction we can place the quantifiers among the concepts that
are necessary in order to describe domains.

Definition 20 . The Universal Quantifier: The universal quantifier expresses that all mem-
bers, x, of a set, s, possess a certain Property: ∀x : S•P(x)

Definition 21 . The Existential Quantifier: The existential quantifier expresses that at least
one member, x, of a set, s, possess a certain Property: ∃x : S•P(x)

2.4.7.3 Numbers

Numbers can, again by transcendental deduction, be introduced, not as observable phenom-
ena, but as a rational, logic consequence of sets.

Definition 22 . Numbers: Numbers can be motivated, for example, as follows:

• Start with an empty set, say { }. It can be said to represent the number zero.30

• Then add the empty set { } to { } and You get {{ }} said to represent 1.
• Continue with adding { } to {{ }} and You get {{ }, {{ }}}, said to represent 2.
• And so forth – ad infinitum

In this way one31 can define the natural numbers. We could also do it by just postulating
distinct entities which are then added, one by one to a an initially empty set [148,π 150 ℓ 8-13].

We can then, still in the realm of philosophy, proceed with the introduction of the arithmetic
operations designated by addition, +, subtraction, , multiplication, ∗, division, ÷, equality, =,

30 Which, in the decimal notation is written as 0.
31 https://en.wikipedia.org/wiki/Set-theoretic definition of natural numbers

The TUV Lectures, Vienna, Austria, October–November 2022 16 © Dines Bjørner. October 19, 2022: 10:18 am

2.4 The Deductions 17

inequality, ,, larger than, >, larger than or equal, ≥, smaller than, <, smaller than or equal,
≤, etcetera !

From explaining numbers on a purely philosophical basis one can now proceed mathe-
matically into the realm of number theory [92].

2.4.8 Primary Entities

We now examine the concept of primary objects.
The next two definitions, in a sense, “fall outside” the line of the present philosophical

inquiry. They will be “corrected” to then “fall inside” our inquiry.

Definition 23 . Object: By an object we, in our context, mean something material that may
be perceived by the senses32

Definition 24 . Primary Object: By a primary object we33 mean an object that exists as its
own entity independent34 of other objects

In the last definition we have used the term entity. That term, ‘entity’, will be used henceforth
instead of the term ‘object’.

We have deduced the relations identity, difference, symmetry, asymmetry, transitivity
and intransitivity in Sects. 2.4.5–2.4.6. You may ask: for what purpose ? And our answer is:
to justify the next set of deductions. First we reason that there is the possibility of there being
many entities. We argue that that is possible due to there being the relation of asymmetry.
If it holds between two entities then they must necessarily be ascribed different predicates,
hence be distinct.

Similarly we can argue that two entities, B and C which both are asymmetric wrt. to an
entity A may stand in a symmetric relation to one another. This opens for the possibility that
every pair of distinct entities may stand in a pair of mutual relations. First the asymmetry
relation that expresses their distinctness. Secondly, the possibility of a symmetry relation
which expresses the two entities individually with respect to one-another. The above forms a
transcendental basis for how two or more [primary] entities must necessarily be characterised
by predicates.

2.4.9 Space and Time

The asymmetry and symmetry relations between entities cannot be necessary characteristics
of every possibly reality if they cannot also posses an unavoidable rôle in our own concrete
reality. Next we examine two such unavoidable rôles.

2.4.9.1 Space

One pair of such rôles are distance and direction. Distance is a relation that holds between
any pair of distinct entities. It is a symmetric relation. Direction is an asymmetric relation that
also holds between pair of distinct entities. Hence we conclude that space is an unavoidable

32 www.merriam-webster.com/dictionary/object
33 help.hcltechsw.com/commerce/8.0.0/tutorials/tutorial/ttf cmcdefineprimaryobject.html
34 Yes, we know: we have not defined what is meant by ‘as its own’ and ‘independent’ !

© Dines Bjørner. October 19, 2022: 10:18 am 17 The TUV Lectures, Vienna, Austria, October–November 2022

18 2 Kai Sørlander’s Philosophy

characteristics of every possibly reality. Hence we conclude that entities exist in space. They
must “fill” some space, have extension, they must fill some space, have surface and form.
From this we can define the notions of spatial point, spatial straight line, spatial surface,
etcetera. Thus we can philosophically motivate geometry.

2.4.9.2 Time

Primary empirical entities may be accrue predicates that it is not logically necessary that they
accrue. That is, it is logically possible that primary entities accrue predicates that they actually
accrue. How is it possible that one and the same primary entity may accrue incommensurable
predicates ?

That is only possible if one and the same primary entity can exist in different states. It may
exist in one state in which it accrue a certain predicate. And it may exist in another state in
which it accrue a therefrom incommensurable predicate.

What can we say about these states ? First that these states accrue different, incommensu-
rable predicates. How can we assure that ! Only if the states stand in a asymmetric relation
to one another. From this we can conclude that primary entities necessarily may exist in a
number of states each of which stand in an asymmetric relation to their predecessor state. So
these states also stand in a transitive relation.

This is a necessary characteristics of any possible world. So it is also a characteristics of our
world. That relation is time. It possesses the before, after, in-between, and other [temporal]
relations. We have thus deduced that every possible world must “occur in time” and that
primary entities may exist in before or after states.

From the above we can derive a whole algebra of temporal types and operations, for
example:

• TIME and TIME INTERVAL types;
• addition of TIME and TIME INTERVAL to obtain TIME;
• addition of TIME INTERVALs to obtain TIME INTERVALs;
• subtraction of two TIMEs to become TIME INTERVALs; and
• subtraction of of TIME INTERVALs to obtain TIME INTERVAL.

2.4.10 The Causality Principle

But what is it that cause primary entities to undergo state changes ? Assertions about how a
primary entity is at different times, such assertions must necessarily be logically independent.
That follows from primary entities necessarily must accrue incommensurable predicates at
different times. It is therefore logically impossible to conclude from how a primary entity is
at one time to how it is at another time. How, therefore, can assertions about a primary entity
at different times be about the same entity ?

We can therefore transcendentally deduce that there must be a special implication-
relationship between assertions about how a primary entity is at different times. Such a
special implication-relationship must depend on the empirical circumstances under which
the primary entity exists. That is, we must deduce the conditions under which it is, at all, pos-
sible to consistently make statements about primary entities going from one state in which it
accrues a specific predicate to another state in which it accrues a therefrom incommensurable
predicate. There must be something in the empirical circumstances which implicates the state
transition. If the the empirical circumstances are stable then Thebes is nothing in these cir-
cumstances that imply entity changes. If the primary entity changes, then that assumes that

The TUV Lectures, Vienna, Austria, October–November 2022 18 © Dines Bjørner. October 19, 2022: 10:18 am

2.4 The Deductions 19

there must have been a prior change in the circumstances – with those changes having that
consequence. . . . 35 We name such a change of the circumstances a cause. And we conclude
that every change of a primary entity must have a cause. We also conclude that equivalent
cause imply equivalent effects.

This form of implication is called the causality principle. It assumes logical implication.
But it cannot be reduced to logical implication. It is logically necessary that every primary
entity – and therefore every possible world – is subject to the causality principle. In this way
Kai Sørlander transcendentally deduce the principle of causality. Every change has a cause.
The same cause under the same circumstances lead to same effects.

2.4.11 Newton’s Laws

Sørlander then shows how Newton’s laws can be deduced. These laws, in summary, are:

• Newton’s First Law: An entity is at rest or moving at a constant speed in a straight line,
it will remain at rest or keep moving in a straight line at constant speed unless it is acted
upon by a force.

• Newton’s Second Law: When an entity is acted upon by a force, the time rate of change
of its momentum equals the force.

• Newton’s Third Law: To every action there is always opposed an equal reaction; or, the
mutual actions of two bodies upon each other are always equal, and directed to contrary
entities.

2.4.11.1 Kinematics

Above we have deduced that primary entities are in both space and time. They have extent
in both space and time. That means that they must change with respect to their spatial
properties: place and form. The change in place is the fundamental. A primary entity which
changes place is said to be in movement. A primary entity in movement must follow a certain
geometric route. It must move a certain length of route in a certain interval of time, i.e., have
a velocity: speed and direction. A primary entity which changes velocity has an acceleration.
That is, we have deduced he basics of kinematics.

2.4.11.2 Dynamics

When we to the above add that primary entities are in time, then they are subject to causality.
That means that we are entering the doctrine of the influence of forces on primary entities.
That is, dynamics. Kinematics imply that an entity changes if it goes from being at rest to
move, or if it goes from moving to being at rest. An entity also changes if it goes from moving
at one velocity to moving at a different velocity. We introduce the notion of momentum. An
entity has same momentum if at two times it has the same velocity and acceleration.

2.4.11.3 Newton’s First Law

When we combine kinematics with causality then we can deduce that if an entity changes
momentum then there must be a cause in the circumstances which causally implies the

35 We skip some of Sørlander’s reasoning, [148, Page 162, lines 1–12]

© Dines Bjørner. October 19, 2022: 10:18 am 19 The TUV Lectures, Vienna, Austria, October–November 2022

20 2 Kai Sørlander’s Philosophy

change. We call that cause a force. The force must be proportional to the change in momentum.
This implies that an entity which is not subject to an external force remains in the same
momentum. This is The Law of Inertia, Newtons First Law.

2.4.11.4 Newton’s Second Law

That a certain force is necessary in order to change an entity’s momentum must imply that
such an entity must provide a certain resistance against change of momentum. It must have
a mass. From this it follows that the change of an entity’s momentum not only must be
proportional to the applied force but also inversely proportional to that entity’s mass. This
is Newtons Second Law.

2.4.11.5 Newton’s Third Law

Where do the forces that influence the momentum of entities come from ? It must, it can
only, be from primary entities. Primary entities must be the source of the forces that influence
other entities. Here we shall argue one such reason. The next section, on universal gravitation,
presents a second reason.

Primary entities may be in one an other’s way. Hence they may eventually collide. If a
primary entity has a certain velocity it may collide with another primary entity crossing its
way. In the mutual collision the two entities influence one another such that they change
momentum. They influence each other with forces. Since none of the two entities have any
special position, i.e., rank, the forces by means of which they affect one another must be equal
and oppositely directed. This is Newtons Third Law.

2.4.12 Universal Gravitation

But36, really, how can primary entities be the source of forces that affects one another ? We
must dig deeper ! How can primary entities have mass such that it requires force to change
their momentum ? Our answer is that the reason they have mass must be due to mutual
influence between the primary objects themselves. It must be an influence which is oppo-
sitely directed to that which they expose on one another when they collide. Because this,
in principle, applies to all primary entities, these must be characterised by a mutual uni-
versal attraction. And that is what we call universal gravitation. That concept has profound
implications.

•••

We shall not go into details here but just, casually, as it were, mention that such concepts as
speed limit, elementary particles and Einstein’s theories are “more-or-less” transcendentally
deduced !

36 This section is from [148, Pages 168–173]

The TUV Lectures, Vienna, Austria, October–November 2022 20 © Dines Bjørner. October 19, 2022: 10:18 am

2.4 The Deductions 21

2.4.13 Purpose, Life and Evolution

We shall briefly summarise Sørlander’s analysis and deductions with respect to the concepts
of living species: plants and animals, the latter including humans.

Up till now Sørlander’s analyses and deductions have focused on the physical world,
“culminating” in Newton’s Laws and Einstein’s theories.

If37 there is to be language and meaning then, as a first condition, there must be the
possibility that there are primary entities which are not locked-in “only” in that physical
world deduced till now. This is only possible if such primary entities are additionally subject
to a purpose-causality, one that is so constructed as to strive to maintain its own existence.
We shall refer to this kind of primary entities as living species.

2.4.13.1 Living Species

As living species they must be subject to all the physical conditions for existence and mutual
influence. Additionally they must have a form which they are causally determined to reach
and maintain. This development and maintenance must take place in a substance exchange
with its surroundings. Living species need these substances in order to develop and maintain
their form.

It must furthermore be possible to distinguish between two forms of living species: (i) one
form which is characterised only by development, form and substance exchange ; and (ii)
another form which, additional to (i), is characterised by being able to move. The first form
we call plants. The second form we call animals.

2.4.13.2 Animals

For animals to move they must (i) possess sense organs, (ii) organs of movement and (iii)
instincts, incentives, or feelings. All this still subject to the physical laws and to satisfy motion.

This is only possible if animals are not built (like the elementary particles of physics) but
by special physical units. These cells must satisfy the purpose-causality of animals. And we
know, now, from the biological sciences that something like that is indeed the case. Indeed
animals are built from cells all of which possess genomes for the whole animal and, for each
such cell, a proper fraction of its genome controls whether it is part of a sensory organ, or
a nerve, or a motion organ, or a more specific function. Thus it has transcendentally been
deduced that such must be the case and biology has confirmed this.

2.4.13.2.1 Humans

We briefly summarise38, in six steps, (i–vi), Sørlander’s reasoning that leads from animals,
in general, see above, to humans, in particular.

(i) First the concept of level of consciousness is introduced. On the basis of animals
being able to learn from experience the concept of consciousness level is introduced. It is
argued that neurons provide part of the basis for learning and the consciousness level.

(ii) Secondly the concept of social instincts is introduced. For animals to interact social
instincts are required.

37 We now treat the material of [148, Chapter 10, Pages 174–179].
38 [148, Chapter 11, Pages 180–183]

© Dines Bjørner. October 19, 2022: 10:18 am 21 The TUV Lectures, Vienna, Austria, October–November 2022

22 2 Kai Sørlander’s Philosophy

(iii) Thirdly the concept of sign language is introduced. In order for animals to interact
some such animals, notably the humans, develop a sign language.

(iv) Fourthly the concept of language is introduced. The animals that we call humans
finally develop their sign language into a language that can be spoken, heard and understood.
Such a language, regardless of where it is developed, that is, regardless of which language it
is, must assume, i.e., build on the same set of basic concepts as had been uncovered so far in
our deductions of what must necessarily be in any description of any world.

We continue summarise39 Sørlander’s reasoning that leads from generalities about hu-
mans to humans with knowledge and responsibility.

(v) Fifthly the concept of knowledge is introduced. An animal which is conscious must
sense and must react to what it senses. To do so it must have incentives as causal conditions
for its specific such actions. If the animal has, possess, language, then it must be able to
express that and what it senses and that it acts accordingly, and why it does so. It must be
able to express that it can express this. That is, that what it expresses, is true. To express such
assertions, with sufficient reasons for why they are true, is equivalent to knowing that they
are true. Such animals, as possess the above “skills”, become persons, humans.

(vi) Sixthly the concept of responsibility is introduced. Humans conscious of their con-
crete situation, must also know that these situations change. They are conscious of earlier
situations. Hence they have memory. So that can formulate experience with respect to the
consequences of their actions. Thus humans are (also) characterised by being able to under-
stand the consequences of future actions. A person who considers how he ought act, can also
be ascribed responsibility – and can be judged morally.

•••

This ends our eposé of Sørlander’s metaphysics wrt. living species. That is, we shall not
cover neither non-human animals, nor plants.

2.5 Philosophy, Science and the Arts

We quote extensively from [146, Kai Sørlander, 1997].
[146, pp 178] “Philosophy, science and the arts are products of the human mind.”
[146, pp 179] “Philosophy, science and the arts each have their own goals.”

• Philosophers seek to find the inescapable characteristics of any world.
• Scientists seek to determine how the world actually and our situation in that world.
• Artists seek to create objects for experience.

We shall elaborate. [146, pp 180] “Simplifying, but not without an element of truth, we can
relate the three concepts by the modalities:”

• philosophy is the necessary,
• science is the real, and
• art is the possible.

. . . Here we have, then, a distinction between philosophy and science. . . . From [145] we
can conclude the following about the results of philosophy and science. These results must
be consistent [with one another]. This is a necessary condition for their being correct.
The real must be a concrete realisation of the necessary.

39 [148, Chapter 12, Pages 184–187]

The TUV Lectures, Vienna, Austria, October–November 2022 22 © Dines Bjørner. October 19, 2022: 10:18 am

2.6 A Word of Caution 23

2.6 A Word of Caution

The present chapter represents an attempt to give an English interpretation of Kai Sørlander’s
Philosophy. I will “mull” over this interpretation for a while. Then I will present it to Kai
Sørlander for his comments. We shall see.

© Dines Bjørner. October 19, 2022: 10:18 am 23 The TUV Lectures, Vienna, Austria, October–November 2022

Chapter 3

Domains

Contents
3.1 Domain Definition . 26
3.2 Phenomena and Entities . 26
3.3 Endurants and Perdurants . 26

3.3.1 Endurants . 26
3.3.2 Perdurants . 27

3.4 External and Internal Endurant Qualities . 27
3.4.1 External Qualities . 27

3.4.1.1 Discrete or Solid Endurants . 27
3.4.1.2 Fluids . 28
3.4.1.3 Parts . 28

3.4.1.3.1 Atomic Parts . 28
3.4.1.3.2 Compound Parts . 28

3.4.2 An Aside: An Upper Ontology . 29
3.4.3 Internal quality . 29

3.4.3.1 Unique identity . 30
3.4.3.2 Mereology . 30
3.4.3.3 Attribute . 30

3.5 Prompts . 30
3.5.1 Analysis Prompts . 30

3.5.1.1 Analysis Predicate . 30
3.5.1.2 Analysis Function . 30

3.5.2 Description Prompt . 31
3.6 Perdurant Concepts . 31

3.6.1 “Morphing” Parts into Behaviours . 31
3.6.2 State . 31
3.6.3 Actors . 31

3.6.3.1 Action . 32
3.6.3.2 Event . 32
3.6.3.3 Behaviour . 32

3.6.4 Channel . 32
3.7 Domain Analysis & Description . 32

3.7.1 Domain Analysis . 32
3.7.2 Domain Description . 33

3.8 Closing . 33

This chapter is informal. Here we introduce You to important main concepts of domains.
Subsequent chapters will be more technical. They will define most of the domain concepts
of this chapter properly.

25

26 3 Domains

3.1 Domain Definition

Definition 25 . Domain By a domain we shall understand a rationally describable segment
of a discrete dynamics segment of a human assisted reality, i.e., of the world; its more-or-less
related solid or fluid entities: natural [“God-given”] and artefactual [“man-made”], and its
living species entities: plants and animals – including, notably, humans

Example 7 . Domains: A few, more-or-less self-explanatory examples:

• Rivers – with their natural sources, deltas, tributaries, waterfalls, etc., and their man-made
dams, harbours, locks, etc. [50]

• Road nets – with street segments and intersections, traffic lights, and automobiles.
• Pipelines – with their wells, pipes, valves, pumps, forks, joins and wells [36].
• Container terminals – with their container vessels, containers, cranes, trucks, etc. [44]

The definition relies on the understanding of the terms ‘rationally describable’, ‘discrete
dynamics’, ‘human assisted’, ‘solid’ and ‘fluid’. The last two will be explained later. By ra-
tionally describable we mean that what is described can be understood, including reasoned
about, in a rational, that is, logical manner. By discrete dynamics we imply that we shall
basically rule out such domain phenomena which have properties which are continuous
with respect to their time-wise, i.e., dynamic, behaviour. By human-assisted we mean that
the domains – that we are interested in modelling – have, as an important property, that they
possess man-made entities.

This primer presents a method , its principles, procedures, techniques and tools, for
analysing &40 describing domains.

3.2 Phenomena and Entities

Definition 26 . Phenomena By a phenomenon we shall understand a fact that is observed
to exist or happen

Some phenomena are rationally describable – to a large or full degree – others are not.

Definition 27 . Entities By an entity we shall understand a more-or-less rationally describ-
able phenomenon

Example 8 . Phenomena and Entities: Some, but not necessarily all aspects of a river can
be rationally described, hence can be still be considered entities. Similarly, many aspects of a
road net can be rationally described, hence will be considered entities

3.3 Endurants and Perdurants

3.3.1 Endurants

Definition 28 . Endurants those quantities of domains that we can observe (see and touch),
in space, as “complete” entities at no matter which point in time – “material” entities that
persists, endures

40 We use here the ampersand, ‘&’, as in A&B, to emphasize that we are treating A and B as one concept.

The TUV Lectures, Vienna, Austria, October–November 2022 26 © Dines Bjørner. October 19, 2022: 10:18 am

3.4 External and Internal Endurant Qualities 27

Example 9 . Endurants: a street segment [link], a street intersection [hub], an automobile

Domain endurants, when eventually modelled in software, typically become data. Hence
the careful analysis of domain endurants is a prerequisite for subsequent careful conception
and analyses of data structures for software, including data bases.

3.3.2 Perdurants

Definition 29 . Perdurants those quantities of domains for which only a fragment exists, in
space, if we look at or touch them at any given snapshot in time

Example 10 . Perdurant: a moving automobile

Domain perdurants, when eventually modelled in software, typically become processes.
Hence the careful analysis of domain perdurants is a prerequisite for subsequent careful
conception and analyses of functions (procedures).

3.4 External and Internal Endurant Qualities

3.4.1 External Qualities

Definition 30 . External qualities: of endurants of a manifest domain are, in a simplifying
sense, those we can sea, touch and have spatial extent. They, so to speak, take form.

Example 11 . External Qualities: The Cartesian41 of sets of solid atomic street intersections,
and of sets of solid atomic street segments, and of sets of solid automobiles of a road transport
system where the Cartesian, sets, atomic, and solid reflect external qualities

3.4.1.1 Discrete or Solid Endurants

Definition 31 . Discrete or Solid Endurants: By a solid [or discrete] endurant we shall
understand an endurant which is separate, individual or distinct in form or concept, or,
rephrasing: have ‘body’ [or magnitude] of three-dimensions: length, breadth and depth [116,
Vol. II, pg. 2046]

Example 12 . Solid Endurants: The wells, pipes, valves, pumps, forks, joins and sinks of
pipelines are solids. [These units may, however, and usually will, contain fluids, e.g., oil, gas
or water]

We shall mostly be analysing and describing solid endurants.
As we shall see, in the next chapter, we analyse and describe solid endurants as either

parts or living species: animals and humans. We shall mostly be concerned with parts. That
is, we shall just, as: “in passing”, for sake of completeness, mention living species !

41 Cartesian after the French philosopher, mathematician, scientist René de Descartes (1596–1650)

© Dines Bjørner. October 19, 2022: 10:18 am 27 The TUV Lectures, Vienna, Austria, October–November 2022

28 3 Domains

3.4.1.2 Fluids

Definition 32 . Fluid Endurants: By a fluid endurant we shall understand an endurant
which is prolonged, without interruption, in an unbroken series or pattern; or, rephrasing: a
substance (liquid, gas or plasma) having the property of flowing, consisting of particles that
move among themselves [116, Vol. I, pg. 774]

Example 13 . Fluid Endurants: water, oil, gas, compressed air, smoke

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular42, or plant products, i.e.,
chopped sugar cane, threshed, or otherwise43, et cetera. Fluid endurants will be analysed
and described in relation to solid endurants, viz. their “containers”.

3.4.1.3 Parts

Definition 33 . Parts: The non-living species solids are what we shall call parts

Parts are the “work-horses” of man-made domains. That is, we shall mostly be concerned
with the analysis and description of endurants into parts.

Example 14 . Parts: The previous example of solids was also an example of parts

We distinguish between atomic and compound parts.

3.4.1.3.1 Atomic Parts

Definition 34 . Atomic Part, I By an atomic part we shall understand a part which the
domain analyser considers to be indivisible in the sense of not meaningfully, for the purposes
of the domain under consideration, that is, to not meaningfully consist of sub-parts

3.4.1.3.2 Compound Parts

We, pragmatically, distinguish between Cartesian-product-, and set- oriented parts. If
Cartesian-oriented, to consist of two or more distinctly sort-named endurants (solids or
fluids), If set-oriented, to consist of an indefinite number of zero, one or more parts.

Definition 35 . Compound Part, I Compound parts are those which are either Cartesian-
product- or are set- oriented parts

Example 15 . Compound Parts: A road net consisting of a set of hubs, i.e., street intersec-
tions or “end-of-streets”, and a set of links, i.e., street segments (with no contained hubs), is
a Cartesian compound; and the sets of hubs and the sets of links are part set compounds

42 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling
purposes it is convenient to “compartmentalise” them as fluids !
43 See footnote 42.

The TUV Lectures, Vienna, Austria, October–November 2022 28 © Dines Bjørner. October 19, 2022: 10:18 am

3.4 External and Internal Endurant Qualities 29

3.4.2 An Aside: An Upper Ontology

We have been reasonably careful to just introduce and state informal definitions of phenom-
ena and some classes thereof. In the next chapter we shall, in a sense, “repeat” coverage of
these phenomena. But now in a more analytic manner. Figure 3.1 is intended to indicate this.

External Qualities

Describer "states"

Transcendense

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal PlantAtomic

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part Part Set

S
am

e
so

rt

A
lt

er
n

at
iv

e
so

rt
s

P

Ps=P−set

Humans

Compound

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
tPs=P−set

P=P1|P2|...|Pn
P1,P2,...Pn

E

P

F

Fig. 3.1 Upper Ontology

So far we have only touched upon the ‘External Qualities’ labeled, dotted-dashed box of the
‘Endurants’ label-led dashed box of Fig. 3.1. In Chapter 4 we shall treat external qualities in
more depth — more systematically: analytically and descriptionally.

3.4.3 Internal quality

Definition 36 . Internal qualities: those properties [of endurants] that do not occupy space
but can be measured or spoken about

Example 16 . Internal qualities: the unique identity of a part, the relation of part to other
parts, and the endurant attributes such as temperature, length, colour

© Dines Bjørner. October 19, 2022: 10:18 am 29 The TUV Lectures, Vienna, Austria, October–November 2022

30 3 Domains

3.4.3.1 Unique identity

Definition 37 . Unique identity: an immaterial property that distinguishes two spatially
distinct solids

Example 17 . Unique identities: Each hub in a road net is unique identified, so is each link
and automobile

3.4.3.2 Mereology

Definition 38 . Mereology: a theory of [endurant] part-hood relations: of the relations of an
[endurant] parts to a whole and the relations of [endurant] parts to [endurant] parts within
that whole

Example 18 . Mereology: that a link is topologically connected to exactly two specific hubs,
that hubs are connected to zero, one or more specific links, and that links and hubs are open
to specific subsets of automobiles

3.4.3.3 Attribute

Definition 39 . Attributes: Properties of endurants that are not spatially observable, but can
be either physically (electronically, chemically, or otherwise) measured or can be objectively
spoken about

Example 19 . Attribute: Links have lengths, and, at any one time, zero, one or more auto-
mobiles are occupying the links

3.5 Prompts

3.5.1 Analysis Prompts

Definition 40 . Analysis prompt: a predicate or a function that may be posed by humans to
facets of a domain. Observing the domain the analyser may then act upon the combination
of the particular prompt (whether a predicate or a function,and then what particular one
of these it is) thus “applying” it to a domain phenomena, and yielding, in the minds of the
humans, either a truth value or some other form of value

3.5.1.1 Analysis Predicate

Definition 41 . Analysis predicates: an analysis prompt which yields a truth value

Example 20 . Analysis Predicates: General examples are can an observable phenomena be
rationally described, i.e., an entity, is an entity a solid or a fluid. is a solid endurant a part or
a living species

3.5.1.2 Analysis Function

Definition 42 . Analysis function: an analysis prompt which yields some RSL-Text

The TUV Lectures, Vienna, Austria, October–November 2022 30 © Dines Bjørner. October 19, 2022: 10:18 am

3.6 Perdurant Concepts 31

Example 21 . Analysis Functions: Two examples: one yields the endurants of a Cartesian
part and their respective sort names, another yields the set of a parts of a part set and their
common type

3.5.2 Description Prompt

Definition 43 . Description prompt: a function that may be posed by humans who may
then act upon it: “applying” it to a domain phenomena, and “yielding” narrative and formal
RSL-Texts describing what is being observed

Example 22 . Description Prompts: result in RSL-Texts describing for example a (i) Carte-
sian endurant, or (ii) its unique identifier, (iii) or its mereology, or (iv) its attributes, (iv) or
other

3.6 Perdurant Concepts

3.6.1 “Morphing” Parts into Behaviours

As already indicated we shall transcendentally deduce (perdurant) behaviours from those
(endurant) parts which we, as domain analysers cum describers, have endowed with all
three kinds of internal qualities: unique identifiers, mereologies and attributes. Chapter 6,
will show how.

3.6.2 State

Definition 44 . State: A state is any set of the parts of a domain

Example 23 . A Road System State: The domain analyser cum describer may, In brief,
decide that a road system state consists of the road net aggregate (of hubs and links)44, all
the hubs, and all the links, and the automobile aggregate (of all the automobiles)45, and all
the individual automobiles

3.6.3 Actors

Definition 45 . Actors: An actor is anything that can initiate an action, an event or a
behaviour

44 The road net aggregate, in its perdurant form, may “model” the Department of Roads of some country,
province, or town.
45 The automobile aggregate aggregate, in its perdurant form, may “model” the Department of Vehicles of
some country, province, or town.

© Dines Bjørner. October 19, 2022: 10:18 am 31 The TUV Lectures, Vienna, Austria, October–November 2022

32 3 Domains

3.6.3.1 Action

Definition 46 . Actions: An action is a function that can purposefully change a state

Example 24 . Road Net Actions: These are some road net actions: The insertion of a new
or removal of an existing hub; or the insertion of a new, or removal of an existing link;

3.6.3.2 Event

Definition 47 . Events: An event is a function that surreptitiously changes a state

Example 25 . Road Net Events: These are some road net events: The blocking of a link
due to a mud slide; the failing of a hub traffic signal due to power outage; the blocking of a
link due to an automobile accident.

3.6.3.3 Behaviour

Definition 48 . Behaviours a behaviour is a set of sequences of actions, events and be-
haviours

Example 26 . Road Net Traffic: Road net traffic can be seen as a behaviour of all the
behaviours of automobiles, where each automobile behaviour is seen as sequence of start,
stop, turn right, turn left, etc., actions; of all the behaviours of links where each link behaviour
is seen as a set of sequences (i.e., behaviours) of “following” the link entering, link leaving,
and movement of automobiles on the link; of all the behaviours of hubs (etc.); of the be-
haviour of the aggregate of roads, viz. The Department of Roads, and of the behaviour of
the aggregate of automobiles, viz, The Department of Vehicles.

3.6.4 Channel

Definition 49 . Channel: A channel is anything that allows synchronisation and communi-
cation of values between two behaviours

We shall use Tony Hoare’s CSP concept [100] to express synchronisation and communication
of values between behaviours i and j. Hence the behaviour i statement ch[j] ! value to state
that behaviour i offers, “outputs”: !, value to behaviours indicated by j. And behaviour i
expresses ch[j] ? that it is willing to accept “input from & synchronise with” behaviour i, ?,
any value.

3.7 Domain Analysis & Description

3.7.1 Domain Analysis

Definition 50 . Domain Analysis is the act of studying a domain as well as the result of that
study in the form of informal statements

The TUV Lectures, Vienna, Austria, October–November 2022 32 © Dines Bjørner. October 19, 2022: 10:18 am

3.8 Closing 33

3.7.2 Domain Description

Definition 51 . Domain Description is the act of describing a domain as well as the result
of that act in the form of narratives and formal RSL-Text

3.8 Closing

This chapter has introduced the main concepts of domains such as we shall treat (analyse
and describe) domains.46 The next three chapters shall now systematically treat the analysis
and description of domains. That treatment takes concept by concept and provides proper
definitions and introduces appropriate analysis and description prompts; one-by-one, in an
almost pedantic, hence perhaps “slow” progression ! The reader may be excused if they,
now-and-then, loose sight of “their way”. Hence the present chapter. To show “the way”:
that, for example, when we treat external endurant qualities, there is still the internal en-
durant qualities, and that the whole thing leads of to perdurants: actors, actions, events and
behaviours.

46 We have omitted treatment of living species: plants and animals – the latter including humans. They will
be treated in the next chapter !

© Dines Bjørner. October 19, 2022: 10:18 am 33 The TUV Lectures, Vienna, Austria, October–November 2022

Chapter 4

Endurants: External Domain Qualities

Contents
4.1 Universe of Discourse . 36

4.1.1 Identification . 36
4.1.2 Naming . 36
4.1.3 Examples . 36
4.1.4 Sketching . 37
4.1.5 Universe of Discourse Description . 37

1: Universe of Discourse . 37
4.2 Entities . 38

1:is-entity . 38
4.3 Endurants and Perdurants . 39

4.3.1 Endurants . 40
2:is-endurant . 40

4.3.2 Perdurants . 40
3:is-perdurant . 40

4.4 Solids and Fluids . 41
4.4.1 Solids . 41

4:is solid . 41
4.4.2 Fluids . 41

5:is fluid . 42
4.5 Parts and Living Species . 42

4.5.1 Parts . 42
6: is physical part . 42

4.5.1.1 Atomic Parts . 42
7: is atomic part . 43

4.5.1.2 Compound Parts, II . 43
8: is compound part . 43

4.5.1.2.1 Cartesian Parts . 43
9: is-cartesian . 44

4.5.1.2.2 Calculating Cartesian Part Sorts 44
4.5.1.2.2.1 Cartesian Part Determination . . . 45
2: calc-Cartesian-parts . 45

4.5.1.2.3 Part Sets . 46
10:is-single-sort-set . 47
11:is-alternative-sorts-set . 47
4.5.1.2.3.1 Determine Same Sort Part Sets . 47
4.5.1.2.3.2 Determine Alternative Sorts

Part Sets . 47
4.5.1.2.3.3 Calculating Single Sort Part Sets 48
3: calc-single-sort-part-set-sorts 48
4.5.1.2.3.4 Calculating Alternative Sort

Part Sets . 49
4: calculate-alternative-sort-part-sorts 49

4.5.1.3 Ontology and Taxonomy . 50
4.5.1.4 “Root” and “Sibling” Parts . 51

35

36 4 Endurants: External Domain Qualities

4.5.2 Living Species . 51
12: is living species . 52

4.5.2.1 Plants . 52
13: is plant . 52

4.5.2.2 Animals . 52
14: is animal . 53

4.5.2.2.1 Humans . 53
15: is human . 53

4.5.2.2.2 Other . 53
4.6 Some Observations . 53
4.7 States . 54

4.7.1 State Calculation . 54
4.7.2 Update-able States . 55

4.8 An External Analysis and Description Procedure . 55
4.8.1 An Analysis & Description State . 55
4.8.2 A Domain Discovery Procedure, I . 56

4.9 Summary . 57

This, the present chapter, as well as Chapter 3, is based on Chapter 4 of [49]. You may wish
to study that chapter for more detail.

4.1 Universe of Discourse

Definition 52 . Universe of Discourse, UoD By a universe of discourse we shall under-
stand the same as the domain of interest , that is, the domain to be analysed & described

4.1.1 Identification

The first task of a domain analyser cum describer is to settle upon the domain to be analysed
and described. That domain has first to be given a name.

4.1.2 Naming

A first decision is to give a name to the overall domain sort, that is, the type of the domain
seen as an endurant, with that sort, or type, name being freely chosen by the analyser cum
describer – with no such sort names having been chosen so far !

4.1.3 Examples

Examples of UoDs47 We refer to a number of Internet accessible experimental reports48 of
descriptions of the following domains:

• railways [15, 54, 17],

• “The Market” [16],

• container shipping [22],

• Web systems [32],

• stock exchange [33],

• oil pipelines [36],

The TUV Lectures, Vienna, Austria, October–November 2022 36 © Dines Bjørner. October 19, 2022: 10:18 am

4.1 Universe of Discourse 37

• credit card systems [39],

• weather information [40],

• swarms of drones [41],

• document systems [43],

• container terminals [44],

• retail systems [47],

• assembly plants [48],

• waterway systems [50],

• shipping [51],

• urban planning [61].

4.1.4 Sketching

The second task of a domain analyser cum describer is to develop a rough sketch narrative
of the domain. The rough-sketching of [what] a domain [is,] is not a trivial matter. It is
not done by a committee ! It usually requires repeated “trial sketches”. To carry it out, i.e.,
the sketching, normally requires a combination of physical visits to domain examples, if
possible; talking with domain professionals, at all levels; and reading relevant literature. It
also includes searching the Internet for information. We shall show an example next.

Example 27 . Sketch of a Road Transport System UoD: The road transport system that
we have in mind consists of a road net and a set of automobiles (private, trucks, buses, etc.)
such that the road net serves to convey automobiles. We consider the road net to consist
of hubs, i.e., street intersections, including street segment connection points, and links, i.e.,
street segments between adjacent hubs49

4.1.5 Universe of Discourse Description

The general universe of discourse, i.e., domain, description prompt can be expressed as
follows:

Domain Description Prompt 1 calc Universe of Discourse:
0. calc Universe of Discourse() describer

❝ Naming:
type UoD

Rough Sketch:
Text ❞

The above ❝ RSL-Text ❞ expresses that the calc Universe of Discourse()domain describer
generates RSL-Text. Here is another example rough sketch:

Example 28 . A Rough Sketch Domain Description: The example is that of the production
of rum, say of a Rum Production domain. From

10 the sowing, watering, and tending to of sugar cane plants;
11 via the “burning” of these prior to harvest;

49 This “rough” narrative fails to narrate what hubs, links, vehicles, automobiles are. In presenting it here
we rely on your a priori understanding of these terms. But that is dangerous ! The danger, if we do not
painstakingly narrate and formalise what we mean by all these terms, then readers (software designers, etc.)
may make erroneous assumptions.

© Dines Bjørner. October 19, 2022: 10:18 am 37 The TUV Lectures, Vienna, Austria, October–November 2022

38 4 Endurants: External Domain Qualities

12 the harvest;
13 the collection of harvest from sugar cane fields to
14 the chopping, crushing, (and sometimes repeated) boiling, cooling and centrifuging of

sugar cane when making sugar and molasses (into A, B, and low grade batches);
15 the fermentation, with water and yeast, producing a ‘wash’;
16 the (pot still or column still) distilling of the wash into rum;
17 the aging of rum in oak barrels;
18 the charcoal filtration of rum;
19 the blending of rum;
20 the bottling of rum;
21 the preparation of cases of rum for sales/export; and
22 the transportation away from the rum distiller of the rum

Some comments on Example 28: Each of the enumerated items above is phrased in terms
of perdurants. Behind each such perdurant lies some endurant. That is, in English, “every
noun can be verbed”, and vice-versa. So we anticipate the transcendence, from endurants to
perdurants.

•••

Method Principle 1 . From the “Overall” to The Details: Our first principle, as the first
task in any new domain modelling project, is to “focus” on the “overall”, that is, on the
“entire”, generic domain

4.2 Entities
A core concept of domain modelling is that of an entity.

Definition 53 . Entity By an entity we shall understand a phenomenon, i.e., something
that can be observed, i.e., be seen or touched by humans, or that can be conceived as an
abstraction of an entity; alternatively, a phenomenon is an entity, if it exists, it is “being”, it
is that which makes a “thing” what it is: essence, essential nature [116, Vol. I, pg. 665]. If a
phenomenon cannot be so observed and described then it is not en entity

Analysis Predicate Prompt 1 is entity: The domain analyser analyses “things” (θ) into
either entities or non-entities. The method provides the domain analysis prompt:

• is entity – where is entity(θ) holds if θ is an entity 50

is entity is said to be a prerequisite prompt for all other prompts. is entity is a method
tool.

On Analysis Prompts
The is entitypredicate function represents the first of a number of analysis prompts. They
are “applied” by the domain analyser to phenomena of domains. They yield truth values,
true or false, “left” in the mind of the domain analyser

•••

50 marks the end of an analysis prompt definition.

The TUV Lectures, Vienna, Austria, October–November 2022 38 © Dines Bjørner. October 19, 2022: 10:18 am

4.3 Endurants and Perdurants 39

We have just shown how the is entity predicate prompt can be applied to a universe of
discourse. From now on we shall see prompts being applicable to successively more analysed
entities. Figure 4.1 [Page 39]51 diagrams a domain description ontology of entities. That
ontology indicates the sub-classes of endurants for which we shall motivate and for which
we shall introduce prompts, predicates and functions.

External Qualities

Describer "states"

Transcendense

PerdurantsEndurants

Phenomena of Natural and Artefactual Universes of Discourse

E

Entity Indescribable

Perdurant

Action
Event Actor

Channel Behaviour

Fluid

Endurant

Solid

Part
Living Specie

Animal PlantAtomic

O
th

er

Unique Identifiers
Mereologies
Attributes

transcendental injection of endurants into perdurants

Internal Qualities

Cartesian Part Part Set

S
am

e
so

rt

A
lt

er
n

at
iv

e
so

rt
s

P

Ps=P−set

Humans

Compound

E1,...,Ec

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
t

is
_m

an
if

es
tPs=P−set

P=P1|P2|...|Pn
P1,P2,...Pn

E

P

F

Fig. 4.1 The Upper Ontology

The present chapter shall focus only on the external qualities, that is, on the “contents” of
the leftmost dotted box.

•••

Method Principle 2 . Justifying Analysis along Philosophical Lines: The concept of en-
tities as a main focal point is justified in Kai Sørlander’s philosophy[145, 146, 147, 148, 149,
1994–2022]. Entities are there referred to as primary objects. They are the ones about which
we express predicates

4.3 Endurants and Perdurants

Method Principle 3 . Separation of Endurants and Perdurants: As we shall see in this
tutorial, the domain analysis & description method calls for the separation of first considering
the careful analysis & description of endurants, then considering perdurants. This principle
is based on the transcendental deduction of the latter from the former

51 This ontology was first shown, as Fig. ?? [Page ??]

© Dines Bjørner. October 19, 2022: 10:18 am 39 The TUV Lectures, Vienna, Austria, October–November 2022

40 4 Endurants: External Domain Qualities

4.3.1 Endurants

Definition 54 . Endurant By an endurant , to repeat, we shall understand an entity that can
be observed, or conceived and described, as a “complete thing” at no matter which given
snapshot of time; alternatively an entity is endurant if it is capable of enduring, that is persist,
“hold out” [116, Vol. I, pg. 656]. Were we to “freeze” time we would still be able to observe
the entire endurant

Example 29 . Natural and Artefactual Endurants:
Geography Endurants: fields, meadows, lakes, rivers, forests, hills, mountains, et cetera.
Railway Track Endurants: a railway track, its net, its individual tracks, switch points, trains,
their individual locomotives, signals, et cetera.
Road Transport System Endurants: the transport system, its road net aggregate and the
aggregate of automobiles, the set of links (road segments) and hubs (road intersections) of
the road net aggregate, these links and hubs, and the automobiles.

Analysis Predicate Prompt 2 is endurant: The domain analyser analyses an entity, φ,
into an endurant as prompted by the domain analysis prompt:

• is endurant – φ is an endurant if is endurant(φ) holds

is entity is a prerequisite prompt for is endurant. is endurant is a method tool.

4.3.2 Perdurants

Definition 55 . Perdurant By a perdurant we shall understand an entity for which only a
fragment exists if we look at or touch them at any given snapshot in time. Were we to freeze
time we would only see or touch a fragment of the perdurant [116, Vol. II, pg. 1552]

Example 30 . Perdurants:
Geography Perdurants: the continuous changing of the weather (meteorology); the erosion
of coastlines; the rising of some land area and the “sinking” of other land area; volcanic
eruptions; earthquakes; et cetera.
Railway System Perdurants: the ride of a train from one railway station to another; and the
stop of a train at a railway station from some arrival time to some departure time

Analysis Predicate Prompt 3 is perdurant: The domain analyser analyses an entity e
into perdurants as prompted by the domain analysis prompt:

• is perdurant– e is a perdurant if is perdurant(e) holds.

is entity is a prerequisite prompt for is perdurant

is perdurant is a method tool.

•••

The TUV Lectures, Vienna, Austria, October–November 2022 40 © Dines Bjørner. October 19, 2022: 10:18 am

4.4 Solids and Fluids 41

We repeat method principle 3 on page 39:

Method Principle 4 . Separation of Endurants and Perdurants: First domain analyse &
describe endurants; then domain analyse & describe perdurants

4.4 Solids and Fluids

For pragmatic reasons we distinguish between solids and fluids.

Method Principle 5 . Abstraction, I: The principle of abstraction is now brought into “full
play”: In analysing & describing entities the domain analyser cum describer is “free” to not
consider all facets of entities, that is, to abstract. We refer to our characterisation of abstraction
in Sect. 1.4 on page 3.

4.4.1 Solids

Definition 56 . Solid Endurant: By a solid endurant we shall understand an endurant
which is separate, individual or distinct in form or concept, or, rephrasing: a body or mag-
nitude of three-dimensions, having length, breadth and thickness [116, Vol. II, pg. 2046]

Analysis Predicate Prompt 4 is solid: The domain analyser analyses endurants, e, into
solid entities as prompted by the domain analysis prompt:

• is solid – e is solid if is solid(e) holds

To simplify matters we shall allow separate elements of a solid endurant to be fluid ! That is,
a solid endurant, i.e., a part, may be conjoined with a fluid endurant, a fluid. is solid is a
method tool.

Example 31 . Artefactual Solid Endurants: The individual endurants of the above example
of railway system endurants, Example 29 on the preceding page, were all solid. Here are
examples of solid endurants of pipeline systems. A pipeline and its individual units: wells,
pipes, valves, pumps, forks, joins, regulator, and sinks.

4.4.2 Fluids

Definition 57 . Fluid Endurant By a fluid endurant we shall understand an endurant which
is prolonged, without interruption, in an unbroken series or pattern; or, rephrasing: a sub-
stance (liquid, gas or plasma) having the property of flowing, consisting of particles that
move among themselves [116, Vol. I, pg. 774]

© Dines Bjørner. October 19, 2022: 10:18 am 41 The TUV Lectures, Vienna, Austria, October–November 2022

42 4 Endurants: External Domain Qualities

Analysis Predicate Prompt 5 is fluid: The domain analyser analyses endurants e into
fluid entities as prompted by the domain analysis prompt:

• is fluid – e is fluid if is fluid(e) holds

is fluid is a method tool. Fluids are otherwise liquid, or gaseous, or plasmatic, or granular52,
or plant products53, et cetera.

Example 32 . Fluids: Specific examples of fluids are: water, oil, gas, compressed air, etc.
A container, which we consider a solid endurant, may be conjoined with another, a fluid, like
a gas pipeline unit may “contain” gas

4.5 Parts and Living Species

We analyse endurants into either of two kinds: parts and living species. The distinction
between parts and living species is motivated in Kai Sørlander’s Philosphy [145, 146, 147,
148, 149].

4.5.1 Parts

Definition 58 . Parts By a part we shall understand a solid endurant existing in time and
subject to laws of physics, including the causality principle and gravitational pull 54

Analysis Predicate Prompt 6 is part: The domain analyser analyses “things” (e) into
part. The method can thus be said to provide the domain analysis prompt:

• is part – where is part(e) holds if e is a part

is part is a method tool.
Parts are either natural parts, or are artefactual parts, i.e. man-made. Natural and man-made
parts are either atomic or compound.

4.5.1.1 Atomic Parts

The term ‘atomic’ is, perhaps, misleading. It is not used in order to refer to nuclear physics.
It is, however, chosen in relation to the notion of atomism: a doctrine that the physical or
physical and mental universe is composed of simple indivisible minute particles [Merriam
Webster].

52 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not fluids, but for our modelling
purposes it is convenient to “compartmentalise” them as fluids !
53 i.e., chopped sugar cane, threshed, or otherwise. See footnote 52.
54 This characterisation is the result of our study of relations between philosophy and computing science,
notably influenced by Kai Sørlander’s Philosphy [145, 146, 147, 148, 149]

The TUV Lectures, Vienna, Austria, October–November 2022 42 © Dines Bjørner. October 19, 2022: 10:18 am

4.5 Parts and Living Species 43

Definition 59 . Atomic Part, II By an atomic part we shall understand a part which the
domain analyser considers to be indivisible in the sense of not meaningfully, for the purposes
of the domain under consideration, that is, to not meaningfully consist of sub-parts

Example 33 . Atomic Parts: We refer to Example 31 on page 41: pipeline systems. The
wells, pumps, valves, pipes, forks, joins and sinks can be considered atomic

Analysis Predicate Prompt 7 is atomic: The domain analyser analyses “things” (e) into
atomic part. The method can thus be said to provide the domain analysis prompt:

• is atomic – where is atomic(e) holds if e is an atomic part

is atomic is a method tool.

4.5.1.2 Compound Parts, II

We, pragmatically, distinguish between Cartesian-product-, and set- oriented parts. That is,
if Cartesian-product-oriented, to consist of two or more distinctly sort-named endurants
(solids or fluids), or, if set-oriented, to consist of an indefinite number of zero, one or more
identically sort-named parts.

Definition 60 . Compound Part Compound parts are those which are either Cartesian-
product- or are set- oriented parts

Analysis Predicate Prompt 8 is compound: The domain analyser analyses “things” (e)
into compound part. The method can thus be said to provide the domain analysis prompt:

• is compound – where is compound(e) holds if e is a compound part

is compound is a method tool.

4.5.1.2.1 Cartesian Parts

Definition 61 . Cartesian Part Cartesian parts are those (compound parts) which consists
of an “indefinite number” of two or more parts of distinctly named sorts

Some clarification may be needed. (i) In mathematics, as in RSL [84], a value is a Cartesian
value if it can be expressed, for example as (a,b, ...,c), where a,b, ...,c are mathematical (or,
which is the same, RSL) values. Let the sort names of these be A,B, ...,C – with these being
required to be distinct. We wrote “indefinite number”: the meaning being that the number
is fixed, finite, but not specific. (ii) The requirement: ‘distinctly named’ is pragmatic. If the
domain analyser cum describer thinks that two or more of the components of a Cartesian
part are [really] of the same sort, then that person is most likely confused and must come
up with suitably distinct sort names for these “same sort” parts ! (iii) Why did we not write
“definite number” ? Well, at the time of first analysing a Cartesian part, the domain analyser

© Dines Bjørner. October 19, 2022: 10:18 am 43 The TUV Lectures, Vienna, Austria, October–November 2022

44 4 Endurants: External Domain Qualities

cum describer may not have thought of all the consequences, i.e., analysed, the compound
part. Additional sub-parts, of the Cartesian compound, may be “discovered”, subsequently
and can then, with the approach we are taking wrt. the modelling of these, be “freely” added
subsequently !

Example 34 . Cartesian Automobiles: We refer to Example 29 on page 40, the transport
system sub-example. We there viewed (hubs, links and) automobiles as atomic parts. From
another point of view we shall here understand automobiles as Cartesian parts: the engine
train, the chassis, the car body, four doors (left front, left rear, right front, right rear), and the
wheels. These may again be considered Cartesian parts.

Analysis Predicate Prompt 9 is Cartesian: The domain analyser analyses “things” (e)
into Cartesian part. The method can thus be said to provide the domain analysis prompt:

• is Cartesian – where is Cartesian(e) holds if e is a Cartesian part

is Cartesian is a method tool.

4.5.1.2.2 Calculating Cartesian Part Sorts

The above analysis amounts to the analyser first “applying” the domain analysis prompt
is compound(e) to a solid endurant, e, where we now assume that the obtained truth value is
true. Let us assume that endurants e:E consist of sub-endurants of sorts {E1,E2,. . . ,Em}. Since
we cannot automatically guarantee that our domain descriptions secure that E and each Ei

(1≤i≤m) denotes disjoint sets of entities we must prove so !

•••

On Determination Functions
Determination functions apply to compound parts and yield their sub-parts and the sorts
of these. That is, we observe the domain and our observation results in a focus on a subset
of that domain and sort information about that subset.

An RSL Extension
The determine · · · functions below are expressed as follows:

value determine · · · (e) as (parts,sorts)

where we focus here on the sorts clause. Typically that clause is of the form
ηA,ηB,...,ηC.55That is, a “pattern” of sort names: A,B,...,C. These sort names are provided
by the domain analyser cum describer. They are chosen as “full names”, or as mnemonics,
to capture an essence of the (to be) described sort. Repeated invocations, by the domain
analyser cum describer, of these (...,sorts) analysis functions normally lead to new sort
names distinct from previously chosen such names.

55 ηA,ηB,...,ηC are names of types. ηθ is the type of all type names !

The TUV Lectures, Vienna, Austria, October–November 2022 44 © Dines Bjørner. October 19, 2022: 10:18 am

4.5 Parts and Living Species 45

4.5.1.2.2.1 Cartesian Part Determination

Observer Function Prompt 1 determine Cartesian parts:
The domain analyser analyses a part into a Cartesian part. The method provides the domain
observer prompt:

• determine Cartesian parts— it directs the domain analyser to determine the definite
number of values and corresponding distinct sorts of the part.

value
determine Cartesian parts: E→ (E1×E2×...×En) × (ηE1×ηE2×...×ηEn)56

determine Cartesian parts(e) as ((e1,...,en),(ηE1,...,ηEn))

where by E, Ei we mean endurants, i.e., part values, and by ηEi we mean the names of the
corresponding types.

determine Cartesian parts is a method tool.

On Calculate Prompts
Calculation prompts apply to compound parts: Cartesians and sets, and yield an RSL-Text
description.

Domain Description Prompt 2 calc Cartesian parts: If is Cartesian(e) holds, then the
analyser “applies” the domain description prompt

• calc Cartesian parts(e)

resulting in the analyser writing down the endurant sorts and endurant sort observers domain
description text according to the following schema:

1. calc Cartesian parts(e) describer

let (57,(ηE1,...,ηEm)) = determine Cartesian parts sorts(e)58 in
❝ Narration:

[s] ... narrative text on sorts ...
[o] ... narrative text on sort observers ...
[p] ... narrative text on proof obligations ...

Formalisation:
type
[s] E1, ❞...❝ , Em

value
[o] obs E1: E→ E1, ❞...❝ , obs Em: E→ Em

proof obligation
[p] [Disjointness of endurant sorts] ❞

end

calc Cartesian parts is a method tool.

56 The ordering, ((e1,...,en),(ηE1,...,ηEn)), is pairwise arbitrary.
57 The use of the underscore, , shall inform the reader that there is no need, here, for naming a value.
58 For determine composite parts see Sect. 4.5.1.2.2.1

© Dines Bjørner. October 19, 2022: 10:18 am 45 The TUV Lectures, Vienna, Austria, October–November 2022

46 4 Endurants: External Domain Qualities

Elaboration 1 Type, Values and Type Names: Note the use of quotes above. Please observe
that when we write obs E then obs E is the name of a function. The E, when juxtaposed to
obs is now a name

Observer Function Prompt 2 type name, type of:
The definition of type name, type of implies the informal definition of

obs Ei(e)=ei ≡ type name(ei)=❝ Ei ❞∧

type of(ei) ≡ Ei ∧

is Ei(ei)

Example 35 . A Road Transport System Domain: Cartesians: 59

23 There is the universe of discourse, RTS.

It is composed from

24 a road net, RN, and

25 an aggregate of automobiles, AA.

type
23 RTS
24 RN
25 AA

value
24 obs RN: RTS→ RN
25 obs AA: RTS→ AA

We continue the analysis & description of “our” road transport system:

26 The road net consists of

a an aggregate, AH, of hubs and
b an aggregate, AL, of links.

type
26a AH
26b AL

value
26a obs AH: RN→ AH
26b obs AL: RN→ AL

4.5.1.2.3 Part Sets

Definition 62 . Part Sets Part sets are those which, in a given context, are deemed to
meaningfully consist of separately observable a [“root”] part and an indefinite number of
proper [“sibling”] sub-parts

For pragmatic reasons we distinguish between parts sets all of whose parts are of the same,
single, further un-analysed sort, and of two or more distinct atomic sorts.

59 Example 35’ Narration is not representative of what it should be. Here is a more reasonable narration:

• A road net is a set of hubs (road intersections) and links such that links are connected to adjacent hubs,
and such that connected links and hubs form roads and where a road is a thoroughfare, route,
or way on land between two places that has been paved or otherwise improved to allow

travel by foot or some form of conveyance, including a motor vehicle, cart, bicycle, or

horse [Wikipedia]

We bring this clarification here, once, and allow ourselves, with the reader’s permission, to narrate only
very steno-graphically.

The TUV Lectures, Vienna, Austria, October–November 2022 46 © Dines Bjørner. October 19, 2022: 10:18 am

4.5 Parts and Living Species 47

Definition 63 . Single Sort Part Sets Single sort part sets are those which, in a given
context, are deemed to meaningfully consist of separately observable a [“root”] part and an
indefinite number of proper [“sibling”] sub-parts of the same, i.e., single sort

Analysis Predicate Prompt 10 is single sort set: The domain analyser analyses a solid
endurant, i.e., a part p into a set endurant:

• is single sort set: p is a composite endurant if is single sort set(p) holds

is single sort set is a method tool.
The is single sort set predicate is informal. So are all the domain analysis predicates

(and functions). That is, Their values are “calculated” by a human, the domain analyser. That
person observes parts in the “real world”. The determination of the predicate values, hence,
are subjective.

Definition 64 . Alternative Atomic Part Sets Alternative sorts part sets are those which,
in a given context, are deemed to meaningfully consist of separately observable a [“root”]
part and an indefinite number of proper [“sibling”] sub-parts of two or more atomic parts of
distinct sorts

Analysis Predicate Prompt 11 is alternative sorts set: The domain analyser analyses
a solid endurant, i.e., a part p into a set endurant:

• is alternative sorts set: p is a composite endurant if is alternative sorts set(p)
holds

is alternative sorts set is a method tool.

4.5.1.2.3.1 Determine Same Sort Part Sets

Observer Function Prompt 3 determine same sort parts set:
The domain analyser observes parts into same sorts part sets. The method provides the
domain observer prompt:

• determine alternative sorts part set directs the domain analyser to determine the
values and corresponding sorts of the part.

value
determine same sort part set: E→ (P-set×θP)
determine same sort part set(e) as (ps,ηPn)

determine same sort part set is a method tool.

4.5.1.2.3.2 Determine Alternative Sorts Part Sets

Observer Function Prompt 4 determine alternative sorts part set:
The domain analyser observes parts into alternative sorts part sets. The method provides the
domain observer prompt:

© Dines Bjørner. October 19, 2022: 10:18 am 47 The TUV Lectures, Vienna, Austria, October–November 2022

48 4 Endurants: External Domain Qualities

• determine alternative sorts part set directs the domain analyser to determine the
values and corresponding sorts of the part.

value
determine alternative sorts part set: E→ ((P1×θP1)×...×(Pn,θPn))
determine alternative sorts part set(e) as ((p1,ηp1),...,(pn,ηPn))

The set of parts, of different sorts, may have more than one element, p,p′, ...,p′′ being of the
same sort Ei.

determine alternative sorts part set is a method tool.

4.5.1.2.3.3 Calculating Single Sort Part Sets

Domain Description Prompt 3 calc single sort parts sort: If is single set sort -
parts(e) holds, then the analyser “applies” the domain description prompt

• calc single sort parts sort(e)

resulting in the analyser writing down the single set sort and sort observers domain description
text according to the following schema:
2. calculate single sort parts sort(e) Describer

let (,ηP) = determine single sort part(e)60 in
❝ Narration:

[s] ... narrative text on sort ...
[o] ... narrative text on sort observer ...
[p] ... narrative text on proof obligation ...

Formalisation:
type
[s] P
[s] Ps = P-set
value
[o] obs Ps: E→ Ps ❞

proof obligation
[p] [Single `̀sortness′′ of Ps] ❞

end

calculate single sort parts sort is a method tool.

Elaboration 2 Type, Values and Type Names: Note the use of quotes above. Please observe
that when we write obs Ps then obs Ps is the name of a function. The Ps, when juxtaposed
to obs is now a name

Example 36 . Road Transport System: Sets of Hubs, Links and Automobiles: We refer
to Example 35 on page 46.

27 The road net aggregate of road net hubs consists of a set of [atomic] hubs,
28 The road net aggregate of road net links consists of a set of [atomic] links,

60 For determine single sort part see Defn. 63 on the previous page.

The TUV Lectures, Vienna, Austria, October–November 2022 48 © Dines Bjørner. October 19, 2022: 10:18 am

4.5 Parts and Living Species 49

29 The road net aggregate of automobiles consists of a set of [atomic] automobiles.

type
27. Hs = H-set, H
27. Ls − L-set, L
27. As = A-set, A
value
27. obs Hs: AH→ Hs
27. obs Ls: AL→ Ls
27. obs As: AA→ As

4.5.1.2.3.4 Calculating Alternative Sort Part Sets

We leave it to the reader to decipher the calculate alternative sort part sorts prompt.

Domain Description Prompt 4 calculate alternative sort part sorts: If is altern-
ative sort parts sorts(e) holds, then the analyser “applies” the domain description
prompt

• calculate alternative sort part sorts(e)

resulting in the analyser writing down the alternative sort and sort observers domain description
text according to the following schema:
3.calculate alternative sort part sorts(e) Describer

let ((p1,ηE 1),...,(pn,ηE n)) = determine alternative sorts part set sorts(e)61 in
❝ Narration:

[s] ... narrative text on alternative sorts ...
[o] ... narrative text on sort observers ...
[p] ... narrative text on proof obligations ...

Formalisation:
type
[s] Ea = E 1 | ... | E n
[s] E 1 :: End 1, ..., E n :: End n
value
[o] obs Ea: E→ Ea
proof obligation
[p] [disjointness of alternative sorts] E 1, ..., E n ❞

end

The set of parts, of different sorts, may have more than one element, say p,p′, ...,p′′ being of
the same sort E i. Since parts are not mentioned in the sort description above, cf., , only the
distinct alternative sort observers appear in that description.

calculate alternative sort part sorts is a method tool.

Example 37 . Alternative Rail Units:

30 The example is that of a railway system.
31 We focus on railway nets. They can be observed from the railway system.

61 For determine alternative sort part sorts see Defn. 64 on page 47.

© Dines Bjørner. October 19, 2022: 10:18 am 49 The TUV Lectures, Vienna, Austria, October–November 2022

50 4 Endurants: External Domain Qualities

32 The railway net embodies a set of [railway] net units.
33 A net unit is either astraight or curved linear unit, or a simple switch, i.e., a turnout, unit62

or a simple cross-over, i.e., a rigid crossing unit, or a single switched cross-over, i.e., a
single slip unit, or a double switched cross-over, i.e., a double slip unit, or a terminal
unit.

34 As a formal specification language technicality disjointness of the respective rail unit types
is afforded by RSL’s :: type definition construct.

We refer to Figure 4.2.

type
30. RS
31. RN
value
31. obs RN: RS→ RN
type
32. NUs = NU-set
33. NU = LU|PU|RU|SU|DU|TU

34. LU :: LinU
34. PU :: PntU
34. SU :: SwiU
34. DU :: DblU
34. TU :: TerU
value
32. obs NUs: RN→ NUs

[L]

Track / Line / Segment

/ Switch Unit

Switchable Crossover

Connectors − in−between are Units

Simple Crossover Unit

/ Linear
Turnout /

/ Rigid Crossing Unit / Double Slip

Unit
Point

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

[R]

Fig. 4.2 Left: Four net units (LU, PU, SU, DU); Right: A railway net

•••

Method Principle 6 . Pedantic Steps of Development: This section, i.e., Sect. 4.5.1, has
illustrated a principle of “small, pedantic” analysis & description steps. You could also call
it a principle of separation of concerns

4.5.1.3 Ontology and Taxonomy

We can speak of two kinds of ontologies: the general ontologies of domain analysis &
description, cf. Fig. 4.1 on page 39, and a specific domain’s possible endurant ontologies.
We shall here focus on a [“restricted”] concept of taxonomies63

62 https://en.wikipedia.org/wiki/Railroad switch
63 By taxonomy (or taxonomical classification) we shall here understand a scheme of classification, especially
a hierarchical classification, in which things are organized into groups [Wikipedia].

The TUV Lectures, Vienna, Austria, October–November 2022 50 © Dines Bjørner. October 19, 2022: 10:18 am

4.5 Parts and Living Species 51

Definition 65 . Domain Taxonomy By a domain taxonomy we shall understand a hierar-
chical structure, usually depicted as a(n “upside-down”) tree, whose “root” designates a
compound part and whose “siblings” (proper sub-trees)designate parts or fluids

The ‘restriction’ amounts to considering only endurants. That is, not considering perdurants.
Taxonomy is a method technique.

Example 38 . The Road Transport System Taxonomy: Figure 4.3 shows a schematised,
i.e., the . . . , taxonomy for the Road Transport System domain of Example 4.1 on page 39.

RTS

RN

Hs Ls

LHH H L L
... ...

...
A A A

AA

AsAH AL

Fig. 4.3 A Road Transport System Taxonomy

4.5.1.4 “Root” and “Sibling” Parts

For compound parts, cf. Definition 60 on page 43, we introduce the specific domain taxonomy
concepts of “root” and “sibling” parts. (We also refer to Fig. 4.3.)

When observing, as a human, a compound part one may ask the question “a tree con-
sisting of a specific domain taxonomy node labelled, e.g., X and the sub-trees labelled, e.g.,
Y1,Y2, . . . ,Yn does that tree designate one “indivisible” part or does it designate n+1 parts ?”
We shall, in general, consider the answer to be the latter: n+ 1 !

We shall, in general, consider compound parts to consist of a “root” parts and n “sibling
parts and fluids”. What the analyser cum describer observes appears as one part, “the
whole”, with n “embedded” sub-parts. What the analyser cum describer is asked to model
is 1, the root part, and n, the sibling, parts and fluids. The fact that the root part is separately
modelled from the sibling parts, may seem to disappear in this separate modelling — but,
as You shall see, in the next chapter, their relation: the siblings to “the whole”, i.e., the root,
will be modelled, specifically through their mereologies, as will be covered in Sect. 5.3, but
also through their respective attributes, Sect. 5.4. We shall see this non-embbedness of root
and sibling parts further accentuated in the modelling of their transcendentally deduced
respective (perdurant) behaviours as distinct concurrent behaviours in Chapter 6.

4.5.2 Living Species

© Dines Bjørner. October 19, 2022: 10:18 am 51 The TUV Lectures, Vienna, Austria, October–November 2022

52 4 Endurants: External Domain Qualities

Living Species are either plants or animals. Among animals we have the humans.

Definition 66 . Living Species By a living species we shall understand a solid endurant,
subject to laws of physics, and additionally subject to causality of purpose.

Living species must have some form they can be developed to reach ; a form they must be
causally determined to maintain. This development and maintenance must further engage
in exchanges of matter with an environment. It must be possible that living species occur
in two forms: plants, respectively animals, forms which are characterised by development,
form and exchange, which, additionally, can be characterised by the ability of purposeful
movement

Analysis Predicate Prompt 12 is living species: The domain analyser analyses
“things” (e) into living species. The method can thus be said to provide the domain analysis
prompt:

• is living species – where is living species(e) holds if e is a living species

is living species is a method tool.
It is appropriate here to mention Carl Linnaeus (1707–1778). He was a Swedish botanist,

zoologist, and physician who formalised, in the form of a binomial nomenclature, the modern
system of naming organisms. He is known as the “father of modern taxonomy”. We refer to
his ‘Species Plantarum’ gutenberg.org/files/20771/20771-h/20771-h.htm.

4.5.2.1 Plants

Example 39 . Plants: Although we have not yet come across domains for which the need
to model the living species of plants were needed, we give some examples anyway: grass,
tulip, rhododendron, oak tree.

Analysis Predicate Prompt 13 is plant: The domain analyser analyses “things” (ℓ) into
a plant. The method can thus be said to provide the domain analysis prompt:

• is plant – where is plant(ℓ) holds if ℓ is a plant

is plant is a method tool. The predicate is living species(ℓ) is a prerequisite for
is plant(ℓ).

4.5.2.2 Animals

Definition 67 . Animal We refer to the initial definition of living species above – while
emphasizing the following traits: (i) a form that animals can be developed to reach and (ii)
causally determined to maintain through (iii) development and maintenance in an exchange
of matter with an environment, and (iv) ability to purposeful movement

The TUV Lectures, Vienna, Austria, October–November 2022 52 © Dines Bjørner. October 19, 2022: 10:18 am

4.6 Some Observations 53

Analysis Predicate Prompt 14 is animal: The domain analyser analyses “things” (ℓ) into
an animal. The method can thus be said to provide the domain analysis prompt:

• is animal – where is animal(ℓ) holds if ℓ is an animal

is animal is a method tool. The predicate is living species(ℓ) is a prerequisite for
is animal(ℓ). We distinguish, motivated by [148], between humans and other.

4.5.2.2.1 Humans

Definition 68 . Human A human (a person) is an animal, cf. Definition 67 on the facing page,
with the additional properties of having language, being conscious of having knowledge (of
its own situation), and responsibility

Analysis Predicate Prompt 15 is human: The domain analyser analyses “things” (ℓ) into
a human. The method can thus be said to provide the domain analysis prompt:

• is human – where is human(ℓ) holds if ℓ is a human

is human is a method tool. The predicate is animal(ℓ) is a prerequisite for is human(ℓ).
We have not, in our many experimental domain modelling efforts had occasion to model

humans; or rather: we have modelled, for example, automobiles as possessing human qual-
ities, i.e., “subsuming humans”. We have found, in these experimental domain modelling
efforts that we often confer anthropomorphic qualities on artefacts, that is, that these artefacts
have human characteristics. You, the readers, are reminded that when some programmers
try to explain their programs they do so using such phrases as and here the program does ...
so-and-so !

4.5.2.2.2 Other

We shall skip any treatment of other than human animals !

•••

External Quality Analysis & Description First is a method procedure.

4.6 Some Observations

Two observations must be made.
(i) The domain analyser cum describer procedures illustrated by the analysis functions de-

termine Cartesian parts, determine same sort part setanddetermine alternative -
sorts part set yield names of endurant sorts. Some of these names may have already been
encountered, i.e., discovered. That is, the domain analyser cum describer must carefully
consider such possibilities.

(ii) Endurants are not recursively definable ! This appears to come as a surprise to many
computer scientists. Immediately many suggest that “tree-like” endurants like a river, or,

© Dines Bjørner. October 19, 2022: 10:18 am 53 The TUV Lectures, Vienna, Austria, October–November 2022

54 4 Endurants: External Domain Qualities

indeed, a tree, should be defined recursively. But we posit that that is not the case. A river, for
example, has a delta, its “root” so-to-speak, but the sub-trees of a recursively defined river
endurant has no such “deltas” ! Instead we define such “tree-like” endurants as graphs with
appropriate mereologies.

4.7 States

In our continued modelling we shall make good use of a concept of states.

Definition 69 . State By a state we shall understand any collection of one or more parts

In Chapter 5 Sect. 5.4 we introduce the notion of attributes. Among attributes there are the
dynamic attributes. They model that internal part quality values may change dynamically.
So we may wish, on occasion, to ‘refine’ our notion of state to be just those parts which have
dynamic attributes.

4.7.1 State Calculation

Given any universe of discourse, uod:UoD, we can recursively calculate its “full” state,
calc parts({uod}).

35 Let e be any endurant. Let arg parts be the parts to be calculated. Let res parts be the
parts calculated. Initialise the calculator with arg parts={e} and res parts={}. Calculation
stops with arg parts empty and res parts the result.

36 If is Cartesian(e)
37 then we obtain its immediate parts, determine composite part(e)
38 add them, as a set, to arg parts, e removed from arg parts and added to res parts calcu-

lating the parts from that.
39 If is single sort part set(e)
40 then the parts, ps, of the single sort set are determined,
41 added to arg parts and e removed from arg parts and added to res parts calculating the

parts from that.
42 If is alternative sorts part set(e) then the parts, ((p1,),(p2,),...,(pn,)), of the alter-

native sorts set are determined, added to arg parts and e removed from arg parts and
added to res parts calculating the parts from that.

value
35. calc parts: E-set→ E-set→ E-set
35. calc parts(arg parts)(res parts) ≡
35. if arg parts = {} then res parts else
35. let e • e ∈ arg parts in
36. is Cartesian(e)→
37. let ((e1,e2,...,en),) = observe Cartesian part(e) in
38. calc parts(arg parts\{e} ∪ {e1,e2,...,en})(res parts ∪ {e}) end
39. is single sort part set(e)→
40. let ps = observe single sort part set(e) in
41. calc parts(arg parts\{e}∪ ps)(res parts ∪ {e}) end
42. is alternative sort part set(e)→
42. let ((p1,),(p2,),...,(pn,)) = observe alternative sorts part set(e) in

The TUV Lectures, Vienna, Austria, October–November 2022 54 © Dines Bjørner. October 19, 2022: 10:18 am

4.8 An External Analysis and Description Procedure 55

42. calc parts(arg parts\{e}∪{p1,p2,...,pn})(res parts ∪ {e}) end
35. end end

calc parts is a method tool.

Method Principle 7 . Domain State: We have found, once all the state components, i.e., the
endurant parts, have had their external qualities analysed, that it is then expedient to define
the domain state. It can then be the basis for several concepts of internal qualities.

Example 40 . Constants and States:

43 Let there be given a universe of discourse, rts. The set {rts} is an example of a state.

From that state we can calculate other states.

44 The set of all hubs, hs.
45 The set of all links, ls.
46 The set of all hubs and links, hls.
47 The set of all automobiles, as.
48 The set of all parts, ps.

value
43 rts:UoD [43]
44 hs:H-set ≡ obs sH(obs SH(obs RN(rts)))
45 ls:L-set ≡ obs sL(obs SL(obs RN(rts)))
46 hls:(H|L)-set ≡ hs∪ls
47 as:A-set ≡ obs As(obs AA(obs RN(rts)))
48 ps:(UoB|H|L|A)-set ≡ rts∪hls∪as

4.7.2 Update-able States

We shall, in Sect. 5.4, introduce the notion of parts, having dynamic attributes, that is, having
internal qualities that may change. To cope with the modelling, in particular of so-called
monitor-able attributes, we present the state as a global variable:

variable σ := calc parts({uod})

4.8 An External Analysis and Description Procedure

We have covered the individual analysis and description steps of our approach to the external
qualities modelling of domain endurants. We now suggest a ‘formal’ description of the
process of linking all these analysis and description steps.

4.8.1 An Analysis & Description State

Common to all the discovery processes is an idea of a notice board. A notice board, at
any time in the development of a domain description, is a repository of the analysis and

© Dines Bjørner. October 19, 2022: 10:18 am 55 The TUV Lectures, Vienna, Austria, October–November 2022

56 4 Endurants: External Domain Qualities

description process. We suggest to model the notice board in terms of three global variables.
The new variable holds the parts yet to be described, The ans variable holds the sort name
of parts that have so far been described, the gen variable holds the parts that have so far
been described, and the txt variable holds the RSL-Text so far generated. We model the txt
variable as a map from endurant identifier names to RSL-Text.

A Domain Discovery Notice Board

variable
new := {uod} ,
asn := { ❝ UoD ❞}

gen := {} ,
txt:RSL-Text := [uid UoD(uod) 7→ 〈❝ type UoD ❞〉]

4.8.2 A Domain Discovery Procedure, I

The discover sorts pseudo program suggests a systematic way of proceeding through anal-
ysis, manifested by the is · · · predicates, to (→) description.

Some comments are in order. The e-seta|e-setb expression yields a set of endurants that
are either in e-seta, or in e-seta, or in both, but such that two endurants, ex and ey which
are of the same endurants type, say E, and are in respective sets is only represented once in
the result; that is, if they are type-wise the same, but value-wise different they will only be
included once in the result.

As this is the first time RSL-Text is put on the notice board we express this as:

• txt := txt ∪ [type name(v) 7→ 〈RSL-Text〉]

Subsequent insertion of RSL-Text for internal quality descriptions and perdurants is then
concatenated to the end of previously uploaded RSL-Text.

An External Qualities Domain Analysis and Description Process

value
discover sorts: Unit→ Unit
discover sorts() ≡ while new , {} do

let v • v ∈ new in (new := new \ {v} ‖ gen := gen ∪ {v} ‖ ans := ans \ {type of(v)}) ;
is atomic(v)→ skip ,
is compound(v)→

is Cartesian(v)→
let ((e1,...,en),(ηE1,...,ηEn))=analyse composite parts(v) in
(ans := ans ∪ {ηE1,...,ηEn} ‖ new := new | {e1,...,en}
‖ txt := txt ∪ [type name(v) 7→ 〈calculate composite part sorts(v)〉]) end,

is part set(v)→
(is single sort set(v)→

let ({p1,...,pn},ηP)=analyse single sort parts set(v) in
(ans := ans ∪ {ηP} ‖ new := new | {p1,...,pn} ‖

txt := txt ∪ [type name(v) 7→ calculate single sort part sort(v)]) end,
is alternative sorts set(v)→
let ((p1,ηE1),...,(pn,ηEn))= observe alternative sorts part set(v) in
(ans := ans ∪ {ηE1,...,En} ‖ new := new | {p1,...,pn} ‖

The TUV Lectures, Vienna, Austria, October–November 2022 56 © Dines Bjørner. October 19, 2022: 10:18 am

4.9 Summary 57

txt := txt ∪ [type name(v) 7→ calculate alternative sorts part sort(v)]) end)
end end

discover sorts is a method procedure.

4.9 Summary

We briefly summarise the main findings of this chapter. These are the main analysis pred-
icates and functions and the main description functions. These, to remind the reader, are
the analysis, the is · · · , predicates, the analysis, the determine · · · , functions, the state cal-
culation function, the description functions, and the domain discovery procedure. They are
summarised in this table:

External Qualities Predicates and Functions: Method Tools

• Analysis Predicates: These
are the is · · · functions. The
domain scientist cum engineer,
i.e., the domain analyser cum
describer, applies this to entities
being observed in the domain.
The answer is a truth value. De-
pendent on the truth value that
person then goes on to apply,
again informally, either a subse-
quent predicate, or some func-
tion.

• Analysis Functions: These
are the determine · · · functions.
They apply, respectively, to
parts satisfying respective
predicates.

• State Calculation: The state
calculation function is given gen-
erally. The domain analyser cum
describer must define this func-
tion for each domain studied.

• Description Functions: These
calculation functions, in a sense,
are the main “results” of this
chapter.

• Domain Discovery: The proce-
dure here being described, infor-
mally, guides the domain anal-
yser cum describer to do the
job !

Name Introduced

Analysis Predicates
1 is entity page 38
2 is endurant page 40
3 is perdurant page 40
4 is solid page 41
5 is fluid page 42
6 is part page 42
7 is atomic page 43
8 is compound page 43
9 is Cartesian page 44

10 is single sort set page 47
11 is alternative sorts set page 47
12 is living species page 52
13 is plant page 52
14 is animal page 53
15 is human page 53

Analysis Functions
1 determine Cartesian parts page 45
3 determine same sort part set page 47
4 determine alternative sorts part set page 47

State Calculation
calc parts page 54
Description Functions

1 calc Universe of Discourse page 37
2 calc Cartesian parts page 45
3 calc single sort parts sort page 48
4 calc alternative sort part sorts page 48

Domain Discovery
discover sorts page 56

•••

Please consider Fig. 4.1 on page 39. This chapter has covered the tree-like structure to the
left in Fig. 4.1. The next chapter covers the horisontal and vertical lines, also to the left in
Fig. 4.1.

© Dines Bjørner. October 19, 2022: 10:18 am 57 The TUV Lectures, Vienna, Austria, October–November 2022

Chapter 5

Endurants: Internal and Universal Domain Qualities

Contents
5.1 Internal Qualities . 61

5.1.1 General Characterisation . 61
5.1.2 Manifest Parts versus Structures . 61

5.1.2.1 Definitions . 61
5.1.2.2 Analysis Predicates . 62

16:is-manifest . 62
17:is-structure . 62

5.1.2.3 Examples . 62
5.1.2.4 Modelling Consequence . 62

5.2 Unique Identification . 62
5.2.1 On Uniqueness of Endurants . 63
5.2.2 Uniqueness Modelling Tools . 63

5: observe-unique-identifier . 63
5.2.3 The Unique Identifier State . 64
5.2.4 The Unique Identifier State . 65
5.2.5 A Domain Law: Uniqueness of Endurant Identifiers 65

5.2.5.1 Part Retrieval . 66
5.2.5.2 Unique Identification of Compounds . 66

5.3 Mereology . 67
5.3.1 Endurant Relations . 67
5.3.2 Mereology Modelling Tools . 67

6: observe-mereology . 68
5.3.2.1 Invariance of Mereologies . 69
5.3.2.2 Deductions made from Mereologies . 69

5.3.3 Formulation of Mereologies . 70
5.3.4 Fixed and Varying Mereologies . 70
5.3.5 No Fluids Mereology . 70
5.3.6 Some Modelling Observations . 70

5.4 Attributes . 72
5.4.1 Inseparability of Attributes from Parts and Fluids 72
5.4.2 Attribute Modelling Tools . 72

5.4.2.1 Attribute Quality and Attribute Value . 72
5.4.2.2 Concrete Attribute Types . 73
5.4.2.3 Attribute Types and Functions . 73

7: observe-attributes . 73
5.4.2.4 Attribute Categories . 74
5.4.2.5 Calculating Attribute Category Type Names 78
5.4.2.6 Calculating Attribute Values . 80
5.4.2.7 Calculating Attribute Names . 80

5.4.3 Operations on Monitorable Attributes of Parts . 81
5.4.3.1 Evaluation of Monitorable Attributes . 81
5.4.3.2 Update of Biddable Attributes . 82
5.4.3.3 Stationary and Mobile Attributes . 82

18:is-stationary . 82

59

60 5 Endurants: Internal and Universal Domain Qualities

19:is-mobile . 83
5.5 SPACE and TIME . 83

5.5.1 SPACE . 83
5.5.2 Mathematical Models of Space . 84

5.5.2.1 Metric Spaces . 84
5.5.3 TIME . 85

5.5.3.1 Time Motivated Philosophically . 86
5.5.3.2 Time Values . 86
5.5.3.3 Temporal Observers . 87
5.5.3.4 “Soft” and “Hard” Real-time . 87

5.5.3.4.1 Soft Temporalities . 87
5.5.3.4.2 Hard Temporalities . 87
5.5.3.4.3 Soft and Hard Real-time . 88

5.6 Intentional Pull . 89
5.6.1 Issues Leading Up to Intentionality . 89

5.6.1.1 Causality of Purpose . 89
5.6.1.2 Living Species . 89
5.6.1.3 Animate Entities . 90
5.6.1.4 Animals . 90
5.6.1.5 Humans – Consciousness and Learning 90
5.6.1.6 Knowledge . 90
5.6.1.7 Responsibility . 90

5.6.2 Intentionality . 91
5.6.2.1 Intentional Pull . 91
5.6.2.2 The Type Intent . 91
5.6.2.3 Intentionalities . 92
5.6.2.4 Wellformedness of Event Histories . 92
5.6.2.5 Formulation of an Intentional Pull . 93

5.6.3 Artefacts . 94
5.6.4 Assignment of Attributes . 94
5.6.5 Galois Connections . 94

5.6.5.1 Galois Theory: An Ultra-brief Characterisation 94
5.6.5.2 Galois Connections and Intentionality – A Possible

Research Topic ? . 95
5.6.6 Discovering Intentional Pulls . 95

5.6.6.1 Identifying Intents . 96
5.6.6.2 Searching for Intentional Pulls . 96
5.6.6.3 Describing Intentional Pulls . 96

5.7 A Domain Discovery Procedure, II . 96
5.7.1 The Process . 96
5.7.2 A Suggested Analysis & Description Approach, II 97

5.8 Summary . 98

Please consider Fig. 4.1 on page 39. The previous chapter covered the tree-like structure
to the left in Fig. 4.1. This chapter covers the horisontal and vertical lines, also to the left in
Fig. 4.1.

•••

In this chapter we introduce the concepts of internal qualities of endurants and universal
qualities of domains, and cover, first, the analysis and description of internal qualities:
unique identifiers (Sect. 5.2 on page 62), mereologies (Sect. 5.3 on page 67) and attributes
(Sect. 5.4 on page 72), There is, additionally, three universal qualities: space, time (Sect. 5.5
on page 83) and intentionality (Sect. 5.6 on page 89), where intentionality is “something”
that expresses intention, design idea, purpose of artefacts – well, some would say, also of
natural endurants.

As it turns out64, to analyse and describe mereology we need to first analyse and describe
unique identifiers; and to analyse and describe attributes we need to first analyse and describe
mereologies. Hence:

64 You, the first time reader cannot know this, i.e., the “turns out”. Once we have developed and presented
the material of this chapter, then you can see it; clearly !

The TUV Lectures, Vienna, Austria, October–November 2022 60 © Dines Bjørner. October 19, 2022: 10:18 am

5.1 Internal Qualities 61

Method Procedure 1 . Sequential Analysis & Description of Internal Qualities: We ad-
vise that the domain analysis & description first analyse & describe unique identification of
all endurant sorts; then analyse & describe mereologies of all endurant sorts; finally analyse
& describe attributes of all endurant sorts.

5.1 Internal Qualities

We shall investigate the, as we shall call them, internal qualities of domains. That is the
properties of the entities to which we ascribe internal qualities. The outcome of this chapter
is that the reader will be able to model the internal qualities of domains. Not just for a
particular domain instance, but a possibly infinite set of domain instances65.

5.1.1 General Characterisation

External qualities of endurants of a manifest domain are, in a simplifying sense, those we
can see and touch. They, so to speak, take form.

Internal qualities of endurants of a manifest domain are, in a less simplifying sense, those
which we may not be able to see or “feel” when touching an endurant, but they can, as we
now ‘mandate’ them, be reasoned about, as for unique identifiers and mereologies, or be
measured by some physical/chemical means, or be “spoken of” by intentional deduction,
and be reasoned about, as we do when we attribute properties to endurants.

5.1.2 Manifest Parts versus Structures

In [49] we covered a notion of ‘structures’. In this primer we shall treat the concept of
‘structures’ differently We do so by distinguishing between manifest parts and structures.

5.1.2.1 Definitions

Definition 70 . Manifest Part By a manifest part we shall understand a part which ‘manifests’
itself either in a physical, visible manner, “occupying” an AREA or a VOLUME and a
POSITION in SPACE, or in a conceptual manner forms an organisation in Your mind ! As
we have already revealed, endurant parts can be transcendentally deduced into perdurant
behaviours – with manifest parts indeed being so.

Definition 71 . Structure By a structure we shall understand an endurant concept that allows
the domain analyser cum describer to rationally decompose a domain analysis and/or its
description into manageable, logically relevant sections, but where these abstract endurants
are not further reflected upon in the domain analysis and description. Structures are therefore
not transcendentally deduced into perdurant behaviours.

65 By this we mean: You are not just analysing a specific domain, say the one manifested around the corner
from where you are, but any instance, anywhere in the world, which satisfies what you have described.

© Dines Bjørner. October 19, 2022: 10:18 am 61 The TUV Lectures, Vienna, Austria, October–November 2022

62 5 Endurants: Internal and Universal Domain Qualities

5.1.2.2 Analysis Predicates

Analysis Predicate Prompt 16 is manifest: The method provides the domain analysis
prompt:

• is manifest – where is manifest(p) holds if p is to be considered manifest

Analysis Predicate Prompt 17 is structure: The method provides the domain analysis
prompt:

• is structure – where is structure(p) holds if p is to be considered a structure

The obvious holds: is manifest(p)≡ ¬ is structure(p).

5.1.2.3 Examples

Example 41 . Manifest Parts and Structures:
We refer to Example 35 on page 46: the Road Transport System. We shall consider all

atomic parts: hubs, links and automobiles as being manifest. (They are physical, visible and
in SPACE.) We shall consider road nets and aggregates of automobiles as being manifest.
Road nets are physical, visible and in SPACE. Aggregates of automobiles are here consid-
ered conceptual. The road net manifest part, apart from it aggregates of hubs and links, can
be thought of as “representing” a Department of Roads66. The automobile aggregate apart
from its automobiles, can be thought of as “representing” a Department of Vehicles67. We
shall consider hub and link aggregates and hub and link set as structures.

5.1.2.4 Modelling Consequence

In this chapter we introduce internal endurant qualities. If a part is considered manifest then
we shall endow that part with all three kinds of internal qualities. If a part is considered a
structure then we shall not endow that part with any of three kinds of internal qualities.

5.2 Unique Identification

The concept of parts having unique identifiability, that is, that two parts, if they are the
same, have the same unique identifier, and if they are not the same, then they have distinct
identifiers, that concept is fundamental to our being able to analyse and describe internal
qualities of endurants. So we are left with the issue of ‘identity’ !

66 – of some country, state, province, city or other.
67 See above footnote.

The TUV Lectures, Vienna, Austria, October–November 2022 62 © Dines Bjørner. October 19, 2022: 10:18 am

5.2 Unique Identification 63

5.2.1 On Uniqueness of Endurants

We therefore introduce the notion of unique identification of part endurants. We assume (i)
that all part endurants, e, of any domain E, have unique identifiers, (ii) that unique identifiers
(of part endurants e:E) are abstract values (of the unique identifier sort UI of part endurants
e:E), (iii) that such that distinct part endurant sorts, Ei and E j, have distinctly named unique

identifier sorts, say UIi and UI j
68, and (iv) that all uii:UIi and ui j:UI j are distinct.

Representation of Unique Identifiers: Unique identifiers are abstractions. When we
endow two endurants (say of the same sort) distinct unique identifiers then we are simply
saying that these two endurants are distinct. We are not assuming anything about how these
identifiers otherwise come about. Identifiability of Endurants:From a philosophical point
of view, and with basis in Kai Sørlander’s Philosphy, cf. Paragraph Identity, Difference and
Relations (Page 14), one can rationally argue that there are many endurants, and that they
are unique, and hence uniquely identifiable. From an empirical point of view, and since
one may eventually have a software development in mind, we may wonder how unique
identifiablity can be accommodated.

Unique identifiability for solid endurants, even though they may be mobile, is straightfor-
ward: one can think of many ways of ascribing a unique identifier to any part; solid endurants
do not “morph”69. Hence one can think of many such unique identification schemas.

Unique identifiability for fluids may seem a bit more tricky. For this monograph we shall
not suggest to endow fluids with unique identification. We have simply not experimented
with such part-fluids and fluid-parts domains – not enough – to suggest so.

5.2.2 Uniqueness Modelling Tools

The analysis method offers an observer function uid E which when applied to part endurants,
e, yields the unique identifier, ui:UI, of e.

Domain Description Prompt 5 describe unique identifier(e): We can therefore apply
the domain description prompt:

• describe unique identifier(e)

to endurants e:E resulting in the analyser writing down the unique identifier type and observer

domain description text according to the following schema:
4. describe unique identifier(e)Observer
❝ Narration:

[s] ... narrative text on unique identifier sort UI ...70

[u] ... narrative text on unique identifier observer uid E ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:
type
[s] UI
value
[u] uid E: E→ UI ❞

68 This restriction is not necessary, but, for the time, we can assume that it is.
69 That is, our domain modelling method is not thought of as being applied to the physics situations of
endurants going, for example, from states of being solid, via states of melting, to states of fluid.

© Dines Bjørner. October 19, 2022: 10:18 am 63 The TUV Lectures, Vienna, Austria, October–November 2022

64 5 Endurants: Internal and Universal Domain Qualities

is part(e) is a prerequisite for describe unique identifier(e).
The unique identifier type name, UI above, chosen, of course, by the domain analyser cum

describer, usually properly embodies the type name, E, of the endurant being analysed and
mereology-described. Thus a part of type-name E might be given the mereology type name
EI. Generally we shall refer to these names by UI.

Observer Function Prompt 5 type name, type of, is :
Given description schema 5 we have, so-to-speak “in-reverse”, that

∀ e:E • uid E(e)=ui⇒
type of(ui)=ηUI ∧ type name(ui)=UI ∧ is UI(ui)

ηUI is a variable of typeηT.ηT is the type of all domain endurant, unique identifier, mereology
and attribute type names. By the subsequent UI we refer to the unique identifier type name
value of ηUI.

Example 42 . Unique Identifiers:

49 We assign unique identifiers to all parts.
50 By a road identifier we shall mean a link or a hub identifier.
51 Unique identifiers uniquely identify all parts.

a All hubs have distinct [unique] identifiers.
b All links have distinct identifiers.
c All automobiles have distinct identifiers.
d All parts have distinct identifiers.

type
49 H UI, L UI, A UI
50 R UI = H UI | L UI
value
51a uid H: H→ H UI
51b uid L: H→ L UI
51c uid A: H→ A UI

5.2.3 The Unique Identifier State

Given a universe of discourse we can calculate the set of the unique identifiers of all its parts.

value
calculate all unique identifiers: UoD→ UI-set
calculate all unique identifiers(uod) ≡

let parts = calc parts({uod})({}) in
{ uid E(e) | e:E • e ∈ parts } end

70

The TUV Lectures, Vienna, Austria, October–November 2022 64 © Dines Bjørner. October 19, 2022: 10:18 am

5.2 Unique Identification 65

5.2.4 The Unique Identifier State

We can speak of a unique identifier state:

variable
uod := ...
uidσ := discover uids()

value
discover uids: UoD→ Unit
discover uids(uod) ≡ calculate all unique identifiers(uod)

Example 43 . Unique Road Transport System Identifiers:
We can calculate:

52 the set, huis, of unique hub identifiers;
53 the set, luis, of unique link identifiers;
54 the set, ruis, of all unique hub and link, i.e., road identifiers;
55 the map, hluim, from unique hub identifiers to the set of unique link identifiers of the links

connected to the zero, one or more identified hubs,
56 the map, lhuim, from unique link identifiersto the set of unique hub iidentifiers of the two

hubs connected to the identified link;
57 the set, auis, of unique automobile identifiers;

value
52 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
53 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
54 ruis:R UI-set ≡ huis∪luis
55 hluim:(H UI→m L UI-set) ≡
55 [h ui7→luis|h ui:H UI,luis:L UI-set•h ui∈huis∧(,luis,)=mereo H(η(h ui))]
56 lhuim:(L+UI→m H UI-set) ≡
56 [l ui7→huis | h ui:L UI,huis:H UI-set • l ui∈luis ∧ (,huis,)=mereo L(η(l ui))]
57 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}

5.2.5 A Domain Law: Uniqueness of Endurant Identifiers

We postulate that the unique identifier observer functions are about the uniqueness of the
postulated endurant identifiers, but how is that guaranteed ? We know, as “an indisputable
law of domains”, that they are distinct, but our formulas do not guarantee that ! So we must
formalise their uniqueness.

All Domain Parts have Unique Identifiers

A Domain Law: 1 All Domain Parts have Unique Identifiers:

58 All parts of a described domain have unique identifiers.

Example 44 . Uniqueness of Road Net Identifiers: We must express the following axioms:

59 All hub identifiers are distinct.

© Dines Bjørner. October 19, 2022: 10:18 am 65 The TUV Lectures, Vienna, Austria, October–November 2022

66 5 Endurants: Internal and Universal Domain Qualities

60 All link identifiers are distinct.
61 All automobile identifiers are distinct.
62 All part identifiers are distinct.

axiom
59 card hs = card huis
60 card ls = card luis
61 card as = card auis
62 card {huis∪luis∪bcuis∪buis∪auis}
62 = card huis+card luis+card bcuis+card buis+card auis

We ascribe, in principle, unique identifiers to all endurants whether natural or artefactual. We
find, from our many experiments, cf. the Universes of Discourse example, Page 36, that we
really focus on those domain entities which are artefactual endurants and their behavioural
“counterparts”.

Example 45 . Rail Net Unique Identifiers:

63 With every rail net unit we associate a unique identifier.
64 That is, no two rail net units have the same unique identifier.
65 Trains have unique identifiers.
66 We let tris denote the set of all train identifiers.
67 No two distinct trains have the same unique identifier.
68 Train identifiers are distinct from rail net unit identifiers.

type
63. UI
value
63. uid NU: NU→ UI
axiom
64. ∀ ui i,ui j:UI • ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

5.2.5.1 Part Retrieval

Given the unique identifier, pi, of a part p, but not the part itself, and given the universe-of-
discourse (uod) state σ, we can retrieve part, p, as follows:

value
pi:PI, uod:UoD, σ
retr part: UI→ P
retr part(ui) ≡ let p:P • p ∈ σ ∧ uid P(p)=ui in p end

pre: ∃ p:P • p ∈ σ ∧ uid P(p)=ui

5.2.5.2 Unique Identification of Compounds

For structures we do not model their unique identification. But their components, whether
the structures are “Cartesian” or “sets”, may very well be non-structures, hence be uniquely
identifiable.

The TUV Lectures, Vienna, Austria, October–November 2022 66 © Dines Bjørner. October 19, 2022: 10:18 am

5.3 Mereology 67

5.3 Mereology

This section is based on Sect. 5.3 of [49, Pages 112–119].

Definition 72 . Mereology Mereology is the study and knowledge of parts and part rela-
tions

Mereology, as a logical/philosophical discipline, can perhaps best be attributed to the Polish
mathematician/logician Stanisław Leśniewski [65, 37].

5.3.1 Endurant Relations

Which are the relations that can be relevant for “endurant-hood” ? There are basically two
relations: (i) physical ones, and (ii) conceptual ones.

(i) Physically two or more endurants may be topologically either adjacent to one another,
like rails of a line, or within an endurant, like links and hubs of a road net, or an atomic part
is conjoined to one or more fluids, or a fluid is conjoined to one or more parts. The latter two
could also be considered conceptual “adjacencies”.

(ii) Conceptually some parts, like automobiles, “belong” to an embedding endurant, like
to an automobile club, or are registered in the local department of vehicles, or are ‘intended’
to drive on roads.

5.3.2 Mereology Modelling Tools

When the domain analyser decides that some endurants are related in a specifically enun-
ciated mereology, the analyser has to decide on suitable mereology types and mereology
observers (i.e., endurant relations).

69 We may, to illustration, define a mereology type of an endurant e:E as a triplet type
expression over set of unique [endurant] identifiers.

70 There is the identification of all those endurant sorts Ei1 ,Ei2 , ...,Eim where at least one of
whose properties "is of interest" to parts e:E.

71 There is the identification of all those sorts Eio1
,Eio2

, ...,Eion where at least one of whose
properties "is of interest" to endurants e:E and vice-versa.

72 There is the identification of all those endurant sorts Eo1 ,Eo2 , ...,Eoo for whom properties of
e:E "is of interest" to endurants of sorts Eo1 ,Eo2 , ...,Eoo .

73 The mereology triplet sets of unique identifiers are disjoint and are all unique identifiers
of the universe of discourse.

The triplet mereology is just a suggestion. As it is formulated here we mean the three ‘sets’
to be disjoint. Other forms of expressing a mereology should be considered for the particular
domain and for the particular endurants of that domain. We leave out further characterisation
of the seemingly vague notion "is of interest".

type
70 iEI = iEI1 | iEI2 | ... | iEIm
71 ioEI = ioEI1 | ioEI2 | ... | ioEIn
72 oEI = oEI1 | oEI2 | ... | oEIo
69 MT = iEI-set × ioEI-set × oEI-set

© Dines Bjørner. October 19, 2022: 10:18 am 67 The TUV Lectures, Vienna, Austria, October–November 2022

68 5 Endurants: Internal and Universal Domain Qualities

axiom
73 ∀ (iset,ioset,oset):MT •

73 card iset + card ioset + card oset = card ∪{iset,ioset,oset}
73 ∪{iset,ioset,oset} ⊆ calc all unique identifiers(uod)

Domain Description Prompt 6 describe mereology(e): If has mereology(p) holds for
parts p of type P, then the analyser can apply the domain description prompt :

• describe mereology

to parts of that type and write down the mereology types and observer domain description text
according to the following schema:
5. describe mereology(e)Observer
❝ Narration:

[t] ... narrative text on mereology type ...
[m] ... narrative text on mereology observer ...
[a] ... narrative text on mereology type constraints ...

Formalisation:
type
[t] MT =M(UIi,UI j,...,UIk)
value
[m] mereo P: P→ MT
axiom [Well−formedness of Domain Mereologies]
[a] A: A(MT) ❞

The mereology type name, MT, chosen of course, by the domain analyser cum describer,
usually properly embodies the type name, E, of the endurant being analysed and mereology-
described. The mereology type expressionM(UIi,UI j,...,UIk) is a type expression over unique

identifiers.71 Thus a part of type-name P might be given the mereology type name MP.A(MT)
is a predicate over possibly all unique identifier types of the domain description. To write
down the concrete type definition for MT requires a bit of analysis and thinking

Example 46 . Mereology of a Road Net:

74 The mereology of hubs is a pair: (i) the set of all automobile identifiers72, and (ii) the set
of unique identifiers of the links that it is connected to and the set of all unique identifiers
of all automobiles.73

75 The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii)
the set of the two distinct hubs they are connected to.

76 The mereology of an automobile is the set of the unique identifiers of all links and hubs74.

We presently omit treatment of road net and automobile aggregate mereologies. For road net
mereology we refer to Example 75, Item 162 on page 109.

type
74 H Mer = V UI-set×L UI-set
75 L Mer = V UI-set×H UI-set
76 A Mer = R UI-set
value
74 mereo H: H→ H Mer

71 We refer to Appendix Sect. C.1.1 on page 173 for more on RSL types.

The TUV Lectures, Vienna, Austria, October–November 2022 68 © Dines Bjørner. October 19, 2022: 10:18 am

5.3 Mereology 69

75 mereo L: L→ L Mer
76 mereo A: A→ A Mer

5.3.2.1 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like
properties”, facts which are indisputable. We refer to Sect. 5.3.4 on the next page.

Example 47 . Invariance of Road Nets: The observed mereologies must express identifiers
of the state of such for road nets:

axiom
74 ∀ (auis,luis):H Mer • luis⊆luis ∧ auis=auis
75 ∀ (auis,huis):L Mer • auis=auis ∧ huis⊆huis ∧ card huis = 2
76 ∀ ruis:A Mer • ruis=ruis

77 For all hubs, h, and links, l, in the same road net,
78 if the hub h connects to link l then link l connects to hub h.

axiom
77 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls⇒
77 let (,luis)=mereo H(h), (,huis)=mereo L(l)
78 in uid L(l)∈luis ≡ uid H(h)∈huis end

79 For all links, l, and hubs, ha,hb, in the same road net,
80 if the l connects to hubs ha and hb, then ha and hb both connects to link l.

axiom
79 ∀ h a,h b:H,l:L • {h a,h b} ⊆ hs ∧ l ∈ ls⇒
79 let (,luis)=mereo H(h), (,huis)=mereo L(l)
80 in uid L(l)∈luis ≡ uid H(h)∈huis end

5.3.2.2 Deductions made from Mereologies

Once we have settled basic properties of the mereologies of a domain we can, like for unique
identifiers, cf. Example 42 on page 64, “play around” with that concept: ‘the mereology of
a domain’.

Example 48 . Consequences of a Road Net Mereology:

81 are there [isolated] units from which one can not “reach” other units ?
82 does the net consist of two or more “disjoint” nets ?
83 et cetera.

We leave it to the reader to narrate and formalise the above properly.
71 This is just another way of saying that the meaning of hub mereologies involves the unique identifiers of
all the vehicles that might pass through the hub is of interest to it.
72 The link identifiers designate the links, zero, one or more, that a hub is connected to is of interest to
both the hub and that these links is interested in the hub.
73 — that the automobile might pass through

© Dines Bjørner. October 19, 2022: 10:18 am 69 The TUV Lectures, Vienna, Austria, October–November 2022

70 5 Endurants: Internal and Universal Domain Qualities

5.3.3 Formulation of Mereologies

The observe mereologydomain descriptor, Page 68, may give the impression that the mereo
type MT can be described “at the point of issue” of the observe mereology prompt. Since
the MT type expression may, in general, depend on any part sort the mereo type MT can,
for some domains, “first” be described when all part sorts have had their unique identifiers
defined.

5.3.4 Fixed and Varying Mereologies

The mereology of parts is not necessarily fixed.

Definition 73 . Fixed Mereology By a fixed mereology we shall understand a mereology
of a part which remains fixed over time.

Definition 74 . Varying Mereology By a varying mereology we shall understand a mere-
ology of a part which may vary over time.

Example 49 . Fixed and Varying Mereology: Let us consider a road net74. If hubs and
links never change “affiliation”, that is: hubs are in fixed relation to zero one or more links,
and links are in a fixed relation to exactly two hubs then the mereology of Example 46 on
page 68 is a fixed mereology. If, on the other hand hubs may be inserted into or removed
from the net, and/or links may be removed from or inserted between any two existing hubs,
then the mereology of Example 46 on page 68 is a varying mereology.

5.3.5 No Fluids Mereology

We comment on our decision, for this monograph, to not endow fluids with mereologies.
A first reason is that we “restrict” the concept of mereology to part endurants, that is, to
solid endurants – those with “more-or-less” fixed extents. Fluids can be said to normally not
have fixed extents, that is, they can “morph” from small, fixed into spatially extended forms.
For domains of part-fluid conjoins this is particularly true. The fluids in such domains flow
through and between parts. Some parts, at some times, embodying large, at other times small
amounts of fluid. Some proper, but partial amount of fluid flowing from one part to a next.
Et cetera. It is for the same reason that we do not endow fluids with identity. So, for this
monograph we decide to not suggest the modelling of fluid mereologies.

5.3.6 Some Modelling Observations

It is, in principle, possible to find examples of mereologies of natural parts: rivers: their
confluence, lakes and oceans; and geography: mountain ranges, flat lands, etc. But in our
experimental case studies, cf. Example on Page 36, we have found no really interesting such
cases. All our experimental case studies appears to focus on the mereology of artefacts. And,

74 cf. Examples 27 on page 37, 35 on page 46, 36 on page 48, 38 on page 51, 41 on page 62, 42 on page 64, 44
on page 65, 45 on page 66, 46 on page 68 and 47 on the preceding page

The TUV Lectures, Vienna, Austria, October–November 2022 70 © Dines Bjørner. October 19, 2022: 10:18 am

5.3 Mereology 71

finally, in modelling humans, we find that their mereology encompass all other humans
and all artefacts ! Humans cannot be tamed to refrain from interacting with everyone and
everything.

Some domain models may emphasize physical mereologies based on spatial relations,
others may emphasize conceptual mereologies based on logical “connections”. Some do-
main models may emphasize physical mereologies based on spatial relations, others may
emphasize conceptual mereologies based on logical “connections”.

Example 50 . Rail Net Mereology: We refer to Example 37 on page 49.

84 A linear rail unit is connected to exactly two distinct other rail net units of any given rail
net.

85 A point unit is connected to exactly three distinct other rail net units of any given rail net.
86 A rigid crossing unit is connected to exactly four distinct other rail net units of any given

rail net.
87 A single and a double slip unit is connected to exactly four distinct other rail net units of

any given rail net.
88 A terminal unit is connected to exactly one distinct other rail net unit of any given rail net.
89 So we model the mereology of a railway net unit as a pair of sets of rail net unit unique

identifiers distinct from that of the rail net unit.

value
89. mereo NU: NU→ (UI-set×UI-set)
axiom
89. ∀ nu:NU •

89. let (uis i,uis o)=mereo NU(nu) in
89. case (card uis i,card usi o) =
84. (is LU(nu)→ (1,1),
85. is PU(nu)→ (1,2) ∨ (2,1),
86. is RU(nu) → (2,2),
87. is SU(nu)→ (2,2), is DU(nu)→ (2,2),
88. is TU(nu) → (1,0) ∨ (0,1),
89. → chaos) end
89. ∧ uis i∩uis o={}
89. ∧ uid NU(nu) < (uis i ∪ uis o)
89. end

Figure 5.1 illustrates the mereology of four rail units.

ui

ui
ui ui

({ux,uy},{ua})

({ua},{ux,uy})
({ux},{ua})
({ua},{ux})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

({ux,uy},{ua,ub})
({ua,ub},{ux,uy})

uy

ux

ua

uxua

ua

ub

ux

uy

ua

ub

ux

uy

Linear Point

Rigid
Crossing

Double
Slip

Fig. 5.1 Four Symmetric Rail Unit Mereologies

© Dines Bjørner. October 19, 2022: 10:18 am 71 The TUV Lectures, Vienna, Austria, October–November 2022

72 5 Endurants: Internal and Universal Domain Qualities

5.4 Attributes

This section is based on Sect. 5.4 of [49, Pages 119–139].
To recall: there are three sets of internal qualities: unique identifiers, mereologies and

attributes. Unique identifiers and mereologies are rather definite kinds of internal endurant
qualities; attributes form more “free-wheeling” sets of internal qualities. Whereas, for this
monograph, we suggest to not endow fluids with unique identification and mereologies all
endurants, i.e., including fluids, are endowed with attributes.

5.4.1 Inseparability of Attributes from Parts and Fluids

Parts and fluids are typically recognised because of their spatial form and are otherwise
characterised by their intangible, but measurable attributes. That is, whereas endurants,
whether solid (as are parts) or fluids, are physical, tangible, in the sense of being spatial
[or being abstractions, i.e., concepts, of spatial endurants], attributes are intangible: cannot
normally be touched75, or seen76, but can be objectively measured77. Thus, in our quest for
describing domains where humans play an active rôle, we rule out subjective “attributes”:
feelings, sentiments, moods. Thus we shall abstain, in our domain science also from matters
of aesthetics.

We equate all endurants — which have the same type of unique identifiers, the same
type of mereologies, and the same types of attributes — with one sort. Thus removing an
internal quality from an endurant makes no sense: the endurant of that type either becomes
an endurant of another type or ceases to exist (i.e., becomes a non-entity) !

We can roughly distinguish between two kinds of attributes: those which can be motivated
by physical (incl. chemical) concerns, and those, which, although they embody some form
of ‘physics measures’, appear to reflect on event histories: “if ‘something’, φ, has ‘happened’
to an endurant, ea, then some ‘commensurate thing’, ψ, has ‘happened’ to another (one or
more) endurants, eb.” where the ‘something’ and ‘commensurate thing’ usually involve some
‘interaction’ between the two (or more) endurants. It can take some reflection and analysis to
properly identify endurants ea and eb and commensurate events φ and ψ. Example 66 shall
illustrate the, as we shall call it, intentional pull of event histories.

5.4.2 Attribute Modelling Tools

5.4.2.1 Attribute Quality and Attribute Value

We distinguish between an attribute (as a logical proposition, of a name, i.e.) type, and an
attribute value, as a value in some value space.

75 One can see the red colour of a wall, but one touches the wall.
76 One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage
can one know that it is indeed an electric wire.
77 That is, we restrict our domain analysis with respect to attributes to such quantities which are observable,
say by mechanical, electrical or chemical instruments. Once objective measurements can be made of human
feelings, beauty, and other, we may wish to include these “attributes” in our domain descriptions.

The TUV Lectures, Vienna, Austria, October–November 2022 72 © Dines Bjørner. October 19, 2022: 10:18 am

5.4 Attributes 73

5.4.2.2 Concrete Attribute Types

By a concrete type shall understand a sort (i.e., a type) which is defined in terms of some
type expression: T = T (...). This is referred to below as [=...].

5.4.2.3 Attribute Types and Functions

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let
us then consider that parts and fluids to have one or more attributes. These attributes are
qualities which help characterise “what it means” to be a part or a fluid. Note that we expect
every part and fluid to have at least one attribute. The question is now, in general, how many
and, particularly, which.

Domain Description Prompt 7 describe attributes: The domain analyser experiments,
thinks and reflects about endurant, e, attributes. That process is initiated by the domain
description prompt:

• describe attributes(e).

The result of that domain description prompt is that the domain analyser cum describer
writes down the attribute (sorts or) types and observers domain description text according to the
following schema:
let {ηA1, ..., ηAm} = analyse attribute type names(e) in
❝ Narration:

[t] ... narrative text on attribute sorts ...
some Ais may be concretely defined: [Ai=...]

[o] ... narrative text on attribute sort observers ...
[p] ... narrative text on attribute sort proof obligations ...

Formalisation:
type
[t] A1[=...] , ..., Am[=...]
value
[o] attr A1: E→A1, ..., attr Am: E→Am

proof obligation [Disjointness of Attribute Types]
[p] PO: let P be any part sort in [the domain description]
[p] let a:(A1 |A2|...|Am) in is Ai(a) , is A j(a) [i,i, i,j:[1..m]] end end ❞

end

Let A1, ..., An be the set of all conceivable attributes of endurants e:E. (Usually n is a rather large
natural number, say in the order of a hundred conceivable such.) In any one domain model
the domain analyser cum describer selects a modest subset, A1, ..., Am, i.e., m < n. Across
many domain models for “more-or-less the same” domain m varies and the attributes, A1,
..., Am, selected for one model may differ from those, A′

1
, ..., A′

m′
, chosen for another model.

The type definitions: A1, ..., Am, inform us that the domain analyser has decided to focus on
the distinctly named A1, ..., Am attributes.78 The value clauses attr A1:P→A1, ..., attr An:P→An are
then “automatically” given: if an endurant, e:E, has an attribute Ai then there is postulated,
“by definition” [eureka] an attribute observer function attr Ai:E→Ai et cetera

78 The attribute type names are chosen by the domain analyser to reflect on domain phenomena.

© Dines Bjørner. October 19, 2022: 10:18 am 73 The TUV Lectures, Vienna, Austria, October–November 2022

74 5 Endurants: Internal and Universal Domain Qualities

We cannot automatically, that is, syntactically, guarantee that our domain descriptions
secure that the various attribute types for a endurant sort denote disjoint sets of values.
Therefore we must prove it.

5.4.2.4 Attribute Categories

Michael A. Jackson [107] has suggested a hierarchy of attribute categories: from static to
dynamic values – and within the dynamic value category: inert values, reactive values,
active values – and within the dynamic active value category: autonomous values, biddable
values and programmable values. We now review these attribute value types. The review is
based on [107, M.A.Jackson]. Endurant attributes are either constant, i.e., static, or varying,
i.e., dynamic attributes

Attribute Category 1 By a static attribute, a:A, is static attribute(a), we shall under-
stand an attribute whose values are constants, i.e., cannot change

Example 51 . Static Attributes: Let us exemplify road net attributes in this and the next
examples. And let us assume the following attributes: year of first link construction and link
length at that time. We may consider both to be static attributes: The year first established,
seems an obvious static attribute and the length is fixed at the time the road was first built.

Attribute Category 2 By a dynamic attribute, a:A, is dynamic attribute(a), we shall un-
derstand an attribute whose values are variable, i.e., can change. Dynamic attributes are
either inert, reactive or active attributes

Attribute Category 3 By an inert attribute, a:A, is inert attribute(a), we shall under-
stand a dynamic attribute whose values only change as the result of external stimuli where
these stimuli prescribe new values

Example 52 . Inert Attribute: And let us now further assume the following link attribute: link
name. We may consider it to be an inert attribute: the name is not “assigned” to the link by
the link itself, but probably by some road net authority which we are not modelling.

Attribute Category 4 By a reactive attribute, a:A, is reactive attribute(a), we shall un-
derstand a dynamic attribute whose values, if they vary, change in response to external
stimuli, where these stimuli either come from outside the domain of interest or from other
endurants

Example 53 . Reactive Attributes: Let us further assume the following two link attributes:
“wear and tear”, respectively “icy and slippery”. We will consider those attributes to be reac-
tive in that automobiles (another part) traveling the link, an external “force”, typically causes

The TUV Lectures, Vienna, Austria, October–November 2022 74 © Dines Bjørner. October 19, 2022: 10:18 am

5.4 Attributes 75

the “wear and tear”, respectively the weather (outside our domain) causes the “icy and slip-
pery” property.

Attribute Category 5 By an active attribute, a:A, is active attribute(a), we shall under-
stand a dynamic attribute whose values change (also) of its own volition. Active attributes
are either autonomous, or biddable or programmable attributes

Attribute Category 6 By an , a:A, is autonomous attribute(a), we shall understand a dy-
namic active attribute whose values change only “on their own volition”. The values of an
autonomous attributes are a “law onto themselves and their surroundings”

Example 54 . Autonomous Attributes: We enlarge scope of our examples of attribute cat-
egories to now also include automobiles (on the road net). In this example we assume that
an automobile is driven by a human [behaviour]. These are some automobile attributes: ve-
locity, acceleration, and moving straight, or turning left, or turning right. We shall consider
these three attributes to be autonomous. It is the driver, not the automobile, who decides
whether the automobile should drive at constant velocity, including 0, or accelerate or decel-
erate, including stopping. And it is the driver who decides when to turn left or right, or not
turn at all.

Attribute Category 7 By a biddable attribute, a:A, is biddable attribute(a) we shall un-
derstand a dynamic active attribute whose values are prescribed but may fail to be observed
as such

Example 55 . Biddable Attributes: In the context of automobiles these are some biddable
attributes: turning the wheel, to drive right at a hub – with the automobile failing to turn
right; pressing the accelerator, to obtain a higher speed – with the automobile failing to really
gaining speed; pressing the brake, to stop– with the automobile failing to halt

Attribute Category 8 By a programmable attribute, a:A, is programmable attribute(a),
we shall understand a dynamic active attribute whose values can be prescribed

Example 56 . Programmable Attribute: We continue with the automobile on the road net
examples. In this example we assume that an automobile includes, as one inseparable entity,
“the driver”. These are some automobile attributes: position on a link, velocity, acceleration
(incl. deceleration), and direction: straight, turning left, turning right. We shall now consider
these three attributes to be programmable.

Figure 5.2 captures an attribute value ontology.
Figure 5.2 hints at three categories of dynamic attributes: monitorable only, biddable and
programmable attributes.

© Dines Bjørner. October 19, 2022: 10:18 am 75 The TUV Lectures, Vienna, Austria, October–November 2022

76 5 Endurants: Internal and Universal Domain Qualities

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

Fig. 5.2 Attribute Value Ontology

Attribute Category 9 By a monitorable only attribute, a:A, is monitorable only attri-
bute(a), we shall understand a dynamic active attribute which is either inert or reactive or
autonomous.

That is:

value
is monitorable only: E→ Bool
is monitorable only(e) ≡ is inert(e) ∨ is reactive(e) ∨ is autonomous(e)

Example 57 . Road Net Attributes:

We treat some attributes of the hubs of a road net.

90 There is a hub state. It is a set of pairs, (l f ,lt), of link identifiers, where these link identifiers
are in the mereology of the hub. The meaning of the hub state in which, e.g., (l f ,lt) is an
element, is that the hub is open, “green”, for traffic f rom link l f to link lt. If a hub state is
empty then the hub is closed, i.e., “red” for traffic from any connected links to any other
connected links.

91 There is a hub state space. It is a set of hub states. The current hub state must be in its state
space. The meaning of the hub state space is that its states are all those the hub can attain.

92 Since we can think rationally about it, it can be described, hence we can model, as an
attribute of hubs, a history of its traffic: the recording, per unique bus and automobile
identifier, of the time ordered presence in the hub of these vehicles. Hub history is an
event history.

type
90 HΣ = (L UI×L UI)-set
91 HΩ = HΣ-set
92 H Traffic = (A UI|B UI) →m (TIME × VPos)∗

axiom
90 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)
92 ∀ ht:H Traffic,ui:(A UI|B UI) • ui ∈ dom ht⇒ time ordered(ht(ui))
value
90 attr HΣ: H→ HΣ
91 attr HΩ: H→ HΩ
92 attr H Traffic: H→ H Traffic

The TUV Lectures, Vienna, Austria, October–November 2022 76 © Dines Bjørner. October 19, 2022: 10:18 am

5.4 Attributes 77

92 time ordered: (TIME × VPos)∗ → Bool
92 time ordered(tvpl) ≡ ...

In Item 92 we model the time-ordered sequence of traffic as a discrete sampling, i.e., →m ,
rather than as a continuous function,→.

Example 58 . Invariance of Road Net Traffic States: We continue Example 57 on the
preceding page.

93 The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

axiom
93 ∀ h:H • h ∈ hs⇒
93 let hσ = attr HΣ(h) in
93 ∀ (luii,liuii

′):(L UI×L UI) • (luii,luii
′) ∈ hσ⇒ {luii ,l

′
uii
} ⊆ luis end

You may skip Example 59 in a first reading.

Example 59 . Road Transport: Further Attributes:
Links:
We show just a few attributes.

94 There is a link state. It is a set of pairs, (h f ,ht), of distinct hub identifiers, where these hub
identifiers are in the mereology of the link. The meaning of a link state in which (h f ,ht) is
an element is that the link is open, “green”, for traffic f rom hub h f to hub ht. Link states
can have either 0, 1 or 2 elements.

95 There is a link state space. It is a set of link states. The meaning of the link state space
is that its states are all those the which the link can attain. The current link state must be
in its state space. If a link state space is empty then the link is (permanently) closed. If it
has one element then it is a one-way link. If a one-way link, l, is imminent on a hub whose
mereology designates that link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

96 Since we can think rationally about it, it can be described, hence it can model, as an
attribute of links a history of its traffic: the recording, per unique bus and automobile iden-
tifier, of the time ordered positions along the link (from one hub to the next) of these
vehicles.

97 The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type
94 LΣ = H UI-set [programmable, Df.8 Pg.75]
95 LΩ = LΣ-set [static, Df.1 Pg.74]
96 L Traffic [programmable, Df.8 Pg.75]
96 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

96 Frac = Real, axiom frac:Fract • 0<frac<1
value
94 attr LΣ: L→ LΣ
95 attr LΩ: L→ LΩ
96 attr L Traffic: :→ L Traffic
axiom
94 ∀ lσ:LΣ•card lσ=2
94 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
96 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht⇒ time ordered(ht(ui))
97 ∀ l:L • l ∈ ls⇒ let lσ = attr LΣ(l) in ∀ (huii,huii

′):(H UI×K UI) •
97 (huii,huii

′) ∈ lσ⇒ {huii ,h
′
uii
} ⊆ huis end

© Dines Bjørner. October 19, 2022: 10:18 am 77 The TUV Lectures, Vienna, Austria, October–November 2022

78 5 Endurants: Internal and Universal Domain Qualities

Automobiles: We illustrate but a few attributes:

98 Automobiles have static number plate registration numbers.
99 Automobiles have dynamic positions on the road net:

a either at a hub identified by some h ui,
b or on a link, some fraction, frac:Fract down an identified link, l ui, from one of its

identified connecting hubs, fh ui, in the direction of the other identified hub, th ui.
c Fraction is a real properly between 0 and 1.

type
98 RegNo [static, Df.1 Pg.74]
99 APos == atHub | onLink [programmable, Df.8 Pg.75]
99a atHub :: h ui:H UI
99b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI
99c Fract = Real
axiom
99c frac:Fract • 0<frac<1
value
98 attr RegNo: A→ RegNo
99 attr APos: A→ APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or
backward movement, turning right, left or going straight, etc. The acceleration, deceleration,
even velocity, or turning right, turning left, moving straight, or forward or backward are seen
as command actions. As such they denote actions by the automobile — such as pressing the
accelerator, or lifting accelerator pressure or braking, or turning the wheel in one direction
or another, etc. As actions they have a kind of counterpart in the velocity, the acceleration,
etc. attributes. In Items 92 Pg. 76 and 96 Pg. 77, we illustrated an aspect of domain analysis
& description that may seem, and at least some decades ago would have seemed, strange:
namely that if we can think, hence speak, about it, then we can model it “as a fact” in the
domain. The case in point is that we include among hub and link attributes their histories of
the timed whereabouts of buses and automobiles79

5.4.2.5 Calculating Attribute Category Type Names

One can calculate sets of all attribute type names, of static, so-called monitorable and pro-
grammable attribute types of parts and fluids with the following domain analysis prompts:

• analyse attribute type names,
• sta attr types,
• mon attr types, and
• pro attr types.

analyse attribute type names applies to parts and yields a set of all attribute names of
that part. mon attr types applies to parts and yields a set of attribute names of monitorable
attributes of that part.80

79 In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so
strange: We now know, at least in principle, of technologies that can record approximations to the hub and
link traffic attributes.
80 ηA is the type of all attribute types.

The TUV Lectures, Vienna, Austria, October–November 2022 78 © Dines Bjørner. October 19, 2022: 10:18 am

5.4 Attributes 79

Observer Function Prompt 6 analyse attribute types:

value
analyse attribute type names: P→ ηA-set
analyse attribute type names(p) as {ηA1,ηA,...,ηAm }

Observer Function Prompt 7 sta attr types:

value
sta attr types: P→ ηA×ηA×...×ηA
sta attr types(p) as (ηA1,ηA2,...,ηAn)

where: {ηA1,ηA2,...,ηAn} ⊆ analyse attribute type names(p)
∧ let anms = analyse attribute type names(p)
∀ anm:ηA • anm ∈ anms \ {ηA1,ηA2,...,ηAn}
⇒ ∼ is static attribute{anm}

∧ ∀ anm:ηA • anm ∈ {ηA1,ηA2,...,ηAn}
⇒ is static attribute{anm} end

Observer Function Prompt 8 mon attr types:

value
mon attr types: P→ ηA×ηA×...×ηA
mon attr types(p) as (ηA1,ηA2,...,ηAn)

where: {ηA1,ηA2,...,ηAn} ⊆ analyse attribute type names(p)
∧ let anms = analyse attribute type names(p)
∀ anm:ηA • anm ∈ anms \ {ηA1,ηA2,...,ηAn}
⇒ ∼ is monitorable attribute{anm}

∧ ∀ anm:ηA • anm ∈ {ηA1,ηA2,...,ηAn}
⇒ is monitorable attribute{anm} end

Observer Function Prompt 9 pro attr types:

value
pro attr types: P→ ηA×ηA×...×ηA
pro attr types(p) as (ηA1,ηA2,...,ηAn)

where: {ηA1,ηA2,...,ηAn} ⊆ analyse attribute type names(p)
∧ let anms = analyse attribute type names(p)
∀ anm:ηA • anm ∈ anms \ {ηA1,ηA2,...,ηAn}
⇒ ∼ is monitorable attribute{anm}

∧ ∀ anm:ηA • anm ∈ {ηA1,ηA2,...,ηAn}
⇒ is monitorable attribute{anm} end

Some comments are in order. The analyse attribute type names function is, as throughout,
meta-linguistic, that is, informal, not-computable, but decidable by the domain analyser cum
describer. Applying it to a part or fluid yields, at the discretion of the domain analyser cum
describer, a set of attribute type names “freely” chosen by the domain analyser cum describer.
The sta attr type names, the mon attr type names, and the pro attr type names functions are
likewise meta-linguistic; their definition here relies on the likewise meta-linguistic is static,
is monitorable and is programmable analysis predicates.

© Dines Bjørner. October 19, 2022: 10:18 am 79 The TUV Lectures, Vienna, Austria, October–November 2022

80 5 Endurants: Internal and Universal Domain Qualities

5.4.2.6 Calculating Attribute Values

Let (ηA1, ηA2, ... , ηAn) be a grouping of attribute types for part p (or fluid f). Then (attr A1(p),
attr A2(p), ... ,attr An(p)) (respectively f) yields (a1, a2, ... , an), the grouping of values for
these attribute types.

We can “formalise” this conversion:

value
types to values: ηA1 × ηA2 × ... × ηAn → A1 × A2 × ... × An

5.4.2.7 Calculating Attribute Names

The meta-linguistic, i.e., “outside” RSL proper, name for attribute type names is introduced
here as ηA.

100 Given endurant e we can meta-linguistically81 calculate names for its static attributes.
101 Given endurant e we can meta-linguistically calculate name for its monitorable attributes

attributes.
102 Given endurant e we can meta-linguistically calculate names for its programmable at-

tributes.
103 These four sets make up all the attributes of endurant e.

The type names ST, MA, PT designate mutually disjoint sets, ST, of names of static attributes,
sets, MA, of names of monitoriable, i.e., monitorable-only and biddable, attributes, sets, PT,
of names of programmable, i.e., fully controllable attributes.

type
100 ST = ηA-set
101 MA = ηA-set
102 PT = ηA-set
value
100 stat attr types: E→ ST
101 moni attr types: E→ MA
102 prgr attr types: E→ PT

axiom
103 ∀ e:E •

100 let stat nms = stat attr types(e),
101 moni nms = moni attr types(e),
102 prgr nms = prgr types(e) in
103 card stat nms + card moni nms + card prgr nms
103 = card(stat nms ∪ mon nms ∪ prgr nms) end

The above formulas are indicative, like mathematical formulas, they are not computable.

104 Given endurant e we can meta-linguistically calculate its static attribute values, stat attr vals;
105 given endurant e we can meta-linguistically calculate its monitorable-only attribute values,

moni attr vals; and
106 given endurant e we can meta-linguistically calculate its programmable attribute values,

prgr attr vals.

81 By using the term meta-linguistically here we shall indicate that we go outside what is computable – and
thus appeal to the reader’s forbearance.

The TUV Lectures, Vienna, Austria, October–November 2022 80 © Dines Bjørner. October 19, 2022: 10:18 am

5.4 Attributes 81

The type names sa1, ..., pap refer to the types denoted by the corresponding types name
nsa1, ..., npap.

value
104 stat attr vals: E→ SA1×SA2×...×SAs
104 stat attr vals(e) ≡
104 let {nsa1,nsa2,...,nsas} = stat attr types(e) in
104 (attr sa1(e),attr sa2(e),...,attr sas(e)) end

105 moni attr vals: E→ MA1×MA2×...×MAm
105 moni attr vals(e) ≡
105 let {nma1,nma2,...,nmam} = moni attr types(e) in
105 (attr ma1(e),attr ma2(e),...,attr mam(e)) end

106 prgr attr vals: E→ PA1×PA2×...×PAp
106 prgr attr vals(e) ≡
106 let {npa1,npa2,...,npap} = prgr attr types(e) in
106 (attr pa1(e),attr pa2(e),...,attr pap(e)) end

The “ordering” of type values, (attr sa1(e),...,attr sas(e)), (attr ma1(e),...,attr mam(e)), et
cetera, is arbitrary.

5.4.3 Operations on Monitorable Attributes of Parts

We remind the reader of the notions of states in general, Sect. 4.7 and updateable states,
Sect. 4.7.2 on page 55. For every domain description there possibly is an updateable state.
The is such a state if there is at least one part with at least one monitorable attribute. Below,
as in Sect. 4.7.2, we refer to the updateable states as σ.

Given a part, p, with attribute A, the simple operation attr A(p) thus yields the value of
attribute A for that part. But what if, what we have is just the global state σ, of the set of all
monitorable parts of a given universe-of-discourse, uod, the unique identifier, uid P(p), of a
part of σ, and the name, ηA, of an attribute of p ? Then how do we ascertain the attribute
value for A of p, and, for biddable attributes A, “update” p, in σ, to some A value ? Here is
how we express these two issues.

5.4.3.1 Evaluation of Monitorable Attributes

107 Let pi:PI be the unique identifier of any part, p, with monitorable attributes, let A be a
monitorable attribute of p, and let ηA be the name of attribute A.

108 Evaluation of the [current] attribute A value of p is defined by function read A from P –
retr part(pi) is defined in Sect. 5.2.5.1 on page 66.

value
107. pi:PI, a:A, ηA:ηT

108. read A from P: PI × T→ read σ
108. read A(pi,ηA) ≡ attr A(retr part(pi))

© Dines Bjørner. October 19, 2022: 10:18 am 81 The TUV Lectures, Vienna, Austria, October–November 2022

82 5 Endurants: Internal and Universal Domain Qualities

5.4.3.2 Update of Biddable Attributes

109 The update of a monitorable attribute A, with attribute name ηA of part p, identified by pi,
to a new value writes to the global part state σ.

110 Part p is retrieved from the global state.
111 A new part, p′ is formed such that p′ is like part p:

a same unique identifier,
b same mereology,
c same attributes values,
d except for A.

112 That new p′ replaces p in σ.

value
107. σ, a:A, pi:PI, ηA:ηT

109. update P with A: PI × A × ηT→ write σ
109. update P with A(pi,a,ηA) ≡
110. let p = retr part(pi) in
111. let p′:P •

111a. uid P(p′)=pi
111b. ∧ mereo P(p)=mereo P(p′)
111c. ∧ ∀ ηA’ in analyse attribute type names(p) \ {ηA}
111c. ⇒ attr A(p)=attr A(p′)
111d. ∧ attr A(p′)=a in
112. σ := σ \ {p} ∪ {p′}
109. end end

5.4.3.3 Stationary and Mobile Attributes

Endurants are either stationary or mobile.82

Definition 75 . Stationary An endurant is said to be stationary if it never moves

Being stationary is a static attribute.

Analysis Predicate Prompt 18 is stationary: The method provides the domain analy-
sis prompt:

• is stationary – where is stationary(e) holds if e is to be considered stationary

Example 60 . Stationary Endurants: Examples of stationary endurants could be: (i) road
hubs and links; (ii) container terminal stacks; (iii) pipeline units; and (iv) sea, lake and river
beds

Definition 76 . Mobile An endurant is said to be mobile if it is capable of being moved –
whether by its own, or otherwise

82 This section was added on Sept. 17, 2022 !

The TUV Lectures, Vienna, Austria, October–November 2022 82 © Dines Bjørner. October 19, 2022: 10:18 am

5.5 SPACE and TIME 83

Being mobile is a static attribute.

Analysis Predicate Prompt 19 is mobile: The method provides the domain analysis
prompt:

• is mobile – where is mobile(e) holds if e is to be considered mobile

Example 61 . Mobile Endurants: Examples of mobile endurants are: (i) automobiles; (ii)
container terminal vessels, containers, cranes and trucks; (iii) pipeline oil (or gas, or water,
...); (iv) sea, lake and river water

Being stationary or mobile is an attribute of any manifest endurant. Foe every manifest
endurant, e, it is the case that is stationary(e)≡∼is mobile(e).

•••

Being stationary or, vice-versa, being mobile is often tacitly assumed. Having external or
internal qualities of a certain kind is often also tacitly assumed. A major point of the domain
analysis & description approach, of this primer, is to help the domain analyser cum describer
– the domain engineer cum researcher – to unveil as many, if not all, these qualities. Tacit
understanding would not be a common problem was it not for us to practice it “excessively” !

5.5 SPACE and TIME

The two concepts: space and time are not attributes of entities. In fact, they are not internal
qualities of endurants. They are universal qualities of any world. As argued in Sect. 2.4.9 on
page 17, SPACE andTIME are unavoidable concepts of any world. But we can ascribe spa-
tial attributes to any concrete, manifest endurant. And we can ascribe attributes to endurants
that record temporal concepts.

5.5.1 SPACE

Space is just there. So we do not define an observer, observe space. For us – bound to model
mostly artefactual worlds on this earth – there is but one space. Although SPACE, as a
type, could be thought of as defining more than one space we shall consider these to be
isomorphic ! SPACE is considered to consist of (an infinite number of) POINTs.

113 We can assume a point observer, observe POINT, is a function which applies to en-
durants, e, and yield a point, pt : POINT

113. observe POINT: E→ POINT

At which “point” of an endurant, e, observe POINT(e), is applied, or which of the (infinitely)
many points of an endurant E, observe POINT(e), yields we leave up to the domain analyser
cum describer to decide !

We suggest, besides POINTs, the following spatial attribute possibilities:

114 EXTENT as a dense set of POINTs;

© Dines Bjørner. October 19, 2022: 10:18 am 83 The TUV Lectures, Vienna, Austria, October–November 2022

84 5 Endurants: Internal and Universal Domain Qualities

115 Volume, of concrete type, for example, m3, as the “volume” of an EXTENT such that
116 SURFACEs as dense sets of POINTs have no volume, but an
117 Area, of concrete type, for example, m2, as the “area” of a dense set of POINTs;
118 LINE as dense set of POINTs with no volume and no area, but
119 Length, of concrete type, for example, m.

For these we have that

120 the intersection,
⋂

, of two EXTENTs is an EXTENT of possibly nil Volume,
121 the intersection,

⋂
, of two SURFACEs may be either a possibly nil SURFACE or a

possibly nil LINE, or a combination of these.
122 the intersection,

⋂
, of two LINEs may be either a possibly nil LINE or a POINT.

Similarly we can define

123 the union,
⋃

, of two not-disjoint EXTENTs,
124 the union,

⋃
, of two not-disjoint SURFACEs,

125 the union,
⋃

, and of two not-disjoint LINEs.

and:

126 the [in]equality, ,,=, of pairs of EXTENT, pairs of SURFACEs, and pairs of LINEs.

We invite the reader to first first express the signatures for these operations, then their pre-
conditions, and finally, being courageous, appropriate fragments of axiom systems.
We leave it up to the reader to introduce, and hence define, functions that add, subtract,
compare, etc., EXTENTs, SURFACEs, LINEs, etc.

5.5.2 Mathematical Models of Space

Figure 5.3 on the facing page diagrams some mathematical models of space. We shall hint83

at just one of these spaces.

5.5.2.1 Metric Spaces

Metric Space

Axiom System 1
A metric space is an ordered pair (M,d) where M is a set and d is a metric on M, i.e., a

function:

d : M×M→ Real

such that for any x, y,z ∈M, the following holds:

d(x, y)= 0 ≡ x = y identity of indiscernibles (5.1)

d(x, y)= d(y,x) symmetry (5.2)

d(x,z) ≤ d(x, y)+ d(y,z) sub-additivity or triangle inequality (5.3)

Given the above three axioms, we also have that d(x, y)≥ 0 for any x, y ∈M. This is deduced
as follows:

83 Figure 5.3 on the next page is taken from https://en.wikipedia.org/wiki/Space (mathematics).

The TUV Lectures, Vienna, Austria, October–November 2022 84 © Dines Bjørner. October 19, 2022: 10:18 am

5.5 SPACE and TIME 85

d(x, y)+ d(y,x)≥ d(x,x) triangle inequality (5.4)

d(x, y)+ d(y,x)≥ d(x,x) by symmetry (5.5)

2d(x, y)≥ 0 identity of indiscernibles (5.6)

d(x, y)≥ 0 non-negativity (5.7)

The function d is also called distance function or simply distance. Often, d is omitted and
one just writes M for a metric space if it is clear from the context what metric is used.

Fig. 5.3 Variety of Abstract Spaces. An arrow from space A to space B implies that A is also a kind of B.

5.5.3 TIME

a moving image of eternity;
the number of the movement in respect of the before and the after;

the life of the soul in movement as it passes
from one stage of act or experience to another;

a present of things past: memory,
a present of things present: sight,

and a present of things future: expectations84

This thing all things devours:
Birds, beasts, trees, flowers;

Gnaws iron, bites steel,
Grinds hard stones to meal;

Slays king, ruins town,

And beats high mountain down.85

Concepts of time continue to fascinate philosophers and scientists
[153, 78, 119, 126, 130, 131, 132, 133, 134, 135, 137] and [80].

84 Quoted from [4, Cambridge Dictionary of Philosophy]
85 J.R.R. Tolkien, The Hobbit

© Dines Bjørner. October 19, 2022: 10:18 am 85 The TUV Lectures, Vienna, Austria, October–November 2022

86 5 Endurants: Internal and Universal Domain Qualities

J.M.E. McTaggart (1908, [119, 78, 137]) discussed theories of time around the notions of “A-
series”: with concepts like “past”, “present” and “future”, and “B-series”: has terms like “pre-
cede”, “simultaneous” and “follow”. Johan van Benthem [153] and Wayne D. Blizard [63,
1980] relates abstracted entities to spatial points and time. A recent computer programming-
oriented treatment is given in [80, Mandrioli et al., 2013].

5.5.3.1 Time Motivated Philosophically

Definition 77 . Indefinite Time We motivate, repeating from Sect. 2.4.9.2, the abstract notion
of time as follows. Two different states must necessarily be ascribed different incompatible
predicates. But how can we ensure so ? Only if states stand in an asymmetric relation to
one another. This state relation is also transitive. So that is an indispensable property of any
world. By a transcendental deduction we say that primary entities exist in time. So every
possible world must exist in time

Definition 78 . Definite Time By a definite time we shall understand an abstract repre-
sentation of time such as for example year, month, day, hour, minute, second, et cetera

Example 62 . Temporal Notions of Endurants: By temporal notions of endurants we
mean time properties of endurants, usually modelled as attributes. Examples are: (i) the time
stamped link traffic, cf. Item 96 on page 77 and (ii) the time stamped hub traffic, cf. Item 92
on page 76

5.5.3.2 Time Values

We shall not be concerned with any representation of time. That is, we leave it to the domain
analyser cum describer to choose an own representation [80]. Similarly we shall not be
concerned with any representation of time intervals.86

127 So there is an abstract type Time,
128 and an abstract type TI: TimeInterval.
129 There is no Time origin, but there is a “zero” TIme interval.
130 One can add (subtract) a time interval to (from) a time and obtain a time.
131 One can add and subtract two time intervals and obtain a time interval – with subtraction

respecting that the subtrahend is smaller than or equal to the minuend.
132 One can subtract a time from another time obtaining a time interval respecting that the

subtrahend is smaller than or equal to the minuend.
133 One can multiply a time interval with a real and obtain a time interval.
134 One can compare two times and two time intervals.

type
127 T

128 TI

value
129 0:TI

130 +,−: T × TI→ T
131 +,−: TI × TI

∼
→ TI

132 −: T × T→ TI
133 ∗: TI × Real→ TI
134 <,≤,=,,,≥,>: T × T→ Bool

86 – but point out, that although a definite time interval may be referred to by number of years, number of
days (less than 365), number of hours (less than 24), number of minutes (less than 60) number of seconds
(less than 60), et cetera, this is not a time, but a time interval.

The TUV Lectures, Vienna, Austria, October–November 2022 86 © Dines Bjørner. October 19, 2022: 10:18 am

5.5 SPACE and TIME 87

134 <,≤,=,,,≥,>: TI × TI→ Bool axiom
130 ∀ t:T • t+0 = t

5.5.3.3 Temporal Observers

135 We define the signature of the meta-physical time observer.

type
135 T
value
135 record TIME(): Unit→ T

The time recorder applies to nothing and yields a time. record TIME() can only occur in
action, event and behavioural descriptions.

5.5.3.4 “Soft” and “Hard” Real-time

We loosely identify a spectrum of from “soft” to “hard” temporalities — through some
informally worded texts. On that background we can introduce the term ‘real-time’. And
hence distinguish between ‘soft’ and ‘hard’ real-time issues. From an example of trying to
formalise these in RSL, we then set the course for this chapter.

5.5.3.4.1 Soft Temporalities

You have often wished, we assume, that “your salary never goes down, say between your
ages of 25 to 65”.

How to express that?
Taking into account other factors, you may additionally wish that “your salary goes up.”
How do we express that?
Taking also into account that your job is a seasonal one, we may need to refine the above

into “between un-employments your salary does not go down”.
How now to express that?

5.5.3.4.2 Hard Temporalities

The above quoted (“...”) statements may not have convinced you about the importance of
speaking precisely about time, whether narrating or formalising.

So let’s try some other examples:
“The alarm clock must sound exactly at 6 am unless someone has turned it off sometime

between 5am and 6 am the same morning.”
“The gas valve must be open for exactly 20 seconds every 60 seconds.”
“The sum total of time periods — during which the gas valve is open and there is no flame

consuming the gas — must not exceed one twentieth of the time the gas valve is open.”
“The time between pressing an elevator call button on any floor and the arrival of the cage

and the opening of the cage door at that floor must not exceed a given time tarrival”.
The next sections will hint at ways and means of speaking of time.

© Dines Bjørner. October 19, 2022: 10:18 am 87 The TUV Lectures, Vienna, Austria, October–November 2022

88 5 Endurants: Internal and Universal Domain Qualities

5.5.3.4.3 Soft and Hard Real-time

The informally worded temporalities of “soft real-time” can be said to involve time in a very
“soft” way:

No explicit times (eg., 15:45:00), deadlines (eg., “27’th February 2004”), or time intervals
(eg., “within 2 hours”), were expressed.

The informally worded temporalities of “hard real-time”, in contrast, can be said to involve
time in a “hard” way: Explicit times were mentioned.

For pragmatic reasons, we refer to the former examples, the former “invocations” of ‘tem-
porality’, as being representative of soft real-time, whereas we say that the latter invocations
are typical of hard real-time.

Please do not confuse the issue of soft versus hard real-time: It is as much hard real-time
if we say that something must happen two light years and five seconds from tomorrow at
noon!

Example 63 . Soft Real-Time Models Expressed in Ordinary RSL Logic: Let us assume
a salary data base SDB which at any time records your salary. In the conventional way of
modelling time in RSL we assume that SDB maps time into Salary:

type
Time, Sal
SDB = Time →m Sal

value
hi: (Sal×Sal)|(Time×Time)→ Bool
eq: (Sal×Sal)|(Time×Time)→ Bool
lo: (Sal×Sal)|(Time×Time)→ Bool

axiom
∀ σ:SDB,t,t′:Time • {t,t′}⊆domσ∧hi(t′,t)⇒∼lo(σ(t′),σ(t))
∀ t,t′:Time •

(hi(t′,t)≡∼(eq(t′,t)∨lo(t′,t))) ∧
(lo(t′,t)≡∼(eq(t′,t)∨hi(t′,t))) ∧
(eq(t′,t)≡∼(lo(t′,t)∨hi(t′,t))) ... /∗ same for Sal ∗/

Example 64 . Hard Real-Time Models Expressed in “Ordinary” RSL Logic: To express
hard real-time using just RSL we must assume a demon, a process which represents the
clock:

type
T = Real

value
time: Unit→ T
time() as t

axiom
time() , time()

The axiom is informal: It states that no two invocations of the time function yields the same
value. But this is not enough. We need to express that “immediately consecutive” invocations
of the time function yields “adjacent” time points. T provides a linear model of real-time.

variable
t1,t2 : T

axiom

The TUV Lectures, Vienna, Austria, October–November 2022 88 © Dines Bjørner. October 19, 2022: 10:18 am

5.6 Intentional Pull 89

� (t1 := time();
t2 := time();
t2 − t1 = /∗ infinitesimally small time interval: TI∗/ ∧
t2 > t1 ∧ ∼∃ t:T• t1 < t < t2)

TI provides a linear model of intervals of real-time.87 The � operator is here the “standard”
RSL modal operator over states: Let P be a predicate involving globally declared variables.
Then �P asserts that P holds in any state (of these variables). But even this is not enough.
Much more is needed

5.6 Intentional Pull

In the next section we shall encircle the ‘intention’ concept by extensively quoting from Kai
Sørlander’s Philosphy [145, 146, 147, 148].

Intentionality88 “expresses” conceptual, abstract relations between otherwise, or seem-
ingly unrelated entities.

Intentional properties of a domain is not an internal quality of any (pair or group of)
entities. They are potential, universal qualities of any world.

5.6.1 Issues Leading Up to Intentionality

5.6.1.1 Causality of Purpose

“If there is to be the possibility of language and meaning then there must exist primary entities
which are not entirely encapsulated within the physical conditions; that they are stable and
can influence one another. This is only possible if such primary entities are subject to a
supplementary causality directed at the future: a causality of purpose.”

5.6.1.2 Living Species

“These primary entities are here called living species. What can be deduced about them ?
They are characterised by causality of purpose: they have some form they can be developed
to reach; and which they must be causally determined to maintain; this development and
maintenance must occur in an exchange of matter with an environment. It must be possible
that living species occur in one of two forms: one form which is characterised by development,
form and exchange, and another form which, additionally, can be characterised by the ability
to purposeful movements. The first we call plants, the second we call animals.”

87 Of course, we really do not need make a distinction betweenT andTI, The former tries to model a real-time
since time immemorial, i.e., the creation of the universe. If we always work with a time axis from “that started
recently”, i.e., a relative one, then we can “collapse” T and TI into just T.
88 The Oxford English Dictionary [116] characterises intentionality as follows: “the quality of mental states
(e.g. thoughts, beliefs, desires, hopes) which consists in their being directed towards some object or state of
affairs”.

© Dines Bjørner. October 19, 2022: 10:18 am 89 The TUV Lectures, Vienna, Austria, October–November 2022

90 5 Endurants: Internal and Universal Domain Qualities

5.6.1.3 Animate Entities

“For an animal to purposefully move around there must be “additional conditions” for such
self-movements to be in accordance with the principle of causality: they must have sensory
organs sensing among others the immediate purpose of its movement; they must have means
of motion so that it can move; and they must have instincts, incentives and feelings as causal
conditions that what it senses can drive it to movements. And all of this in accordance with
the laws of physics.”

5.6.1.4 Animals

“To possess these three kinds of “additional conditions”, must be built from special units
which have an inner relation to their function as a whole; Their purposefulness must be built
into their physical building units, that is, as we can now say, their genomes. That is, animals
are built from genomes which give them the inner determination to such building blocks for
instincts, incentives and feelings. Similar kinds of deduction can be carried out with respect
to plants. Transcendentally one can deduce basic principles of evolution but not its details.”

5.6.1.5 Humans – Consciousness and Learning

“The existence of animals is a necessary condition for there being language and meaning
in any world. That there can be language means that animals are capable of developing
language. And this must presuppose that animals can learn from their experience. To learn
implies that animals can feel pleasure and distaste and can learn. One can therefore deduce
that animals must possess such building blocks whose inner determination is a basis for
learning and consciousness.”

“Animals with higher social interaction uses signs, eventually developing a language.
These languages adhere to the same system of defined concepts which are a prerequisite for
any description of any world: namely the system that philosophy lays bare from a basis of
transcendental deductions and the principle of contradiction and its implicit meaning theory.
A human is an animal which has a language.”

5.6.1.6 Knowledge

“Humans must be conscious of having knowledge of its concrete situation, and as such that
humans can have knowledge about what they feel and eventually that humans can know
whether what they feel is true or false. Consequently a human can describe his situation
correctly.”

5.6.1.7 Responsibility

“In this way one can deduce that humans can thus have memory and hence can have
responsibility, be responsible. Further deductions lead us into ethics.”

•••

We shall not further develop the theme of living species: plants and animals, thus excluding,
most notably humans, in this chapter. We claim that the present chapter, due to its foundation

The TUV Lectures, Vienna, Austria, October–November 2022 90 © Dines Bjørner. October 19, 2022: 10:18 am

5.6 Intentional Pull 91

in Kai Sørlander’s Philosophy, provides a firm foundation within which we, or others, can
further develop this theme: analysis & description of living species.

•••

5.6.2 Intentionality

Intentionality as a philosophical concept is defined by the Stanford Encyclopedia of Phi-
losophy89 as “the power of minds to be about, to represent, or to stand for, things, properties
and states of affairs.”

5.6.2.1 Intentional Pull

Two or more artefactual parts of different sorts, but with overlapping sets of intents may excert
an intentional “pull” on one another. This intentional “pull” may take many forms. Let px : X
and py : Y be two parts of different sorts (X,Y), and with common intent, ι. Manifestations
of these, their common intent must somehow be subject to constraints, and these must be
expressed predicatively.

Example 65 . Double Bookkeeping: A classical example of intentional pull is found in
double bookkeeping which states that every financial transaction has equal and opposite
effects in at least two different accounts. It is used to satisfy the accounting equation: Assets
= Liabilities + Equity. The intentional pull is then reflected in commensurate postings, for
example: either in both debit and passive entries or in both credit and passive entries.

When a compound artefact is modelled as put together with a number of distinct sort
endurants then it does have an intentionality and the components’ individual intentionalities
does, i.e., shall relate to that. The composite road transport system has intentionality of the
road serving the automobile part, and the automobiles have the intent of being served by the
roads, across “a divide”, and vice versa, the roads of serving the automobiles.

Natural endurants, for example, rivers, lakes, seas90 and oceans become, in a way, artefacts
when mankind use them for transport; natural gas becomes an artefact when drilled for,
exploited and piped; and harbours make no sense without artefactual boats sailing on the
natural water.

5.6.2.2 The Type Intent

This, perhaps vague, concept of intentionality has yet to be developed into something of a
theory. Despite that this is yet to be done, we shall proceed to define an intentionality analysis
function. First we postulate a set of intent designators. An intent designator is really a
further undefined quantity. But let us, for the moment, think of them as simple character
strings, that is, literals, for example ""transport", "eating", "entertainment", etc.

type Intent

89 Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (https://seop.illc.-
uva.nl/entries/intentionality/) October 15, 2014, retrieved April 3, 2018.
90 Seas are smaller than oceans and are usually located where the land and ocean meet. Typically, seas are
partially enclosed by land. The Sargasso Sea is an exception. It is defined only by ocean currents [oceanser-
vice.noaa.gov/facts/oceanorsea.html].

© Dines Bjørner. October 19, 2022: 10:18 am 91 The TUV Lectures, Vienna, Austria, October–November 2022

92 5 Endurants: Internal and Universal Domain Qualities

5.6.2.3 Intentionalities

Observer Function Prompt 10 analyse intentionality:
The domain analyser analyses an endurant as to the finite number of intents, zero or more,
with which the analyser judges the endurant can be associated. The method provides the
domain analysis prompt:

• analyse intentionality directs the domain analyser to observe a set of intents.

value analyse intentionality(e) ≡ {i 1,i 2,...,i n}⊆Intent

Example 66 . Intentional Pull: Road Transport:
We simplify the link, hub and automobile histories – aiming at just showing an essence of

the intentional pull concept.

136 With links, hubs and automobiles we can associate history attributes:

a link history attributes time-stamped records, as an ordered list, the presence of auto-
mobiles;

b hub history attributes time-stamped records, as an ordered list, the presence of auto-
mobiles; and

c automobile history attributes time-stamped records, as an ordered list, their visits to
links and hubs.

type
136a. LHist = AI →m TIME∗

136b. HHist = AI →m TIME∗

136c. AHist = (LI|HI) →m TIME∗

value
136a. attr LHist: L→ LHist
136b. attr HHist: H→ HHist
136c. attr AHist: A→ AHist

5.6.2.4 Wellformedness of Event Histories

Some observations must be made with respect to the above modelling of time-stamped event
histories.

137 Each τℓ :TIME∗ is an indefinite list. We have not expressed any criteria for the recording
of events: all the time, continuously ! (?)

138 Each list of times, τℓ :TIME∗, is here to be in decreasing, continuous order of times.
139 Time intervals from when an automobile enters a link (a hub) till it first time leaves that

link (hub) must not overlap with other such time intervals for that automobile.
140 If an automobile leaves a link (a hub), at time τ, then it may enter a hub (resp. a link) and

then that must be at time τ′ where τ′ is some infinitesimal, sampling time interval, quantity
larger that τ. Again we refrain here from speculating on the issue of sampling !

141 Altogether, ensembles of link and hub event histories for any given automobile define
routes that automobiles travel across the road net. Such routes must be in the set of
routes defined by the road net.

As You can see, there is enough of interesting modelling issues to tackle !

The TUV Lectures, Vienna, Austria, October–November 2022 92 © Dines Bjørner. October 19, 2022: 10:18 am

5.6 Intentional Pull 93

5.6.2.5 Formulation of an Intentional Pull

142 An intentional pull of any road transport system, rts, is then if:

a for any automobile, a, of rts, on a link, ℓ (hub, h), at time τ,
b then that link, ℓ, (hub h) “records” automobile a at that time.

143 and:

c for any link, ℓ (hub, h) being visited by an automobile, a, at time τ,
d then that automobile, a, is visiting that link, ℓ (hub, h), at that time.

axiom
142a. ∀ a:A • a ∈ as⇒
142a. let ahist = attr AHist(a) in
142a. ∀ ui:(LI|HI) • ui ∈ dom ahist⇒
142b. ∀ τ:TIME • τ ∈ elems ahist(ui)⇒
142b. let hist = is LI(ui)→ attr LHist(retr L(ui))(σ),
142b. → attr HHist(retr H(ui))(σ) in
142b. τ ∈ elems hist(uid A(a)) end end
143. ∧

143c. ∀ u:(L|H) • u ∈ ls∪hs⇒
143c. let uhist = attr(L|H)Hist(u) in
143d. ∀ ai:AI • ai ∈ dom uhist⇒
143d. ∀ τ:TIME • τ ∈ elems uhist(ai)⇒
143d. let ahist = attr AHist(retr A(ai))(σ) in
143d. τ ∈ elems uhist(ai) end end

Please note, that intents are not [thought of as] attributes. We consider intents to be a fourth,
a comprehensive internal quality of endurants. They, so to speak, govern relations between
the three other internal quality of endurants: the unique identifiers, the mereologies and
the attributes. That is, they predicate them, “arrange” their comprehensiveness. Much more
should be said about intentionality. It is a truly, I believe, worthy research topic of its own

Example 67 . Aspects of Comprehensiveness of Internal Qualities: Let us illustrate the
issues “at play” here.

• Consider a road transport system uod.

⋄⋄ Applying analyse intentionality(uod) may yield the set {"transport", ...}.

• Consider a financial service industry, fss.

⋄⋄ Applying analyse intentionality(fss) may yield the set {"interest on deposit",
...}.

• Consider a health care system, hcs.

⋄⋄ Applying analyse intentionality(hcs) may yield the set {"cure diseases", ...}.

What these analyses of intentionality yields, with respect to expressing intentional pull, is
entirely of the discretion of the domain analysis & description

We bring the above example, Example 67, to indicate, as the name of the example reveals,
“Aspects of Comprehensiveness of Internal Qualities”. That the various components of
artefactual systems relate in – further to be explored – ways. In this respect, performing
domain analysis & description is not only an engineering pursuit, but also one of research.
We leave it to the readers to pursue this research aspect of domain analysis & description.

© Dines Bjørner. October 19, 2022: 10:18 am 93 The TUV Lectures, Vienna, Austria, October–November 2022

94 5 Endurants: Internal and Universal Domain Qualities

5.6.3 Artefacts

Humans create artefacts – for a reason, to serve a purpose, that is, with intent. Artefacts are
like parts. They satisfy the laws of physics – and serve a purpose, fulfill an intent.

5.6.4 Assignment of Attributes

So what can we deduce from the above, almost three pages ?
The attributes of natural parts and natural fluids are generally of such concrete types –

expressible as some real with a dimension91 of the International System of Units: https://-
physics.nist.gov/cuu/Units/units.html. Attribute values usually enter into differential
equations and integrals, that is, classical calculus.

The attributes of humans, besides those of parts, significantly includes one of a usually
non-empty set of intents. In directing the creation of artefacts humans create these with an
intent.

Example 68 . Intentional Pull: General Transport: These are examples of human intents:
they create roads and automobiles with the intent of transport, they create houses with the
intents of living, offices, production, etc., and they create pipelines with the intent of oil or
gas transport

Human attribute values usually enter into modal logic expressions.

5.6.5 Galois Connections

Galois Theory was first developed by Évariste Galois [1811-1832] around 183092. Galois
theory emphasizes a notion of Galois connections. We refer to standard textbooks on
Galois Theory, e.g., [151, 2009].

5.6.5.1 Galois Theory: An Ultra-brief Characterisation

To us, an essence of Galois connections can be illustrated as follows:

• Let us observe93 properties of a number of endurants, say in the form of attribute types.
• Let the function F map sets of entities to the set of common attributes.
• Let the function Gmap sets of attributes to sets of entities that all have these attributes.
• (F ,G) is a Galois connection

⋄⋄ if, when including more entities, the common attributes remain the same or fewer, and
⋄⋄ if when including more attributes, the set of entities remain the same or fewer.
⋄⋄ (F ,G) is monotonously decreasing.

91 Basic units are meter, kilogram, second, Ampere, Kelvin, mole, and candela. Some derived units are: Newton:
kg×m×s−2, Weber: kg×m2× s−2 ×A−1, etc.
92 en.wikipedia.org/wiki/Galois theory
93 The following is an edited version of an explanation kindly provided by Asger Eir, e-mail, June 5, 2020
[75, 76, 53].

The TUV Lectures, Vienna, Austria, October–November 2022 94 © Dines Bjørner. October 19, 2022: 10:18 am

5.6 Intentional Pull 95

Example 69 . LEGO Blocks: We94 have

• There is a collection of LEGO™ blocks.
• From this collection, A, we identify the red square blocks, e.
• That is F (A) is B = {attr Color(e) = red,attr Form(e)=square}.
• We now add all the blue square blocks.
• And obtain A′.
• Now the common properties are their squareness: F (A′) is B′ = {attr Form(e)=square}.
• More blocks as argument to F yields fewer or the same number of properties.
• The more entities we observe, the fewer common attributes they possess

Example 70 . Civil Engineering: Consultants and Contractors: Less playful, perhaps
more seriously, and certainly more relevant to our endeavour, is this next example.

• Let X be the set of civil engineering, i.e., building, consultants, i.e., those who, like architects
and structural engineers design buildings – of whatever kind.

• Let Y be the set of building contractors, i.e., those firms who actually implement, i.e., build
to, those designs.

• Now a subset, Xbridges of X, contain exactly those consultants who specialise in the design
of bridges, with a subset, Ybridges, of Y capable of building bridges.

• If we change to a subset, Xbridges,tunnels of X, allowing the design of both bridges and tunnels,
then we obtain a corresponding subset, Ybridges,tunnels, of Y.

• So when

⋄⋄ we enlarge the number of properties from ‘bridges’ to ‘bridges and tunnels’,
⋄⋄ we reduce, most likely, the number of contractors able to fulfill such properties,
⋄⋄ and vice versa,

• then we have a Galois Connection95

5.6.5.2 Galois Connections and Intentionality – A Possible Research Topic ?

We have a hunch96 ! Namely that there are some sort of Galois Connections with respect to
intentionality. We leave to the interested reader to pursue this line of inquiry.

5.6.6 Discovering Intentional Pulls

The analysis and description of a domain’s external qualities and the internal qualities of
unique identifiers, mereologies and attributes can be pursued systematically – endurant sort
by sort. Not so with the discovery of a domain’s possible intentional pulls. Basically “what
is going on” here is that the domain analyser cum describer considers pairs, triples or more
part “independent”97 endurants and reflects on whether they stand in an intentional pull
relation to one another. We refer to Sects. 5.6.2.2 – 5.6.2.3.

94 The E-mail, June 5, 2020, from Asger Eir
95 This was, more formally, shown Dr. Asger Eir’s PhD thesis [75].
96 Hunch: a feeling or guess based on intuition rather than fact.
97 By “independent” we shall here mean that these endurants are not ‘derived’ from one-another !

© Dines Bjørner. October 19, 2022: 10:18 am 95 The TUV Lectures, Vienna, Austria, October–November 2022

96 5 Endurants: Internal and Universal Domain Qualities

5.6.6.1 Identifying Intents

to be written

5.6.6.2 Searching for Intentional Pulls

to be written

5.6.6.3 Describing Intentional Pulls

to be written

5.7 A Domain Discovery Procedure, II

This section is based on Sect. 5.8 of [49, Pages 146–147].
We continue from Sect. 4.8.

5.7.1 The Process

We shall again emphasize some aspects of the domain analysis & description method. A
method procedures is that of exhaustively analyse & describe all internal qualities of the
domain under scrutiny. A method technique implied here is that sketched below. The
method tools are here all the analysis and description prompts covered so far.

Please be reminded of Discovery Schema 0 ’s declaration of Notice Board variables
(Page 56). In this section we collect (i) the description of unique identifiers of all parts
of the state; (ii) the description of mereologies of all parts of the state; and (iii) the de-
scription of attributes of all parts of the state. (iii) We finally gather these into the dis-
cover internal endurant qualities procedures.

An Endurant Internal Qualities Domain Analysis and Description Process

value
discover uids: Unit→ Unit
discover uids() ≡

for ∀ v • v ∈ gen
do txt := txt † [type name(v)7→txt(type name(v))̂ 〈describe unique identifier(v)〉] end

discover mereologies: Unit→ Unit
discover mereologies() ≡

for ∀ v • v ∈ gen
do txt := txt † [type name(v)7→txt(type name(v))̂ 〈describe mereology(v)〉] end

discover attributes: Unit→ Unit
discover attributes() ≡

for ∀ v • v ∈ gen
do txt := txt † [type name(v)7→txt(type name(v))̂ 〈describe attributes(v)〉] end

discover intentional pulls: Unit→ Unit
discover intentional pulls() ≡

for ∀ (v′,v′′) • {v′,v′′} ⊆ gen
do txt := txt † [type name(v′)7→txt(type name(v′))̂ 〈describe intentional pull()〉]

† [type name(v′′)7→txt(type name(v′′))̂ 〈describe intentional pull()〉] end

The TUV Lectures, Vienna, Austria, October–November 2022 96 © Dines Bjørner. October 19, 2022: 10:18 am

5.7 A Domain Discovery Procedure, II 97

describe intentional pull: Unit→ ...
describe intentional pull() ≡ ...

value
discover internal qualities: Unit→ Unit
discover internal qualities() ≡

discover uids() ;
axiom [all parts have unique identifiers]

discover mereologies() ;
axiom [all unique identifiers are mentioned in sum total of]

[all mereologies and no isolated proper sets of parts]
discover attributes() ;

axiom [sum total of all attributes span all parts of the state]
discover intentional pulls()

We shall comment on the axioms in the next section.

5.7.2 A Suggested Analysis & Description Approach, II

Figure 4.3 on page 51 possibly hints at an analysis & description order in which not only
the external qualities of endurants are analysed & described, but also their internal qualities
of unique identifiers, mereologies and attributes.

In Sect. 4.8 on page 55 we were concerned with the analysis & description order of
endurants. We now follow up on the issue of (in Sect. 4.5.1.3 on page 50) on how compounds
are treated: namely as both a “root” parts and as a composite of two or more “sibling” parts
and/or fluids. The taxonomy of the road transport system domain, cf. Fig. 4.3 on page 51 and
Example 35 on page 46, thus gives rise to many different analysis & description traversals.
Figure 5.4 illustrates one such order.

RTS

RN

Hs Ls

LHH H L L
... ...

AA A

AA

As

...

AH AL

Fig. 5.4 A Breadth-First, Top-Down Traversal

© Dines Bjørner. October 19, 2022: 10:18 am 97 The TUV Lectures, Vienna, Austria, October–November 2022

98 5 Endurants: Internal and Universal Domain Qualities

Again, it is up to the domain engineer cum scientist to decide. If the domain analyser cum
describer decides to not endow a compound “root” with internal qualities, then an ‘internal
qualities’ traversal will not have to neither analyse nor describe those qualities.

5.8 Summary

Internal Qualities Predicates and Functions: Method Tools

• Analysis Predicates:
As in Chapter 4 these
predicates apply to
endurants.

• Attribute Analysis
Predicates: The predi-
cates apply to attribute
values.

• Analysis Functions:
These functions yield
appropriate values:
unique identifiers and
attribute type names.

• Retrieval Function:
This function is generic.
It applies to a unique
part identifier and yields
the part identified.

• Description Func-
tions: There are
three such functions:
describing unique iden-
tifiers, mereologies and
attributes.

• Domain Discovery:
The procedure here
being described, in-
formally, guides the
domain analyser cum
describer to do the job !

Name Introduced

Analysis Predicates
16 is manifest page 62
17 is structure page 62

Attribute Analysis Predicates
1 is static attribute page 74
2 is dynamic attribute page 74
3 is inert attribute page 74
4 is reactive attribute page 74
5 is active attribute page 75
6 is autonomous attribute page 75
7 is biddable attribute page 75
8 is programmable attribute page 75
9 is monitorable only attribute page 76

Analysis Functions
all uniq ids page 65
calculate all unique identifiers page 64

6 analyse attribute types page 79
7 sta attr types page 79
8 mon attr types page 79
9 pro attr types page 79

Retrieval, Read and Write Functions
retr part page 66

108 read A from P page 81
109 update P with A page 82

Description Functions
5 describe unique identifier page 63
6 describe mereology page 68
7 describe attributes page 73

Domain Discovery
discover uids page 97
discover mereologies page 97
discover attributes page 97
discover internal qualities page 97

•••

Please consider Fig. 4.1 on page 39. This chapter has covered the horisontal and vertical
lines to the left in Fig. 4.1.

The TUV Lectures, Vienna, Austria, October–November 2022 98 © Dines Bjørner. October 19, 2022: 10:18 am

Chapter 6

Perdurants

Contents
6.1 Part Behaviours – An Analysis . 100

6.1.1 Behaviour Definition Analysis . 100
6.1.2 Channel Analysis . 101

6.2 Domain Channel Description . 101
6.3 Behaviour Definition Description . 101

6.3.1 Behaviour Signatures . 102
6.3.1.1 General . 102
6.3.1.2 Domain Behaviour Signatures . 102
6.3.1.3 Action Signatures . 103

6.3.2 Behaviour Invocation . 103
6.3.3 Behaviour Definition Bodies . 104
6.3.4 Discover Behaviour Definition Bodies . 105

6.4 Domain Behaviour Initialisation . 107
6.5 Discrete Dynamic Domains . 107

6.5.1 Create and Destroy Entities . 107
6.5.1.1 Create Entities . 108
6.5.1.2 Destroy Entities . 112

6.5.2 Adjustment of Creatable and Destructable Behaviours 113
6.5.3 Summary on Creatable & Destructable Entities 114

6.6 Domain Engineering: Description and Construction . 114
6.7 Domain Laws . 114
6.8 A Domain Discovery Procedure, III . 115

6.8.1 Review of the Endurant Analysis and Description Process 115
6.8.2 A Domain Discovery Process, III . 115

6.9 Summary . 116

Please consider Fig. 4.1 on page 39. The previous two chapters covered the left of Fig. 4.1.
This chapter covers the right of Fig. 4.1.

•••

This chapter is a rather “drastic” reformulation and simplification of [49, Chapter 7, i.e.,
pages 159–196]. Besides, Sect. 6.5 is new.

In this chapter we transcendentally “morph” manifest parts into behaviours, that is:
endurants into perdurants. We analyse that notion and its constituent notions of actors,
channels and communication, actions and behaviours. We shall investigate the, as we
shall call them, perdurants of domains. That is state and time-evolving domain phenomena.
The outcome of this chapter is that the reader will be able to model the perdurants of domains.
Not just for a particular domain instance, but a possibly infinite set of domain instances98.

98 By this we mean: You are not just analysing a specific domain, say the one manifested around the corner
from where you are, but any instance, anywhere in the world, which satisfies what you have described.

99

100 6 Perdurants

6.1 Part Behaviours – An Analysis

We remind the reader of Sect. 2.1.2 on page 9.

6.1.1 Behaviour Definition Analysis

Parts co-exist; they do so endurantly as well as perdurantly: endure and perdure.
Part perdurants, i.e., behaviours, interact with their surroundings, that is, with other

behaviours. This is true for both natural and man-made parts. The present domain modelling
method is mainly focused on man-made parts, that is artefacts. So our next analysis will take
its clues from artefactual parts.

We can, roughly, analyse part behaviours into three kinds.

• Proactive Behaviours: Behaviour Bi offers to synchronise and communicate values –
internal non-deterministically with either of a definite number of distinct part sort be-
haviours Ba, Bb, ..., Bc:

B(i)(args) ≡
(... ch[{i,a}] ! a val ; ... ; B(i)(args′))
⌈⌉ (... ch[{i,b}] ! b val ; ... ; B(i)(args′′))
⌈⌉ ...
⌈⌉ (... ch[{i,c}] ! c val ; ... ; B(i)(args′′′))

The tail-recursive invocation of Bi indicates a possible “update” of behaviour Bi argu-
ments. More on this later.

• Responsive Behaviours: Behaviour Bi external non-deterministically expresses willing-
ness to synchronisation with and accept values from either of a definite number of distinct
part sort behaviours Ba, Bb, ..., Bc:

B(i)(args) ≡
(... let av = ch[{i,a}] ? in ... B(i)(args′) end)
⌈⌉⌊⌋ (... let bv = ch[{i,b}] ? in ... ; B(i)(args′′) end)
⌈⌉⌊⌋ ...
⌈⌉⌊⌋ (... let cv = ch[{i,c}] ? in ... ; B(i)(args′′′) end)

• Mixed Behaviours: Or behaviours, more generally, “are” an internal non-deterministic
“mix” of the above:

B(i)(args) ≡
((... ch[{i,a}] ! a val ; ... ; B(i)(args′))
⌈⌉ (... ch[{i,b}] ! b val ; ... ; B(i)(args′′))
⌈⌉ ...
⌈⌉ (... ch[{i,c}] ! c val ; ... ; B(i)(args′′′)))
⌈⌉ ((... let av = ch[{i,a}] ? in ... B(i)(args′) end)
⌈⌉⌊⌋ (... let bv = ch[{i,b}] ? in ... ; B(i)(args′′) end)
⌈⌉⌊⌋ ...
⌈⌉⌊⌋ (... let cv = ch[{i,c}] ? in ... ; B(i)(args′′′) end))

• The “bodies” of the Bi behaviour definitions, i.e., “. . . ”, may contain interactions with [yet
other] behaviours. Schematically for example:

The TUV Lectures, Vienna, Austria, October–November 2022 100 © Dines Bjørner. October 19, 2022: 10:18 am

6.3 Behaviour Definition Description 101

ch[{i,x}] ! x val
{ ch[{i,z}] ! z val | z:{z1,z2,...,zm} }
let yv = ch[{i,y}] ? in ... end
let zv = ⌈⌉⌊⌋ { ch[{i,z}] ? | z:{z1,z2,...,zm} } in ... end

Etcetera. The full force of CSPwith RSL is at play !

6.1.2 Channel Analysis

This is the first of two treatments of the concept of channels; the present treatment is informal,
motivational, the second treatment, Sect. 6.2 (right next !), is more formal.

The CSP concept of channel is to be our way of expressing the “medium” in which
behaviours interact. Channels is thus an abstract concept. Please do not think of it as a
physical, an IT (information technology) device. As an abstract concept it is defined in terms
of, roughly, the laws, the semantics, of CSP [100]. We write ‘roughly’ since the CSP we are
speaking of, is “embedded” in RSL.

6.2 Domain Channel Description

We simplify the general treatment of channel declarations. Basically all we can say, for any
domain, is that any two distinct part behaviours may need to communicate. Therefore we
declare a vector of channels indexed by sets of two distinct part identifiers.

value
discover channels: Unit→ Unit
discover channels() ≡

❝ channel { ch[{ij,ik}] | ij,ik:UI • {ij,ik}⊆ uidσ ∧ ij,ik } M ❞

Initially we shall leave the type of messages over channels further undefined. As we, la-
boriously, work through the definition of behaviours, we shall be able to make M precise.
all uniq ids was defined in Sect. 5.2.4 on page 65.

6.3 Behaviour Definition Description

Behaviours have to be described. Behaviour definitions are in the form of function definitions
and are here expressed inRSL relying, very much, on itsCSP component. Behaviour definitions
describe the type of the arguments the function, i.e., the behaviour, for which it is defined,
that is, which kind of values it accepts. Behaviour definitions further describe

Thus there are two elements to a behaviour definition: the behaviour signature and the
behaviour body definitions.

© Dines Bjørner. October 19, 2022: 10:18 am 101 The TUV Lectures, Vienna, Austria, October–November 2022

102 6 Perdurants

6.3.1 Behaviour Signatures

6.3.1.1 General

Function, F, signatures consists of two textual elements: the function name and the function
type:

value F: A→ B, or F: a:A→ B

where A and B are the types of function (“input”) arguments, respectively function (“output”)
values for such arguments. The first form F: A → B is what is normally referred to as the
form for function signatures. The second form: F: a:A → B “anticipates” the general for for
function F invocation: F(a).

6.3.1.2 Domain Behaviour Signatures

A schematic form of part (p) behaviour signatures is:

b: bi:BI→me:Mer→svl:StaV∗→mvl:MonV∗→prgl:PrgV∗ channels Unit

We shall motivate the general form of part behaviour, B, signatures, “step-by-step”:
α. b the [chosen] name of part p behaviours.
β U→V→...→W→Z: The function signature is expressed in the Schönfinkel/Curry99

style – corresponding to the invocation form F(u)(v)...(w)
γ. bi:BI: a general value and the type of part p unique identifier
δ. me:Mer: a general value and the type of part p mereology
ǫ. svl:StaV∗: a general (possibly empty) list of values and types of part p’s

(possibly empty) list of static attributes
ζ. mvl:MonV∗: a general list of names of types of part p’s

(possibly empty) list of monitorable attributes
η. prgl:PrgV∗: a general list of values and types of part p’s

(possibly empty) list of programmable attributes
θ. channels: are usually of the form: {ch[{i,j}]|(i,j)∈I(me)} and express the subset

of channels over which behaviour Bs interact with other behaviors
ι. Unit: designates the single value ()

In detail:

α. Behaviour name: In each domain description there are many sorts, B, of parts. For each
sort there is a generic behaviour, whose name, here b. is chosen to suitably reflect B.

β. Currying is here used in the pragmatic sense of grouping “same kind of arguments”, i.e.,
separating these from one-another, by means of the→s.

γ. The unique identifier of part sort B is here chosen to be BI. Its value is a constant.
δ. The mereology is a usually constant. For same part sorts it may be a variable.

Example 71 . Variable Mereologies: For a road transport system where we focus on the
transport the mereology is a constant. For a road net where we focus on the development
of the road net: building new roads: inserting and removing hubs and links, the mereology is

99 Moses Schönfinkel (1888–1942) was a Russian logician and mathematician accredited with having
invented combinatory logic [https://en.wikipedia.org/wiki/Moses Schönfinkel]. Haskell B. Curry (1900–
1982) was an American mathematician and logician known for his work in combinatory logic
[https://en.wikipedia.org/wiki/Haskell Curry]

The TUV Lectures, Vienna, Austria, October–November 2022 102 © Dines Bjørner. October 19, 2022: 10:18 am

6.3 Behaviour Definition Description 103

a variable. Similar remarks apply to canal systems www.imm.dtu.dk/˜dibj/2021/Graphs/-
Rivers-and-Canals.pdf, pipeline systems [36], container terminals [44], assembly line sys-
tems [46], etc.

ǫ. Static attribute values are constants. The use of static attribute values in behaviour body
definitions is expressed by an identifier of the stvl list of identifiers.

ζ. Monitorable attribute values are generally, ascertainable, i.e., readable, cf. Sect. 5.4.3.1
on page 81. Some are biddable, can be changed by a, or the behaviour, cf. Sect. 5.4.3.2 on
page 82, but there is no guarantee, as for programmable attributes, that they remain fixed.

The use of a[ny] monitorable attribute value in behaviour body definitions is expressed
by a read A from P(mv,bi) where mv is an identifier of the mvl list of identifiers and bi is
the unique part identifier of the behaviour definition in which the read occurs.

The update of a biddable attribute value in behaviour body definitions is expressed by a
update P with A(bi,mv,a).

η. Programmable attribute values are just that. They vary as specified, i.e., “programmed”,
by the behaviour body definition. Tail-recursive invocations of behaviour Bi “replace”
relevant programmable attribute argument list elements with “new” values.

θ. channels: I(me) expresses a set of unique part identifiers different from bi, hence of
behaviours, with which behaviour b(i) interacts.

ι. The Unit of the behaviour signature is a short-hand for the behaviour either reading the
value of a monitorable attribute, hence global state σ, or performing a write, i.e., an update,
on σ.

6.3.1.3 Action Signatures

Actions come in any forms:

144 Some take no arguments, say action a(), but read the global state component σ, and
145 others also take no arguments, say action b(), but update the global state component σ.
146 Some take an argument, say, action c(c), but do not “touch” a global state component,
147 while others both take an argument and deliver a value, say action d(d) and also do not

“touch” a global state component.
148 Et cetera !

type A, B, C, D, ...
value

144. action a: Unit→ read σ A
145. action b: Unit→ write σ B
146. action c: C→ Unit
147. action d: D→ E Unit
148. ...

An example of 146 are the CSP output: ch[...] ! c, and an example of 147 are the CSP input: let
e = ch[...] ? in ... end.

6.3.2 Behaviour Invocation

The general form of behaviour invocation is shown below. The invocation follows the “Cur-
rying” of the behaviour type signature. [Normally one would write all this on one line:
b(i)(m)(s)(m)(p) ≡.]

© Dines Bjørner. October 19, 2022: 10:18 am 103 The TUV Lectures, Vienna, Austria, October–November 2022

104 6 Perdurants

behaviour name
(unique identifier)

(mereology)
(static values)

(monitorable attribute names)
(programmable variables) ≡

... body ...

When first “invoked”, that is, transcendentally deduced, i.e., “morphed”, from a manifest
part, p, the invocation looks like:

value
discover behaviour signature: P→ RSL-Text
discover behaviour signature(p) ≡
❝ behaviour name:

UId→ Mereo→ StaVL→ MonVL→ ProVL→ channels Unit
behaviour name

(uid B(p))
(mereo B(p))

(types to values(static attribute types(p)))
(mon attribute types(p))

(types to values(programmable attribute types(p))) ≡ ❞

pre: is B(p) ∧ is manifest(p)

discover behaviour signatures: Unit→ RSL-Text
discover behaviour signatures() ≡

{ discover behaviour signature(p) | p ∈ σ ∧ is manifest(p) }

6.3.3 Behaviour Definition Bodies

We remind the reader of Sect. 6.1.1 on page 100.
The general, “mixed”, form of behaviour definitions was given as:

B(i)(args) ≡
((...)

⌈⌉ (... ch[{i,b}] ! b val ; ... ; B(i)(args′′))
⌈⌉ (...))
⌈⌉ ((...)
⌈⌉⌊⌋ (... let bv = ch[{i,b}] ? in ... ; B(i)(args′′) end)
⌈⌉⌊⌋ (...))

We can express the same by separating the alternatives into invocations of separately defined
behaviuors.

B(i)(args) ≡
(...

⌈⌉ Bin j(i)(args)
⌈⌉ ...)
⌈⌉ (...
⌈⌉⌊⌋ Bxnk(i)(args)
⌈⌉⌊⌋ ...)

The TUV Lectures, Vienna, Austria, October–November 2022 104 © Dines Bjørner. October 19, 2022: 10:18 am

6.3 Behaviour Definition Description 105

where the internal don-deterministically invoked behaviours Bin j(i)(args) and the external
don-deterministically invoked behaviours Bink(i)(args) are then separately defined:

Bin j(i)(args) ≡ (... Bin j(i)(args′))
Bxnk(i)(args) ≡ (... Bxnk(i)(args′′))

6.3.4 Discover Behaviour Definition Bodies

In other words, for current lack of a more definitive methodology for “discovering” the
bodies of behaviour definitions we resort to “. . . ” !

value
discover behaviour definition: P→ RSL-Text
discover behaviour definition(p) ≡ ...

discover behaviour definitions: Unit→ RSL-Text
discover behaviour definitions() ≡
{ discover behaviour definition(p) | p ∈ σ ∧ is manifest(p) }

Example 72 . Automobile Behaviour: We remind the reader of the main, running example
of this tutorial, the of the road transport system Example100.

Signatures

149 automobile:

a there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

b then there are two programmable attributes: the automobile position (cf. Item 99 on
page 78), and the automobile history (cf. Item 136c on page 92);

c and finally there are the input/output channel references allowing communication be-
tween the automobile and the hub and link behaviours.

150 Similar for

a link and
b hub behaviours.

We omit the modelling of monitorable attributes (...).

value
149a,149a automobile: ai:AI→ ((,uis):AM)→ ...
149b → (apos:APos × ahist:AHist)
149c in out {ch[{ai,ui}]|ai:AI,ui:(HI|LI) • ai∈ais ∧ ui ∈ uis} Unit
150a link: li:LI→ (his,ais):LM→ LΩ→ ...
150a → (LΣ×L Hist)
150a in out {ch[{li,ui}]|li:LI,ui:(AI|HI)-set • ai∈ais ∧ li ∈lis∪his} Unit

100 That is, examples 27 on page 37, 34 on page 44, 35 on page 46, 36 on page 48, 38 on page 51, 41 on
page 62, 42 on page 64, 44 on page 65, 45 on page 66, 46 on page 68, 47 on page 69, 57 on page 76, 58 on
page 77, 59 on page 77, and 66 on page 92.

© Dines Bjørner. October 19, 2022: 10:18 am 105 The TUV Lectures, Vienna, Austria, October–November 2022

106 6 Perdurants

150b hub: hi:HI→ ((,ais):HM)→ HΩ ...
150b → (HΣ×H Host)
150b in out {ch[{ai,ui}]|hi:HI,ai:AI • ai∈ais ∧ hi ∈ uis} Unit

Definitions: Automobile at a Hub

151 We abstract automobile behaviour at a Hub (hi).

a Either the automobile remains in the hub,
b or, internally non-deterministically,
c leaves the hub entering a link,
d or, internally non-deterministically,
e stops.

151 automobile(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) ≡
151a automobile remains in hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)
151b ⌈⌉

151c automobile leaving hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)
151d ⌈⌉

151e automobile stop(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist)

152 [151a] The automobile remains in the hub:

a the automobile remains at that hub, “idling”,
b informing (“first”) the hub behaviour.

152 automobile remains in hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) ≡
152 let τ = record TIME() in
152b ch[ai,hi] ! τ ;
152a automobile(ai)(aai,uis)(...)(apos,upd hist(τ,hi)(ahist))
152 end

152a upd hist: (TIME×I)→ (AHist|LHist|HHist)→ (AHist|LHist|HHist)
152a upd hist(τ,i)(hist) ≡ hist † [i 7→ 〈τ〉̂ hist(i)]

153 [151c] The automobile leaves the hub entering a link:

a tli, whose “next” hub, identified by thi, is obtained from the mereology of the link
identified by tli;

b informs the hub it is leaving and the link it is entering,
c “whereupon” the vehicle resumes (i.e., “while at the same time” resuming) the vehicle

behaviour positioned at the very beginning (0) of that link.

153 automobile leaving hub(ai)(aai,uis)(...)(apos:atH(fli,hi,tli),ahist) ≡
153a (let ({fhi,thi},ais) = mereo L(retr L(tli)(σ)) in assert: fhi=hi
153b (ch[ai,hi] ! τ ‖ ch[ai,tli] ! τ) ;
153c automobile(ai)(aai,uis)(...)
153c (onL(tli,(hi,thi),0),upd hist(τ,tli)(upd hist(τ,hi)(ahist))) end)

154 [151e] Or the automobile “disappears — off the radar” !

154 automobile stop(ai)(aai,uis),(...)(apos:atH(fli,hi,tli),ahist) ≡ stop

The TUV Lectures, Vienna, Austria, October–November 2022 106 © Dines Bjørner. October 19, 2022: 10:18 am

6.5 Discrete Dynamic Domains 107

Similar behaviour definitions can be given for automobiles on a link, for links and for hubs.
Together they must reflect, amongst other things: the time continuity of automobile flow,
that automobiles follow routes, that automobiles, links and hubs together adhere to the
intentional pull expressed earlier, et cetera. A specification of these aspects must be proved
to adhere to these properties.

6.4 Domain Behaviour Initialisation

For every manifest part it must be described how its behaviour is initialised.

Example 73 . The Road Transport System Initialisation: We “wrap up” the main example
of this tutorial: We omit treatment of monitorable attributes.

155 Let us refer to the system initialisation as an action.
156 All links are initialised,
157 all hubs are initialised,
158 all automobiles are initialised,
159 etc.

value
155. rts initialisation: Unit→ Unit
155. rts initialisation() ≡
156. ‖ { link(uid L(l))(mereo L(l))(attr LEN(l),attr LΩ(l))(attr L Traffic(l),attr LΣ(l))| l:L • l ∈ ls }
157. ‖ ‖ { hub(uid H(l))(mereo H(l))(attr HΩ(l))(attr H Traffic(l),attr HΣ(l))| h:H • h ∈ hs }
158. ‖ ‖ { automobile(uid A(a))(mereo A(a))(attr RegNo(a))(attr APos(a)) | a:A • a ∈ as }
159. ‖ ...

We have here omitted possible monitorable attributes. We refer to ls: Item 45 on page 55, hs:
Item 46 on page 55, and as: Item 47 on page 55

6.5 Discrete Dynamic Domains

Up till now our analysis & description of a domain, has, in a sense, been static: in analysing a
domain we considered its entities to be of a definite number. In this section we shall consider
the case where the number of entities change: where new entities are created and existing
entities are destroyed, that is: where new parts, and hence behaviours, arise, and existing
parts, and hence behaviours, cease to exist.

6.5.1 Create and Destroy Entities

In the domain we can expect that its behaviours create and destroy entities.

Example 74 . Creation and Destruction of Entities: In the road transport domain new
hubs, links and automobiles may be inserted into the road net, and existing links, hubs and
automobiles may be removed from the road net. In a container terminal domain [22, 44] new
containers are introduced, old are discarded; new container vessels are introduced, old are

© Dines Bjørner. October 19, 2022: 10:18 am 107 The TUV Lectures, Vienna, Austria, October–November 2022

108 6 Perdurants

discarded; new ship-to-shore cranes are introduced, old are discarded; et cetera. In a retailer
domain [47] new customers are introduced, old are discarded; new retailers are introduced,
old are discarded; new merchandise is introduced, old is discarded; et cetera. In a financial
system domain new customers are introduced, old are discarded; new banks are introduced,
old are discarded; new brokers are introduced, old are discarded; et cetera

The issue here is: When hubs and links are inserted or removed the mereologies of “neigh-
bouring” road elements change, and so does the mereology of automobiles. When automo-
biles are inserted or removed The mereology of road elements have to be changed to take
account of the insertions and removals, and so does the mereology of automobiles. And,
some domain laws must be re-expressed: The domain part state, σ, must be updated101, and
so must the unique identifier state, uidσ

102.

6.5.1.1 Create Entities

It is taken for granted here that there are behaviours, one or more, which take the initiative to
and carry out the creation of specific entities. Let us refer to such a behaviour as the “creator”.
To create an entity implies the following three major steps [A.–C.] the step wise creation of
the part and initialisation of the transduced behaviour, and [D.] the adjustment of all such
part behaviours that might have their mereologies and attributes updated to accept such
requests from creators.

A. To decide on the part sort – in order to create that part – that is

⋄⋄ to obtain a unique identifier – one hitherto not used;
⋄⋄ to obtain a mereology, one
◦ according to the general mereology for parts of that sort,
◦ and how the part specifically is to “fit” into its surroundings;

⋄⋄ to obtain an appropriate set of attributes:
◦ again according to the attribute types for that part sort
◦ and, more specifically, choosing initial attribute values.

⋄⋄ This part is then “joined” to the global part state, σ103 and
⋄⋄ its unique identifier “joined” to the global unique identifier state, uidσ

104.

B. Then to transcendentally deduce that part into a behaviour:

⋄⋄ initialised (according to Sect. 6.3.1) with
◦ the unique identifier,
◦ the mereology, and
◦ the attribute values

⋄⋄ This behaviour is then invoked and “joined” to the set of current behaviours, cf. Sect. 6.4
on the preceding page – i.e., just above !

C. Then, finally, to “adjust” the mereologies of topologically or conceptually related parts,

⋄⋄ that is, for each of these parts to update:
⋄⋄ their mereology and possibly some
⋄⋄ state and state space

arguments of their corresponding behaviours.

101 Cf. Sect. 4.7.2 on page 55
102 Cf. Sect. 5.2.4 on page 65
103 Cf. Sect. 4.7.2 on page 55
104 Cf. Sect. 5.2.4 on page 65

The TUV Lectures, Vienna, Austria, October–November 2022 108 © Dines Bjørner. October 19, 2022: 10:18 am

6.5 Discrete Dynamic Domains 109

D. The update of the mereologies of already “running” behaviours requires the following:

⋄⋄ that, potentially all, behaviours offers to accept
⋄⋄ mereology update requests from the “creator” behaviour.

The latter means, practically speaking, that each part/behaviour which may be subject to
mereology changes externally non-deterministically expresses an offer to accept such a
change.

Example 75 . Road Net Administrator: We introduce the road net behaviour – based on
the road net composite part, RN.

160 The road net has a programmable attribute: a road net (development & maintenance)
graph.105 The road net graph consists of a quadruple: a map that for each hub identi-
fier records “all” the information that the road net administrator deems necessary106 for
the maintenance and development of road net hubs; a map that for each link identifier
records “all” the information107 that the road net administrator deems necessary for the
maintenance and development of road net links; and a map from the hub identifiers to the
set of identifiers of the links it is connected to, and the set of all automobile identifiers.

161 This graph is commensurate with the actual topology of the road net.

type
160. G = (HI→m H Info) × (LI→m L Info) × (HI→m LI-set) × AI-set
value
160. attr G: RN→ G
axiom
160. ∀ (hi info,li info,map,ais):G •

160. dom map = dom hi info = his ∧ ∪ rng map = dom li info = lis ∧
161. ∀ hi:HI • hi ∈ dom hi info⇒
161. let h:H • h ∈ σ ∧ uid H(h)=hi in
161. let (lis′,...) = mereo H(h) in lis′ = map(hi)
161. ais ⊆ ais ∧ ...
161. end end

Please note the fundamental difference between the road net (development & maintenance)
graph and the road net. The latter pretends to be “the real thing”. The former is “just” an
abstraction thereof !

162 The road net mereology (“bypasses”) the hub and link aggregates, and comprises a set of
hub identifiers and a set of link identifiers – of the road net108.

type
162. H Mer = AI-set × LI-set
162. mereo RN: RN→ RNMer
axiom
162. ∀ rts:RTS • let (,lis) = mereo H(obs RN(rts)) in lis ⊆ lis end
value

163 The road net [administrator] behaviour,

105 The presentation of the road net Behaviour, rn, is simplified.
106 We presently abstract from what this information is.
107 See footnote 106.
108 This is a repeat of the hub mereology given in Item 74 on page 68.

© Dines Bjørner. October 19, 2022: 10:18 am 109 The TUV Lectures, Vienna, Austria, October–November 2022

110 6 Perdurants

164 amongst other activities (. . .)
165 internal non-deterministically decides upon

a either a hub insertion,
b or a link insertion,
c or a hub removal,
d or a link removal;

These four sub-behaviours each resume being the road net behaviour.

value
163. rn: RNI→ RNMer→ G→ in,out{ch[{i,j}]|{i,j}⊆uidσ}
163. rn(rni)(rnmer)(g) ≡
164. ...
165a. ⌈⌉ insert hub(g)(rni)(rnmer)
165b. ⌈⌉ insert link(g)(rni)(rnmer)
165c. ⌈⌉ remove hub(g)(rni)(rnmer)
165d. ⌈⌉ remove link(g)(rni)(rnmer)

Details on the insert and remove actions are given below.

166 These road net sub-behaviours require information about

a a hub to be inserted: its initial state, state space and [empty] traffic history, or
b a link to be inserted: its length, initial state, state space and [empty] traffic history, or
c a hub to be removed: its unique identifier, or
d a link to be removed: its unique identifier.

type
166. Info == nHInfo | nLInfo | oHInfo | oLInfo
166. nHInfo :: HΣ × HΩ × H Traffic
166. nLInfo :: LEN × LΣ × LΩ × L Traffic
166. oHInfo :: HI
166. oLInfo :: LI

Example 76 . Road Net Development: Hub Insertion: Road net development alternates
between design, based on the road net (development & maintenance) graph, and actual,
“real life”, construction taking place in the real surroundings of the road net.

167 If a hub insertion then the road net behaviour, based on the hub and link information and
the road net layout in the road net (development & maintenance) graph selects

a an initial mereology for the hub, h mer,
b an initial hub state, hσ, and
c an initial hub state space, hω, and
d an initial, i.e., empty hub traffic history;

168 updates its road net (development & maintenance) graph with information about the new
hub,

169 and results in a suitable grouping of these.

value
167. design new hub: G→ (nHInfo×G)
167. design new hub(g) ≡
167a. let h mer:HMer =Mih(g),

The TUV Lectures, Vienna, Austria, October–November 2022 110 © Dines Bjørner. October 19, 2022: 10:18 am

6.5 Discrete Dynamic Domains 111

167b. hσ:HΣ = Sih(g),
167c. hω:HΩ = Oih(g),
167d. h traffic = [],
168. g′ =MSOih(g) in
169. ((h mer,hσ,hω,h traffic),g′) end

We leave open, in Items 167a–167c, as to what the initial hub mereology, state and state space
should be initialised, i.e., theMih,Sih,Oih andMSOih functions.

170 To insert a new hub the road net administrator

a first designs the new hub,
b then selects a hub part
c which satisfies the design,

whereupon it updates the global states
d of parts σ,
e of unique identifiers, and
f of hub identifiers –

in parallel, and in parallel with
171 initiating a new hub behaviour
172 and resuming being the road net behaviour.

170. insert hub: G×RNI×RNMer→ Unit
170. insert hub(g,rni,rnmer) ≡
170a. let ((h mer,hσ,hω,h traffic),g′) = design new hub(g) in
170b. let h:H • h<σ •

170c. mereo H(h)=h mer ∧ hσ=attr HΣ(h) ∧
170c. hω=attr HΩ(h) ∧ h traffic=attr HTraffic(h) in
170d. σ := σ ∪ {h}
170e. ‖ uidσ := uidσ ∪ {uid H(h)}
170f. ‖ his := his ∪ {uid H(h)}
171. ‖ hub(uid H(h))(attr HΣ(h),attr HΩ(h),attr HΩ(h))
172. ‖ rn(rni)(rnmer)(g′)
170. end end

Example 77 . Road Net Development: Link Insertion:

173 If a link insertion then the road net behaviour based on the hub and link information and
the road net layout in the road net (development & maintenance) graph selects

a the mereology for the link, h mer109,
b the (static) length (attribute),
c an initial link state, lσ,
d an initial link state space lω, and
e and initial, i.e., empty, link traffic history;

174 updates its road net (development & maintenance) graph with information about the new
link,

175 and results in a suitable grouping of these.

109 that is, the two existing hub identifiers between whose hubs the new link is to be inserted

© Dines Bjørner. October 19, 2022: 10:18 am 111 The TUV Lectures, Vienna, Austria, October–November 2022

112 6 Perdurants

value
173. design new link: G→ (nLInfo×G)
173. design new link(g) ≡
173a. let l mer:LMer =Mil(g),
173b. le:LEN = Lil(g),
173c. lσ:LΣ = Sil(g),
173d. lω:LΩ = Oil(g),
173e. l hist:L Hist = []
174. g′:G =MLSOil(g) in
175. ((l mer,le,lσ,lω,l hist),g′) end

We leave open, in Items 173a–173d, as to what the initial link mereology, state and state space
should be initialised.

176 To insert a new link the road net administrator

a first designs the new link,
b then selects a link part
c which satisfies the design,

whereupon it updates the global states
d of parts, σ,
e of unique part identifiers, and
f of link identifiers –

in parallel, and in parallel with
177 initiating a new link behaviour and
178 updating the mereologies and possibly the state and the state space attributes of the

connected hubs.

value
176. insert link: G→ Unit
176. insert link(rni,l) ≡
176a. let ((l mer,le,lσ,lω,l traffic hist),g′) = design new link(g) in
176c. let l:L • l<σ • mereo L(l)=l mer ∧
176c. le=attr LEN(l) ∧ lσ=attr LΣ(l) ∧
176c. lω=attr LΩ(l) ∧ l traffic hist=attr HTraffic(l) in
176d. σ := σ ∪ {l}
176e. ‖ uidσ := uidσ ∪ {uid L(l)}
176f. ‖ lis := list ∪ {}
177. ‖ link(uid L(l))(l mer)(le,lω)(lσ,l traffic)
178. ‖ ch[{rni,hi1}] ! updH(Mil(g),Σil(g),Ωil(g))
178. ‖ ch[{rni,hi2}] !
176. end end

We leave undefined the mereology and the state σ and state space ω update functions.

6.5.1.2 Destroy Entities

The introduction to Sect. 6.5.1.1 on page 108 on the creation of entities outlined a number
of creation issues ([A, B, C, D]). For the destruction of entities description matters are a bit
simpler. It is, almost, simply a matter of designating, by its unique identifier, the entity: part
and behaviour to be destroyed. Almost ! The mereology of the destroyed entity must be such
that the destruction does not leave “dangling” references !

The TUV Lectures, Vienna, Austria, October–November 2022 112 © Dines Bjørner. October 19, 2022: 10:18 am

6.5 Discrete Dynamic Domains 113

Example 78 . Road Net Development: Hub Removal:

179 If a hub removal then the road net design remove hub behaviour, based on the road net
(development & maintenance) graph, calculates the unique hub identifier of the “isolated”
hub to be removed – that is, is not connected to any links,

180 updates the road net (development & maintenance) graph, and
181 results in a pair of these.

value
179. design remove hub: G→ (HI×G)
179. design remove hub(g) as (hi,g′)
179. let hi:HI • hi ∈ his ∧ let (,lis) = mereo H(retr part(hi)) in lis={} end in
180. let g′ =Mrh(hi,g) in
181. (hi,g′) end end

182 To remove a hub the road net administrator

a first designs which old hub is to be removed
b then removes the designated hub,

whereupon it updates the global states
c of parts σ,
d of unique identifiers, and
e of hub identifiers –

in parallel, and in parallel with
183 stopping the old hub behaviour
184 and resuming being a road net behaviour.

value
182. remove hub: G→ RNI→ RNMer→ Unit
182. remove hub(g)(rni)(rnmer) ≡
182a. let (hi,g′) = design remove hub(g) in
182b. let h:H • uid H(h)=hi ∧ ... in
182c. σ := σ \ {h}
182d. ‖ uidσ := uidσ \ {hi}
182e. ‖ his := his \ {hi}
183. ‖ ch[{rni,hi}] ! mkStop()
184. ‖ rn(rni)(rnmer)(g′)
182. end end

6.5.2 Adjustment of Creatable and Destructable Behaviours

When an entity is created or destroyed its creation, respectively destruction affects the
neurologically related parts and their behaviours. their mereology and possibly their pro-
grammable state attributes need be adjusted. And when entities are destroyed their be-
haviours are stopped ! These entities are “informed” so by the creator/destructor entity – as
was shown in Examples 76–78. The next example will illustrate how such ‘affected’ entities
handle such creator/destructor communication.

Example 79 . Hub Adjustments: We have not yet illustrated hub (nor link) behaviours. Now
we have to !

© Dines Bjørner. October 19, 2022: 10:18 am 113 The TUV Lectures, Vienna, Austria, October–November 2022

114 6 Perdurants

185 The mereology of a hub is a triple: the identification of the set of automobiles that may
enter the hub, the identification of the set of links that connect to the hub, and the identifi-
cation of the road net.

186 The hub behaviour external non-deterministically (⌈⌉⌊⌋) alternates between
187 doing “own work”,
188 or accepting a stop “command” from the road net administrator, or
189 or accepting mereology & state update information,
190 or other.

type
185. HMer = AI-set × LI-set × RNI
value
185. mereo H: H→ HMer
186. hub: hi:HI→ (auis,lis,rni):HMer→ hω:HΩ→ (hσ:HΣ×ht:HTraffic)→
186. {ch[hi,ui]|ui:(RNI|AI) • ui=rni∨ui ∈ auis} Unit
186. hub(hi)(hm:(auis,lis,rni))(hω)(hσ,ht) ≡
187. ...
188. ⌈⌉⌊⌋ let mkStop() = ch[hi,rni] ? in stop end
189. ⌈⌉⌊⌋ let mkUpdH(hm′,hσ′,hσ′) = ch[{rni,hi}] ? in
189. hub(hi)(hm′)(hω′)(hσ′,ht) end
190. ...

Observe from formula Item 188 that the hub behaviour ends, whereas “from” Item 189 it tail
recurses !

6.5.3 Summary on Creatable & Destructable Entities

We have sketched how we may model the dynamics of creating and destroying entities. It
is, but a sketch. We should wish for a more methodological account. So, that is what we are
working on – amongst other issues – at the moment.

6.6 Domain Engineering: Description and Construction

There are two meanings to the term ‘Domain Engineering’.

• the construction of descriptions of domains, and
• the construction of domains.

Most sections of Chapters 4–6 are “devoted” to the former; the previous section, Sect. 6.5 to
the latter.

6.7 Domain Laws

The110 issue of domain laws seems to be crucial. Inklings of domain laws have been hinted
at: (i) intentional pulls, Sect. 5.6 and (ii) Galois Connections (?), Sect. 5.6.5.

more to come

110 This section is currently under consideration.

The TUV Lectures, Vienna, Austria, October–November 2022 114 © Dines Bjørner. October 19, 2022: 10:18 am

6.8 A Domain Discovery Procedure, III 115

6.8 A Domain Discovery Procedure, III

The predecessors of this section are Sects. 4.8.2 on page 56 and 5.7 on page 96.

6.8.1 Review of the Endurant Analysis and Description Process

The discover ... functions below were defined in Sects. 4.8.2 on page 56 and 5.7 on page 96.

value
endurant analysis and description: Unit→ Unit
endurant analysis and description() ≡

discover sorts(); [Page 56]
discover internal endurant qualities() [Page 96]

We are now to define a perdurant analysis and description procedure – to follow the above
endurant analysis and description procedure.

6.8.2 A Domain Discovery Process, III

We define the perdurant analysis and description procedure in the reverse order of that of
Sect. 5.7 on page 96, first the full procedure, then its sub-procedures.

A Domain Endurant Analysis and Description Process

value
perdurant analysis and description: Unit→ Unit
perdurant analysis and description() ≡

discover state(); axiom ... [Note (a)]
discover channels(); axiom ... [Note (b)]
discover behaviour signatures(); axiom ... [Note (c)]
discover behaviour definitions(); axiom ... [Note (d)]
discover initial system() axiom ... [Note (e)]

Notes:

• (a) The States: σ and uiσ We refer to Sect. 4.7.2 on page 55 and Sect. 5.2.4 on page 65.
The state calculation, as shown on Page 54, must be replicated, i.e., re-discovered, in any
separate domain analysis & description. The purpose of the state, i.e., σ, is to formulate
appropriate axiomatic constraints and domain laws.

• (b) The Channels: We refer to Sects. 6.1.2 on page 101 and 6.2 on page 101. Thus we
indiscriminately declare a channel for each pair of distinct unique part identifiers whether
the corresponding pair of part behaviours, if at all invoked, communicate or not.

• (c) Behaviour Signatures: We refer to Sect. 6.3.1.2 on page 102. We find it more productive
to first settle on the signatures of all behaviours – careful thinking has to go into that –
before tackling the far more time-consuming work on defining the behaviours:

• (d) Behaviour Definitions: We refer to Sect. 6.3.3 on page 104.
• (e) The Running System: We refer to Sect. 6.4 on page 107.

© Dines Bjørner. October 19, 2022: 10:18 am 115 The TUV Lectures, Vienna, Austria, October–November 2022

116 6 Perdurants

6.9 Summary

Perdurants: Analysis & Description: Method Tools

• Domain Discovery: The proce-
dures being described here, infor-
mally, guides the domain analyser
cum describer to do the job !

We have basically finished our list-
ings of the procedural steps of the
domain engineering methodology of
this tutorial !

Name Introduced

Discovery Functions
discover channels page 101
discover behaviour signatures page 104
discover behaviour definitions page 105
discover initial system page 107
perdurant analysis and description page 115

•••

Please consider Fig. 4.1 on page 39. This chapter has covered the right of Fig. 4.1.

The TUV Lectures, Vienna, Austria, October–November 2022 116 © Dines Bjørner. October 19, 2022: 10:18 am

Chapter 7

Closing

Contents
7.1 Axioms, Well-formedness and Proof Obligations . 117
7.2 From Programming Language Semantics to Domain Models 118
7.3 Domain Specific Languages . 118
7.4 The RAISE Specification Language, RSL . 118
7.5 Two Issues . 118

7.5.1 Rôle of Algorithms . 119
7.5.2 CSP versus PDEs . 119

7.6 Domain Facets . 119
7.7 Requirements Engineering . 119
7.8 Possible [PhD] Research Topics . 121
7.9 Acknowledgments . 122
7.10 Epilogue . 122

7.1 Axioms, Well-formedness and Proof Obligations

The reader may have noticed that this tutorial hardly mentions the notion of verification,
yet domain descriptions, as possibly any specification related to software, may require some
form of verification. Yet this tutorial appears to skirt the issue. Indeed, we have, regrettably,
omitted the issue. So we must refer to reader to relevant literature. We cannot, October 19,
2022, point to any definitive book on the topic. The field is under intense research. Instead
we refer to such diverse papers as: [60, 82].

In endurant description prompts 2 on page 45, 3 on page 48 and 4 on page 49 we mention
the concept of proof obligation. They are also mentioned in attribute description prompt 7
on page 73. In numerous other places we mention the concept of axiom: 58 on page 65
(uniqueness of unique identifiers), 6 on page 68 (mereology), 103 on page 80 (disjointedness
of attribute categories), 130 on page 86 (property of time), And in some places we mention
the concept of well-formedness, f.ex., Sect. 5.6.2.4 on page 92,

• Axioms express properties of endurants, whether external or internal qualities, that holds
– as were they laws of the domain.

• Well-formedness predicates are defined where external or internal qualities of endurants
are defined by concrete types in such ways as to warrant such predicates.

• Proof obligations are usually warranted where distinct sort definitions need be separated.

117

118 7 Closing

7.2 From Programming Language Semantics to Domain Models

In 1973–1974, at the IBM Vienna Laboratory, we, Peter Lucas, Hans Bekič, Cliff Jones, Wolf-
gang Henhapl and I researched & developed a formal description of the PL/I programming
language [7]. In 1979–1984, at the Dansk Datamatik Center, DDC, under my leadership and
with invaluable help from my colleague, Dr. Hans Bruun, and based on my MSc. lectures,
seven M.Sc. students111 developed formal descriptions of (and later full compilers for) the
CHILL [89] and Ada [58] programming languages.

In a domain model we describe essential nouns and verbs of the “language spoken” by
practitioners of the domain. The “extension” from the language “spoken by programmers”
to that “spoken by domain practitioners” should be obvious.

In both cases, the descriptions, for realistic programming languages and for realistic
domains, are not trivial. They are sizable. The PL/I, CHILL and Ada descriptions span from
a hundred pages to several hundred pages,! Similarly, their implementation, in terms of
interpreters and compilers, took many man-years. For the DDC Ada Compiler it took 44
man-years ! [88, 68]

From a description of realistic facets of a domain one can develop a number of more-or-less
distinct requirements, and from these one can develop computing systems software and we
can expect similar size efforts.

7.3 Domain Specific Languages

A domain specific language, generically referred to as a DSL, is a language whose basic
syntactic elements directly reflect endurants and perdurants of a specific domain. Actulus, a
language in which to express calculations of actuarian character [66], is a DSL.

The semantics of a DSL, obviously, must relate to a model for the domain in question. In
fact, we advice, that DSLs be developed from the basis of relevant domain models.

7.4 The RAISE Specification Language, RSL

We refer to Sect. 1.10 on page 5. So we have used RSL in two ways in this tutorial: (i)
informally, to explain the domain analysis & description method – in RSL+, and (ii) formally,
to present [fragments of] specific domain specifications. The latter always in enumerated
examples.112 Appendices A–B both exemplify formal uses of RSL. All the functions listed in
Index Sects. D.6–D.8 and their explication are using the informal RSL+.

7.5 Two Issues

We single out to issues for a very brief mentioning.

111 Jørgen Bundgaard, Ole Dommergaard, Peter L. Haff, Hans Henrik Løvengreen, Jan Storbank Petersen,
Søren Prehn, Lennart Schulz
112 These are: Examples 35 on page 46, 36 on page 48, 37 on page 49, 40 on page 55, 42 on page 64, 43 on
page 65, 44 on page 65, 45 on page 66, 46 on page 68, 47 on page 69, 50 on page 71, 57 on page 76, 58 on
page 77, 59 on page 77, 66 on page 92, 72 on page 105, 73 on page 107, 75 on page 109, 76 on page 110, 77
on page 111, 78 on page 113, and 79 on page 113

The TUV Lectures, Vienna, Austria, October–November 2022 118 © Dines Bjørner. October 19, 2022: 10:18 am

7.7 Requirements Engineering 119

7.5.1 Rôle of Algorithms

In all of the function formulation of domain phenomena, in this tutorial, You have not seen
a single, interesting algorithm !113 We need not apologize for that. There is a reason. The
reason is that we almost only describe properties. To that end we make use of classical math-
ematical notions such as set comprehension, for example: { a | a:A • P(a) }. The search for
a appropriate a such that P(a) holds is often what requires, often beautiful algorithms. We
refer to [113, 93, Knuth and Harel]. The need for clever algorithms, usually, first arise when
designing software. Not in requirements engineering (cf. Sect. 7.7), but in software design.
Then requirements prescriptions, also usually expressed in terms of set, list or map com-
prehension, or corresponding quantifications, need efficient implementations; hence clever
algorithms.

7.5.2 CSP versus PDEs

To model the behaviour of discrete dynamic domains, such as are the main focus of this
tutorial, we use the CSPprocess concept [100]. To model the behaviour of continuous dynamic
domains, which we really have not, we suggest that You use methods of analysis, to wit:
[Partial] Differential Equations, PDEs. Perhaps also some Fuzzy Logic [162, 110]. That is: We
see this as the “dividing line” between discrete and continuous dynamic systems modelling:
CSP versus DPEs. Appendix B, pages 151–168, puts forward a domain whose continuous
dynamics need be formalised, for example using PDEs [71]. Mathematical modelling such
as based on Adaptive Control Theory [3], Stochastic Control Theory [112] or maybe Fuzzy
Control [121], like algorithmics, first be required as possible techniques when issues of correct
continuous dynamics and optimisation arise, as when implementing certain requirements.

7.6 Domain Facets

There are other, additional methodological domain modelling steps. In [49, Chapter 8, Pages
205–240] we cover the notion of domain facets. By a domain facet we shall understand one
amongst a finite set of generic ways of analysing a domain: a view of the domain, such that the
different facets cover conceptually different views, and such that these views together cover
the domain. We there list intrinsics, support technologies, rules & regulations, scripts, license
languages, management & organisation, and human behaviour. as such facets. The referenced
chapter ([49, Chapter 8, Pages 205–240]) is traditional, programming methodological, in the
sense that there is no [semi-]formal calculi involved, as in this primer’s Chapters 4–5, I could
wish for that !

7.7 Requirements Engineering

Domain modelling, to repeat, can be pursued for two different, but related, reasons. (i) simply,
without any concern for, or idea of possible software, in order to “just” understand a domain,
or (ii) for reasons of subsequent software development. In the later case a step of requirements

113 Algorithm: a process or set of rules to be followed in calculations or other problem-solving operations,
especially by a computer.

© Dines Bjørner. October 19, 2022: 10:18 am 119 The TUV Lectures, Vienna, Austria, October–November 2022

120 7 Closing

engineering need be pursued. [49, Chapter 9, Pages 243–298] covers a notion of requirements
engineering. In that chapter we show three stages of requirements development: (α) domain
requirements, (β) interface requirements, and (γ) machine requirements. But first a definition
of the term ‘machine’. By machine we shall understand a, or the, combination of hardware
and software that is the target for, or result of the required computing systems development.
By a requirements we shall understand (cf., IEEE Standard 610.12): “A condition or capability
needed by a user to solve a problem or achieve an objective.” By a domain requirements
we shall understand those requirements which can be expressed sôlely using terms of the
domain By an interface requirements we shall understand those requirements which can
be expressed only using technical terms of both the domain and the machine By a machine
requirements we shall understand those requirements which, in principle, can be expressed
sôlely using terms of the machine

The domain requirements stage of requirements development starts with a basis in the
domain engineering’s domain description. It is, so-to-speak, a first step in the development
of a requirements prescription.114 From there follows, according to [49, Chapter 9] a number
of (five) steps: (1.) projection: By projection is meant a subset of the domain description,
one which projects out all those endurants: parts and fluids, as well as perdurants: actions,
events and behaviours that the stake-holders do not wish represented or relied upon by
the machine (2.) instantiation: By instantiation we mean a refinement of the partial do-
main requirements prescription (resulting from the projection step) in which the refinements
aim at rendering more concrete, more specific the endurants: parts and fluids, as well as
the perdurants: actions, events and behaviours of the domain requirements prescription
(3.) determination: By determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refinements aim at
rendering less non-determinate, more determinate the endurants: parts and fluids, as well
as the perdurants: functions, events and behaviours of the partial domain requirements pre-
scription (4.) extension: By extension we understand the introduction of endurants and
perdurants that were not feasible in the original domain, but for which, with computing and
communication, and with new, emerging technologies, for example, sensors, actuators and
satellites, there is the possibility of feasible implementations, hence the requirements, that
what is introduced becomes part of the unfolding requirements prescription (5.) fitting: By
requirements fitting we mean a harmonisation of two or more domain requirements that
have overlapping (shared) not always consistent parts and which results in n partial domain
requirement, and mmshared domain requirement, that “fit into” two or more of the partial
domain requirements

[49, Chapter 9] then goes on to outline interface and machine requirements steps.
So domain engineering is a sound basis, we claim, for software development.
How that basis harmonises with the approaches taken by Axel van Lamsweerde [114] and

Michael A. Jackson [108] is, really, a worthwhile study in-and-by itself !

114 The “passage” from domain description to requirements prescription marks a transcendental deduction.
Domain descriptions designate that which is being described. Requirements prescriptions designate what
is intended to be implemented by computing. Please note the distinction: At the end of the development
of a domain description we have just that: a domain description. At the beginning of the development of
a requirements prescription we consider the domain description to be the initial requirements prescription:
Thus, seemingly bewildering, in one instance a document is considered a domain description, in the next
instance, without that document having been textually changed, it is now considered a requirements pre-
scription. The transition from domain description to requirements prescription also marks a transition from
“no-design mode” description to “design-mode” prescription.

The TUV Lectures, Vienna, Austria, October–November 2022 120 © Dines Bjørner. October 19, 2022: 10:18 am

7.8 Possible [PhD] Research Topics 121

7.8 Possible [PhD] Research Topics

I list here a number of possible (PhD) research topics:

1 Intentional Pull: This topic is not treated to the depth it deserves in this tutorial. Try think
of intentional pulls in several domains: (i) money flow in financial institutions (while
domain modelling a fair selection of such: banks, credit card companies, brokers, stock
exchanges [34], etc.); (ii) railway systems (study, for example, [59, 55, 18, 124, 52, 152, 136,
17, 54]); and (iii) container terminals (see [44]).

2 Discrete vs. Continuous Endurants and Perdurants: Take the example of (oil, gas,
water) pipelines. See Appendix B. Try model the dynamic flow of liquid in pipes, valves,
pumps, etc., that is “mix”, as may be expected, differential equations with RSL formulas.
Some have tried. No real progress seems attained. Se however [160, 161]. The pipeline
example should illustrate the use of monitorable attributes, their “reading” and their
“biddable updates”.
The challenge here is threefold: (i) first the PDE etc. modelling of the flow for each kind of
unit, including curved pipe units; (ii) then for their composition – for a specific layout, for
example that hinted at in Fig. B.1 on page 151; and (iii) finally for the infinite collection
of pipeline systems such as defined by the “abstract syntax” of Appendix. B Item 290 on
page 151 (including its wellformedness).

3 Towards a Calculus of Perdurants: This tutorial has unveiled the beginnings of a Cal-
culus of Endurants. (Yet, its real “calculus-orientation” has yet to emerge: its laws, etc.)
Sect. 6.3.3 hints at what I have in mind. A systematic analysis which aims at uncovering a
fixed number of behaviour patterns such as sketched in Sect. 6.3.3.

4 Modelling Human Interaction: The “running example”, summarised in Appendix A,
illustrated a road net “populated” with automobiles driving “hither & dither”. The current
tutorial has not treated the interaction between humans and man-made artifacts, like, for
example, drivers and their automobiles. You are to model, for example, such human
actions as starting an automobile, accelerating, braking. turning left, turning right, and
stopping. Doing so You will have to try out, experiment with the rôles of monitorable,
including biddable automobile attributes. An aim, besides such a domain model, is to
research method issues of modelling human interaction. Please disregard modelling issues
of sentiments, feelings, etc.

5 Transcendental Deduction: In the philosophy of Kai Sørlander such as, for example,
explained in Chapter 2, transcendental deduction is appealed to repeatably. In this tutorial,
as in [49], transcendental deduction is appealed to only once ! Maybe research into possible
calculi for perdurants, cf. Research Challenge 3, might yield some more examples of
transcendental deductions.

6 Formal Models of Domain Modelling Calculi: In [38] I attempted a first formal model
of the domain analysis & description calculi. With [49] and, especially, this tutorial as a
background, perhaps a more thorough attempt should be made to bring the model of [38]
up-to-date and complete !

7 Kai Sørlander’s Philosophy: We refer to Chapter 2. It is here strongly suggested that this
research project be based on [149], Kai Sørlander’s most recent book.115 The challenge,
in a sense, has two elements: (i) the identification of Sørlander’s use of transcendental
deduction: painstakingly identifying all it uses, analysing each of these, studying whether
one can characterise these uses into more than one common kind of deduction, or whether
one might claim “classes of deductions”, not necessarily disjoint, but perhaps structured

115 All of Sørlander’s books [145, 146, 147, 148, 149, 1994–2022] are in Danish – so the researcher would either
be able to read Danish, or, more preferably to me, to have a suitable (German, English, French, ...) translation
at hand.

© Dines Bjørner. October 19, 2022: 10:18 am 121 The TUV Lectures, Vienna, Austria, October–November 2022

122 7 Closing

in some kind of taxonomy; and (ii) the analysis of this report’s presentation of Sørlander’s
metaphysics.

7.9 Acknowledgments

In [49, Preface/Acknowledgments, Page xiv] I acknowledged the very many who, over my
professional life, has inspired me. In “rewriting” this primer from [49] I have, again, attempted
to “capture” Kai Sørlander’s Philosophy, cf.Chapter 2. And again I wishes to deeply acknowl-
edge that work and, hence, Kai Sørlander. Here I, additionally,wishes to acknowledge, with
pleasure, Laura Kovacs, TU Wien. Laura invited me to lecture, in the fall of 2022116, at TU
Wien. This tutorial is the result of that invitation.

•••

7.10 Epilogue

The first inklings, in my work on what is now the Domain Science & Engineering of this
tutorial appeared in [10, 11, 12, 13, 14, 1995-1996].The UN University’s International Institute
for Software Technology, UNU/IIST, of which I was the first and founding director, conducted
several domain engineering-based research & development projects, most of them under the
leaderships of (the late) Søren Prehn and Chris W. George [83]. [30, 2008] touched upon the
concept of Domain Facets, not covered in this tutorial, but in [49, 2021]. Two papers [31, 35,
2010] suggested reasonably relevant properties of domain descriptions. It was not until [42,
2017] that the analysis & description calculi of this tutorial emerged, and were refined in [45,
2019].

116 Well, an invitation for Covid-19 year 2021 had to be postponed !

The TUV Lectures, Vienna, Austria, October–November 2022 122 © Dines Bjørner. October 19, 2022: 10:18 am

Chapter 8

Bibliography

Contents
8.1 Bibliographical Notes . 123
8.2 References . 123

8.1 Bibliographical Notes

I have not read 20 of the 30 citations given in Footnote 16, Pages 7–8. But I have studied some
of Kant’s, Russel’s, Wittgenstein’s and Popper’s writings. The dictionaries [4, 64, 103], as well
as [116], have followed me for years.

8.2 References

1. Scott Aaronson. Quantum Computing since Democritus. Cambridge University Press, 2013.
2. Sara Ahbel-Rappe. Socrates: A Guide for the Perplexed. A&C Black (Bloomsbury), ISBN 978-0-8264-

3325-1, 2011.
3. Karl Johan Åström and B. Wittenmark. Adaptive Control. Addison-Wesley Publishing Company, 1989.
4. Rober Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The Pitt Building,

Trumpington Street, Cambridge CB2 1RP, England, 1995.
5. Jonathan Barnes. The Presocratic Philosophers: The Natural Philosophy of Heraclitus. Routledge,

Taylor & Francis Group, 1982. 43–62.
6. Jonathan Barnes, editor. Complete Works of Aristotle. Princeton University Press: Bollingen Series,

1984.
7. Hans Bekič, Dines Bjørner, Wolfgang Henhapl, Cliff B. Jones, and Peter Lucas. A Formal Definition of

a PL/I Subset. Technical Report 25.139, Vienna, Austria, 20 September 1974.
8. Benjamain Berger and Daniel Whistler. The Schelling Reader. Bloomsbury Publishing PLC, 2020.
9. George Berkeley. Philosophical Works, Including the Works on Vision. Everyman edition, London,

1975 (1713).
10. Dines Bjøner, Chris W. George, and Søren Prehn. Domain Analysis — a Prerequisite for Requirements

Capture. Technical Report 37, UNU/IIST, P.O.Box 3058, Macau, February 1995. .
11. Dines Bjørner. New Software Technology Development. Technical Report 46, UNU/IIST, P.O.Box

3058, Macau, November 1995. International Symposium: New IT for Governance and Publication
Administration, Beijing, China; organized by UNDDSMS, June 1996.

12. Dines Bjørner. Software Systems Engineering — From Domain Analysis to Requirements Capture [—
an Air Traffic Control Example]. Technical Report 48, UNU/IIST, P.O.Box 3058, Macau, November 1995.
Keynote paper for the Asia Pacific Software Engineering Conference, APSEC’95, Brisbane, Australia,
6–9 December 1995. .

123

124 8 Bibliography

13. Dines Bjørner. Infrastructure Software Systems. Technical Report 58, UNU/IIST, P.O.Box 3058, Macau,
Dec 1996. Presentation solicited for the Academia Europae (AE/CWI/SMC) Symposium, Amsterdam
11–12 April, 1996. .

14. Dines Bjørner. New Software Development. Administrative/Technical Report 59, UNU/IIST, P.O.Box
3058, Macau, January 1996. Special Theme paper: New Software Technology Development. Paper
was first prepared in September 1995 for an International Symposium: New IT Applications for Gov-
ernance and Public Administration, convened by the UN’s Department for Development Support and
Management Service: UNDDSMS, Beijing, November 9–14, 1995. This symposium was subsequently
moved (tentatively) to June 1996, same venue. .

15. Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor,
9th IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University, Braun-
schweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-
Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

16. Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In
Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski),
The Netherlands, December 2002. Kluwer Academic Press. www2.imm.dtu.dk/˜dibj/themarket.pdf.

17. Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK,
August 4-6 2003. Elsevier Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M.
Aoki. www2.imm.dtu.dk/˜dibj/ifac-dynamics.pdf.

18. Dines Bjørner. TRain: The Railway Domain — A “Grand Challenge” for Computing Science and Trans-
portation Engineering. In Topical Days @ IFIP World Computer Congress 2004, IFIP Series. IFIP,
Kluwer Academic Press, August 2004.

19. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical Computer
Science, the EATCS Series. Springer, 2006. See [24, 27].

20. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in Theo-
retical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily authored
by Christian Krog Madsen. See [25, 28].

21. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006. See [26, 29].

22. Dines Bjørner. A Container Line Industry Domain. www.imm.dtu.dk/ db/container-paper.pdf.
Techn. report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, June 2007.

23. Dines Bjørner. From Domains to Requirements www.imm.dtu.dk/ dibj/2008/ugo/ugo65.pdf. In
Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano,
Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

24. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press,
2008.

25. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua Uni-
versity Press, 2008.

26. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua
University Press, 2008.

27. Dines Bjørner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University
Press. Translated by Dr Liu Bo Chao et al., 2010.

28. Dines Bjørner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Languages.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

29. Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Qinghua University Press. Translated by Dr Liu Bo Chao et al., 2010.

30. Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods:
State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK,
2010. Springer.

31. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informat-
ics, Part I of II: The Engineering Part . Kibernetika i sistemny analiz, 2(4):100–116, May 2010.

32. Dines Bjørner. On Development of Web-based Software: A Divertimento of Ideas and Suggestions.
Technical, Technical University of Vienna, August–October 2010. www.imm.dtu.dk/˜dibj/wfdftp.pdf.

33. Dines Bjørner. The Tokyo Stock Exchange Trading Rules www.imm.dtu.dk/˜db/todai/tse-1.pdf,
www.imm.dtu.dk/˜db/todai/tse-2.pdf. R&D Experiment, Techn. Univ. of Denmark, Fredsvej 11,
DK-2840 Holte, Denmark, 2010.

34. Dines Bjørner. The Tokyo Stock Exchange Trading Rules www.imm.dtu.dk/˜db/todai/tse-1.pdf,
www.imm.dtu.dk/˜db/todai/tse-2.pdf. R&D Experiment, Techn. Univ. of Denmark, Fredsvej 11,
DK-2840 Holte, Denmark, January, February 2010.

35. Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informat-
ics Part II of II: The Science Part . Kibernetika i sistemny analiz, 2(3):100–120, June 2011.

The TUV Lectures, Vienna, Austria, October–November 2022 124 © Dines Bjørner. October 19, 2022: 10:18 am

References 125

36. Dines Bjørner. Pipelines – a Domain www.imm.dtu.dk/˜dibj/pipe-p.pdf. Experimental Research
Report 2013-2, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

37. Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds.
Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

38. Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model
www.imm.dtu.dk/ dibj/2014/kanazawa/kanazawa-p.pdf. In Shusaku Iida and José Meseguer and
Kazuhiro Ogata, editor, Specification, Algebra, and Software: A Festschrift Symposium in Honor of
Kokichi Futatsugi. Springer, May 2014.

39. Dines Bjørner. A Credit Card System: Uppsala Draft www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.
Technical Report: Experimental Research, Technical University of Denmark, Fredsvej 11, DK-2840
Holte, Denmark, November 2016.

40. Dines Bjørner. Weather Information Systems: Towards a Domain Description www.imm.dtu.-
dk/˜dibj/2016/wis/wis-p.pdf. Technical Report: Experimental Research, Technical University of
Denmark, Fredsvej 11, DK-2840 Holte, Denmark, November 2016.

41. Dines Bjørner. A Space of Swarms of Drones. www.imm.dtu.-

dk/˜dibj/2017/swarms/swarm-paper.pdf. Research Note, Technical University of Denmark,
Fredsvej 11, DK-2840 Holte, Denmark, December 2017.

42. Dines Bjørner. Manifest Domains: Analysis & Description www.imm.dtu.dk/ dibj/2015/faoc/-
faoc-bjorner.pdf. Formal Aspects of Computing, 29(2):175–225, March 2017. Online: 26 July 2016.

43. Dines Bjørner. What are Documents ? www.imm.dtu.dk/˜dibj/2017/docs/docs.pdf. Research Note,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July 2017.

44. Dines Bjørner. Container Terminals. www.imm.dtu.dk/ dibj/2018/yangshan/maersk-pa.pdf. Tech-
nical report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, September 2018.
An incomplete draft report; currently 60+ pages.

45. Dines Bjørner. Domain Analysis & Description – Principles, Techniques and Modeling Languages.
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf. ACM Trans. on Software Engineering and
Methodology, 28(2):66 pages, March 2019.

46. Dines Bjørner. An Assembly Plant Domain – Analysis & Description, www.imm.dtu.dk/ dibj/2021/as-
sembly/assembly-line.pdf. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840
Holte, Denmark, September 2019.

47. Dines Bjørner. A Retailer Market: Domain Analysis & Description. A Comparison Heraklit/DS&E Case
Study. www.imm.dtu.dk/ dibj/2021/Retailer/BjornerHeraklit27January2021.pdf. Technical Re-
port, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, January 2021.

48. Dines Bjørner. Automobile Assembly Plants. www.imm.dtu.dk/˜dibj/2021/assembly/assembly-li-
ne.pdf. Technical Report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark,
Summer 2021.

49. Dines Bjørner. Domain Science & Engineering – A Foundation for Software Development. EATCS
Monographs in Theoretical Computer Science. Springer, 2021.

50. Dines Bjørner. Rivers and Canals. www.imm.dtu.dk/˜dibj/2021/Graphs/Rivers-and-Canals.pdf.
Technical Report, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, March
2021.

51. Dines Bjørner. Shipping. www.imm.dtu.dk/˜dibj/2021/ral/ral.pdf. Technical Report, Technical
University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, April 2021.

52. Dines Bjørner, Peter Chiang, Morten S.T. Jacobsen, Jens Kielsgaard Hansen, Michael P. Madsen,
and Martin Penicka. Towards a Formal Model of CyberRail. In Topical Days @ IFIP World Computer
Congress 2004, IFIP Series. IFIP, Kluwer Academic Press, August 2004.

53. Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying
Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams
and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality,
and Correctness, volume 5930 of Lecture Notes in Computer Science, pages 22–59, Heidelberg, July
2010. Springer.

54. Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for
Domain Engineering. Relations to Requirements Engineering and Software for Control Applications. In
Integrated Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for Design and Process Sci-
ence. www2.imm.dtu.dk/˜dibj/pasadena-25.pdf.

55. Dines Bjørner, C.W. George, B.Stig Hansen, H. Laustrup, and S. Prehn. A Railway System, Coordi-
nation’97, Case Study Workshop Example. Research Report 93, UNU/IIST, P.O.Box 3058, Macau,
January 1997. .

56. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, 1978.

57. Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-
Hall, 1982.

© Dines Bjørner. October 19, 2022: 10:18 am 125 The TUV Lectures, Vienna, Austria, October–November 2022

126 8 Bibliography

58. Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS.
Springer, 1980.

59. Dines Bjørner and Martin Pčnička. Towards a TRAIN Book for The RAIlway DomaiN. Techn. reports,
www.railwaydomain.org/PDF/tb.pdf, The TRAIN Consortium, 2004.

60. Nikolaj Bjørner, Maxwell Levatich, Nuno P. Lopes, Andrey Rybalchenko, and Chandrasekar Vuppalap-
ati. Supercharging plant configurations using Z3. In Peter J. Stuckey, editor, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 18th International Conference, CPAIOR
2021, Vienna, Austria, July 5-8, 2021, Proceedings, volume 12735 of Lecture Notes in Computer Sci-
ence, pages 1–25. Springer, 2021.

61. Dines Bjørner. Urban Planning Processes. www.imm.dtu.dk/˜dibj/2017/up/urban-planning.pdf.
Research Note, Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, July 2017.

62. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Laurent Mauborgne Jerome Feret, Antoine Miné,
David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software. In Programming
Language Design and Implementation, pages 196–207, 2003 .

63. Wayne D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic Logic,
55(1):74–89, March 1990.

64. Nicholas Bunnin and E.P. Tsui-James, editors. The Blackwell Companion to Philosophy. Blackwell
Companions to Philosophy. Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK, 1996.

65. Roberto Casati and Achille C. Varzi. Parts and Places: the structures of spatial representation. MIT
Press, 1999.

66. David R. Christiansen, Klaus Grue, Henning Niss, Peter Sestoft, and Kristján S. Sigtryggsson. Actulus
Modeling Language - An actuarial programming language for life insurance and pensions. Technical
Report, edlund.dk/sites/default/files/Downloads/paper actulus-modeling-language.pdf, Ed-
lund A/S, Denmark, Bjerregårds Sidevej 4, DK-2500 Valby. (+45) 36 15 06 30. edlund@edlund.dk,
http://www.edlund.dk/en/insights/scientific-papers, 2015. This paper illustrates how the design of pen-
sion and life insurance products, and their administration, reserve calculations, and audit, can be based
on a common formal notation. The notation is human-readable and machine-processable, and spe-
cialised to the actuarial domain, achieving great expressive power combined with ease of use and
safety.

67. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́ Oliet, José Meseguer,
and Carolyn Talcott. Maude 2.6 Manual. Department of Computer Science, University of Illinois and
Urbana-Champaign, Urbana-Champaign, Ill., USA, January 2011.

68. Geert Bagge Clemmensen and Ole N. Oest. Formal specification and development of an Ada compiler
– a VDM case study. In Proc. 7th International Conf. on Software Engineering, 26.-29. March 1984,
Orlando, Florida, pages 430–440. IEEE, 1984.

69. S. Marc Cohen. Aristotle’s Metaphysics. In Stanford Encyclopedia of Philosophy. Center for the Study
of Language and Information, Stanford University Stanford, CA, November 2018. The Metaphysics
Research Lab.

70. Dirk L. Couprie and Radim Kocandrle. Anaximander: Anaximander on Generation and Destruction. x,
Springer (Briefs in Philosophy Series).

71. Richard Courant and Fritz John. Introduction to Analysis and Calculus, I–II/1. Springer(Wiley 1974),
December 1989, 1998. ‘Classics in Mathematics’ Series.

72. Patrick Cousot and Rhadia Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In 4th POPL: Principles of Programming
and Languages, pages 238–252. ACM Press, 1977.

73. O.-J. Dahl, E.W. Dijkstra, and Charles Anthony Richard Hoare. Structured Programming. Academic
Press, 1972.

74. René Descartes. Discours de la méthode. Texte et commentaire par Étienne Gilson. Paris: Vrin, 1987.
75. Asger Eir. Construction Informatics — issues in engineering, computer science, and ontology. PhD

thesis, Dept. of Computer Science and Engineering, Institute of Informatics and Mathematical Model-
ing, Technical University of Denmark, Building 322, Richard Petersens Plads, DK–2800 Kgs.Lyngby,
Denmark, February 2004.

76. Asger Eir. Formal Methods and Hybrid Real-Time Systems, chapter Relating Domain Concepts Inten-
sionally by Ordering Connections, pages 188–216. Springer (LNCS Vol. 4700, Festschridt: Essays in
Honour of Dines Bjørner and Zhou Chaochen on the Occasion of Their 70th Birthdays), 2007.

77. William David Ross et al. Plato’s Theory of Ideas. Oxford University Press, 1963.
78. David John Farmer. Being in time: The nature of time in light of McTaggart’s paradox. University Press

of America, Lanham, Maryland, 1990. 223 pages.
79. John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in Soft-

ware Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK,
1998. ISBN 0-521-62348-0.

80. Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Modeling Time in Computing.
Monographs in Theoretical Computer Science. Springer, 2012.

The TUV Lectures, Vienna, Austria, October–November 2022 126 © Dines Bjørner. October 19, 2022: 10:18 am

References 127

81. K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic Formal
Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The Netherlands, 2000.
Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

82. Kokichi Futatsugi. Advances of proof scores in CafeOBJ. Science of Computer Programming, 224,
December 2022.

83. Chris George. Applicative modelling with RAISE. In Chris George, Zhiming Liu, and Jim Woodcock,
editors, Domain Modeling and the Duration Calculus, International Training School, Shanghai, China,
September 17-21. 2007, Advanced Lectures, volume 4710 of Lecture Notes in Computer Science,
pages 51–118. Springer, 2007.

84. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix
Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practi-
tioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

85. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and
Jan Storbank Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

86. James Gosling and Frank Yellin. The Java Language Specification. Addison-Wesley & Sun Microsys-
tems. ACM Press Books, 1996. 864 pp, ISBN 0-10-63451-1.

87. P. Guyer, editor. The Cambridge Companion to Kant. Cambridge Univ. Press, England, 1992.
88. P. Haff and A.V. Olsen. Use of VDM within CCITT. In VDM – A Formal Method at Work, eds. Dines

Bjørner, Cliff B. Jones, Micheal Mac an Airchinnigh and Erich J. Neuhold, pages 324–330. Springer,
Lecture Notes in Computer Science, Vol. 252, March 1987. Proc. VDM-Europe Symposium 1987,
Brussels, Belgium.

89. Peter Haff. A Formal Definition of CHILL. A Supplement to the CCITT Recommendation Z.200. Tech-
nical report, Dansk Datamatik Center, Lyngby, Denmark, Dansk Datamatik Center, Lyngby, Denmark,
1980.

90. Michael Reichhardt Hansen and Hans Rischel. Functional Programming in Standard ML. Addison
Wesley, 1997.

91. Michael Reichhardt Hansen and Hans Rischel. Functional Programming Using F#. Cambridge Univer-
sity Press, 2013.

92. G. H. Hardy, Edward M. Wright, and John Silvermann. An Introduction to the Theory of Numbers.
Oxford University Press, England, 6th edition edition, 2008. Editor: Roger Heath Brown.

93. David Harel. Algorithmics —The Spirit of Computing. Addison-Wesley, 1987.
94. R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical Report ECS-LFCS-86-2, Lab. f.

Found. of Comp. Sci., Dept. of Comp. Sci., Univ. of Edinburgh, Scotland, 1986.
95. Georg Wilhelm Friedrich Hegel. Wissenschaft der Logik. Hofenberg, 2016 (1812–1816).
96. Martin Heidegger. Sein und Zeit (Being and Time). Oxford University Press, 1927, 1962.
97. Martin Heidegger. Parminedes. Indiana University Press, 1998.
98. Charles Anthony Richard Hoare. Notes on Data Structuring. In [73], pages 83–174, 1972.
99. Charles Anthony Richard Hoare. Communicating Sequential Processes. Communications of the ACM,

21(8), Aug. 1978.
100. Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Com-

puter Science. Prentice-Hall International, 1985. Published electronically: usingcsp.com/cspbook.pdf
(2004).

101. Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, 1985.

102. Gerard J. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts, 2003.

103. Ted Honderich. The Oxford Companion to Philosophy. Oxford University Press, Walton St., Oxford ox2
6dp, England, 1995.

104. David Hume. Enquiry Concerning Human Understanding. Squashed Editions, 2020 (1758).
105. Edmund Husserl. Ideas. General Introduction to Pure Phenomenology. Routledge, 2012.
106. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge,

Mass., USA, April 2006. ISBN 0-262-10114-9.
107. Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and

prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.
108. Michael A. Jackson. Program Verification and System Dependability. In Paul Boca and Jonathan

Bowen, editors, Formal Methods: State of the Art and New Directions, pages 43–78, London, UK,
2010. Springer.

109. David James and Gunter Zoller. Cambridge Companion to Fichte. Cambridge University Press, 2016.
110. James J. Buckley and Esfanidar Eslami. An Introduction to Fuzzy Logic and Fuzzy Sets. Springer,

2002.
111. Immanuel Kant. Critique of Pure Reason. Penguin Books Ltd, 2007 (1787).

© Dines Bjørner. October 19, 2022: 10:18 am 127 The TUV Lectures, Vienna, Austria, October–November 2022

128 8 Bibliography

112. Samuel Karlin and Howard M. Taylor. An Introduction to Stochastic Modeling. Academic Press, 1998.
ISBN 0-12-684887-4.

113. D.E. Knuth. The Art of Computer Programming, 3 vols: 1: Fundamental Algorithms, 2: Seminumerical
Algorithms, 3: Searching & Sorting. Addison-Wesley, Reading, Mass., USA, 1968, 1969, 1973; newly
revised 2000.

114. Axel van Lamsweerde. Requirements Engineering: from system goals to UML models to software
specifications. Wiley, 2009.

115. Paul Lindgreen. Systemanalyse og systembeskrivelse (System Analysis and System Description).
Samfundslitteratur, 1983.

116. W. Little, H.W. Fowler, J. Coulson, and C.T. Onions. The Shorter Oxford English Dictionary on Historical
Principles. Clarendon Press, Oxford, England, 1973, 1987. Two vols.

117. John Locke. An Essay Concerning Human Understanding. Penguin Classics, 1998 (1689).
118. Theodore McCombs. Maude 2,0 Primer. Department of Computer Science, University of Illinois and

Urbana-Champaign, Urbana-Champaign, Ill., USA, August 2003.
119. J. M. E. McTaggart. The Unreality of Time. Mind, 18(68):457–84, October 1908. New Series. See also:

[126].
120. J. Edward Mercer. The Mysticism Of Anaximenes And The Air. Kessinger Publishing, LLC, 2010.
121. Kai Michels, Frank Klawonn, Rudolf Kruse, and Andreas Nürnberger. Fuzzy Control: Fundamentals,

Stability and Design of Fuzzy Controllers. Springer, 19 October 2010.
122. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, Cambridge, Mass.,

USA and London, England, 1990.
123. Patricia O’Grady. Thales of Miletus. Routledge (Western Philosophy Series), 2002.
124. Martin Penicka. From Railway Resource Planning to Train Operation. In Topical Days @ IFIP World

Computer Congress 2004, IFIP Series. IFIP, Kluwer Academic Press, August 2004.
125. Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.
126. Robin Le Poidevin and Murray MacBeath, editors. The Philosophy of Time. Oxford University Press,

1993.
127. Karl R. Popper. Logik der Forschung. Julius Springer Verlag, Vienna, Austria, 1934 (1935). English

version [128].
128. Karl R. Popper. The Logic of Scientific Dicovery. Hutchinson of London, 3 Fitzroy Square, London W1,

England, 1959,. . . ,1979. Translated from [127].
129. Karl R. Popper. Conjectures and Refutations. The Growth of Scientific Knowledge. Routledge and

Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD, London, England (New York, NY,
USA), 1963,. . . ,1981.

130. Arthur Prior. Changes in Events and Changes in Things, chapter in [126]. Oxford University Press,
1993.

131. Arthur N. Prior. Logic and the Basis of Ethics. Clarendon Press, Oxford, UK, 1949.
132. Arthur N. Prior. Formal Logic. Clarendon Press, Oxford, UK, 1955.
133. Arthur N. Prior. Time and Modality. Oxford University Press, Oxford, UK, 1957.
134. Arthur N. Prior. Past, Present and Future. Clarendon Press, Oxford, UK, 1967.
135. Arthur N. Prior. Papers on Time and Tense. Clarendon Press, Oxford, UK, 1968.
136. Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing.

In FORMS’2003: Symposium on Formal Methods for Railway Operation and Control Systems.
L’Harmattan Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G.
Tarnai and E. Schnieder, Germany. www2.imm.dtu.dk/˜dibj/martin.pdf.

137. Gerald Rochelle. Behind time: The incoherence of time and McTaggart’s atemporal replacement. Ave-
bury series in philosophy. Ashgate, Brookfield, Vt., USA, 1998. vii + 221 pages.

138. Hartley R. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
139. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Science.

Prentice-Hall, 1997. http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.
140. Bertrand Russell. On Denoting. Mind, 14:479–493, 1905.
141. Bertrand Russell. The Problems of Philosophy. Home University Library, London, 1912. Oxford Uni-

versity Press paperback, 1959 Reprinted, 1971-2.
142. Bertrand Russell. Introduction to Mathematical Philosophy. George Allen and Unwin, London, 1919.
143. Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in Com-

puter Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England,
January 2000.

144. Peter Sestoft. Java Precisely. The MIT Press, 25 July 2002.
145. Kai Sørlander. Det Uomgængelige – Filosofiske Deduktioner [The Inevitable – Philosophical Deduc-

tions, with a foreword by Georg Henrik von Wright]. Munksgaard · Rosinante, Copenhagen, Denmark,
1994. 168 pages.

146. Kai Sørlander. Under Evighedens Synsvinkel [Under the viewpoint of eternity]. Munksgaard · Rosi-
nante, Copenhagen, Denmark, 1997. 200 pages.

The TUV Lectures, Vienna, Austria, October–November 2022 128 © Dines Bjørner. October 19, 2022: 10:18 am

References 129

147. Kai Sørlander. Den Endegyldige Sandhed [The Final Truth]. Rosinante, Copenhagen, Denmark, 2002.
187 pages.

148. Kai Sørlander. Indføring i Filosofien [Introduction to The Philosophy]. Informations Forlag, Copen-
hagen, Denmark, 2016. 233 pages.

149. Kai Sørlander. Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær, Slagelse, Denmark,
2022.

150. Baruch Spinoza. Ethics, Demonstrated in Geometrical Order. The Netherlands, 1677.
151. Steven Weintraub. Galois Theory. Springer, 2009.
152. Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In

FORMS2003: Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan
Hongrie, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany. www2.imm.dtu.dk/˜dibj/albena.pdf.

153. Johan van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Epistemology,
Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer Academic Publishers,
P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edition, 1983, 1991.

154. Alfred North Whitehead and Bertrand Russell. Principia Mathematica, 3 vols. Cambridge University
Press, 1910, 1912, and 1913. Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3), also Cambridge University
Press, 1962.

155. N. Wirth. The Programming Language Oberon. Software — Practice and Experience, 18:671–690,
1988.

156. Ludwig Johan Josef Wittgenstein. Tractatus Logico–Philosophicus. Oxford Univ. Press, London, (1921)
1961.

157. Ludwig Johan Josef Wittgenstein. Philosophical Investigations. Oxford Univ. Press, 1958.
158. James Charles Paul Woodcock and James Davies. Using Z: Specification, Proof and Refinement.

Prentice Hall International Series in Computer Science, 1996.
159. M.R. Wright. Empedokles: The Extant Fragments. Hackett Publishing Company, Inc., 1995.
160. WanLing Xie, ShuangQing Xiang, and HuiBiao Zhu. A UTP approach for rTiMo. Formal Ascpects of

Computing, 30(6):713–738, 2018.
161. WanLing Xie, HuiBiao Zhu, and Xu QiWen. A process calculus BigrTiMo of mobile systems and its

formal semantics. Formal Ascpects of Computing, 33(2):207–249, March 2021.
162. Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

© Dines Bjørner. October 19, 2022: 10:18 am 129 The TUV Lectures, Vienna, Austria, October–November 2022

Appendix A

Road Transport

Contents
A.1 The Road Transport Domain . 132

A.1.1 Naming . 132
A.1.2 Rough Sketch . 132

A.2 External Qualities . 132
A.2.1 A Road Transport System, II – Abstract External Qualities 133
A.2.2 Transport System Structure . 133
A.2.3 Atomic Road Transport Parts . 133
A.2.4 Compound Road Transport Parts . 133

A.2.4.1 The Composites . 133
A.2.4.2 The Part Parts . 133

A.2.5 The Transport System State . 134
A.3 Internal Qualities . 135

A.3.1 Unique Identifiers . 135
A.3.1.1 Extract Parts from Their Unique Identifiers 135
A.3.1.2 All Unique Identifiers of a Domain . 135
A.3.1.3 Uniqueness of Road Net Identifiers . 136

A.3.2 Mereology . 137
A.3.2.1 Mereology Types and Observers . 137
A.3.2.2 Invariance of Mereologies . 137

A.3.2.2.1 Invariance of Road Nets . 137
A.3.2.2.2 Possible Consequences of a Road Net

Mereology . 138
A.3.2.2.3 Fixed and Varying Mereology 138

A.3.3 Attributes . 138
A.3.3.1 Hub Attributes . 138
A.3.3.2 Invariance of Traffic States . 139
A.3.3.3 Link Attributes . 139
A.3.3.4 Bus Company Attributes . 140
A.3.3.5 Bus Attributes . 140
A.3.3.6 Private Automobile Attributes . 141
A.3.3.7 Intentionality . 142

A.4 Perdurants . 142
A.4.1 Channels and Communication . 143

A.4.1.1 Channel Message Types . 143
A.4.1.2 Channel Declarations . 143

A.4.2 Behaviours . 144
A.4.2.1 Road Transport Behaviour Signatures 144

A.4.2.1.1 Hub Behaviour Signature . 144
A.4.2.1.2 Link Behaviour Signature . 144
A.4.2.1.3 Bus Company Behaviour Signature 145
A.4.2.1.4 Bus Behaviour Signature . 145
A.4.2.1.5 Automobile Behaviour Signature 145

A.4.2.2 Behaviour Definitions . 146
A.4.2.2.1 Automobile Behaviour at a Hub 146

131

132 A Road Transport

A.4.2.2.2 Automobile Behaviour On a Link 147
A.4.2.2.3 Hub Behaviour . 147
A.4.2.2.4 Link Behaviour . 148

A.5 System Initialisation . 148
A.5.1 Initial States . 148
A.5.2 Initialisation . 149

A.1 The Road Transport Domain

Our universe of discourse in this chapter is the road transport domain. Not a specific one,
but “a generic road transport domain”.

A.1.1 Naming

type RTS

A.1.2 Rough Sketch

The generic road transport domain that we have in mind consists of a road net (aggregate)
and an aggregate of vehicles such that the road net serves to convey vehicles. We consider the
road net to consist of hubs, i.e., street intersections, or just street segment connection points,
and links, i.e., street segments between adjacent hubs. We consider the aggregate of vehicles
to include in addition to vehicales, i.e., automobiles, a department of motor vehicles (DMVs),
zero or more bus companies, each with zero, one or more buses, and vehicle associations,
each with zero, one or more members who are owners of zero, one or more vehicles1

A.2 External Qualities

A Road Transport System, I – Manifest External Qualities:Our intention is that the man-
ifest external qualities of a road transport system are those of its roads, their hubs2i.e., road
(or street) intersections, and their links, i.e., the roads (streets) between hubs, and vehicles,
i.e., automobiles – that ply the roads – the buses, trucks, private cars, bicycles, etc.

1 This “rough” narrative fails to narrate what hubs, links, vehicles, DMVs, bus companies, buses and vehicle
associations are. In presenting it here, as we are, we rely on your a priori understanding of these terms. But
that is dangerous ! The danger, if we do not painstakingly narrate and formalise what we mean by all these
terms, then readers (software designers, etc.) may make erroneous assumptions.
2 We have highlighted certain endurant sort names – as they will re-appear in rather many upcoming
examples.

The TUV Lectures, Vienna, Austria, October–November 2022 132 © Dines Bjørner. October 19, 2022: 10:18 am

A.2 External Qualities 133

A.2.1 A Road Transport System, II – Abstract External Qualities

Examples of what could be considered abstract external qualities of a road transport domain
are: the aggregate of all hubs and all links, the aggregate of all buses, say into bus companies,
the aggregate of all bus companies into public transport, and the aggregate of all vehicles
into a department of vehicles. Some of these aggregates may, at first be treated as abstract.
Subsequently, in our further analysis & description we may decide to consider some of them
as concretely manifested in, for example, actual departments of roads.

A.2.2 Transport System Structure

A transport system is modeled as structured into a road net structure and an automobile
structure. The road net structure is then structured as a pair: a structure of hubs and a
structure of links. These latter structures are then modeled as set of hubs, respectively links.

We could have modeled the road net structure as a composite part with unique identity,
mereology and attributes which could then serve to model a road net authority. And
we could have modeled the automobile structure as a composite part with unique identity,
mereology and attributes which could then serve to model a department of vehicles

A.2.3 Atomic Road Transport Parts

From one point of view all of the following can be considered atomic parts: hubs, links3, and
automobiles.

A.2.4 Compound Road Transport Parts

A.2.4.1 The Composites

191 There is the universe of discourse, UoD.

It is structured into

192 a road net, RN, and

193 a fleet of vehicles, FV.

Both are structures. .

type
191 UoD axiom ∀ uod:UoD • is structure(uod).
192 RN axiom ∀ rn:RN • is structure(rn).
193 FV axiom ∀ fv:FV • is structure(fv).

value
192 obs RN: UoD→ RN
193 obs FV: UoD→ FV

A.2.4.2 The Part Parts

194 The structure of hubs is a set, sH, of atomic hubs, H.
195 The structure of links is a set, sL, of atomic links, L.

3 Hub ≡ street intersection; link ≡ street segments with no intervening hubs.

© Dines Bjørner. October 19, 2022: 10:18 am 133 The TUV Lectures, Vienna, Austria, October–November 2022

134 A Road Transport

sLsH

RN

SH SL

FV

SBC

sA

PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Fig. A.1 A Road Transport System Compounds and Structures

196 The structure of buses is a set, sBC, of composite bus companies, BC.
197 The composite bus companies, BC, are sets of buses, sB.
198 The structure of private automobiles is a set, sA, of atomic automobiles, A.

type
194 H, sH = H-set axiom ∀ h:H • is atomic(h)
195 L, sL = L-set axiom ∀ l:L • is atomic(l)
196 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)
197 B, Bs = B-set axiom ∀ b:B • is atomic(b)
198 A, sA = A-set axiom ∀ a:A • is atomic(a)
value
194 obs sH: SH→ sH
195 obs sL: SL→ sL
196 obs sBC: SBC→ BCs
197 obs Bs: BCs→ Bs
198 obs sA: SA→ sA

A.2.5 The Transport System State

199 Let there be given a universe of discourse, rts. It is an example of a state.

From that state we can calculate other states.

200 The set of all hubs, hs.
201 The set of all links, ls.
202 The set of all hubs and links, hls.
203 The set of all bus companies, bcs.
204 The set of all buses, bs.
205 The set of all private automobiles, as.
206 The set of all parts, ps.

The TUV Lectures, Vienna, Austria, October–November 2022 134 © Dines Bjørner. October 19, 2022: 10:18 am

A.3 Internal Qualities 135

value
199 rts:UoD [43]
200 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))
201 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))
202 hls:(H|L)-set ≡ hs∪ls
203 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
204 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
205 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))
206 ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as

A.3 Internal Qualities

A.3.1 Unique Identifiers

207 We assign unique identifiers to all parts.
208 By a road identifier we shall mean a link

or a hub identifier.
209 By a vehicle identifier we shall mean a bus

or an automobile identifier.
210 Unique identifiers uniquely identify all

parts.

a All hubs have distinct [unique] identi-
fiers.

b All links have distinct identifiers.

c All bus companies have distinct identi-
fiers.

d All buses of all bus companies have dis-
tinct identifiers.

e All automobiles have distinct identi-
fiers.

f All parts have distinct identifiers.

type
207 H UI, L UI, BC UI, B UI, A UI
208 R UI = H UI | L UI
209 V UI = B UI | A UI
value

210a uid H: H→ H UI
210b uid L: H→ L UI
210c uid BC: H→ BC UI
210d uid B: H→ B UI
210e uid A: H→ A UI

A.3.1.1 Extract Parts from Their Unique Identifiers

211 From the unique identifier of a part we can retrieve, ℘, the part having that identifier.

type
211 P = H | L | BC | B | A
value
211 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A
211 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

A.3.1.2 All Unique Identifiers of a Domain

We can calculate:

212 the set, huis, of unique hub identifiers;

© Dines Bjørner. October 19, 2022: 10:18 am 135 The TUV Lectures, Vienna, Austria, October–November 2022

136 A Road Transport

213 the set, luis, of unique link identifiers;
214 the map, hluim, from unique hub identifiers to the set of unique link iidentifiers of the links

connected to the zero, one or more identified hubs,
215 the map, lhuim, from unique link identifiers to the set of unique hub iidentifiers of the two

hubs connected to the identified link;
216 the set, ruis, of all unique hub and link, i.e., road identifiers;
217 the set, bcuis, of unique bus company identifiers;
218 the set, buis, of unique bus identifiers;
219 the set, auis, of unique private automobile identifiers;
220 the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;
221 the map, bcbuim, from unique bus company identifiers to the set of its unique bus identifiers;

and
222 the (bijective) map, bbcuibm, from unique bus identifiers to their unique bus company

identifiers.

value
212 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
213 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
216 ruis:R UI-set ≡ huis∪luis
214 hluim:(H UI→m L UI-set) ≡
214 [h ui7→luis|h ui:H UI,luis:L UI-set•h ui∈huis∧(,luis,)=mereo H(η(h ui))] [cf. Item 229]
215 lhuim:(L+UI→m H UI-set) ≡
215 [l ui7→huis | h ui:L UI,huis:H UI-set • l ui∈luis ∧ (,huis,)=mereo L(η(l ui))] [cf. Item 230]
217 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}
218 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}
219 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}
220 vuis:V UI-set ≡ buis ∪ auis
221 bcbuim:(BC UI→m B UI-set) ≡
221 [bc ui 7→ buis | bc ui:BC UI, bc:BC • bc∈bcs ∧ bc ui=uid BC(bc) ∧ (, ,buis)=mereo BC(bc)]
222 bbcuibm:(B UI→m BC UI) ≡
222 [b ui 7→ bc ui | b ui:B UI,bc ui:BC ui • bc ui=dombcbuim∧b ui∈bcbuim(bc ui)]

A.3.1.3 Uniqueness of Road Net Identifiers

We must express the following axioms:

223 All hub identifiers are distinct.
224 All link identifiers are distinct.
225 All bus company identifiers are distinct.
226 All bus identifiers are distinct.
227 All private automobile identifiers are distinct.
228 All part identifiers are distinct.

axiom
223 card hs = card huis
224 card ls = card luis
225 card bcs = card bcuis
226 card bs = card buis
227 card as = card auis
228 card {huis∪luis∪bcuis∪buis∪auis}
228 = card huis+card luis+card bcuis+card buis+card auis

The TUV Lectures, Vienna, Austria, October–November 2022 136 © Dines Bjørner. October 19, 2022: 10:18 am

A.3 Internal Qualities 137

A.3.2 Mereology

A.3.2.1 Mereology Types and Observers

229 The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers4, and (ii)
the set of unique identifiers of the links that it is connected to and the set of all unique
identifiers of all vehicles (buses and private automobiles).5

230 The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii)
the set of the two distinct hubs they are connected to.

231 The mereology of a bus company is a set the unique identifiers of the buses operated by
that company.

232 The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus
company it is operating for, and (ii) the unique identifiers of all links and hubs6.

233 The mereology of an automobile is the set of the unique identifiers of all links and hubs7.

type
229 H Mer = V UI-set×L UI-set
230 L Mer = V UI-set×H UI-set
231 BC Mer = B UI-set
232 B Mer = BC UI×R UI-set
233 A Mer = R UI-set

value
229 mereo H: H→ H Mer
230 mereo L: L→ L Mer
231 mereo BC: BC→ BC Mer
232 mereo B: B→ B Mer
233 mereo A: A→ A Mer

A.3.2.2 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like
properties”, facts which are indisputable.

A.3.2.2.1 Invariance of Road Nets

The observed mereologies must express identifiers of the state of such for road nets:

axiom
229 ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis
230 ∀ (vuis,huis):L Mer • vuis=vuis ∧ huis⊆huis ∧ cardhuis=2
231 ∀ buis:H Mer • buis = buis
232 ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis
233 ∀ ruis:A Mer • ruis=ruis

234 For all hubs, h, and links, l, in the same road net,
235 if the hub h connects to link l then link l connects to hub h.

axiom
234 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls⇒

4 This is just another way of saying that the meaning of hub mereologies involves the unique identifiers of
all the vehicles that might pass through the hub is of interest to it.
5 The link identifiers designate the links, zero, one or more, that a hub is connected to is of interest to both
the hub and that these links is interested in the hub.
6 — that the bus might pass through
7 — that the automobile might pass through

© Dines Bjørner. October 19, 2022: 10:18 am 137 The TUV Lectures, Vienna, Austria, October–November 2022

138 A Road Transport

234 let (,luis)=mereo H(h), (,huis)=mereo L(l)
235 in uid L(l)∈luis ≡ uid H(h)∈huis end

236 For all links, l, and hubs, ha,hb, in the same road net,
237 if the l connects to hubs ha and hb, then ha and hb both connects to link l.

axiom
236 ∀ h a,h b:H,l:L • {h a,h b} ⊆ hs ∧ l ∈ ls⇒
236 let (,luis)=mereo H(h), (,huis)=mereo L(l)
237 in uid L(l)∈luis ≡ uid H(h)∈huis end

A.3.2.2.2 Possible Consequences of a Road Net Mereology

238 are there [isolated] units from which one can not “reach” other units ?
239 does the net consist of two or more “disjoint” nets ?
240 et cetera.

We leave it to the reader to narrate and formalise the above properly.

A.3.2.2.3 Fixed and Varying Mereology

Let us consider a road net. If hubs and links never change “affiliation”, that is: hubs are in
fixed relation to zero one or more links, and links are in a fixed relation to exactly two hubs
then the mereology is a fixed mereology. If, on the other hand hubs may be inserted into
or removed from the net, and/or links may be removed from or inserted between any two
existing hubs, then the mereology is a varying mereology.

A.3.3 Attributes

A.3.3.1 Hub Attributes

We treat some attributes of the hubs of a road net.

241 There is a hub state. It is a set of pairs, (l f ,lt), of link identifiers, where these link identifiers
are in the mereology of the hub. The meaning of the hub state in which, e.g., (l f ,lt) is an
element, is that the hub is open, “green”, for traffic f rom link l f to link lt. If a hub state is
empty then the hub is closed, i.e., “red” for traffic from any connected links to any other
connected links.

242 There is a hub state space. It is a set of hub states. The current hub state must be in its state
space. The meaning of the hub state space is that its states are all those the hub can attain.

243 Since we can think rationally about it, it can be described, hence we can model, as an
attribute of hubs, a history of its traffic: the recording, per unique bus and automobile
identifier, of the time ordered presence in the hub of these vehicles. Hub history is an
event history.

type
241 HΣ = (L UI×L UI)-set
axiom

The TUV Lectures, Vienna, Austria, October–November 2022 138 © Dines Bjørner. October 19, 2022: 10:18 am

A.3 Internal Qualities 139

241 ∀ h:H • obs HΣ(h) ∈ obs HΩ(h)
type
242 HΩ = HΣ-set
243 H Traffic
243 H Traffic = (A UI|B UI) →m (TIME × VPos)∗

axiom
243 ∀ ht:H Traffic,ui:(A UI|B UI) •
243 ui ∈ dom ht⇒ time ordered(ht(ui))
value
241 attr HΣ: H→ HΣ
242 attr HΩ: H→ HΩ
243 attr H Traffic: H→ H Traffic
value
243 time ordered: (TIME × VPos)∗ → Bool
243 time ordered(tvpl) ≡ ...

In Item 243 on the facing page we model the time-ordered sequence of traffic as a discrete
sampling, i.e., →m , rather than as a continuous function,→.

A.3.3.2 Invariance of Traffic States

244 The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

axiom
244 ∀ h:H • h ∈ hs⇒
244 let hσ = attr HΣ(h) in
244 ∀ (luii,liuii

′):(L UI×L UI) • (luii,luii
′) ∈ hσ⇒ {luii ,l

′
uii
} ⊆ luis end

A.3.3.3 Link Attributes

We show just a few attributes.

245 There is a link state. It is a set of pairs, (h f ,ht), of distinct hub identifiers, where these hub
identifiers are in the mereology of the link. The meaning of a link state in which (h f ,ht) is
an element is that the link is open, “green”, for traffic f rom hub h f to hub ht. Link states
can have either 0, 1 or 2 elements.

246 There is a link state space. It is a set of link states. The meaning of the link state space is
that its states are all those the which the link can attain. The current link state must be in
its state space. If a link state space is empty then the link is (permanently) closed. If it has
one element then it is a one-way link. If a one-way link, l, is imminent on a hub whose
mereology designates that link, then the link is a “trap”, i.e., a “blind cul-de-sac”.

247 Since we can think rationally about it, it can be described, hence it can model, as an
attribute of links a history of its traffic: the recording, per unique bus and automobile
identifier, of the time ordered positions along the link (from one hub to the next) of these
vehicles.

248 The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type
245 LΣ = H UI-set
axiom

© Dines Bjørner. October 19, 2022: 10:18 am 139 The TUV Lectures, Vienna, Austria, October–November 2022

140 A Road Transport

245 ∀ lσ:LΣ•card lσ=2
245 ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
type
246 LΩ = LΣ-set
247 L Traffic
247 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

247 Frac = Real, axiom frac:Fract • 0<frac<1
value
245 attr LΣ: L→ LΣ
246 attr LΩ: L→ LΩ
247 attr L Traffic: :→ L Traffic
axiom
247 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht⇒ time ordered(ht(ui))
248 ∀ l:L • l ∈ ls⇒
248 let lσ = attr LΣ(l) in ∀ (huii,huii

′):(H UI×K UI) •
248 (huii,huii

′) ∈ lσ⇒ {huii ,h
′
uii
} ⊆ huis end

A.3.3.4 Bus Company Attributes

Bus companies operate a number of lines that service passenger transport along routes of
the road net. Each line being serviced by a number of buses.

249 Bus companies create, maintain, revise and distribute [to the public (not modeled here),
and to buses] bus time tables, not further defined.

type
249 BusTimTbl
value
249 attr BusTimTbl: BC→ BusTimTbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the
definite calendar, hour, minute and second time designation occurring in some textual form
in, e.g., time tables.

A.3.3.5 Bus Attributes

We show just a few attributes.

250 Buses run routes, according to their line number, ln:LN, in the
251 bus time table, btt:BusTimTbl obtained from their bus company, and and keep, as inert

attributes, their segment of that time table.
252 Buses occupy positions on the road net:

a either at a hub identified by some h ui,
b or on a link, some fraction, f:Fract, down an identified link, l ui, from one of its identified

connecting hubs, fh ui, in the direction of the other identified hub, th ui.

253 Et cetera.

type
250 LN
251 BusTimTbl

The TUV Lectures, Vienna, Austria, October–November 2022 140 © Dines Bjørner. October 19, 2022: 10:18 am

A.3 Internal Qualities 141

252 BPos == atHub | onLink
252a atHub :: h ui:H UI
252b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI
252b Fract = Real, axiom frac:Fract • 0<frac<1
253 ...
value
251 attr BusTimTbl: B→ BusTimTbl
252 attr BPos: B→ BPos

A.3.3.6 Private Automobile Attributes

We illustrate but a few attributes:

254 Automobiles have static number plate registration numbers.
255 Automobiles have dynamic positions on the road net:

[252a] either at a hub identified by some h ui,
[252b] or on a link, some fraction, frac:Fract down an identified link, l ui, from one of
its identified connecting hubs, fh ui, in the direction of the other identified hub, th ui.

type
254 RegNo
255 APos == atHub | onLink
252a atHub :: h ui:H UI
252b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI
252b Fract = Real, axiom frac:Fract • 0<frac<1
value
254 attr RegNo: A→ RegNo
255 attr APos: A→ APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or
backward movement, turning right, left or going straight, etc. The acceleration, deceleration,
even velocity, or turning right, turning left, moving straight, or forward or backward are seen
as command actions. As such they denote actions by the automobile — such as pressing the
accelerator, or lifting accelerator pressure or braking, or turning the wheel in one direction
or another, etc. As actions they have a kind of counterpart in the velocity, the acceleration,
etc. attributes. Observe that bus companies each have their own distinct bus time table, and
that these are modeled as programmable, Item 249 on the preceding page, page 140. Observe
then that buses each have their own distinct bus time table, and that these are model-led as
inert, Item 251 on the facing page, page 140. In Items 92 Pg. 76 and 96 Pg. 77, we illustrated
an aspect of domain analysis & description that may seem, and at least some decades ago
would have seemed, strange: namely that if we can think, hence speak, about it, then we can
model it “as a fact” in the domain. The case in point is that we include among hub and link
attributes their histories of the timed whereabouts of buses and automobiles.8

8 In this day and age of road cameras and satellite surveillance these traffic recordings may not appear so
strange: We now know, at least in principle, of technologies that can record approximations to the hub and
link traffic attributes.

© Dines Bjørner. October 19, 2022: 10:18 am 141 The TUV Lectures, Vienna, Austria, October–November 2022

142 A Road Transport

A.3.3.7 Intentionality

256 Seen from the point of view of an automobile there is its own traffic history, A Hist, which
is a (time ordered) sequence of timed automobile’s positions;

257 seen from the point of view of a hub there is its own traffic history, H Traffic Item 92
Pg. 76, which is a (time ordered) sequence of timed maps from automobile identities into
automobile positions; and

258 seen from the point of view of a link there is its own traffic history, L Traffic Item 96
Pg. 77, which is a (time ordered) sequence of timed maps from automobile identities into
automobile positions.

The intentional “pull” of these manifestations is this:

259 The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be
identical to the same proper merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type
256 A Hi = (T × APos)∗

243 H Trf = A UI →m (TIME × APos)∗

247 L Trf = A UI→m (TIME×APos)∗

259 AllATH=TIME→m (AUI→m APos)
259 AllHTH=TIME→m (AUI→m APos)
259 AllLTH=TIME→m (AUI→m APos)
axiom
259 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),
259 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),
259 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in
259 allA = mrg HLT(allH,allL) end

We leave the definition of the four merge functions to the reader ! We endow each automobile
with its history of timed positions and each hub and link with their histories of timed
automobile positions. These histories are facts ! They are not something that is laboriously
recorded, where such recordings may be imprecise or cumbersome9. The facts are there,
so we can (but may not necessarily) talk about these histories as facts. It is in that sense
that the purpose (‘transport’) for which man let automobiles, hubs and link be made
with their ‘transport’ intent are subject to an intentional “pull”. It can be no other way: if
automobiles “record” their history, then hubs and links must together “record” identically
the same history !.

Intentional Pull – General Transport: These are examples of human intents: they create
roads and automobiles with the intent of transport, they create houses with the intents of
living, offices, production, etc., and they create pipelines with the intent of oil or gas transport

A.4 Perdurants

In this section we transcendentally “morph” parts into behaviours. We analyse that notion
and its constituent notions of actors, channels and communication, actions and events.

The main transcendental deduction of this chapter is that of associating with each part a
behaviour. This section shows the details of that association. Perdurants are understood in
terms of a notion of state and a notion of time .

9 or thought technologically in-feasible – at least some decades ago!

The TUV Lectures, Vienna, Austria, October–November 2022 142 © Dines Bjørner. October 19, 2022: 10:18 am

A.4 Perdurants 143

State Values versus State Variables: Item 206 on page 134 expresses the value of all parts
of a road transport system:

206. ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as.

260 We now introduce the set of variables, one for each part value of the domain being
modeled.

260. { variable vp:(UoB|H|L|BC|B|A) | vp:(UoB|H|L|BC|B|A) • vp∈ps }

Buses and Bus Companies A bus company is like a “root” for its fleet of “sibling” buses.
But a bus company may cease to exist without the buses therefore necessarily also ceasing to
exist. They may continue to operate, probably illegally, without, possibly. a valid bus driving
certificate. Or they may be passed on to either private owners or to other bus companies. We
use this example as a reason for not endowing a “block structure” concept on behaviours.

A.4.1 Channels and Communication

A.4.1.1 Channel Message Types

We ascribe types to the messages offered on channels.

261 Hubs and links communicate, both ways, with one another, over channels, hl ch, whose
indexes are determined by their mereologies.

262 Hubs send one kind of messages, links another.
263 Bus companies offer timed bus time tables to buses, one way.
264 Buses and automobiles offer their current, timed positions to the road element, hub or link

they are on, one way.

type
262 H L Msg, L H Msg
261 HL Msg = H L Msg | L F Msg
263 BC B Msg = T × BusTimTbl
264 V R Msg = T × (BPos|APos)

A.4.1.2 Channel Declarations

265 This justifies the channel declaration which is calculated to be:

channel
265 { hl ch[h ui,l ui]:H L Msg | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }
265 ∪

265 { hl ch[h ui,l ui]:L H Msg | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus
companies need communicate to all its buses, but not the buses of other bus companies. Buses
of a bus company need communicate to their bus company, but not to other bus companies.

266 This justifies the channel declaration which is calculated to be:

channel
266 { bc b ch[bc ui,b ui] | bc ui:BC UI, b ui:B UI • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg

© Dines Bjørner. October 19, 2022: 10:18 am 143 The TUV Lectures, Vienna, Austria, October–November 2022

144 A Road Transport

We shall argue for vehicle to road element channels based on the mereologies of those parts.
Buses and automobiles need communicate to all hubs and all links.

267 This justifies the channel declaration which is calculated to be:

channel
267 { v r ch[v ui,r ui] | v ui:V UI,r ui:R UI • v ui∈ vuis∧r ui∈ ruis }: V R Msg

A.4.2 Behaviours

A.4.2.1 Road Transport Behaviour Signatures

We first decide on names of behaviours. In the translation schemas we gave schematic names
to behaviours of the formMP. We now assign mnemonic names: from part names to names of
transcendentally interpreted behaviours and then we assign signatures to these behaviours.

A.4.2.1.1 Hub Behaviour Signature

268 hubhui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

b then there are the programmable attributes;
c and finally there are the input/output channel references: first those allowing commu-

nication between hub and link behaviours,
d and then those allowing communication between hub and vehicle (bus and automobile)

behaviours.

value
268 hubhui

:
268a h ui:H UI×(vuis,luis,):H Mer×HΩ
268b → (HΣ×H Traffic)
268c → in,out { h l ch[h ui,l ui] | l ui:L UI•l ui ∈ luis }
268d { ba r ch[h ui,v ui] | v ui:V UI•v ui∈vuis } Unit
268a pre: vuis = vuis ∧ luis = luis

A.4.2.1.2 Link Behaviour Signature

269 linklui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

b then there are the programmable attributes;
c and finally there are the input/output channel references: first those allowing commu-

nication between hub and link behaviours,
d and then those allowing communication between link and vehicle (bus and automobile)

behaviours.

The TUV Lectures, Vienna, Austria, October–November 2022 144 © Dines Bjørner. October 19, 2022: 10:18 am

A.4 Perdurants 145

value
269 linklui

:
269a l ui:L UI×(vuis,huis,):L Mer×LΩ
269b → (LΣ×L Traffic)
269c → in,out { h l ch[h ui,l ui] | h ui:H UI:h ui ∈ huis }
269d { ba r ch[l ui,v ui] | v ui:(B UI|A UI)•v ui∈vuis } Unit
269a pre: vuis = vuis ∧ huis = huis

A.4.2.1.3 Bus Company Behaviour Signature

270 bus companybcui
:

a there is here just a “doublet” of arguments: unique identifier and mereology;
b then there is the one programmable attribute;
c and finally there are the input/output channel references allowing communication be-

tween the bus company and buses.

value
270 bus companybcui

:
270a bc ui:BC UI×(, ,buis):BC Mer
270b → BusTimTbl
270c in,out {bc b ch[bc ui,b ui]|b ui:B UI•b ui∈buis} Unit
270a pre: buis = buis ∧ huis = huis

A.4.2.1.4 Bus Behaviour Signature

271 busbui
:

a there is here just a “doublet” of arguments: unique identifier and mereology;
b then there are the programmable attributes;
c and finally there are the input/output channel references: first the input/output allowing

communication between the bus company and buses,
d and the input/output allowing communication between the bus and the hub and link

behaviours.

value
271 busbui

:
271a b ui:B UI×(bc ui, ,ruis):B Mer
271b → (LN × BTT × BPOS)
271c → out bc b ch[bc ui,b ui],
271d {ba r ch[r ui,b ui]|r ui:(H UI|L UI)•ui∈vuis} Unit
271a pre: ruis = ruis ∧ bc ui ∈ bcuis

A.4.2.1.5 Automobile Behaviour Signature

272 automobileaui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static at-
tributes;

© Dines Bjørner. October 19, 2022: 10:18 am 145 The TUV Lectures, Vienna, Austria, October–November 2022

146 A Road Transport

b then there is the one programmable attribute;
c and finally there are the input/output channel references allowing communication be-

tween the automobile and the hub and link behaviours.

value
272 automobileaui

:
272a a ui:A UI×(, ,ruis):A Mer×rn:RegNo
272b → apos:APos
272c in,out {ba r ch[a ui,r ui]|r ui:(H UI|L UI)•r ui∈ruis} Unit
272a pre: ruis = ruis ∧ a ui ∈ auis

A.4.2.2 Behaviour Definitions

We only illustrate automobile, hub and link behaviours.

A.4.2.2.1 Automobile Behaviour at a Hub

We define the behaviours in a different order than the treatment of their signatures. We “split”
definition of the automobile behaviour into the behaviour of automobiles when positioned
at a hub, and into the behaviour automobiles when positioned at on a link. In both cases the
behaviours include the “idling” of the automobile, i.e., its “not moving”, standing still.

273 We abstract automobile behaviour at a Hub (hui).
274 The vehicle remains at that hub, “idling”,
275 informing the hub behaviour,
276 or, internally non-deterministically,

a moves onto a link, tli, whose “next” hub, identified by th ui, is obtained from the
mereology of the link identified by tl ui;

b informs the hub it is leaving and the link it is entering of its initial link position,
c whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning

(0) of that link,

277 or, again internally non-deterministically,
278 the vehicle “disappears — off the radar” !

273 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

273 (apos:atH(fl ui,h ui,tl ui)) ≡
274 (ba r ch[a ui,h ui] ! (record TIME(),atH(fl ui,h ui,tl ui));
275 automobileaui

(a ui,({},(ruis,vuis),{}),rn)(apos))
276 ⌈⌉

276a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in
276a assert: fh ui=h ui ∧ ruis=ruis′

273 let onl = (tl ui,h ui,0,th ui) in
276b (ba r ch[a ui,h ui] ! (record TIME(),onL(onl)) ‖
276b ba r ch[a ui,tl ui] ! (record TIME(),onL(onl))) ;
276c automobileaui

(a ui,({},(ruis,vuis),{}),rn)
276c (onL(onl)) end end)
277 ⌈⌉

278 stop

The TUV Lectures, Vienna, Austria, October–November 2022 146 © Dines Bjørner. October 19, 2022: 10:18 am

A.4 Perdurants 147

A.4.2.2.2 Automobile Behaviour On a Link

279 We abstract automobile behaviour on a Link.

a Internally non-deterministically, either
i the automobile remains, “idling”, i.e., not moving, on the link,

ii however, first informing the link of its position,
b or

i if if the automobile’s position on the link has not yet reached the hub, then
1 then the automobile moves an arbitrary small, positive Real-valued increment

along the link
2 informing the hub of this,
3 while resuming being an automobile ate the new position, or

ii else,
1 while obtaining a “next link” from the mereology of the hub (where that next

link could very well be the same as the link the vehicle is about to leave),
2 the vehicle informs both the link and the imminent hub that it is now at that hub,

identified by th ui,
3 whereupon the vehicle resumes the vehicle behaviour positioned at that hub;

c or
d the vehicle “disappears — off the radar” !

279 automobileaui
(a ui,({},ruis,{}),rno)

279 (vp:onL(fh ui,l ui,f,th ui)) ≡
279(a)ii (ba r ch[thui,aui]!atH(lui,thui,nxt lui) ;
279(a)i automobileaui

(a ui,({},ruis,{}),rno)(vp))
279b ⌈⌉

279(b)i (if not yet at hub(f)
279(b)i then
279(b)i1 (let incr = increment(f) in
273 let onl = (tl ui,h ui,incr,th ui) in
279(b)i2 ba−r ch[l ui,a ui] ! onL(onl) ;
279(b)i3 automobileaui

(a ui,({},ruis,{}),rno)
279(b)i3 (onL(onl))
279(b)i end end)
279(b)ii else
279(b)ii1 (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in
279(b)ii2 ba r ch[thui,aui]!atH(l ui,th ui,nxt lui) ;
279(b)ii3 automobileaui

(a ui,({},ruis,{}),rno)
279(b)ii3 (atH(l ui,th ui,nxt lui)) end)
279(b)i end)
279c ⌈⌉

279d stop
279(b)i1 increment: Fract→ Fract

A.4.2.2.3 Hub Behaviour

280 The hub behaviour

a non-deterministically, externally offers
b to accept timed vehicle positions —

© Dines Bjørner. October 19, 2022: 10:18 am 147 The TUV Lectures, Vienna, Austria, October–November 2022

148 A Road Transport

c which will be at the hub, from some vehicle, v ui.
d The timed vehicle hub position is appended to the front of that vehicle’s entry in the

hub’s traffic table;
e whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.
f The hub behaviour offers to accept from any vehicle.
g A post condition expresses what is really a proof obligation: that the hub traffic, ht′

satisfies the axiom of the endurant hub traffic attribute Item 92 Pg. 76.

value
280 hubhui

(h ui,(,(luis,vuis)),hω)(hσ,ht) ≡
280a ⌈⌉⌊⌋

280b { let m = ba r ch[h ui,v ui] ? in
280c assert: m=(,atHub(,h ui,))
280d let ht′ = ht † [h ui 7→ 〈m〉̂ ht(h ui)] in
280e hubhui

(h ui,(,(luis,vuis)),(hω))(hσ,ht′)
280f | v ui:V UI•v ui∈vuis end end }
280g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

A.4.2.2.4 Link Behaviour

281 The link behaviour non-deterministically, externally offers
282 to accept timed vehicle positions —
283 which will be on the link, from some vehicle, v ui.
284 The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s

traffic table;
285 whereupon the link proceeds as a link behaviour with the updated link traffic table.
286 The link behaviour offers to accept from any vehicle.
287 A post condition expresses what is really a proof obligation: that the link traffic, lt′ satisfies

the axiom of the endurant link traffic attribute Item 96 Pg. 77.

281 linklui
(l ui,(,(huis,vuis),),lω)(lσ,lt) ≡

281 ⌈⌉⌊⌋

282 { let m = ba r ch[l ui,v ui] ? in
283 assert: m=(,onLink(,l ui, ,))
284 let lt′ = lt † [l ui 7→ 〈m〉̂ lt(l ui)] in
285 linklui

(l ui,(huis,vuis),hω)(hσ,lt′)
286 | v ui:V UI•v ui∈vuis end end }
287 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

A.5 System Initialisation

A.5.1 Initial States

value
hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))
ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))
bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

The TUV Lectures, Vienna, Austria, October–November 2022 148 © Dines Bjørner. October 19, 2022: 10:18 am

A.5 System Initialisation 149

bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

A.5.2 Initialisation

We are reaching the end of this domain modeling example. Behind us there are narratives and
formalisations. Based on these we now express the signature and the body of the definition
of a “system build and execute” function.

288 The system to be initialised is

a the parallel compositions (‖) of
b the distributed parallel composition (‖{...|...}) of all hub behaviours,
c the distributed parallel composition (‖{...|...}) of all link behaviours,
d the distributed parallel composition (‖{...|...}) of all bus company behaviours,
e the distributed parallel composition (‖{...|...}) of all bus behaviours, and
f the distributed parallel composition (‖{...|...}) of all automobile behaviours.

value
288 initial system: Unit→ Unit
288 initial system() ≡
288b ‖ { hubhui

(h ui,me,hω)(htrf,hσ)
288b | h:H•h ∈ hs, h ui:H UI•h ui=uid H(h), me:HMetL•me=mereo H(h),
288b htrf:H Traffic•htrf=attr H Traffic H(h),
288b hω:HΩ•hω=attr HΩ(h), hσ:HΣ•hσ=attr HΣ(h)∧hσ ∈ hω }
288a ‖

288c ‖ { linklui
(l ui,me,lω)(ltrf,lσ)

288c l:L•l ∈ ls, l ui:L UI•l ui=uid L(l), me:LMet•me=mereo L(l),
288c ltrf:L Traffic•ltrf=attr L Traffic H(l),
288c lω:LΩ•lω=attr LΩ(l), lσ:LΣ•lσ=attr LΣ(l)∧lσ ∈ lω }
288a ‖

288d ‖ { bus companybcui
(bcui,me)(btt)

288d bc:BC•bc ∈ bcs, bc ui:BC UI•bc ui=uid BC(bc), me:BCMet•me=mereo BC(bc),
288d btt:BusTimTbl•btt=attr BusTimTbl(bc) }
288a ‖

288e ‖ { busbui
(b ui,me)(ln,btt,bpos)

288e b:B•b ∈ bs, b ui:B UI•b ui=uid B(b), me:BMet•me=mereo B(b), ln:LN:pln=attr LN(b),
288e btt:BusTimTbl•btt=attr BusTimTbl(b), bpos:BPos•bpos=attr BPos(b) }
288a ‖

288f ‖ { automobileaui
(a ui,me,rn)(apos)

288f a:A•a ∈ as, a ui:A UI•a ui=uid A(a), me:AMet•me=mereo A(a),
288f rn:RegNo•rno=attr RegNo(a), apos:APos•apos=attr APos(a) }

© Dines Bjørner. October 19, 2022: 10:18 am 149 The TUV Lectures, Vienna, Austria, October–November 2022

Appendix B

Pipelines

B.1 Endurants: External Qualities

We follow the ontology of Fig. 4.1 on page 39, the lefthand dashed box labelled External
Qualities.

B.1.1 Parts

Pump

Valve

Join

Fork

Pipe

Join

Fork

Pump

Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Fig. B.1 An example pipeline system

289 A pipeline system contains a set of pipeline units and a pipeline system monitor.
290 The well-formedness of a pipeline system depends on its mereology (cf. Sect. B.2.2) and

the routing of its pipes (cf. Sect. B.2.3.2).
291 A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a join, a plate10, or a sink

unit.
292 We consider all these units to be distinguishable, i.e., the set of wells, the set pipe, etc., the

set of sinks, to be disjoint.

type

10 A plate unit is a usually circular, flat steel plate used to “begin” or “end” a pipe segment.

151

152 B Pipelines

289. PLS′, U, M
290. PLS = {| pls:PLS′•wf PLS(pls) |}
value
290. wf PLS: PLS→ Bool
290. wf PLS(pls) ≡
290. wf Mereology(pls)∧wf Routes(pls)∧wf Metrics(pls)11

289. obs Us: PLS→ U-set
289. obs M: PLS→ M
type
291. U =We | Pi | Pu | Va | Fo | Jo | Pl | Si
292. We :: Well
292. Pi :: Pipe
292. Pu :: Pump
292. Va :: Valv
292. Fo :: Fork
292. Jo :: Join
292. Pl :: Plate
292. Si :: Sink

B.1.2 An Endurant State

293 For a given pipeline system
294 we exemplify an endurant state σ
295 composed of the given pipeline system and all its manifest units, i.e., without plates.

value
293. pls:PLS
variable
294. σ := collect state(pls)
value
295. collect state: PLS
295. collect state(pls) ≡ {pls} ∪ obs Us(pls) \ Pl

B.2 Endurants: Internal Qualities

We follow the ontology of Fig. 4.1 on page 39, the lefthand vertical and horisontal lines.

B.2.1 Unique Identification

296 The pipeline system, as such,
297 has a unique identifier, distinct (different) from its pipeline unit identifiers.
298 Each pipeline unit is uniquely distinguished by its unit identifier.

11 wf Mereology, wf Routes and wf Metrics will be explained in Sects. B.2.2.2 on page 154, B.2.3.2 on
page 155, and B.2.4.3 on page 159.

The TUV Lectures, Vienna, Austria, October–November 2022 152 © Dines Bjørner. October 19, 2022: 10:18 am

B.2 Endurants: Internal Qualities 153

299 There is a state of all unique identifiers.

type
297. PLSI
298. UI

value
296. pls:PLS
297. uid PLS: PLS→ PLSI
298. uid U: U→ UI

variable
299. σuid := { uid PLS(pls) } ∪ xtr UIs(pls)

axiom
298. ∀ u,u′:U•{u,u′}⊆obs Us(pls)⇒u,u′⇒uid UI(u),uid UI(u′)
298. ∧ uid PLS(pls) < {uid UI(u)|u:U•u ∈ obs Us(pls)}

300 From a pipeline system one can observe the set of all unique unit identifiers.

value
300. xtr UIs: PLS→ UI-set
300. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

301 We can prove that the number of unique unit identifiers of a pipeline system equals that
of the units of that system.

theorem:
301. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

B.2.2 Mereology

B.2.2.1 PLS Mereology

302 The mereology of a pipeline system is the set of unique identifiers of all the units of that
system.

type
302. PLS Mer = UI-setiptyPLS Merpls-mer-00
value
302. mereo PLS: PLS→ PLS Meripobmereo PLSpls-mer-00
axiomiptyWellformed Mereologiespls-mer-00
302. ∀ uis:PLS Mer • uis = card xtr UIs(pls)

B.2.2.2 Unit Mereologies

303 Each unit is connected to zero, one or two other existing input units and zero, one or two
other existing output units as follows:

a A well unit is connected to exactly one output unit (and, hence, has no “input”).
b A pipe unit is connected to exactly one input unit and one output unit.

© Dines Bjørner. October 19, 2022: 10:18 am 153 The TUV Lectures, Vienna, Austria, October–November 2022

154 B Pipelines

c A pump unit is connected to exactly one input unit and one output unit.
d A valve is connected to exactly one input unit and one output unit.
e A fork is connected to exactly one input unit and two distinct output units.
f A join is connected to exactly two distinct input units and one output unit.
g A plate is connected to exactly one unit.
h A sink is connected to exactly one input unit (and, hence, has no “output”).

type
303. MER = UI-set × UI-set

value
303. mereo U: U→ MER

axiom
303. wf Mereology: PLS→ Bool
303. wf Mereology(pls) ≡
303. ∀ u:U•u ∈ obs Us(pls)⇒
303. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
303. case (u,(card uius,card ouis)) of
303a. (mk We(we),(0,1))→ true,
303b. (mk Pi(pi),(1,1))→ true,
303c. (mk Pu(pu),(1,1))→ true,
303d. (mk Va(va),(1,1))→ true,
303e. (mk Fo(fo),(1,1))→ true,
303f. (mk Jo(jo),(1,1))→ true,
303f. (mk Pl(pl),(0,1))→ true, “begin”
303f. (mk Pl(pl),(1,0))→ true, “end”
303h. (mk Si(si),(1,1))→ true,
303. → false end end

B.2.3 Pipeline Concepts, I

B.2.3.1 Pipe Routes

304 A route (of a pipeline system) is a sequence of connected units (of the pipeline system).
305 A route descriptor is a sequence of unit identifiers and the connected units of a route (of

a pipeline system).

type
304. R′ = Uω

304. R = {| r:Route′•wf Route(r) |}
305. RD = UIω

axiom
305. ∀ rd:RD • ∃ r:R•rd=descriptor(r)

value
305. descriptor: R→ RD
305. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

306 Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

The TUV Lectures, Vienna, Austria, October–November 2022 154 © Dines Bjørner. October 19, 2022: 10:18 am

B.2 Endurants: Internal Qualities 155

value
306. adjacent: U × U→ Bool
306. adjacent(u,u′) ≡ let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in ouis ∩ iuis , {} end

307 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly infinite)
routes of that pipeline system.

a The empty sequence, 〈〉, is a route of pls.
b Let u,u′ be any units of pls, such that an output unit identifier of u is the same as an

input unit identifier of u′ then 〈u,u′〉 is a route of pls.
c If r and r′ are routes of pls such that the last element of r is the same as the first element

of r′, then r̂ tlr′ is a route of pls.
d No sequence of units is a route unless it follows from a finite (or an infinite) number of

applications of the basis and induction clauses of Items 307a–307c.

value
307. Routes: PLS→ RD-infset
307. Routes(pls) ≡
307a. let rs = 〈〉 ∪
307b. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
307c. ∪ {r̂ tl r′|r,r′:R•{r,r′}⊆rs}
307d. in rs end

B.2.3.2 Well-formed Routes

308 A route is acyclic if no two route positions reveal the same unique unit identifier.

value
308. is acyclic Route: R→ Bool
308. is acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i,j ∧ r[i]=r[j]

309 A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).

value
309. wf Routes: PLS→ Bool
309. wf Routes(pls) ≡
309. non circular(pls) ∧ are embedded Routes(pls)

309. is non circular PLS: PLS→ Bool
309. is non circular PLS(pls) ≡
309. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

310 We define well-formedness in terms of well-to-sink routes, i.e., routes which start with a
well unit and end with a sink unit.

value
310. well to sink Routes: PLS→ R-set
310. well to sink Routes(pls) ≡
310. let rs = Routes(pls) in
310. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

© Dines Bjørner. October 19, 2022: 10:18 am 155 The TUV Lectures, Vienna, Austria, October–November 2022

156 B Pipelines

311 A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

311. are embedded Routes: PLS→ Bool
311. are embedded Routes(pls) ≡
311. let wsrs = well to sink Routes(pls) in
311. ∀ r:R • r ∈ Routes(pls)⇒
311. ∃ r′:R,i,j:Nat •

311. r′ ∈ wsrs
311. ∧ {i,j}⊆inds r′∧i≤j
311. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

B.2.3.3 Embedded Routes

312 For every route we can define the set of all its embedded routes.

value
312. embedded Routes: R→ R-set
312. embedded Routes(r) ≡ {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

B.2.3.4 A Theorem

313 The following theorem is conjectured:

a the set of all routes (of the pipeline system)
b is the set of all well-to-sink routes (of a pipeline system) and
c all their embedded routes

theorem:
313. ∀ pls:PLS •

313. let rs = Routes(pls),
313. wsrs = well to sink Routes(pls) in
313a. rs =
313b. wsrs ∪
313c. ∪ {{r′|r′:R • r′ ∈ is embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
312. end

B.2.3.5 Fluids

314 The only fluid of concern to pipelines is the gas12 or liquid13 which the pipes transport14.

type
314. GoL [= M]

value
314. obs GoL: U→ GoL

12 Gaseous materials include: air, gas, etc.
13 Liquid materials include water, oil, etc.
14 The description of this document is relevant only to gas or oil pipelines.

The TUV Lectures, Vienna, Austria, October–November 2022 156 © Dines Bjørner. October 19, 2022: 10:18 am

B.2 Endurants: Internal Qualities 157

B.2.4 Attributes

B.2.4.1 Unit Flow Attributes

315 A number of attribute types characterise units:

a estimated current well capacity (barrels of oil, etc.),
b pump height (a static attribute),
c current pump status (not pumping, pumping; a programmable attribute),
d current valve status (closed, open; a programmable attribute) and
e flow (barrels/second, a biddable attribute).

type
315a. WellCap
315b. Pump Height
315c. Pump State == {|not pumping,pumping|}
315d. Valve State == {|closed,open|}
315e. Flow

316 Flows can be added and subtracted,
317 added distributively and
318 flows can be compared.

value
316. ⊕,⊖: Flow×Flow→ Flow
317. ⊕: Flow-set→ Flow
318. <,≤,=,,,≥,>: Flow × Flow→ Bool

319 Properties of pipeline units include

a estimated current well capacity (barrels of oil, etc.) [a biddable attribute],
b pipe length [a static attribute],
c current pump height [a biddable attribute],
d current valve open/close status [a programmable attribute],
e current [Laminar] in-flow at unit input [a monitorable attribute],
f current Laminar] in-flow leak at unit input [a monitorable attribute],
g maximum [Laminar] guaranteed in-flow leak at unit input [a static attribute],
h current [Laminar] leak unit interior [a monitorable attribute],
i current [Laminar] flow in unit interior [a monitorable attribute],
j maximum Laminar] guaranteed flow in unit interior [a monitorable attribute],

k current [Laminar] out-flow at unit output [a monitorable attribute],
l current [Laminar] out-flow leak at unit output [a monitorable attribute] and

m maximum guaranteedLaminar out-flow leak at unit output [a static attribute.

type
319e In Flow = Flow
319f In Leak = Flow
319g Max In Leak = Flow
319h Body Flow = Flow
319i Body Leak = Flow
319j Max Flow = Flow
319k Out Flow = Flow

319l Out Leak = Flow
319m Max Out Leak = Flow
value
319a attr WellCap: We→WellCap
319b attr LEN: Pi→ LEN
319c attr Height: Pu→ Height
319d attr ValSta: Va→ VaSta
319e attr In Flow: U→ UI→ Flow

© Dines Bjørner. October 19, 2022: 10:18 am 157 The TUV Lectures, Vienna, Austria, October–November 2022

158 B Pipelines

319f attr In Leak: U→ UI→ Flow
319g attr Max In Leak: U→ UI→ Flow
319h attr Body Flow: U→ Flow
319i attr Body Leak: U→ Flow

319j attr Max Flow: U→ Flow
319k attr Out Flow: U→ UI→ Flow
319l attr Out Leak: U→ UI→ Flow
319m attr Max Out Leak: U→ UI→ Flow

320 Summarising we can define a two notions of flow:

a static and
b monitorable.

type
320a Sta Flows = Max In Leak×In Max Flow>Max Out Leak
320b Mon Flows = In Flow×In Leak×Body Flow×Body Leak×Out Flow×Out Leak

B.2.4.2 Unit Metrics

Pipelines are laid out in the terrain. Units have length and diameters. Units are positioned
in space: have altitude, longitude and latitude positions of its one, two or three connection
PoinTs15.

321 length (a static attribute),
322 diameter (a static attribute) and
323 position (a static attribute).

type
321. LEN
322. ©
323. POS == mk One(pt:PT) | mk Two(ipt:PT,opt:PT)
323. | mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))
323. | mk TwoOne(ipts:(lpt:PT,rpt:PT),opt:PT)
323. PT = Alt × Lon × Lat
323. Alt, Lon, Lat = ...
value
321. attr LEN: U→ LEN
322. attr ©: U→©
323. attr POS: U→ POS

We can summarise the metric attributes:

324 Units are subject to either of four (mutually exclusive) metrics:

a Length, diameter and a one point position.
b Length, diameter and a two points position.
c Length, diameter and a one+two points position.
d Length, diameter and a two+one points position.

type
324. Unit Sta = Sta1 Metric | Sta2 Metric | Sta12 Metric | Sta21 Metric
324a Sta1 Metric = LEN × Ø × mk One(pt:PT)
324b Sta2 Metric = LEN × Ø × mk Two(ipt:PT,opt:PT)
324c Sta12 Metric = LEN × Ø × mk OneTwo(ipt:PT,opts:(lpt:PT,rpt:PT))
324d Sta21 Metric = LEN × Ø × mk TwpOne(ipts:(lpt:PT,rpt:PT),opt:PT)

15 1 for well s, plates and sinks; 2 for pipes, pumps and valves; 1+2 for forks, 2+1 for joins.

The TUV Lectures, Vienna, Austria, October–November 2022 158 © Dines Bjørner. October 19, 2022: 10:18 am

B.2 Endurants: Internal Qualities 159

B.2.4.3 Wellformed Unit Metrics

The points positions of neighbouring units must “fit” one-another.

325 Without going into details we can define a predicate, wf Metrics, that applies to a pipeline
system and yields true iff neighbouring units must “fit” one-another.

value
325. wf Metrics: PLS→ Bool
325. wf Metrics(pls) ≡ ...

B.2.4.4 Summary

We summarise the static, monitorable and programmable attributes for each manifest part
of the pipeline system:

type
PLS Sta = PLS net×...
PLS Mon = ...
PLS Prg = PLS Σ×...
Well Sta = Sta1 Metric×Sta Flows×Orig Cap×...
Well Mon = Mon Flows×Well Cap×...
Well Prg = ...
Pipe Sta = Sta2 Metric×Sta Flows×LEN×...
Pipe Mon = Mon Flows×In Temp×Out Temp×...
Pipe Prg = ...
Pump Sta = Sta2 Metric×Sta Flows×Pump Height×...
Pump Mon = Mon Flows×...
Pump Prg = Pump State×...
Valve Sta = Sta2 Metric×Sta Flows×...
Valve Mon = Mon Flows×In Temp×Out Temp×...
Valve Prg = Valve State×...
Fork Sta = Sta12 Metric×Sta Flows×...
Fork Mon = Mon Flows×In Temp×Out Temp×...
Fork Prg = ...
Join Sta = Sta21 Metric×Sta Flows×...
Join Mon = Mon Flows×In Temp×Out Temp×...
Join Prg = ...
Sink Sta = Sta1 Metric×Sta Flows×Max Vol×...
Sink Mon = Mon Flows×Curr Vol×In Temp×Out Temp×...
Sink Prg = ...

326 Corresponding to the above three attribute categories we can define “collective” attribute
observers:

value
326. sta A We: We→ Sta1 Metric×Sta Flows×Orig Cap×...
326. mon A We: We→ ηMon Flows×ηWell Cap×ηIn Temp×ηOut Temp×...
326. prg A We: We→ ...
326. sta A Pi: Pi→ Sta2 Metric×Sta Flows×LEN×...
326. mon A Pi: Pi→NMon Flows×ηIn Temp×ηOut Temp×...
326. prg A Pi: Pi→ ...

© Dines Bjørner. October 19, 2022: 10:18 am 159 The TUV Lectures, Vienna, Austria, October–November 2022

160 B Pipelines

326. sta A Pu: Pu→ Sta2 Metric×Sta Flows×LEN×...
326. mon A Pu: Pu→NMon Flows×ηIn Temp×ηOut Temp×...
326. prg A Pu: Pu→ Pump State×...
326. sta A Va: Va→ Sta2 Metric×Sta Flows×LEN×...
326. mon A Va: Va→NMon Flows×ηIn Temp×ηOut Temp×...
326. prg A Va: Va→ Valve State×...
326. sta A Fo: Fo→ Sta12 Metric×Sta Flows×...
326. mon A Fo: Fo→ NMon Flows×ηIn Temp×ηOut Temp×...
326. prg A Fo: Fo→ ...
326. sta A Jo: Jo→ Sta21 Metric×Sta Flows×...
326. mon A Jo: Jo→ Mon Flows×ηIn Temp×ηOut Temp×...
326. prg A Jo: Jo→ ...
326. sta A Si: Si→ Sta1 Metric×Sta Flows×Max Vol×...
326. mon A Si: Si→NMon Flows×ηIn Temp×ηOut Temp×...
326. prg A Si: Si→ ...

326. NMon Flows ≡ (ηIn Flow,ηIn Leak,ηBody Flow,ηBody Leak,ηOut Flow,ηOut Leak)

Monitored flow attributes are [to be] passed as arguments to behaviours by reference so that
their monitorable attribute values can be sampled.

B.2.4.5 Fluid Attributes

Fluids, we here assume, oil, as it appears in the pipeline units have no unique identity, have
not mereology, but does have attributes: hydrocarbons consisting predominantly of aliphatic,
alicyclic and aromatic hydrocarbons. It may also contain small amounts of nitrogen, oxygen,
and sulfur compounds

327 We shall simplify, just for illustration, crude oil fluid of units to have these attributes:

a volume,
b viscosity,
c temperature,
d paraffin content (%age),
e naphtenes content (%age),

type
327. Oil
327a. Vol
327b. Visc
327c. Temp
327d. Paraffin
327e. Naphtene

value
327b. obs Oil: U→ Oil
327a. attr Vol: Oil→ Vol
327b. attr Visc: Oil→ Visc
327c. attr Temp: Oil→ Temp
327d. attr Paraffin: Oil→ Paraffin
327e. attr Naphtene: Oil→ Naphtene

B.2.4.6 Pipeline System Attributes

The “root” pipeline system is a compound. In its transcendentally deduced behavioral form
it is, amongst other “tasks”, entrusted with the monitoring and control of all its units. To do
so it must, as a basically static attribute possess awareness, say in the form of a net diagram of
how these units are interconnected, together with all their internal qualities, by type and by
value. Next we shall give a very simplified account of the possible pipeline system attribute.

The TUV Lectures, Vienna, Austria, October–November 2022 160 © Dines Bjørner. October 19, 2022: 10:18 am

B.3 Perdurants 161

328 We shall make use, in this example, of just a simple pipeline state, pls ω.

The pipeline state, pls ω, embodies all the information that is relevant to the monitoring and
control of an entire pipeline system, whether static or dynamic.

type
328. PLS Ω

B.2.5 Pipeline Concepts, II: Flow Laws

329 “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit the
sums of input leaks and in-flows equals the sums of unit and output leaks and out-flows.

Law:
329. ∀ u:U\We\Si •
329. sum in leaks(u) ⊕ sum in flows(u) =
329. attr body LeakL(u) ⊕
329. sum out leaks(u) ⊕ sum out flows(u)

value
sum in leaks: U→ Flow
sum in leaks(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end
sum in flows: U→ Flow
sum in flows(u) ≡ let (iuis,) = mereo U(u) in ⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end
sum out leaks: U→ Flow
sum out leaks(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end
sum out flows: U→ Flow
sum out flows(u) ≡ let (,ouis) = mereo U(u) in ⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

330 “What flows out, flows in !”. ForLaminar flows: for any adjacent pairs of units the output
flow at one unit connection equals the sum of adjacent unit leak and in-flow at that
connection.

Law:
330. ∀ u,u′:U•adjacent(u,u′)⇒
330. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in
330. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′

330. attr Out FlowL(u)(uid U(u′)) =
330. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end

These “laws” should hold for a pipeline system without plates.

B.3 Perdurants

We follow the ontology of Fig. 4.1 on page 39, the right-hand dashed box labeled Perdurants
and the right-hand vertical and horisontal lines.

© Dines Bjørner. October 19, 2022: 10:18 am 161 The TUV Lectures, Vienna, Austria, October–November 2022

162 B Pipelines

B.3.1 State

We introduce concepts of manifest and structure endurants. The former are such compound
endurants (Cartesians of sets) to which we ascribe internal qualities; the latter are such
compound endurants (Cartesians of sets) to which we do not ascribe internal qualities. The
distinction is pragmatic.

331 For any given pipeline system we suggest the state to consist of the manifest endurants of
all its non-plate units.

value
331. σ = obs Us(pls)

B.3.2 Channel

332 There is a [global] array channel indexed by a “set pair” of distinct manifest endurant
part identifiers – signifying the possibility of the syncharonisation and communication
between any pair of pipeline units and between these and the pipeline system, cf. last, i.e.,
bottom-most diagram of Fig. B.11 on page 170.

channel
332. { ch[{i,j}] | {i,j}:(PLSI|UI) • {i,j}⊆σid }

B.3.3 Actions

These are, informally, some of the actions of a pipeline system:

333 start pumping: from a state of not pumping to a state of pumping “at full blast !”.16

334 stop pumping: from a state of (full) pumping to a state of no pumping at all.
335 open valve: from a state of a fully closed valve to a state of fully open valve.17

336 close valve: from a state of a fully opened valve to a state of fully closed valve.

We shall not define these actions in this paper. But they will be referred to in the
pipeline system (Items 355a, 355b, 355c), the pump (Items 358a, 358b) and the valve (Items 361a,
361b) behaviours.

B.3.4 Behaviours

B.3.4.1 Behaviour Kinds

There are eight kinds of behaviours:

16 – that is, we simplify, just for the sake of illustration, and do not consider “intermediate” states of pumping.
17 – cf. Footnote 16.

The TUV Lectures, Vienna, Austria, October–November 2022 162 © Dines Bjørner. October 19, 2022: 10:18 am

B.3 Perdurants 163

337 the pipeline system behaviour;18

338 the [generic] well behaviour,
339 the [generic] pipe behaviour,
340 the [generic] pump behaviour,

341 the [generic] valve behaviour,
342 the [generic] fork behaviour,
343 the [generic] join behaviour,
344 the [generic] sink behaviour.

B.3.4.2 Behaviour Signatures

345 The pipeline system behaviour, pls,
346 The well behaviour signature lists the unique well identifier, the well mereology, the static

well attributes, the monitorable well attributes, the programmable well attributes and the
channels over which the well [may] interact with the pipeline system and a pipeline unit.

347 The pipe behaviour signature lists the unique pipe identifier, the pipe mereology, the
static pipe attributes, the monitorable pipe attributes, the programmable pipe attributes
and the channels over which the pipe [may] interact with the pipeline system and its two
neighbouring pipeline units.

348 The pump behaviour signature lists the unique pump identifier, the pump mereology,
the static pump attributes, the monitorable pump attributes, the programmable pump
attributes and the channels over which the pump [may] interact with the pipeline system
and its two neighbouring pipeline units.

349 The valve behaviour signature lists the unique valve identifier, the valve mereology, the
static valve attributes, the monitorable valve attributes, the programmable valve attributes
and the channels over which the valve [may] interact with the pipeline system and its two
neighbouring pipeline units.

350 The fork behaviour signature lists the unique fork identifier, the fork mereology, the static
fork attributes, the monitorable fork attributes, the programmable fork attributes and
the channels over which the fork [may] interact with the pipeline system and its three
neighbouring pipeline units.

351 The join behaviour signature lists the unique join identifier, the join mereology, the static
join attributes, the monitorable join attributes, the programmable join attributes and the
channels over which the join [may] interact with the pipeline system and its three neigh-
bouring pipeline units.

352 The sink behaviour signature lists the unique sink identifier, the sink mereology, the static
sing attributes, the monitorable sing attributes, the programmable sink attributes and the
channels over which the sink [may] interact with the pipeline system and its one or more
pipeline units.

value
345. pls: plso:PLSI→ pls mer:PLS Mer→ PLS Sta→ PLS Mon→
345. PLS Prg→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
346. well: wid:WI→ well mer:MER→Well Sta→ Well mon→
346. Well Prgr→ { ch[{plsi,ui}] | wi:WI • ui ∈ σui } Unit
347. πipe: UI→ pipe mer:MER→ Pipe Sta→ Pipe mon→
347. Pipe Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
348. pump: pi:UI→ pump mer:MER→ Pump Sta→ Pump Mon→
348. Pump Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
349. valve: vi:UI→ valve mer:MER→ Valve Sta→ Valve Mon→
349. Valve Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
350. fork: fi:FI→ fork mer:MER→ Fork Sta→ Fork Mon→

18 This “PLS” behaviour summarises the either global, i.e., SCADA 19-like behaviour, or the fully distributed,
for example, manual, human-operated behaviour of the monitoring and control of the entire pipeline system.
19 Supervisory Control And Data Acquisition

© Dines Bjørner. October 19, 2022: 10:18 am 163 The TUV Lectures, Vienna, Austria, October–November 2022

164 B Pipelines

350. Fork Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
351. join: ji:JI→ join mer:MER→ Join Sta→ Join Mon→
351. Join Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit
352. sink: si:SI→ sink mer:MER→ Sink Sta→ Sink Mon→
352. Sink Prgr→ { ch[{plsi,ui}] | ui:UI • ui ∈ σui } Unit

B.3.4.2.1 Behaviour Definitions

We show the definition of only three behaviours:

• the pipe line system behaviour,
• the pump behaviour and
• the valve behaviour.

B.3.4.2.2 The Pipeline System Behaviour

353 The pipeline system behaviour
354 calculates, based on its programmable state, its next move;
355 if that move is [to be] an action on a named

a pump, whether to start or stop pumping, then the named pump is so informed, where-
upon the pipeline system behaviour resumes in the new pipeline state; or

b valve, whether to open or close the valve, then the named valve is so informed, where-
upon the pipeline system behaviour resumes in the new pipeline state; or

c unit, to collect its monitorable attribute values for monitoring, whereupon the pipeline
system behaviour resumes in the further updated pipeline state;

d et cetera;

value
353. pls(plsi)(uis)(pls msta)(pls mon)(pls ω) ≡
354. let (to do,pls ω′) = calculate next move(plsi,pls mer,pls msta,pls mon,pls prgr) in
355. case to do of
355a mk Pump(pi,α)→
355a ch[{plsi,pi}] ! α assert: α ∈ {stop pumping,pump};
355a pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
355b mk Valve(vi,α)→
355b ch[{plsi,vi}] ! α assert: α ∈ {open valve,close valve};
355b pls(plsi)(pls mer)(pls msta)(pls mon)(pls ω′),
355c mk Unit(ui,monitor)→
355c ch[{plsi,ui}] ! monitor;
355c pls(plsi)(pls mer)(pls msta)(pls mon)(update pls ω(ch[{plsi,ui}] ?,ui)(pls ω′)),
355d ... end
353 end

We leave it to the reader to define the calculate next move function !

B.3.4.2.3 The Pump Behaviours

356 The [generic] pump behaviour internal non-deterministically alternates between
357 doing own work (...), or

The TUV Lectures, Vienna, Austria, October–November 2022 164 © Dines Bjørner. October 19, 2022: 10:18 am

B.3 Perdurants 165

358 accepting pump directives from the pipeline behaviour.

a If the directive is either to start or stop pumping, then that is what happens – whereupon
the pump behaviour resumes in the new pumping state.

b If the directive requests the values of all monitorable attributes, then these are gathered,
communicated to the pipeline system behaviour – whereupon the pump behaviour
resumes in the “old” state.

value
356. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) ≡
357. ...
358. ⌈⌉ let α = ch[{plsi,π}] ? in
358. case α of
358a. stop pumping ∨ pump

358a. → pump(π)(pump mer)(pump sta)(pump mon)(α)20end,
358b. monitor
358b. → let mvs = gather monitorable values(π,pump mon) in
358b. ch[{plsi,π}] ! mvs;
358b. pump(π)(pump mer)(pump sta)(pump mon)(pump prgr) end
358. end

We leave it to the reader to defined the gather monitorable values function.

B.3.4.2.4 The Valve Behaviours

359 The [generic] valve behaviour internal non-deterministically alternates between
360 doing own work (...), or
361 accepting valve directives from the pipeline system.

a If the directive is either to open or close the valve, then that is what happens – whereupon
the pump behaviour resumes in the new valve state.

b If the directive requests the values of all monitorable attributes, then these are gathered,
communicated to the pipeline system behaviour – whereupon the valve behaviour
resumes in the “old” state.

value
359. valve(vi)(valv mer)(valv sta)(valv mon)(valv prgr) ≡
360. ...
361. ⌈⌉ let α = ch[{plsi,π}] ? in
361. case α of
361a. open valve ∨ close valve

361a. → valve(vi)(val mer)(val sta)(val mon)(α)21end,
361b. monitor
361b. → let mvs = gather monitorable values(vi,val mon) in
361b. ch[{plsi,π}] ! (vi,mvs);
361b. valve(vi)(val mer)(val sta)(val mon)(val prgr) end
361. end

20 Updating the programmable pump state to either stop pumping or pump shall here be understood to
mean that the pump is set to not pump, respectively to pump.
21 Updating the programmable valve state to either open valve or close valve shall here be understood to
mean that the valve is set to open, respectively to closed position.

© Dines Bjørner. October 19, 2022: 10:18 am 165 The TUV Lectures, Vienna, Austria, October–November 2022

166 B Pipelines

B.3.4.3 Sampling Monitorable Attribute Values

Static and programmable attributes are, as we have seen, passed by value to behaviours.
Monitorable attributes “surreptitiously” change their values so, as a technical point, these
are passed by reference – by passing attribute type names.

362 From the name, ηA, of a monitorable attribute and the unique identifier, ui, of the part
having the named monitorable attribute one can then, “dynamically”, “on-the-fly”, as the
part behaviour “moves-on”, retrieve the value of the monitorable attribute. This can be
illustrated as follows:

363 The unique identifier ui is used in order to retrieve, from the global parts state, σ, that
identified part, p.

364 Then attr A is applied to p.

value
362. retr U: UI→ Σ→ U
362. retr U(ui)(σ) ≡ let u:U • u ∈ σ∧uid U(u)=ui in u end
363. retr AttrVal: UI × ηA→ Σ→ A
364. retr AttrVal(ui)(ηA)(σ) ≡ attr A(retr U(ui)(σ))

retr AttrVal(...)(...)(...) can now be applied in the body of the behaviour definitions, for exam-
ple in gather monitorable values.

B.3.4.4 System Initialisation

System initialisation means to “morph” all manifest parts into their respective behaviours,
initialising them with their respective attribute values.

365 The pipeline system behaviour is ini-
tialised and “put” in parallel with the par-
allel compositions of

366 all initialised well,
367 all initialised pipe,

368 all initialised pump,
369 all initialised valve,
370 all initialised fork,
371 all initialised join and
372 all initialised sink behaviours.22

value
365. pls(uid PLS(pls))(mereo PLS(pls))((pls))((pls))((pls))
366. ‖ ‖ { well(uid U(we))(mereo U(we))(sta A We(we))(mon A We(we))(prg A We(we)) | we:Well • w ∈ σ }
367. ‖ ‖ { pipe(uid U(pi))(mereo U(pi))(sta A Pi(pi))(mon A Pi(pi))(prg A Pi(pi)) | pi:Pi • pi ∈ σ }
368. ‖ ‖ { pump(uid U(pu))(mereo U(pu))(sta A Pu(pu))(mon A Pu(pu))(prg A Pu(pu)) | pu:Pump • pu ∈ σ }
369. ‖ ‖ { valv(uid U(va))(mereo U(va))(sta A Va(va))(mon A Va(va))(prg A Va(va)) | va:Well • va ∈ σ }
370. ‖ ‖ { fork(uid U(fo))(mereo U(fo))(sta A Fo(fo))(mon A Fo(fo))(prg A Fo(fo)) | fo:Fork • fo ∈ σ }
371. ‖ ‖ { join(uid U(jo))(mereo U(jo))(sta A Jo(jo))(mon A J(jo))(prg A J(jo)) | jo:Join • jo ∈ σ }
372. ‖ ‖ { sink(uid U(si))(mereo U(si))(sta A Si(si))(mon A Si(si))(prg A Si(si)) | si:Sink • si ∈ σ }

The sta ..., mon ..., and prg A... functions are defined in Items 326 on page 159.
Note: ‖ { f(u)(...) | u:U • u ∈ {} } ≡ ().

B.4 Index

22 Plates are treated as are structures, i.e., not “behaviourised” !

The TUV Lectures, Vienna, Austria, October–November 2022 166 © Dines Bjørner. October 19, 2022: 10:18 am

B.4 Index 167

Concepts:
Action, 162
Behaviour, 162

Definitions, 164
Signature, 163

Channel, 162
Definitions

Behaviour, 164
Endurants, 151
Parts, 151
Perdurants, 161
Signature

Behaviour, 163
State, 162

All Formulas:
< ι318, 157
= ι318, 157
> ι318, 157
© ι322, 158
≥ ι318, 157
≤ ι318, 157
⊖ ι316, 157
⊕ ι316, 157
⊕ ι317, 157
σ ι294, 152
σ ι331, 162
σuid ι296, 153
, ι318, 157
adjacent ι306, 155
Alt ι323, 158
are embedded Routes ι311, 156
attr © ι322, 158
attr Body Flow ι319h, 158
attr Body Leak ι319i, 158
attr In Flow ι319e, 157
attr In Leak ι319f, 158
attr LEN ι321, 158
attr Max Flow ι319j, 158
attr Max In Leak ι319g, 158
attr Max Out Leak ι319m, 158
attr Out Flow ι319k, 158
attr Out Leak ι319l, 158
attr POS ι323, 158
Body Flow ι319h, 157
Body Leak ι319i, 157
ch ι332, 162
collect state ι295, 152
descriptor ι305, 154
embedded Routes ι312, 156
Flow ι315e, 157
Fo ι292, 152
fork ι350, 163
GoL ι314, 156
In Flow ι319e, 157
In Flow≡Out Flow ι329, 161
In Leak ι319f, 157
initialisation ι365–372, 166
is acyclic Route ι308, 155
is non circular PLS ι309, 155
Jo ι292, 152
join ι351, 164
Lat ι323, 158
LEN ι321, 158
Lon ι323, 158
M ι289, 152
Max Flow ι319j, 157
Max In Leak ι319g, 157
Max Out Leak ι319m, 157
MER ι303, 154
mereo U ι303, 154
Mon Flows ι320b, 158
obs GoL ι314, 156
obs M ι289, 152
obs Us ι289, 152
Out Flow ι319k, 157
Out Flow≡In Flow ι329, 161

Out Leak ι319l, 157
Pi ι292, 152
pipe ι347, 163
Pl ι292, 152
PLS ι290, 152
pls ι293, 152
pls ι345, 163
pls ι353, 164
PLS′ ι289, 152
PLSI ι297, 153
POS ι323, 158
PT ι323, 158
Pu ι292, 152
pump ι348, 163
pump ι356, 165
Pump Height ι315b, 157
Pump State ι315c, 157
R ι304, 154
R′ ι304, 154
RD ι305, 154
retr AttrVal ι363, 166
retr U ι362, 166
Route Describability ι305, 154
Routes ι307, 155
Routes of a PLS ι313, 156
Si ι292, 152
sink ι352, 164
Sta12 Metric ι324c, 158
Sta1 Metric ι324a, 158
Sta21 Metric ι324d, 158
Sta2 Metric ι324b, 158
Sta Flows ι320a, 158
U ι289, 152
U ι291, 152
UI ι298, 153
uid PLS ι297, 153
uid U ι298, 153
Unique Endurants ι301, 153
Unique Identification ι298, 153
Unit Sta ι324, 158
Va ι292, 152
valve ι349, 163
valve ι359, 165
Valve State ι315d, 157
We ι292, 152
well ι346, 163
well to sink Routes ι310, 155
WellCap ι315a, 157
wf Mereology ι303, 154
wf Metrics ι325, 159
wf PLS ι290, 152
wf Routes ι309, 155
xtr UIs ι300, 153

Types
Endurant:

Fo ι292a, 152
GoL ι314a, 156
Jo ι292a, 152
M ι289a, 152
Pi ι292a, 152
Pl ι292a, 152
PLS ι290a, 152
PLS′ ι289a, 152
Pu ι292a, 152
Si ι292a, 152
U ι289a, 152
U ι291a, 152
Va ι292a, 152
We ι292a, 152

Unique identifier:
PLSI ι297a, 153
UI ι298a, 153

Mereology:
MER ι303a, 154

Attribute:
© ι322a, 158
Alt ι323a, 158

Body Flow ι319ha, 157
Body Leak ι319ia, 157
Flow ι315ea, 157
In Flow ι319ea, 157
In Leak ι319fa, 157
Lat ι323a, 158
LEN ι321a, 158
Lon ι323a, 158
Max Flow ι319ja, 157
Max In Leak ι319ga, 157
Max Out Leak ι319ma, 157
Mon Flows ι320ba, 158
Out Flow ι319ka, 157
Out Leak ι319la, 157
POS ι323a, 158
PT ι323a, 158
Pump Height ι315ba, 157
Pump State ι315ca, 157
Sta12 Metric ι324ca, 158
Sta1 Metric ι324aa, 158
Sta21 Metric ι324da, 158
Sta2 Metric ι324ba, 158
Sta Flows ι320aa, 158
Unit Sta ι324a, 158
Valve State ι315da, 157
WellCap ι315aa, 157

Other types:
R ι304a, 154
R′ ι304a, 154
RD ι305a, 154

Values:
pls ι293, 152

Functions:
adjacent ι306, 155
collect state ι295, 152
descriptor ι305, 154
embedded Routes ι312, 156
retr AttrVal ι363, 166
retr U ι362, 166
Routes ι307, 155
well to sink Routes ι310, 155
xtr UIs ι300, 153

Operations:
< ι318, 157
= ι318, 157
> ι318, 157
≥ ι318, 157
≤ ι318, 157
⊖ ι316, 157
⊕ ι316, 157
⊕ ι317, 157
, ι318, 157

Observers:
attr © ι322, 158
attr Body Flow ι319h, 158
attr Body Leak ι319i, 158
attr In Flow ι319e, 157
attr In Leak ι319f, 158
attr LEN ι321, 158
attr Max Flow ι319j, 158
attr Max In Leak ι319g, 158
attr Max Out Leak ι319m, 158
attr Out Flow ι319k, 158
attr Out Leak ι319l, 158
attr POS ι323, 158
mereo U ι303, 154
obs GoL ι314, 156
obs M ι289, 152
obs Us ι289, 152
uid PLS ι297, 153
uid U ι298, 153

Predicates:

© Dines Bjørner. October 19, 2022: 10:18 am 167 The TUV Lectures, Vienna, Austria, October–November 2022

168 B Pipelines

are embedded Routes ι311, 156
is acyclic Route ι308, 155

States:
σ ι294, 152
σ ι331, 162
σuid ι296, 153

Axioms:
Route Describability ι305, 154
Unique Identification ι298, 153

Well-formedness:
is non circular PLS ι309, 155
wf Mereology ι303, 154

wf Metrics ι325, 159
wf PLS ι290, 152
wf Routes ι309, 155

Channel:
ch ι332, 162

Behaviour
Signatures:

fork ι350, 163
join ι351, 164
pipe ι347, 163
pls ι345, 163
pump ι348, 163
sink ι352, 164
valve ι349, 163

well ι346, 163
Definitions:

pls ι353, 164
pump ι356, 165
valve ι359, 165

Initialisation:
initialisation ι365–372, 166

Theorems:
Routes of a PLS ι313, 156
Unique Endurants ι301, 153

Laws:
In Flow≡Out Flow ι329, 161
Out Flow≡In Flow ι329, 161

B.5 Illustrations of Pipeline Phenomena

Fig. B.2 The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

Fig. B.3 Pipeline Construction

The TUV Lectures, Vienna, Austria, October–November 2022 168 © Dines Bjørner. October 19, 2022: 10:18 am

B.5 Illustrations of Pipeline Phenomena 169

Fig. B.4 Pipe Segments

Fig. B.5 Valves

Fig. B.6 Oil Pumps

Fig. B.7 Gas Compressors

© Dines Bjørner. October 19, 2022: 10:18 am 169 The TUV Lectures, Vienna, Austria, October–November 2022

170 B Pipelines

Fig. B.8 New and Old Pigs

Fig. B.9 Pig Launcher, Receiver

Fig. B.10 Leftmost: A Well. 2nd from left: a Fork. Rightmost: a Sink

Fig. B.11 A SCADA [Supervisory Control And Data Acquisition] Diagram

The TUV Lectures, Vienna, Austria, October–November 2022 170 © Dines Bjørner. October 19, 2022: 10:18 am

Appendix C

A Raise Specification Language Primer

Contents
C.1 Types and Values . 173

C.1.1 Sort and Type Expressions . 173
C.1.1.1 Atomic Types: Identifier Expressions and Type Values . . . 173
C.1.1.2 Composite Types: Expressions and Type Values 174

C.1.2 Type Definitions . 175
C.1.2.1 Sorts — Abstract Types . 175
C.1.2.2 Concrete Types . 175
C.1.2.3 Subtypes . 176

C.2 The Propositional and Predicate Calculi . 177
C.2.1 Propositions . 177

C.2.1.1 Propositional Expressions . 177
C.2.1.2 Propositional Calculus . 177

C.2.2 Predicates . 178
C.2.2.1 Predicate Expressions . 178
C.2.2.2 Predicate Calculus . 178

C.3 Arithmetics . 179
C.4 Comprehensive Expressions . 179

C.4.1 Set Enumeration and Comprehension . 179
C.4.1.1 Set Enumeration . 179
C.4.1.2 Set Comprehension . 179
C.4.1.3 Cartesian Enumeration . 180

C.4.2 List Enumeration and Comprehension . 180
C.4.2.1 List Enumeration . 180
C.4.2.2 List Comprehension . 180

C.4.3 Map Enumeration and Comprehension . 181
C.4.3.1 Map Enumeration . 181
C.4.3.2 Map Comprehension . 181

C.5 Operations . 182
C.5.1 Set Operations . 182

C.5.1.1 Set Operator Signatures . 182
C.5.1.2 Set Operation Examples . 182
C.5.1.3 Informal Set Operator Explication . 182
C.5.1.4 Set Operator Explications . 183

C.5.2 Cartesian Operations . 184
C.5.3 List Operations . 184

C.5.3.1 List Operator Signatures . 184
C.5.3.2 List Operation Examples . 184
C.5.3.3 Informal List Operator Explication . 185
C.5.3.4 List Operator Explications . 185

C.5.4 Map Operations . 186
C.5.4.1 Map Operator Signatures . 186
C.5.4.2 Map Operation Examples . 186
C.5.4.3 Informal Map Operation Explication . 187
C.5.4.4 Map Operator Explication . 187

171

172 C A Raise Specification Language Primer

C.6 λ-Calculus + Functions . 188
C.6.1 The λ-Calculus Syntax . 188
C.6.2 Free and Bound Variables . 188
C.6.3 Substitution . 188
C.6.4 α-Renaming and β-Reduction . 189
C.6.5 Function Signatures . 189
C.6.6 Function Definitions . 189

C.7 Other Applicative Expressions . 190
C.7.1 Simple let Expressions . 190
C.7.2 Recursive let Expressions . 191
C.7.3 Predicative let Expressions . 191
C.7.4 Pattern and “Wild Card” let Expressions . 191

C.7.4.1 Conditionals . 192
C.7.5 Operator/Operand Expressions . 192

C.8 Imperative Constructs . 192
C.8.1 Statements and State Changes . 193
C.8.2 Variables and Assignment . 193
C.8.3 Statement Sequences and skip . 193
C.8.4 Imperative Conditionals . 194
C.8.5 Iterative Conditionals . 194
C.8.6 Iterative Sequencing . 194

C.9 Process Constructs . 194
C.9.1 Process Channels . 194
C.9.2 Process Composition . 195
C.9.3 Input/Output Events . 195
C.9.4 Process Definitions . 195

C.10 RSL Module Specifications . 196
C.11 Simple RSL Specifications . 196
C.12 RSL+: Extended RSL . 196

C.12.1 Type Names and Type Name Values . 197
C.12.1.1 Type Names . 197
C.12.1.2 Type Name Operations . 197

C.12.2 RSL-Text . 197
C.12.2.1 The RSL-Text Type and Values . 197
C.12.2.2 RSL-Text Operations . 197

C.13 Distributive Clauses . 197
C.13.1 Over Simple Values . 197
C.13.2 Over Processes . 198

I: 23 We present an RSL Primer. Indented text, in slanted font, such as this, presents
informal material and examples. Non-indented text, in roman font, presents narrative
and formal explanation of RSL constructs.

This RSL Primer omits treatment of a number of language constructs, notably the RSL
module concepts of schemes, classes and objects. Although we do cover the imperative
language construct of [declaration of] variables and, hence, assignment, we shall omit
treatment of structured imperative constructs like for ..., do s while b, while b do s
loops.

Section C.12 on page 196 introduces additional language constructs, thereby motiva-
tion the + in the RSL+ name24

23 The letter I shall designate begin of informal text.
24 The symbol shall designate end-of-informal text.

The TUV Lectures, Vienna, Austria, October–November 2022 172 © Dines Bjørner. October 19, 2022: 10:18 am

C.1 Types and Values 173

C.1 Types and Values

I: Types are, in general, set-like structures25 of things, i.e., values, having common
characteristics.

A bunch of zero, one or more apples (type apples) may thus form a [sub]set of type
Belle de Boskoop apples. A bunch of zero, one or more pears (type pears) may thus
form a [sub]set of type Concorde pears. A union of zero, one or more of these apples
and pears then form a [sub]set of entities of type fruits.

C.1.1 Sort and Type Expressions

Sort and type expressions are expressions whose values are types, that is, possibly infinite
set-like structures of values (of “that” type).

C.1.1.1 Atomic Types: Identifier Expressions and Type Values

Atomic types have (atomic) values. That is, values which we consider to have no proper
constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.
RSL has a number of [so-called] built-in atomic types. They are expressed in terms of

literal identifiers. These are the Booleans, integers, Natural numbers, Reals, Characters, and
Texts. Texts are free-form texts and are more general than just texts of RSL-like formulas.
RSL-Text’s will be introduced in Sect. C.12 on page 196.

We shall not need the base types Characters, nor the general type Texts for domain
modelling in this primer. They will be listed below, but not mentioned further.

The base types are:

Basic Types

type
[1] Bool
[2] Int
[3] Nat
[4] Real
[5] Char
[6] Text

1 The Boolean type of truth values false and true.
2 The integer type on integers ..., –2, –1, 0, 1, 2,
3 The natural number type of positive integer values 0, 1, 2, ...
4 The real number type of real values, i.e., values whose numerals can be written as an

integer, followed by a period (“.”), followed by a natural number (the fraction).
5 The character type of character values

′′a′′, ′′bbb′′, ...
6 The text type of character string values

′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

25 We shall not, in this primer, go into details as to the mathematics of types.

© Dines Bjørner. October 19, 2022: 10:18 am 173 The TUV Lectures, Vienna, Austria, October–November 2022

174 C A Raise Specification Language Primer

C.1.1.2 Composite Types: Expressions and Type Values

Composite types have composite values. That is, values which we consider to have proper
constituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products,
lists, maps, etc.

Let A, B and C be any type names or type expressions, then these are the composite types,
hence, type expressions:

Composite Type Expressions

[7] A-set
[8] A-infset
[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B
[13] A→ B
[14] A

∼
→ B

[15] A | B | ... | C
[16] mk id(sel a:A,...,sel b:B)
[17] sel a:A ... sel b:B

The following are generic type expressions:

7 The set type of finite cardinality set values.
8 The set type of infinite and finite cardinality set values.
9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.
11 The list type of infinite and finite length list values.
12 The map type of finite definition set map values.
13 The function type of total function values.
14 The function type of partial function values.
15 The postulated disjoint union of types A, B, . . . , and C.
16 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values

of respective types. The distinct identifiers sel a, etc., designate selector functions.
17 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of

respective types. The distinct identifiers sel a, etc., designate selector functions.

Section C.12 on page 196 introduces the extended RSL concepts of type name values and the
type, T, of type names.

The TUV Lectures, Vienna, Austria, October–November 2022 174 © Dines Bjørner. October 19, 2022: 10:18 am

C.1 Types and Values 175

C.1.2 Type Definitions

C.1.2.1 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type
A, B, ..., C

C.1.2.2 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

Type Definition

type
A = Type expr

RSL Example: Sets. Narrative: H stand for the domain type of street intersections – we
shall call then hubs, and let L stand for the domain type of segments of streets between
immediately neighboring hubs – we shall call then links. Then Hs and Ls are to designate the
types of finite sets of zero, one or more hubs, respectively links. Formalisation:

type H, L, Hs=H-set, Ls=L-set •

RSL Example: Cartesians. Narrative: Let RN stand for the domain type of road nets
consisting of hub aggregates, HA, and link aggregates, LA. Hub and link aggregates can be
observed from road nets, and hub sets and link sets can be observed from hub, respectively
link aggregates. Formalisation:

type RN = HA×LA, Hs, Ls
value obs HA: RN→HA, obs LA: RN− LA, obs Hs: HA→Hs, obs Ls: LA→Ls

Observer functions, obs ... are not further defined – beyond their signatures. They will
(subsequently) be defined through axioms over their results•
Some schematic type definitions are:

Variety of Type Definitions

[18] Type name = Type expr /∗ without | s or subtypes ∗/
[19] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[20] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[21] Type name :: sel a:Type name a ... sel z:Type name z
[22] Type name = {| v:Type name′ • P(v) |}

© Dines Bjørner. October 19, 2022: 10:18 am 175 The TUV Lectures, Vienna, Austria, October–November 2022

176 C A Raise Specification Language Primer

where a form of [19–20] is provided by combining the types:

Record Types

[23] Type name = A | B | ... | Z
[24] A == mk id 1(s a1:A 1,...,s ai:A i)
[25] B == mk id 2(s b1:B 1,...,s bj:B j)
[26] ...
[27] Z == mk id n(s z1:Z 1,...,s zk:Z k)

Of these we shall almost exclusively make use of [23–27].
Disjoint Types. Narrative: A pipeline consists of a finite set of zero, one or more

[interconnected]26 pipe units. Pipe units are either wells, or are pumps, or are valves, or are
joins, or are forks, or are sinks. Formalisation:

type PL = P-set, P ==WU|PU|VA|JO|FO|SI, Wu,Pu,Vu,Ju,Fu,Su
WU::mkWU(swu:Wu), PU::mkPU(spu:Pu), VA::mkVU(svu:Vu),
JO::mkJu(sju:Ju), FO::mkFu(sfu:Fu), SI::mkSi(ssu:Su)

where we leave types Wu, Pu, Vu, Ju, Fu and Su further undefined •
Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and
due to the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d)
for b:B, c:D, d:D.

C.1.2.3 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
The set of values b which have type B and which satisfy the predicateP, constitute the subtype
A:

Subtypes

type
A = {| b:B • P(b) |}

Subtype. Narrative: The subtype of even natural numbers.
Formalisation: type ENat = {| en | en:Nat • is even natural number(en) |} •

The TUV Lectures, Vienna, Austria, October–November 2022 176 © Dines Bjørner. October 19, 2022: 10:18 am

C.2 The Propositional and Predicate Calculi 177

C.2 The Propositional and Predicate Calculi

C.2.1 Propositions

I: In logic, a proposition is the meaning of a declarative sentence. [A declarative sen-
tence is a type of sentence that makes a statement]

C.2.1.1 Propositional Expressions

I: Propositional expressions, informally speaking, are quantifier-free expressions hav-
ing truth (or chaos) values. ∀, ∃ and ∃ ! are quantifiers, see below.

Below, we will first treat propositional expressions all of whose identifiers denote truth
values. As we progress, in sections on arithmetic, sets, list, maps, etc., we shall extend
the range of propositional expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or
false [or chaos]). Then:

Propositional Expressions

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a,b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, =, , and � are Boolean
connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal,
not equal and always.

C.2.1.2 Propositional Calculus

I: Propositional calculus is a branch of logic. It is also called propositional logic, state-
ment logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals
with propositions (which can be true or false) and relations between propositions, in-
cluding the construction of arguments based on them. Compound propositions are
formed by connecting propositions by logical connectives. Propositions that contain no
logical connectives are called atomic propositions [Wikipedia]

A simple two-value Boolean logic can be defined as follows:

type
Bool

value
true, false
∼: Bool→ Bool
∧, ∨,⇒, =, ,, ≡: Bool × Bool→ Bool

axiom
∀ b,b′:Bool •

∼b ≡ if b then false else true end
b ∧ b′ ≡ if b then b′ else false end
b ∨ b′ ≡ if b then true else b′ end
b⇒ b′ ≡ if b then b′ else true end

© Dines Bjørner. October 19, 2022: 10:18 am 177 The TUV Lectures, Vienna, Austria, October–November 2022

178 C A Raise Specification Language Primer

b = b′ ≡ if (b∧b′)∨(∼b∧∼b′) then true else false end
(b , b′) ≡ ∼(b = b′)
(b ≡ b′) ≡ (b = b′)

We shall, however, make use of a three-value Boolean logic. The model-theory explanation
of the meaning of propositional expressions is now given in terms of the truth tables for the
logic connectives:

∨,∧, and⇒ Syntactic Truth Tables

∨ true false chaos

true true true true

false true false chaos

chaos chaos chaos chaos

∧ true false chaos

true true false chaos

false false false false

chaos chaos chaos chaos

⇒ true false chaos

true true false chaos

false true true true

chaos chaos chaos chaos

The two-value logic defined earlier ‘transpires’ from the true,false columns and rows of the
above truth tables.

C.2.2 Predicates

I: Predicates are mathematical assertions that contains variables, sometimes referred
to as predicate variables, and may be true or false depending on those variables’ value
or values27

C.2.2.1 Predicate Expressions

Let x, y, ..., z (or term expressions) designate non-Boolean values, and let P(x),Q(y) and R(z)
be propositional or predicate expressions, then:

Simple Predicate Expressions

[28] ∀x:X • P(x)
[29] ∃y:Y • Q(y)
[30] ∃!z:Z • R(z)

are quantified, i.e., predicate expressions. ∀, ∃ and ∃ ! are the quantifiers.

C.2.2.2 Predicate Calculus

They are “read” as:
[28] For all x (values in type X) the predicate P(x) holds – if that is not the case the

expression yields truth value false.
[29] There exists (at least) one y (value in type Y) such that the predicate Q(y) holds – if

that is not the case the expression yields truth value false.
[30] There exists a unique z (value in type Z) such that the predicate R(z) holds – if that is

not the case the expression yields truth value false.

27 https://calcworkshop.com/logic/predicate-logic/, and: predicate logic, first-order logic or quantified logic is
a formal language in which propositions are expressed in terms of predicates, variables and quantifiers. It is
different from propositional logic which lacks quantifiers https://brilliant.org/wiki/predicate-logic/.

The TUV Lectures, Vienna, Austria, October–November 2022 178 © Dines Bjørner. October 19, 2022: 10:18 am

C.4 Comprehensive Expressions 179

[28–30] The predicates P(x), Q(y) or R(z) may yield chaos in which case the whole ex-
pression yields chaos.

C.3 Arithmetics

I:RSLoffers the usual set of arithmetic operators. From these the usual kind of arithmetic
expressions can be formed.

Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,,,≥,> (Nat|Int|Real)→ (Nat|Int|Real)

C.4 Comprehensive Expressions

I: Comprehensive expressions are common in mathematics texts. They capture prop-
erties conveniently abstractly

C.4.1 Set Enumeration and Comprehension

C.4.1.1 Set Enumeration

Let the below a’s denote values of type A:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

C.4.1.2 Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The
expression “builds” the set of values satisfying the given predicate. It is abstract in the sense
that it does not do so by following a concrete algorithm.

Set Comprehension

type
A, B

© Dines Bjørner. October 19, 2022: 10:18 am 179 The TUV Lectures, Vienna, Austria, October–November 2022

180 C A Raise Specification Language Primer

P = A→ Bool

Q = A
∼
→ B

value
comprehend: A-infset × P × Q→ B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

C.4.1.3 Cartesian Enumeration

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions
are simple Cartesian enumerations:

Cartesian Enumerations

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)

C.4.2 List Enumeration and Comprehension

C.4.2.1 List Enumeration

Let a range over values of type A, then the below expressions are simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the
set of integers from the value of ei to and including the value of e j. If the latter is smaller than
the former, then the list is empty.

C.4.2.2 List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A→ Bool, Q = A
∼
→ B

value

The TUV Lectures, Vienna, Austria, October–November 2022 180 © Dines Bjørner. October 19, 2022: 10:18 am

C.4 Comprehensive Expressions 181

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡ 〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

C.4.3 Map Enumeration and Comprehension

C.4.3.1 Map Enumeration

Let (possibly indexed) u and v range over values of type T1 and T2, respectively, then the
below expressions are simple map enumerations:

Map Enumerations

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u7→v], ..., [u17→v1,u27→v2,...,un7→vn] ∀ ∈ M

C.4.3.2 Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type
U, V, X, Y
M = U →m V
F = U

∼
→ X

G = V
∼
→ Y

P = U→ Bool
value

comprehend: M×F×G×P→ (X →m Y)
comprehend(m,F,G,P) ≡ [F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

© Dines Bjørner. October 19, 2022: 10:18 am 181 The TUV Lectures, Vienna, Austria, October–November 2022

182 C A Raise Specification Language Primer

C.5 Operations

C.5.1 Set Operations

C.5.1.1 Set Operator Signatures

Set Operator Signatures

value
18 ∈: A × A-infset→ Bool
19 <: A × A-infset→ Bool
20 ∪: A-infset × A-infset→ A-infset
21 ∪: (A-infset)-infset→ A-infset
22 ∩: A-infset × A-infset→ A-infset
23 ∩: (A-infset)-infset→ A-infset
24 \: A-infset × A-infset→ A-infset
25 ⊂: A-infset × A-infset→ Bool
26 ⊆: A-infset × A-infset→ Bool
27 =: A-infset × A-infset→ Bool
28 ,: A-infset × A-infset→ Bool

29 card: A-infset
∼
→ Nat

C.5.1.2 Set Operation Examples

Set Operation Examples

examples
a ∈ {a,b,c}
a < {}, a < {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} , {a,b}
card {} = 0, card {a,b,c} = 3

C.5.1.3 Informal Set Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication
of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

The TUV Lectures, Vienna, Austria, October–November 2022 182 © Dines Bjørner. October 19, 2022: 10:18 am

C.5 Operations 183

18 ∈: The membership operator expresses that an element is a member of a set.
19 <: The nonmembership operator expresses that an element is not a member of a set.
20 ∪: The infix union operator. When applied to two sets, the operator gives the set whose

members are in either or both of the two operand sets.
21 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives

the set whose members are in some of the operand sets.
22 ∩: The infix intersection operator. When applied to two sets, the operator gives the set

whose members are in both of the two operand sets.
23 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator

gives the set whose members are in some of the operand sets.
24 \: The set complement (or set subtraction) operator. When applied to two sets, the operator

gives the set whose members are those of the left operand set which are not in the right
operand set.

25 ⊆: The proper subset operator expresses that all members of the left operand set are also
in the right operand set.

26 ⊂: The proper subset operator expresses that all members of the left operand set are also
in the right operand set, and that the two sets are not identical.

27 =: The equal operator expresses that the two operand sets are identical.
28 ,: The nonequal operator expresses that the two operand sets are not identical.
29 card: The cardinality operator gives the number of elements in a finite set.

C.5.1.4 Set Operator Explications

The set operations can be “equated” as follows:

Set Operator Explications

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a < s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a < s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ , s′′ ≡ s′ ∩ s′′ , {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

© Dines Bjørner. October 19, 2022: 10:18 am 183 The TUV Lectures, Vienna, Austria, October–November 2022

184 C A Raise Specification Language Primer

C.5.2 Cartesian Operations

Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

C.5.3 List Operations

C.5.3.1 List Operator Signatures

List Operator Signatures

value

hd: Aω
∼
→ A

tl: Aω
∼
→ Aω

len: Aω
∼
→ Nat

inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω

=: Aω × Aω → Bool
,: Aω × Aω → Bool

C.5.3.2 List Operation Examples

List Operation Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai

The TUV Lectures, Vienna, Austria, October–November 2022 184 © Dines Bjørner. October 19, 2022: 10:18 am

C.5 Operations 185

〈a,b,c〉̂ 〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 , 〈a,b,d〉

C.5.3.3 Informal List Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication
of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty

lists, this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in a list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of

elements larger than or equal to i, gives the i th element of the list.
• :̂ Concatenates two operand lists into one. The elements of the left operand list are

followed by the elements of the right. The order with respect to each list is maintained.
• =: The equal operator expresses that the two operand lists are identical.
• ,: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

C.5.3.4 List Operator Explications

The following is not a definition of RSL semantics. In RSL formulas we present an explication
of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.

List Operator Explications

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true→ if q = 〈〉 then 0 else 1 + len tl q end,
false→ chaos end

inds q ≡
case is finite list(q) of

true→ { i | i:Nat • 1 ≤ i ≤ len q },
false→ { i | i:Nat • i,0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q,〈〉

© Dines Bjørner. October 19, 2022: 10:18 am 185 The TUV Lectures, Vienna, Austria, October–November 2022

186 C A Raise Specification Language Primer

then let a:A,q′:Q • q=〈a〉̂ q′ in a end
else chaos end

else q(i−1) end

fq̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq,chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′⇒ iq′(i) = iq′′(i)

iq′ , iq′′ ≡ ∼(iq′ = iq′′)

C.5.4 Map Operations

C.5.4.1 Map Operator Signatures

Map Operator Signatures

value

[30] ·(·): M→ A
∼
→ B

[31] dom: M→ A-infset [domain of map]
[32] rng: M→ B-infset [range of map]
[33] †: M × M→ M [override extension]
[34] ∪: M × M→ M [merge ∪]
[35] \: M × A-infset→ M [restriction by]
[36] /: M × A-infset→ M [restriction to]
[37] =,,: M × M→ Bool
[38] ◦: (A →m B) × (B →m C)→ (A →m C) [composition]

C.5.4.2 Map Operation Examples

Map Operation Examples

value
[30] m(a) = b
[31] dom [a17→b1,a27→b2,...,an7→bn] = {a1,a2,...,an}
[32] rng [a17→b1,a27→b2,...,an7→bn] = {b1,b2,...,bn}
[33] [a7→b,a′ 7→b′,a′′7→b′′] † [a′ 7→b′′,a′′7→b′] = [a7→b,a′ 7→b′′,a′′7→b′]
[34] [a7→b,a′ 7→b′,a′′7→b′′] ∪ [a′′′ 7→b′′′] = [a7→b,a′ 7→b′,a′′7→b′′,a′′′ 7→b′′′]
[35] [a7→b,a′ 7→b′,a′′7→b′′]\{a} = [a′ 7→b′,a′′7→b′′]
[37] [a7→b,a′ 7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]
[38] [a7→b,a′ 7→b′] ◦ [b7→c,b′7→c′,b′′7→c′′] = [a7→c,a′7→c′]

The TUV Lectures, Vienna, Austria, October–November 2022 186 © Dines Bjørner. October 19, 2022: 10:18 am

C.5 Operations 187

C.5.4.3 Informal Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a map.
• rng: Range/Image Set gives the set of values which are mapped to in a map.
• †: Override/Extend. When applied to two operand maps, it gives the map which is like an

override of the left operand map by all or some “pairings” of the right operand map.
• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.
• \: Restriction. When applied to two operand maps, it gives the map which is a restriction

of the left operand map to the elements that are not in the right operand set.
• /: Restriction. When applied to two operand maps, it gives the map which is a restriction

of the left operand map to the elements of the right operand set.
• =: The equal operator expresses that the two operand maps are identical.
• ,: The nonequal operator expresses that the two operand maps are not identical.
• ◦: Composition. When applied to two operand maps, it gives the map from definition set

elements of the left operand map, m1, to the range elements of the right operand map, m2,
such that if a is in the definition set of m1 and maps into b, and if b is in the definition set
of m2 and maps into c, then a, in the composition, maps into c.

C.5.4.4 Map Operator Explication

The following is not a definition of RSL semantics. In RSL formulas we present an explication
of RSL operators. Read, what appears as definitions, ≡, as [a kind of] identities.
The map operations can also be defined as follows:

Map Operator Explications

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1⇒ m1(a) = m2(a)

m1 , m2 ≡ ∼(m1 = m2)

m◦n ≡
[a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

© Dines Bjørner. October 19, 2022: 10:18 am 187 The TUV Lectures, Vienna, Austria, October–November 2022

188 C A Raise Specification Language Primer

C.6 λ-Calculus + Functions

I: The λ-Calculus is a foundation for the abstract specification language that RSL is

C.6.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

C.6.2 Free and Bound Variables

Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x , y and x is free in e.
• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

C.6.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a, x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

The TUV Lectures, Vienna, Austria, October–November 2022 188 © Dines Bjørner. October 19, 2022: 10:18 am

C.6 λ-Calculus + Functions 189

• subst([N/x](λx•P)) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x,y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y,x and y is free in N and x is free in P
(where z is not free in (N P)).

C.6.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M).
We can rename the formal parameter of a λ-function expression provided that no free
variables of its body M thereby become bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free
variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

C.6.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type
A, B, C

value
obs B: A→ B,
obs C: A→ C,
gen A: B×C→ A

C.6.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value
f: Arguments→ Result
f(args) ≡ DValueExpr

© Dines Bjørner. October 19, 2022: 10:18 am 189 The TUV Lectures, Vienna, Austria, October–November 2022

190 C A Raise Specification Language Primer

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

Implicit Function Definitions

value
f: Arguments→ Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments.

Partial functions should be assisted by preconditions stating the criteria for arguments to be
meaningful to the function.

C.7 Other Applicative Expressions

I: RSL offers the usual collection of applicative constructs that functional programming
languages (Standard ML [122, 122] or F# [91]) offer

C.7.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

The TUV Lectures, Vienna, Austria, October–November 2022 190 © Dines Bjørner. October 19, 2022: 10:18 am

C.7 Other Applicative Expressions 191

C.7.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

C.7.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in
the body B(a).

C.7.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ ℓ = list in ... end
let 〈a, ,b〉̂ ℓ = list in ... end

let [a7→b] ∪ m = map in ... end
let [a7→b,] ∪ m = map in ... end

© Dines Bjørner. October 19, 2022: 10:18 am 191 The TUV Lectures, Vienna, Austria, October–November 2022

192 C A Raise Specification Language Primer

C.7.4.1 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1→ expr 1,
choice pattern 2→ expr 2,
...
choice pattern n or wild card→ expr n

end

C.7.5 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | , | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | < | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ |̂ | † | ◦

〈Suffix Op〉 ::= !

C.8 Imperative Constructs

I: RSL offers the usual collection of imperative constructs that imperative programming
languages (Java [86, 144] or Oberon (!) [155]) offer

The TUV Lectures, Vienna, Austria, October–November 2022 192 © Dines Bjørner. October 19, 2022: 10:18 am

C.8 Imperative Constructs 193

C.8.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-
applicative constructs which, through stages of refinements, are turned into concrete and
imperative constructs. Imperative constructs are thus inevitable in RSL.

Statements and State Change

Unit
value

stmt: Unit→ Unit
stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit→ Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

C.8.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

C.8.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value
or side-effect.

Statement Sequences and skip

2. skip
3. stm 1;stm 2;...;stm n

© Dines Bjørner. October 19, 2022: 10:18 am 193 The TUV Lectures, Vienna, Austria, October–November 2022

194 C A Raise Specification Language Primer

C.8.4 Imperative Conditionals

Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

C.8.5 Iterative Conditionals

Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

C.8.6 Iterative Sequencing

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

C.9 Process Constructs

I: RSL offers several of the constructs that CS [100] offers

C.9.1 Process Channels

As for channels we deviate from common RSL [84] in that we directly declare channels – and
not via common RSL objects etc.

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes,
then:

Process Channels

channel c:A
channel { k[i]:B • i:Idx }
channel { k[i,j,...,k]:B • i:Idx,j:Jdx,...,k:Kdx }

The TUV Lectures, Vienna, Austria, October–November 2022 194 © Dines Bjørner. October 19, 2022: 10:18 am

C.9 Process Constructs 195

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values
of the designated types (A and B).

C.9.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness
to engage in input and/or output events, thereby communicating over declared channels. Let
P() and Q stand for process expressions, then:

Process Composition

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two pro-
cesses: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two
processes are forced to communicate only with one another, until one of them terminates.

C.9.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively
“writes” an output.

C.9.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must some-
how express, in their signature, via which channels they wish to engage in input and output
events.

Process Definitions

value
P: Unit→ in c out k[i]
Unit
Q: i:KIdx→ out c in k[i] Unit

© Dines Bjørner. October 19, 2022: 10:18 am 195 The TUV Lectures, Vienna, Austria, October–November 2022

196 C A Raise Specification Language Primer

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

C.10 RSL Module Specifications

We shall not include coverage nor use of the RSL module concepts of schemes, classes and
objects.

C.11 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemas, classes, and objects, as
is often done in RSL. An RSL specification is simply a sequence of one or more types, values
(including functions), variables, channels and axioms:

Simple RSL Specifications

type
...

variable
...

channel
...

value
...

axiom
...

C.12 RSL+: Extended RSL

Section C.1 on page 173 covered standard RSL types. To them we now add two new types:
Type names and RSL-Text.

We refer to Sect. 4.5.1.2.2 (the An RSL Extension box) Page 44 for a first introduction to
extended RSL.

For uses of type name type and type name values and for the “generation” of RSL-Text
to Sect. 4.5.1.2.2.1 (the determine Cartesian parts function), Sect. 2 (the calc Cartesian -
parts description prompt), Sect. 4.5.1.2.3.1 (the determine same sort parts set prompt),
Sect. 4.5.1.2.3.2 (the determine alternative sorts part set function), Sect. 4.5.1.2.3.3 (the
calc single sort parts sort description prompt), and Sect. 4.5.1.2.3.4 (the calc alterna-
tive sort parts sort prompt).

The TUV Lectures, Vienna, Austria, October–November 2022 196 © Dines Bjørner. October 19, 2022: 10:18 am

C.13 Distributive Clauses 197

C.12.1 Type Names and Type Name Values

C.12.1.1 Type Names

• Let T be a type name.
• Then ηT is a type name value.
• And ηT is the type of type names.

C.12.1.2 Type Name Operations

• η can be considered an operator.

⋄⋄ It (prefix) applies, then, to type (T) identifiers and yields the name of that type.
⋄⋄ Two type names, nTi, nT j, can be compared for equality: nTi = nT j iff i = j.

• It, vice-versa, suffix applies to type name (nT) identifiers and yields the name, T, of that
type: nTη = T.

C.12.2 RSL-Text

C.12.2.1 The RSL-Text Type and Values

• RSL-Text is the type name for ordinary, non-extended RSL texts.

We shall not here give a syntax for ordinary, non-extended RSL texts – but refer to [84].

C.12.2.2 RSL-Text Operations

• RSL-Texts can be compared and concatenated:

⋄⋄ rsl-texta=rsl-textb
⋄⋄ rsl-textâ rsl-textb

Thêoperator thus also applies, besides, lists (tuples), to RSL texts – treating RSL texts as (if
they were) lists of characters.

C.13 Distributive Clauses

We clarify:

C.13.1 Over Simple Values

⊕ { a | a:A • a ∈ {a 1,a 2,...,a n} } =
if n>0 then a 1⊕a 1⊕...⊕a n else

case ⊕ of
+→ 0, − → 0, ∗ → 1, /→ chaos, ∪ → {}, ∩ → {}, ...

© Dines Bjørner. October 19, 2022: 10:18 am 197 The TUV Lectures, Vienna, Austria, October–November 2022

198 C A Raise Specification Language Primer

end end

(f 1,f 2,...,f n)(a) ≡ if n>0 then (f 1(a),f 2(a),...,f n(a)) else chaos end

C.13.2 Over Processes

‖ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)‖p(i 2)‖...‖p(i n) else () end
⌈⌉ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)⌈⌉p(i 2)⌈⌉...⌈⌉p(i n) else () end
⌈⌉⌊⌋ { p(i) | i:I • i ∈ {i 1,i 2,...,i n} } ≡ if n>0 then p(i 1)⌈⌉⌊⌋p(i 2)⌈⌉⌊⌋...⌈⌉⌊⌋p(i n) else () end

The TUV Lectures, Vienna, Austria, October–November 2022 198 © Dines Bjørner. October 19, 2022: 10:18 am

Appendix D

Indexes

Contents
D.1 Definitions . 199
D.2 Concepts . 201
D.3 Method . 204
D.4 Symbols . 204
D.5 Examples . 204
D.6 Analysis Predicate Prompts . 206
D.7 Analysis Function Prompts . 206
D.8 Description Prompts . 206
D.9 Attribute Categories . 206
D.10 RSL Symbols . 207

D.1 Definitions

action, 30
actor, 29
analysis

domain, 30
function, 28
predicate, 28
prompt, 28

assertion, 12
empirical, 14

asymmetric
relation, 15

atomic
type, 139

attribute, 28

basic
type, 140

expression, 140
behaviour, 30

Cartesian, 141

channel, 30
composite

type, 140
expression, 140

declarative sentence, 142
description

domain, 31
prompt, 29

discrete
endurant, 25

disjoint
types, 142

domain, 24
analysis, 30
description, 31
requirements, 110

empirical
assertion, 14
knowledge, 13

199

200 D Indexes

endurant, 24
discrete, 25
fluid, 26
solid, 25

entity, 24
event, 30
existential

quantifier, 16
external quality, 25

fluid
endurant, 26

identification
unique, 15

identifier
unique, 15

identity
unique, 28

interface
requirements, 110

internal quality, 27
intransitive

relation, 15

knowledge
empirical, 13

machine, 110
requirements, 110

manifest part, 59
mereology, 28
modality

necessity, 13
possibility, 13

necessity
modality, 13

number, 16

object, 17
primary, 17

part
manifest, 59

parts, 26
perdurant, 25
phenomenon, 24
philosophy, 7
possibility

modality, 13
primary

object, 17
principle, iv
procedure, iv
proposition, 142
propositional

calculus, 143
expression, 143

quantifier
existential, 16
universal, 16

relation
asymmetric, 15
intransitive, 15
symmetric, 15
transitive, 15

requirements, 110
determination, 110
domain, 110
extension, 110
fitting, 110
instantiation, 110
interface, 110
machine, 110
projection, 110

sets, 141
solid

endurant, 25
sort

expression, 139
state, 29
structure, 59
subtype, 142
symmetric

relation, 15

technique, iv
tool, iv
transitive

relation, 15
type

expression, 139

unique
identification, 15
identifier, 15
identity, 28

universal
quantifier, 16

The TUV Lectures, Vienna, Austria, October–November 2022 200 © Dines Bjørner. October 19, 2022: 10:18 am

D.2 Concepts 201

D.2 Concepts

acceleration, 19
action, 30
actor, 29
addition

arithmetic operator, 16
of time and time intervals, 18
of time intervals, 18

after
temporal, 18

analysis
domain, 30
function, 28
predicate, 28
prompt, 28

animal, 20, 21
animals, 21
arithmetic operator

addition, 16
division, 16
multiplication, 16
subtraction, 16

assertion, 12
empirical, 14

asymmetric
relation, 15

atomic
type, 139

attribute, 28

basic
type, 140

expression, 140
before

temporal, 18
behaviour, 30

signature, 93
biological science, 21
biology, 21
body

function definition, 93

causality
of purpose, 21
principle, 19

cause, 18
channel, 30
composite

type, 140
expression, 140

conjunction, 12
consciousness

level, 21

declarative sentence, 142
deduction

transcendental, 14–16
description

domain, 31
prompt, 29

difference, 15
direction, 17
discrete

endurant, 25
disjunction, 12
distance, 17
division

arithmetic operator, 16
domain, 24

analysis, 30
description, 31

dynamics, 19

empirical
assertion, 14
knowledge, 13

endurant, 24
discrete, 25
fluid, 26
solid, 25

entity, 17, 24
equality

relational operator, 16
equality, =, 16
event, 30
exchange

of substance, 21
existential

quantifier, 16
experience, 21
expression

sort, 139
type, 139

extension, 17
external quality, 25

feeling, 21
fluid

endurant, 26

© Dines Bjørner. October 19, 2022: 10:18 am 201 The TUV Lectures, Vienna, Austria, October–November 2022

202 D Indexes

force, 19
form

spatial, 17
function

definition body, 93

genome, 21
gravitation

universal, 20

human, 20

identification
unique, 15

identifier
unique, 15

representation, 15
identity, 15

unique, 28
implication, 12
in-between

temporal, 18
incentive, 21
inequality

relational operator, 16
inequality, ,, 16
instinct, 21
internal quality, 27
intransitive

relation, 15

kinematics, 19
knowledge, 22

empirical, 13

language, 21
larger than or equal

relational operator, 16
larger than,

relational operator, 16
learn, 21
level

of consciousness, 21
line

spatial, 17
living species, 20, 21

mass, 20
meaning, 21
mereology, 28
metaphysics, 7–8
method, 24
modality, 13

necessity, 13
possibility, 13

momentum, 19
movement, 19

organs, 21
multiplication

arithmetic operator, 16

necessity
modality, 13

negation, 12
neuron, 21
Newton’s Law

Number 1, 19
Number 2, 19, 20
Number 3, 19, 20

number, 16
theory, 16

object, 17
primary, 17

organs
of movement, 21
sensory, 21

parts, 26
perdurant, 25
phenomenon, 24
philosophy, 7

Sørlander’s , 7–22
plant, 20, 21
point

spatial, 17
possibility

modality, 13
of self-awareness, 10
of truth, 11

predicate, 12
primary

object, 17
principle, 24

of causality, 19
of contradiction, 11

procedure, 24
proper subset, ⊂, 16
proposition, 12, 142
propositional

calculus, 143
expression, 143

purpose
causality, 21

quantifier, 16, 143

The TUV Lectures, Vienna, Austria, October–November 2022 202 © Dines Bjørner. October 19, 2022: 10:18 am

D.2 Concepts 203

existential, 16
universal, 16

rational thinking, 10
reasoning, 10
relation, 15

asymmetric, 15
intransitive, 15
symmetric, 15
transitive, 15

relational operator
equality, 16
inequality, 16
larger than or equal, 16
larger than,, 16
smaller than or equal, 16
smaller than,, 16

representation
unique

identifier, 15
resistance, 20
responsibility, 22

science
of biology, 21

sense organs, 21
set, 16

cardinality, card, 16
intersection, ∩, 16
membership, ∈, 16
subtraction, \, 16
union, ∪, 16

sign language, 21
signature

behaviour, 93
smaller than or equal

relational operator, 16
smaller than,

relational operator, 16
social instincts, 21
solid

endurant, 25
sort

expression, 139
space, 17
spatial

form, 17
line, 17
point, 17
surface, 17

state, 18, 29
change, 18

subset, ⊆, 16
substance exchange, 21
subtraction

arithmetic operator, 16
of time intervals, 18
of time intervals from times, 18

surface
spatial, 17

symmetric
relation, 15

technique, 24
temporal

after, 18
before, 18
in-between, 18

the implicit meaning theory, 11
The Law of Inertia, 19
theory

number, 16
the implicit meaning, 11

time
interval, 18

time, 18
tool, 24
transcendental

deduction, 9–10, 14–16
transitive

relation, 15
type, 139

atomic, 139
basic, 140

expression, 140
composite, 140

expression, 140
expression, 139

unique
identification, 15
identifier, 15

representation, 15
identity, 28

universal
gravitation, 20
quantifier, 16

value, 139
velocity, 19

© Dines Bjørner. October 19, 2022: 10:18 am 203 The TUV Lectures, Vienna, Austria, October–November 2022

204 D Indexes

D.3 Method

Note: We have yet to index many more method principles, procedures, techniques and tools.

method
principle

1. From the “Overall” to The Details,
36

2. Justifying Analysis along Philo-
sophical Lines, 37

3. Separation of Endurants and Perdu-
rants, 37

4. Separation of Endurants and Perdu-
rants, 39

5. Abstraction, I, 39
6. Pedantic Steps of Development, 48
7. Domain State, 53

procedure
1. External Quality Analysis & De-

scription First, 51
2. discover sorts, 55
3. Sequential Analysis & Description

of Internal Qualities, 59
technique

1. Taxonomy, 49
tool

1. is entity, 36
10. determine Cartesian parts, 43

11. calc Cartesian parts, 43

12. is single sort set, 45

13. is alternative sorts set, 45

14. determine same sort part set, 45
15. determine alternative sorts part

set, 46

16. calculate single sort parts sort,
46

17. calculate alternative sort part
sorts, 47

18. is living species, 50

19. is plant, 50

2. is endurant, 38

20. is animal, 51
21. is human, 51

22. calc parts, 53

3. is perdurant, 38

4. is solid, 39

5. is fluid, 40

6. is part, 40

7. is atomic, 41

8. is compound, 41
9. is Cartesian, 42

D.4 Symbols

⇒, implication (if then), 12
∨, disjunction (or), 12
∧, conjunction (and), 12
∼, negation (not), 12
− subtraction, 16
= equality, 16
>larger than, 16
>smaller than, 16
∗multiplication, 16
∩ set intersection, 16
∪ set union, 16

÷ division, 16
≥ larger than or equal, 16
∈ set membership, 16
≤ smaller than or equal, 16
, inequality, 16
\ set subtraction, 16
⊂ proper subset, 16
⊆ subset, 16
+ addition, 16
= equality, 16
card set cardinality, 16

D.5 Examples

The TUV Lectures, Vienna, Austria, October–November 2022 204 © Dines Bjørner. October 19, 2022: 10:18 am

D.5 Examples 205

A Road System State, 31
A Road Transport Domain

Composite, 46
A Road Transport System Domain: Carte-

sians, 46
A Rough Sketch Domain Description, 37
Alternative Rail Units, 49
Analysis Functions, 31
Analysis Predicates, 30
Artefactual Solid Endurants, 41
Aspects of Comprehensiveness of Internal

Qualities, 93
Atomic Parts, 43
Attribute, 30
Automobile Behaviour, 105
Autonomous Attributes, 75

Biddable Attributes, 75

Cartesian Automobiles, 44
Civil Engineering: Consultants and Contrac-

tors, 95
Compound Parts, 28
Consequences of a Road Net Mereology, 69
Constants and States, 55
Creation and Destruction of Entities, 107

Description Prompts, 31
Domains, 26
Double Bookkeeping, 91

Endurants, 27
Expressing Empirical Knowledge, 13
External Qualities, 27

Fixed and Varying Mereology, 70
Fluid Endurants, 28
Fluids, 42

Hard Real-Time Models Expressed in “Ordi-
nary” RSL Logic, 88

Hub Adjustments, 113

Inert Attribute, 74
Intentional Pull: General Transport, 94
Intentional Pull: Road Transport, 92
Internal qualities, 29
Invariance of Road Net Traffic States, 77
Invariance of Road Nets, 69

LEGO Blocks, 95

Manifest Parts and Structures, 62

Mereology, 30
Mereology of a Road Net, 68
Mobile Endurants, 83

Natural and Artefactual Endurants, 40
Necessity, 13

Parts, 28
Perdurant, 27
Perdurants, 40
Phenomena and Entities, 26
Plants, 52
Possibility, 13
Programmable Attribute, 75

Rail Net Mereology, 71
Rail Net Unique Identifiers, 66
Reactive Attributes, 74
Road Net Actions, 32
Road Net Administrator, 109
Road Net Attributes, 76
Road Net Development: Hub Insertion, 110
Road Net Development: Hub Removal, 113
Road Net Development: Link Insertion, 111
Road Net Events, 32
Road Net Traffic, 32
Road Transport System: Sets of Hubs, Links

and Automobiles, 48
Road Transport: Further Attributes, 77

Sketch of a Road Transport System UoD, 37
Soft Real-Time Models Expressed in Ordi-

nary RSL Logic, 88
Solid Endurants, 27
Static Attributes, 74
Stationary Endurants, 82

Temporal Notions of Endurants, 86
The Implicit Meaning Theory., 11
The Road Transport System Initialisation, 107
The Road Transport System Taxonomy, 51
Transcendental Deductions – Informal Exam-

ples, 9
Transcendental Deductions: Informal Exam-

ples, 9
Transcendentality, 9

Unique Identifiers, 64
Unique identities, 30
Unique Road Transport System Identifiers, 65
Uniqueness of Road Net Identifiers, 65

Variable Mereologies, 102

© Dines Bjørner. October 19, 2022: 10:18 am 205 The TUV Lectures, Vienna, Austria, October–November 2022

206 D Indexes

D.6 Analysis Predicate Prompts

is Cartesian, 42
is alternative sorts set, 45
is animal, 51
is atomic, 41
is compound, 41
is endurant, 38
is entity, 36
is fluid, 40
is human, 51
is living species, 50
is manifest, 60
is mobile, 81
is part, 40
is perdurant, 38

is plant, 50

is single sort set, 45

is solid, 39

is stationary, 80

is structure, 60

is Cartesian, 42

is animal, 50

is atomic, 41

is compound, 41

is human, 51

is living species, 50

is part, 40

is plant, 50

D.7 Analysis Function Prompts

analyse attribute types, 77

analyse intentionality, 90

calc parts, 35, 52

calculate all unique identifiers, 62

determine Cartesian parts, 43

determine alternative sorts part

set, 46

determine same sort parts set, 45
mon attr types, 77
pro attr types, 77
sta attr types, 77
type name, type of, is , 62
type name, type of, 44

analyse intentionality, 90

D.8 Description Prompts

calc Cartesian parts, 43
calc single sort part sort, 46
calculate alternative sort part

sorts, 47

describe attributes, 71
describe mereology, 66
describe unique identifier, 61

D.9 Attribute Categories

is active attribute, 73
is autonomous attribute, 73
is biddable attribute, 73
is dynamic attribute, 72
is inert attribute, 72

is monitorable only attribute, 74

is programmable attribute, 73

is reactive attribute, 72

is static attribute , 72

The TUV Lectures, Vienna, Austria, October–November 2022 206 © Dines Bjørner. October 19, 2022: 10:18 am

D.10 RSL Symbols 207

D.10 RSL Symbols

Literals , 183–195
η, 197
false, 173
true, 173
RSL-Text, 197
,̂ 197
=, 197
Unit, 195
chaos, 183, 185, 186
false, 177
true, 177

Arithmetic Constructs, 179
ai*a j, 179
ai+a j, 179
ai/a j, 179
ai=a j, 179
ai≥a j, 179
ai>a j, 179
ai≤a j, 179
ai<a j, 179
ai,a j, 179
ai−a j, 179
�, 177
⇒, 177
=, 177
,, 177
∼, 177
∨, 177
∧, 177

Cartesian Constructs, 180, 184
(e1,e2,...,en) , 180

Combinators, 190–194
... elsif ... , 192
case be of pa1→ c1, ... pan→ cn end , 192, 194
do stmt until be end , 194
for e in listexpr • P(b) do stm(e) end , 194
if be then cc else ca end , 192, 194
let a:A • P(a) in c end , 191
let pa = e in c end , 190
variable v:Type := expression , 193
while be do stm end , 194
v := expression , 193

Function Constructs, 189–190
post P(args,result), 190
pre P(args), 190

f(args) as result, 190
f(a), 188
f(args) ≡ expr, 190
f(), 193

List Constructs, 180–181, 184–186
<Q(l(i))|i in<1..lenl> •P(a)> , 181
<> , 180
ℓ(i) , 184
ℓ′ = ℓ′′ , 184
ℓ′ , ℓ′′ , 184
ℓ′ ℓ̂′′ , 184
elems ℓ , 184
hd ℓ , 184
inds ℓ , 184
len ℓ , 184
tl ℓ , 184
e1 <e2,e2,...,en > , 180

Logic Constructs, 176–179

bi ∨ b j , 177
∀ a:A • P(a) , 178
∃! a:A • P(a) , 178
∃ a:A • P(a) , 178
∼ b , 177
false, 173
true, 173
false, 177
true, 177
bi ⇒ b j , 177
bi ∧ b j , 177

Map Constructs, 181, 186–188

mi \m j , 186

mi ◦ m j , 186

mi /m j , 186
dom m , 186
rng m , 186
mi † m j , 186
mi =m j , 186
mi ∪m j , 186
mi ,m j , 186
m(e) , 186
[] , 181
[u1 7→v1,u2 7→v2,...,un 7→vn] , 181
[F(e) 7→G(m(e))|e:E•e∈domm∧P(e)] , 181

Process Constructs, 194–196
channel c:T , 194

© Dines Bjørner. October 19, 2022: 10:18 am 207 The TUV Lectures, Vienna, Austria, October–November 2022

208 D Indexes

channel {k[i]:T•i:Idx} , 194
c ! e , 195
c ? , 195
k[i] ! e , 195
k[i] ? , 195
pi⌈⌉⌊⌋p j , 195
pi⌈⌉p j , 195
pi‖p j , 195
pi–‖p j , 195
P: Unit→ in c out k[i] Unit , 195
Q: i:KIdx →out c in k[i] Unit, 195

Set Constructs, 179–180, 182–183
∩{s1,s2,...,sn} , 182
∪{s1,s2,...,sn} , 182
card s , 182
e∈s , 182
e<s , 182
si=s j , 182
si∩s j , 182
si∪s j , 182
si⊂s j , 182
si⊆s j , 182
si,s j , 182
si\s j , 182
{} , 179
{e1,e2, ...,en} , 179

{Q(a)|a:A•a∈s∧P(a)} , 180

Type Expressions, 173, 174

(T1×T2×... ×Tn) , 174
Bool, 173
Char, 173
Int, 173
Nat, 173
Real, 173
Text, 173
Unit, 193
mk id(s1:T1,s2:T2,...,sn:Tn) , 174
s1:T1 s2:T2 ... sn:Tn , 174
T∗ , 174
Tω , 174
T1 × T2 × ... × Tn , 174
T1 | T2 | ... | T1 | Tn , 174
Ti →m T j , 174

Ti
∼
→T j , 174

Ti→T j , 174
T-infset, 174
T-set, 174

Type Definitions, 175–176

T = Type Expr, 175
T={| v:T′• P(v)|} , 175, 176
T==TE1 | TE2 | ... | TEn , 175

The TUV Lectures, Vienna, Austria, October–November 2022 208 © Dines Bjørner. October 19, 2022: 10:18 am

