
11 June 2016: 19:02 : to be submitted to Formal Aspects of Computing

Domains

Their Simulation, Monitoring and Control

— A Divertimento of Ideas and Suggestions —

Dines Bjørner1

1 Fredsvej 11, DK-2840 Holte, Denmark.

Techn.Univ. of Denmark, DK-2800 Kgs. Lyngby, Denmark.

e-mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

Abstract. We sketch some observations of the concepts of domain, requirements and modeling – where
abstract interpretations of these models cover both a priori, a posteriori and real-time aspects of the domain
as well as 1–1 (i.e., real-time), microscopic and macroscopic simulations, real-time monitoring and real-time
monitoring & control of that domain. The reference frame for these concepts are domain models: carefully
narrated and formally described domains. On the basis of a familiarising [Appendix A] example of a domain
description, we survey more-or-less standard ideas of verifiable software developments and conjecture software
product families of demos, simulators, monitors and monitors & controllers – but now these “standard ideas”
are recast in the context of core requirements prescriptions being “derived” from domain descriptions.

1. Introduction

A background setting for this paper is the concern for (α) professionally developing the right software, i.e.,
software which satisfies users expectations, and (ω) software that is right: i.e., software which is correct with
respect to user requirements and thus has no “bugs”, no “blue screens”. The present paper must be seen on
the background of a main line of experimental research around the topics of domain science & engineering
and requirements engineering and their relation. For details I refer to [Bjø15, Bjø16a, Bjø16b].

“Confusing Demos”: This author has had the doubtful honour, on his many visits to computer science
and software engineering laboratories around the world, to be presented, by his colleagues’ aspiring PhD
students, so-called demos of “systems” that they were investigating. There always was a tacit assumption,
namely that the audience, i.e., me, knew, a priori, what the domain “behind” the “system” being “demo’ed”
was. Certainly, if there was such an understanding, it was brutally demolished by the “demo” presentation.
My questions, such as “what are you demo’ing” (etcetera) went unanswered. Instead, while we were waiting
to see “something interesting” to be displayed on the computer screen we were witnessing frantic, sometimes
failed, input of commands and data, “nervous” attempts with “mouse” clickings, etc. – before something
intended was displayed. After a, usually 15 minute, grace period, it was time, luckily, to proceed to the next
“demo”.

Aims & Objectives: The aims of this paper is to present (a) some ideas about software that either “demo”,
simulate, monitor or monitor & control domains; (b) some ideas about “time scaling”: demo and simulation

2 Domains: Their Simulation, Monitoring and Control

time versus domain time; and (c) how these kinds of software relate. The (undoubtedly very näıve) objectives
of the paper is also to improve the kind of demo-presentations, alluded to above, so as to ensure that the
basis for such demos is crystal clear from the very outset of research & development, i.e., that domains be
well-described. The paper, we think, tackles the issue of so-called ‘model-oriented (or model-based) software
development’ from altogether different angles than usually promoted.

An Exploratory Paper: The paper is exploratory. There will be no theorems and therefore there will be
no proofs. We are presenting what might eventually emerge into (α) a theory of domains, i.e., a domain
science [Bjø07, BE10, Bjø09a, Bjø11b], and (β) a software development theory of domain engineering versus
requirements engineering [Bjø11a, Bjø08, Bjø09b, Bjø10b].

The paper is not a “standard” research paper: it does not compare its claimed achievements with cor-
responding or related achievements of other researchers – simply because we do not claim “achievements”
which have been reasonably well formalised. But we would suggest that you might find some of the ideas of
the paper (in Sect. 3) worthwhile. Hence the “divertimento” suffix to the paper title.

Structure of Paper: The structure of the paper is as follows. In Appendix A we present a fair-sized example of
a domain description. In Sect. 3 we then outline a series of interpretations of domain descriptions. These arise,
when developed in an orderly, professional manner, from requirements prescriptions which are themselves
orderly developed from the domain description1, cf. [Bjø16b].

The essence of Sect. 3 is (i) the (albeit informal) presentation of such tightly related notions as demos
(Sect. 3.1), simulators (Sect. 3.2), monitors (Sect. 3.3.1) and monitors & controllers (Sect. 3.3.2) (these no-
tions can be formalised), and (ii) the conjectures on a product family of domain-based software developments
(Sect. 3.5). A notion of script-based simulation extends demos and is the basis for monitor and controller
developments and uses. The scripts used in our examples are related to time, but one can define non-temporal
scripts – so the “carrying idea” of Sect. 3 extends to a widest variety of software. We claim that Sect. 3 thus
brings these new ideas: a tightly related software engineering concept of demo-simulator-monitor-controller
machines, and an extended notion of reference models for requirements and specifications [GGJZ00].

2. Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise, but informal, and a formal
description of the application domain as it is: no reference to any possible requirements let alone software
that is desired for that domain. Thus a requirements prescription is a likewise combined precise, but informal,
narrative, and a formal prescription of what we expect from a machine (hardware + software) that is to
support endurants, actions, events and behaviours of a possibly business process re-engineered application
domain. Requirements expresses a domain as we would like to to be.

We present an example domain description in Appendix A.
We further refer to the literature for examples: [Bjø00, railways (2000)], [Bjø02, the ’market’ (2000)],

[Bjø09b, public government, IT security, hospitals (2006) chapters 8–10], [Bjø08, transport nets (2008)] and
[Bjø10b, pipelines (2010)]. On the net you may find technical reports covering “larger” domain descriptions.
“Older” publications on the concept of domain descriptions are [Bjø10b, Bjø11b, Bjø09c, BE10, Bjø08, Bjø07,
Bjø10a] all summarised in [Bjø15, Bjø16a, Bjø16b].

Domain descriptions do not necessarily describe computable objects. They relate to the described domain
in a way similar to the way in which mathematical descriptions of physical phenomena stand to “the physical
world”.

3. Interpretations

In this main section of the paper we present a number of interpretations of rôles of domain descriptions.

1 We do not show such orderly “derivations” but outline their basics in Sect. 3.4.2.

Domains: Their Simulation, Monitoring and Control 3

3.1. What Is a Domain-based Demo?

A domain-based demo is a software system which “present” endurants and perdurants2: actions, events and
behaviours of a domain. The “presentation” abstracts these phenomena and their related concepts in various
computer generated forms: visual, acoustic, etc.

3.1.1. Examples

There are two main examples. One is given in Appendix A. The other is summarised below. It is from our
paper on “deriving requirements prescriptions from domain descriptions” [Bjø16b]. The summary follows.

The domain description of Sect. 2. of [Bjø16b], outlines an abstract concept of transport nets (of hubs
[street intersections, train stations, harbours, airports] and links [road segments, rail tracks, shipping lanes,
air-lanes]), their development, traffic [of vehicles, trains, ships and aircraft], etc. We shall assume such a
transport domain description below.

Endurants are, for example, presented as follows: (a) transport nets by two dimensional (2D) road, railway
or air traffic maps, (b) hubs and links by highlighting parts of 2D maps and by related photos – and their
unique identifiers by labeling hubs and links, (c) routes by highlighting sequences of paths (hubs and links)
on a 2D map, (d) buses by photographs and by dots at hubs or on links of a 2D map, and (e) bus timetables
by, well, indeed, by showing a 2D bus timetable.

Actions are, for example, presented as follows: (f) The insertion or removal of a hub or a link by showing
“instantaneous” triplets of “before”, “during” and “after” animation sequences. (g) The start or end of a
bus ride by showing flashing animations of the appearance, respectively the flashing disappearance of a bus
(dot) at the origin, respectively the destination bus stops.

Events are, for example, presented as follows: (h) A mudslide [or fire in a road tunnel, or collapse of a
bridge] along a (road) link by showing an animation of part of a (road) map with an instantaneous sequence
of (α) the present link , (β) a gap somewhere on the link, (γ) and the appearance of two (“symbolic”) hubs
“on either side of the gap”. (i) The congestion of road traffic “grinding to a halt” at, for example, a hub, by
showing an animation of part of a (road) map with an instantaneous sequence of the massive accumulation
of vehicle dots moving (instantaneously) from two or more links into a hub.

Behaviours are, for example, presented as follows: (k) A bus tour: from its start, on time, or “thereabouts”,
from its bus stop of origin, via (all) intermediate stops, with or without delays or advances in times of arrivals
and departures, to the bus stop of destination (ℓ) The composite behaviour of “all bus tours”, meeting or
missing connection times, with sporadic delays, with cancellation of some bus tours, etc. – by showing the
sequence of states of all the buses on the net.

We say that behaviours ((j)–(ℓ)) are script-based in that they (try to) satisfy a bus timetable ((e)).

3.1.2. Towards a Theory of Visualisation and Acoustic Manifestation

The above examples shall serve to highlight the general problem of visualisation and acoustic manifestation.
Just as we need sciences of visualising scientific data and of diagrammatic logics, so we need more seri-
ous studies of visualisation and acoustic manifestation — so amply, but, this author thinks, inconsistently
demonstrated by current uses of interactive computing media.

3.2. Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating something
generally entails representing certain key characteristics or behaviours of a selected physical or abstract
system” [Wikipedia] for the purposes of testing some hypotheses usually stated in terms of the model being
simulated and pairs of statistical data and expected outcomes.

3.2.1. Explication of Figure 1

Figure 1 on the following page attempts to indicate four things: (i) Left top: the rounded edge rectangle
labeled “The Domain” alludes to some specific domain (“out there”). (ii) Left middle: the small rounded rect-

2 The concepts of ‘endurants’ and ‘perdurants’ were defined in [Bjø15].

4 Domains: Their Simulation, Monitoring and Control

t eb

β ε

based on the
Domain Description

Description
A Domain

The Domain

A Behaviour, a Trace of the Domain

Simulation Traces

Time

S5

S4

S2S1
εβ

S7

S3 S6

S8

Legend: A development; S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

Domain Demo/Simulator

Fig. 1. Simulations

angle labeled “A Domain Description” alludes to some document which narrates and formalises a description
of “the domain”. (iii) Left bottom: the medium sized rectangle labeled “A Domain Demo based on the Domain
Description” (for short “Demo”) alludes to a software system that, in some sense (to be made clear later)
“simulates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal time axis which basically
“divides” that large rectangle into two parts: (b) Above the time axis the “fat” rounded edge rectangle
alludes to the time-wise behaviour, a domain trace, of “The Domain” (i.e., the actual, the real, domain). (c)
Below the time axis there are eight “thin” rectangles. These are labels S1, S2, S3, S4, S5, S6, S7 and S8.
(d) Each of these denote a “run”, i.e., a time-stamped “execution”, a program trace, of the “Demo”. Their
“relationship” to the time axis is this: their execution takes place in the real time as related to that of “The
Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped sequence of states: domain
states, respectively demo, simulator, monitor and monitor& control states.

From Fig. 1 and the above explication we can conclude that “executions” S4 and S5 each share exactly
one time point, t, at which “The Domain” and “The Simulation” “share” time, that is, the time-stamped
execution S4 and S5 reflect a “Simulation” state which at time t should reflect (some abstraction of) “The
Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the simulation trace, or, vice-versa
(cf. Fig. 1[S4,S5]), is there a “shared” time. Only if the ‘begin’ and ‘end’ times of the domain behaviour are
identical to the ‘start’ and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1 times. Only
then do we speak of a real-time simulation.

In Fig 2 on page 6 we show “the same” “Domain Behaviour” (three times) and a (1) simulation, a (2)
monitoring and a (3) monitoring & control, all of whose ‘begin/start’ (b/β) and ‘end/finish’ (e/ǫ) times
coincide. In such cases the “Demo/Simulation” takes place in real-time throughout the ‘begin· · · · · · end’
interval.

Let β and ǫ be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between t, β, ǫ, b

and e is t−b
e-t = t−β

ǫ−t
— which leads to a second degree polynomial in t which can then be solved in the usual,

high school manner.

3.2.2. Script-based Simulation

A script-based simulation is the behaviour, i.e., an execution, of, basically, a demo which, step-by-step,
follows a script: that is a prescription for highlighting endurants, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a bus timetable, and unlike
a route, can be thought of as the execution of a demos where “chunks” of demo operations take place in

Domains: Their Simulation, Monitoring and Control 5

accordance with “chunks”3 of script prescriptions. The latter (i.e., the script prescriptions) can be said to
represent simulated (i.e., domain) time in contrast to “actual computer” time. The actual times in which
the script-based simulation takes place relate to domain times as shown in Simulations S1 to S8 in Fig. 1
and in Fig. 2(1–3). Traces Fig. 2(1–3) and S8 Fig. 1 are said to be real-time: there is a one-to-one mapping
between computer time and domain time. S1 and S4 Fig. 1 are said to be microscopic: disjoint computer
time intervals map into distinct domain times. S2, S3, S5, S6 and S7 are said to be macroscopic: disjoint
domain time intervals map into distinct computer times.

In order to concretise the above “vague” statements let us take the example of simulating bus traffic
as based on a bus timetable script. A simulation scenario could be as follows. Initially, not relating to any
domain time, the simulation “demos” a net, available buses and a bus timetable. The person(s) who are
requesting the simulation are asked to decide on the ratio of the domain time interval to simulation time
interval. If the ratio is 1 a real-time simulation has been requested. If the ratio is less than 1 a microscopic
simulation has been requested. If the ratio is larger than 1 a microscopic simulation has been requested. A
chosen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated in 30 minutes of elapsed
simulation time. Then the person(s) who are requesting the simulation are asked to decide on the starting
domain time, say 6:00am, and the domain time interval of simulation, say 4 hours – in which case the
simulation of bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed simulation
time. The person(s) who are requesting the simulation are then asked to decide on the “sampling times” or
“time intervals”: If ‘sampling times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and 10:00 am are
chosen, then the simulation is stopped at corresponding simulation times: 0 sec., 37.5 sec., 75 sec., 150 sec.,
225 sec., 262.5 sec. and 300 sec. The simulation then shows the state of selected endurants and actions at
these domain times. If ‘sampling time interval’ is chosen and is set to every 5min., then the simulation
shows the state of selected endurants and actions at corresponding domain times. The simulation is resumed
when the person(s) who are requesting the simulation so indicates, say by a “resume” icon click. The time
interval between adjacent simulation stops and resumptions contribute with 0 time to elapsed simulation
time – which in this case was set to 5 minutes. Finally the requestor provides some statistical data such as
numbers of potential and actual bus passengers, etc.

Then two clocks are started: a domain time clock and a simulation time clock. The simulation proceeds
as driven by, in this case, the bus time table. To include “unforeseen” events, such as the wreckage of a bus
(which is then unable to complete a bus tour), we allow any number of such events to be randomly scheduled.
Actually scheduled events “interrupts” the “programmed” simulation and leads to thus unscheduled stops
(and resumptions) where the unscheduled stop now focuses on showing the event.

3.2.3. The Development Arrow

The arrow, , between a pair of boxes (of Fig. 1 on the preceding page) denote a step of development: (i)
from the domain box to the domain description box, , it denotes the development of a domain description
based on studies and analyses of the domain; (ii) from the domain description box to the domain demo box,
, it denotes the development of a software system — where that development assumes an intermediate

requirements box which has not been show; (iii) from the domain demo box to either of a simulation traces,
, it denotes the development of a simulator as the related demo software system, again depending on

whichever special requirements have been put to the simulator.

3.3. Monitoring & Control

Figure 2 on the following page shows three different kinds of uses of software systems (where (2) [Monitoring]
and (3) [Monitoring & Control] represent further) developments from the demo or simulation software system
mentioned in Sect. 3.1 and Sect. 3.2.2 on the preceding page. We have added some (three) horisontal and
labeled (p, q and r) lines to Fig. 2 on the following page(1,2,3) (with respect to the traces of Fig. 1 on the
preceding page). They each denote a trace of a endurant, an action or an event, that is, they are traces
of values of these phenomena or concepts. A (named) endurant value entails a description of the endurant,
whither atomic (‘hub’, ‘link’, ‘bus timetable’) or composite (‘net’, ‘set of hubs’, etc.): of its unique identity,

3 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum of simulations.

6 Domains: Their Simulation, Monitoring and Control

q

p p

q

mi mj mi mj mk

r r

cx cy

mk

p
q
r

Real−time
Simulation

(1)

p

q
r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Fig. 2. Simulation, Monitoring and Monitoring & Control

its mereology and a selection of its attributes. A (named) action value could, for example, be the pair of
the before and after states of the action and some description of the function (‘insertion of a link’, ‘start of
a bus tour’) involved in the action. A (named) event value could, for example, be a pair of the before and
after states of the endurants causing, respectively being effected by the event and some description of the
predicate (‘mudslide’, ‘break-down of a bus’) involved in the event. A cross section, such as designated by
the vertical lines (one for the domain trace, one for the “corresponding” program trace) of Fig. 2(1) denotes
a state: a domain, respectively a program state.

Figure 2(1) attempts to show a real-time demo or simulation for the chosen domain. Figure 2(2) purports
to show the deployment of real-time software for monitoring (chosen aspects of) the chosen domain. Fig-
ure 2(3) purports to show the deployment of real-time software for monitoring as well as controlling (chosen
aspects of) the chosen domain.

3.3.1. Monitoring

By domain monitoring we mean “to be aware of the state of a domain”, its endurants, actions, events and
behaviour. Domain monitoring is thus a process, typically within a distributed system for collecting and
storing state data. In this process “observation” points — i.e., endurants, actions and where events may
occur — are identified in the domain, cf. points p, q and r of Fig. 2. Sensors are inserted at these points. The
“downward” pointing vertical arrows of Figs. 2(2–3), from “the domain behaviour” to the “monitoring” and
the “monitoring & control” traces express communication of what has been sensed (measured, photographed,
etc.) [as directed by and] as input data (etc.) to these monitors. The monitor (being “executed”) may store
these “sensings” for future analysis.

3.3.2. Control

By domain control we mean “the ability to change the value” of endurants and the course of actions and
hence behaviours, including prevention of events of the domain. Domain control is thus based on domain
monitoring. Actuators are inserted in the domain “at or near” monitoring points or at points related to these,
viz. points p and r of Fig. 2(3). The “upward” pointing vertical arrows of Fig. 2(3), from the “monitoring
& control” traces to the “domain behaviour” express communication, to the domain, of what has been
computed by the controller as a proper control reaction in response to the monitoring.

Domains: Their Simulation, Monitoring and Control 7

3.4. Machine Development

3.4.1. Machines

By a machine we shall understand a combination of hardware and software. For demos and simulators the ma-
chine is “mostly” software with the hardware typically being graphic display units with tactile instruments.
For monitors the “main” machine, besides the hardware and software of demos and simulators, additionally
includes sensors distributed throughout the domain and the technological machine means of communicat-
ing monitored signals from the sensors to the “main” machine and the processing of these signals by the
main machine. For monitors & controllers the machine, besides the monitor machine, further includes actu-
ators placed in the domain and the machine means of computing and communicating control signals to the
actuators.

3.4.2. Requirements Development

Essential parts of Requirements to a Machine can be systematically “derived” from a Domain description.
These essential parts are the domain requirements and the interface requirements. Domain requirements
are those requirements which can be expressed, say in narrative form, by mentioning technical terms only
of the domain. These technical terms cover only phenomena and concepts (endurants, actions, events and
behaviours) of the domain. Some domain requirements are projected, instantiated, made more deterministic
and extended4. We bring examples that are taken from Sect. 2. of [Bjø16b], cf. Sect. 3.1.1 on page 3 of this
paper. (a) By domain projection we mean a sub-setting of the domain description: parts are left out which
the requirements stake-holders, collaborating with the requirements engineer, decide is of no relevance to
the requirements. For our example it could be that our domain description had contained models of road
net attributes such as “the wear & tear” of road surfaces, the length of links, states of hubs and links (that
is, [dis]allowable directions of traffic through hubs and along links), etc. Projection might then omit these
attributes. (b) By domain instantiationwe mean a specialisation of endurants, actions, events and behaviours,
refining them from abstract simple entities to more concrete such, etc. For our example it could be that we
only model freeways or only model road-pricing nets – or any one or more other aspects. (c) By domain
determination we mean that of making the domain description cum domain requirements prescription less
non-deterministic, i.e., more deterministic (or even the other way around !). For our example it could be
that we had domain-described states of street intersections as not controlled by traffic signals – where the
determination is now that of introducing an abstract notion of traffic signals which allow only certain states
(of red, yellow and green). (d) By domain extension we basically mean that of extending the domain with
phenomena and concepts that were not feasible without information technology. For our examples we could
extend the domain with bus mounted GPS gadgets that record and communicate (to, say a central bus traffic
computer) the more-or-less exact positions of buses – thereby enabling the observation of bus traffic. Interface
requirements are those requirements which can be expressed, say in narrative form, by mentioning technical
terms both of the domain and of the machine. These technical terms thus cover shared phenomena and
concepts, that is, phenomena and concepts of the domain which are, in some sense, also (to be) represented
by the machine. Interface requirements represent (i) the initialisation and “on-the-fly” update of machine
endurants on the basis of shared domain endurants; (ii) the interaction between the machine and the domain
while the machine is carrying out a (previous domain) action; (iii) machine responses, if any, to domain events
— or domain responses, if any, to machine events cum “outputs”; and (iv) machine monitoring and machine
control of domain phenomena. Each of these four (i–iv) interface requirement facets themselves involve
projection, instantiation, determination, extension and fitting. Machine requirements are those requirements
which can be expressed, say in narrative form, by mentioning technical terms only of the machine. (An
example is: visual display units.)

4 We omit consideration of fitting.

8 Domains: Their Simulation, Monitoring and Control

R
′′′′′
mc R

′′′′′
mc

R
′′′
mo M

′′′
mo R

′′′′
mc M

′′′′
mc

D Rde Mde R
′
si M

′
si R

′′
mo M

′′
mo R

′′′
mc M

′′′
mc

✲ ✲
✲

✲
✲

✲
✲

✲

✲ Rsi Msi R
′
mo M

′
mo R

′′
mc M

′′
mc

✲
✲

✲
✲

✲

✲

✲ Rmo Mmo R
′
mc

Rmc

M
′
mc

Mmc

R
′′′′′′
mc M

′′′′′′
mc✲

✲

✲
✲

✲

✲

✲
✲

✲

✲

✲

✲

q

✲ ✲ ✲

q

q

q

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

q

q

q

q

q

Legend: D domain, R requirements, M machine
de:demo, si: simulator, mo: monitor, mc: monitor & controller

Fig. 3. Chains of Verifiable Developments

3.5. Verifiable Software Development

3.5.1. An Example Set of Conjectures

We illustrate some conjectures.
(A) From a domain, D, one can develop a domain description D. D cannot be [formally] verified. It can

be [informally] validated “against” D. Individual properties, PD, of the domain description D and hence,
purportedly, of the domain, D, can be expressed and possibly proved D |= PD and these may be validated
to be properties of D by observations in (or of) that domain.

(B) From a domain description, D, one can develop requirements, Rde, for, and from Rde one can develop
a domain demo machine specification Mde such that D,Mde |= Rde. The formula D,M |= R can be read
as follows: in order to prove that the Machine satisfies the Requirements, assumptions about the Domain
must often be made explicit in steps of the proof.

(C) From a domain description, D, and a domain demo machine specification, Sde, one can develop
requirements, Rsi, for, and from such a Rsi one can develop a domain simulator machine specification Msi

such that (D;Mde),Msi |= Rsi. We have “lumped” (D;Mde) as the two constitute the extended domain
for which we, in this case of development, suggest the next stage requirements and machine development to
take place.

(D) From a domain description, D, and a domain simulator machine specification, Msi, one can develop
requirements, Rmo, for, and from such a Rmo one can develop a domain monitor machine specification Mmo

such that (D;Msi),Mmo |= Rmo.
(E) From a domain description, D, and a domain monitor machine specification, Mmo, one can develop

requirements, Rmc, for, and from such a Rmc one can develop a domain monitor & controller machine speci-
fication Mmc such that (D;Mmo),Mmc |= Rmc.

3.5.2. Chains of Verifiable Developments

The above illustrated just one chain (A–E) of developments. There are others. All are shown in Fig. 3.
Figure 3 can also be interpreted as prescribing a widest possible range of machine cum software products
[Bos00, PBvdL05] for a given domain. One domain may give rise to many different kinds of demo machines,
simulators, monitors and monitor & controllers (the unprimed versions of the Mt machines (where t ranges
over de, si, mo, mc)). For each of these there are similarly, “exponentially” many variants of successor
machines (the primed versions of the Mt machines). What does it mean that a machine is a primed version?
Well, here it means, for example, that M′

si embodies facets of the demo machine Mde, and that M′′′
mc embodies

facets of the demo machine Mde, of the simulator M
′
si, and the monitor M

′′
mo. Whether such requirements

are desirable is left to product customers and their software providers [Bos00, PBvdL05] to decide.

Domains: Their Simulation, Monitoring and Control 9

4. Conclusion

Our divertimento is almost over. It is time to conclude.

4.1. Discussion

The D,M |= R (‘correctness’ of) development relation appears to have been first indicated in the Compu-
tational Logic Inc. Stack [BJMY89, GY91] and the EU ESPRIT ProCoS [Bjø89, Bjø92] projects; [GGJZ00]
presents this same idea with a purpose much like ours, but with more technical discussions.

The term ‘domain engineering’ appears to have at least two meanings: the one used here [Bjø07, Bjø10a]
and one [Har02, FGD02, BHS07] emerging out of the Software Engineering Institute at CMU where it is also
called product line engineering5. Our meaning, is, in a sense, more narrow, but then it seems to also be more
highly specialised (with detailed description and formalisation principles and techniques). Fig. 3 on the facing
page illustrates, in capsule form, what we think is the CMU/SEI meaning. The relationship between, say
Fig. 3 and model-based software development seems obvious but need be explored. An extensive discussion
of the term ‘domain’, as it appears in the software engineering literature is found in [Bjø15, Sect. 5.3].

4.1.1. What Have We Achieved

We have characterised a spectrum of strongly domain-related as well as strongly inter-related (cf. Fig. 3)
software product families: demos, simulators, monitors andmonitor & controllers.We have indicated varieties
of these: simulators based on demos, monitors based on simulators, monitor & controllers based on monitors,
in fact any of the latter ones in the software product family list as based on any of the earlier ones. We
have sketched temporal relations between simulation traces and domain behaviours: a priori, a posteriori,
macroscopic and microscopic, and we have identified the real-time cases which lead on to monitors and
monitor & controllers.

4.1.2. What Have We Not Achieved — Some Conjectures

We have not characterised the software product family relations other than by the D,M |= R and (D;Mxyz),M |=
R clauses. That is, we should like to prove conjectured type theoretic inclusion relations like:

℘([[Mxmod ext.
]]) ⊒ ℘([[M

′...′

xmod ext.
]]), ℘([[M

′...′

xmod ext.
]]) ⊒ ℘([[M

′′....′

xmod ext.
]])

where x and y range appropriately, where [[M]] expresses the meaning of M, where ℘([[M]]) denote the space
of all machine meanings and where ℘([[Mxmod ext.

]]) is intended to denote that space modulo (“free of”) the y
facet (here ext., for extension).

That is, it is conjectured that the set of more specialised, i.e., n primed, machines of kind x is type
theoretically “contained” in the set of m primed (unprimed) x machines (0 ≤ m < n).

There are undoubtedly many such interesting relations between the demo, simulator, monitor and
monitor & controller machines, unprimed and primed.

4.1.3. What Should We Do Next

This paper has the subtitle: A Divertimento of Ideas and Suggestions. It is not a proper theoretical paper.
It tries to throw some light on families and varieties of software, i.e., their relations. It focuses, in particular,
on so-called demo, simulator, monitor and monitor & controller software and their relation to the
“originating” domain, i.e., that in which such software is to serve, and hence that which is being extended
by such software, cf. the compounded ‘domain’ (D;Mi) of in (D;Mi),Mj |= D. These notions should be
studied formally. All of these notions: requirements projection, instantiation, determination and extension
can be formalised; and the specification language, in the form used here (without CSP processes, [Hoa85])
has a formal semantics and a proof system — so the various notions of development, (D;Mi),Mj |= R and
℘(M) can be formalised.

5 http://en.wikipedia.org/wiki/Domain engineering.

10 Domains: Their Simulation, Monitoring and Control

5. Bibliography

[BE10] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations in
the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich Hannemann. In
Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture
Notes in Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[BHS07] F. Buschmann, K. Henney, and D.C. Schmidt. Pattern-Oriented Software Architecture: On Patterns and Pattern Lan-
guages. John Wiley & Sons Ltd., England, 2007.

[BJMY89] W.R. Bevier, W.A. Hunt Jr., J Strother Moore, and W.D. Young. An approach to system verification. Journal of
Automated Reasoning, 5(4):411–428, December 1989. Special Issue on System Verification.

[Bjø89] Dines Bjørner. A ProCoS Project Description. Published in two slightly different versions: (1) EATCS Bulletin,
October 1989, (2) (Ed. Ivan Plander:) Proceedings: Intl. Conf. on AI & Robotics, Strebske Pleso, Slovakia, Nov.
5-9, 1989, North-Holland, Publ., Dept. of Computer Science, Technical University of Denmark, October 1989.

[Bjø92] Dines Bjørner. Trustworthy Computing Systems: The ProCoS Experience. In 14’th ICSE: Intl. Conf. on Software Eng.,
Melbourne, Australia, pages 15–34. ACM Press, May 11–15 1992.

[Bjø00] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC Symposium
on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig, Germany, 13–15 June 2000.
VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited
talk.

[Bjø02] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In Practical Foundations
of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands, December 2002. Kluwer
Academic Press. .

[Bjø07] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, volume
4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer
Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[Bjø09a] Dines Bjørner. An Emerging Domain Science – A Rôle for Stanis law Leśniewski’s Mereology and Bertrand Russell’s
Philosophy of Logical Atomism. Higher-order and Symbolic Computation, 2009.

[Bjø09b] Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. Research Monograph (# 4);
JAIST Press, 1-1, Asahidai, Nomi, Ishikawa 923-1292 Japan, This Research Monograph contains the following main
chapters:

1. On Domains and On Domain Engineering – Prerequisites for Trustworthy Software – A Necessity for Believable
Management, pages 3–38.

2. Possible Collaborative Domain Projects – A Management Brief, pages 39–56.

3. The Rôle of Domain Engineering in Software Development, pages 57–72.

4. Verified Software for Ubiquitous Computing – A VSTTE Ubiquitous Computing Project Proposal, pages 73–106.

5. The Triptych Process Model – Process Assessment and Improvement, pages 107–138.

6. Domains and Problem Frames – The Triptych Dogma and M.A.Jackson’s PF Paradigm, pages 139–175.

7. Documents – A Rough Sketch Domain Analysis, pages 179–200.

8. Public Government – A Rough Sketch Domain Analysis, pages 201–222.

9. Towards a Model of IT Security — – The ISO Information Security Code of Practice – An Incomplete Rough Sketch
Analysis, pages 223–282.

10. Towards a Family of Script Languages – – Licenses and Contracts – An Incomplete Sketch, pages 283–328.

2009.

[Bjø09c] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare, History
of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70, London, UK, 2009. Springer.

[Bjø10a] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the Art and
New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.

[Bjø10b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II: The
Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

[Bjø11a] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.

[Bjø11b] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II: The
Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.

[Bjø15] Dines Bjørner. Manifest Domains: Analysis & Description. Expected published by Formal Aspects of Computing, 2015.

[Bjø16a] Dines Bjørner. Domain Facets: Analysis & Description. Submitted for consideration by Formal Aspects of Computing,
2016. http://www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[Bjø16b] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements
Engineering. Submitted for consideration by Formal Aspects of Computing, 2016.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-line Approach. ACM
Press/Addison-Wesley, New York, NY, 2000.

Domains: Their Simulation, Monitoring and Control 11

[FGD02] R. Falbo, G. Guizzardi, and K.C. Duarte. An Ontological Approach to Domain Engineering. In Software Engineering
and Knowledge Engineering, Proceedings of the 14th international conference SEKE’02, pages 351–358, Ischia, Italy, July
15-19 2002. ACM.

[GGJZ00] Carl A. Gunter, Elsa L. Gunter, Michael A. Jackson, and Pamela Zave. A Reference Model for Requirements and
Specifications. IEEE Software, 17(3):37–43, May–June 2000.

[GY91] Don I. Good and William D. Young. Mathematical Methods for Digital Systems Development. In VDM ’91: Formal
Software Development Methods, pages 406–430. Springer-Verlag, October 1991. Volume 2.

[Har02] M. Harsu. A Survey on Domain Engineering. Review, Institute of Software Systems, Tampere University of Technology,
Finland, December 2002.

[Hoa85] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf (2004).

[PBvdL05] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering. Springer, Berlin, Heidelberg, New York,
2005.

A. Introduction

We present a domain description of an abstracted credit card
system. The narrative part of the description is terse, perhaps
a bit too terse. I might “repair” this shortness if told so. A
reference is made to my paper: [Bjø15, Manifest Domains:
Analysis & Description]. That paper can be found on the In-
ternet: http://www2.compute.dtu.dk/˜dibj/2015/faoc/faoc-
bjorner.pdf.

Credit cards are moving from simple plastic cards to smart
phones. Uses of credit cards move from their mechanical in-
sertion in credit card terminals to being swiped. Authentication
(hence not modelled) moves from keying in security codes to eye
iris “prints”, and/or finger prints or voice prints or combinations
thereof.

This document abstracts from all that in order to under-
stand a bare, minimum essence of credit cards and their uses.
Based on a model, such as presented here, the reader should
be able to extend/refine the model into any future technology
– for requirements purposes.

B. Endurants

B.1. Credit Card Systems

1. Credit card systems consists of three kinds of parts:

a) a part, cs:CS, of credit cards6,

b) a part, bs:BS, of banks, and

c) a part, ss:SS, of shops.

type

1. CCS
1.a. CS, C, CSI
1.b. BS, B, BSI
1.c. SS, S, SSI
value
1.a. obs CS: CCS → CS, uid CS: CS → CSI,
1.b. obs BS: CCS → BS, uid BS: BS → BSI,
1.c. obs SS: CCS → SS, uid SS: SS → SSI

2. The credit card part, cs:CS, abstracts a set, socs:Cs, of
credit cards.

3. The bank part, bs:BS, abstracts a set, sobs:Bs, of banks.

4. The shop part, ss:SS, abstracts a set, soss:Sc, of shops.

type

2. Cs = C-set, C
3. Bs = B-set, B
4. Ss = S-set, S
value

2. obs CS: CS → Cs, obs Cs: CS → Cs
3. obs BS: BS → Bs, obs Bs: BS → Bs
4. obs SS: SS → Ss, obs Ss: SS → Ss

5. Each credit card, bank and shop has a unique identifier,
ci:CI, bi:BI, respectively si:SI.

6. One can define functions which extract all the

a) unique credit card,

b) bank and

c) shop identifiers

from a credit card system.

type

5. CI, BI, SI
value

5. uid C: C → CI
5. uid B: B → BI
5. uid S: S → SI
6.a. xtr CIs: CCS → CI-set
6.a. xtr CIs(ccs) ≡ {uid C(c)|c:C•c ∈ obs Cs(obs CS(ccs))}
6.b. xtr BIs: CCS → BI-set
6.b. xtr BIs(ccs) ≡ {uid B(s)|b:B•b ∈ obs Bs(obs BS(ccs))}
6.c. xtr SIs: CCS → SI-set
6.c. xtr SIs(ccs) ≡ {uid S(s)|s:S•s ∈ obs Ss(obs SS(ccs))}

7. For all credit card systems it is the case that

a) all credit card identifiers are distinct from bank identi-
fiers,

b) all credit card identifiers are distinct from shop identi-
fiers,

c) all shop identifiers are distinct from bank identifiers,

axiom

7. ∀ ccs:CCS •

7. let cis=xtr CIs(ccs), bis=xtr BIs(ccs), sis = xtr SIs(ccs) in
7.a. cis ∩ bis = {}
7.b. ∧ cis ∩ sis = {}
7.c. ∧ sis ∩ bis = {} end

6 We “equate” credit cards with their holders.

12 Domains: Their Simulation, Monitoring and Control

B.2. Credit Cards

We “equate” credit cards with their holders.

8. A credit card (besides a unique identification) has

a) a mereology which “connects” it to any of the shops
of the system and to exactly one bank of the system,

b) and some attributes — which we shall disregard.

c) The wellformedness of a credit card system includes the
wellformedness of credit card mereologies with respect
to the system of banks and shops:

i. The unique shop identifiers of a credit card mere-
ology must be those of the shops of the credit card
system; and

ii. the unique bank identifier of a credit card mereol-
ogy must be of one of the banks of the credit card
system.

type

8. C
8.a. CM = SI-set × BI
value

8.a. mereo CM: C → CM
8.c. wf CM of C: CCS → Bool
8.c. wf CM of C(ccs) ≡
8.a. let bis=xtr BIs(ccs), sis=xtr SIs(ccs) in

8.a. ∀ c:C•c ∈ obs Cs(obs CS(ccs)) ⇒
8.a. let (ccsis,bi)=mereo CM(c) in
8.c.i. ccsis ⊆ sis
8.c.ii. ∧ b ∈ bis
8.a. end end

Constraint 8.c.i limits a credit card to potentially be used only
in a proper subset of all shops. To allow for all shops one must
change the wording to ‘be all those of the shops ...’, and change
⊆ in formula line 8.c.i to ‘=’.

B.3. Banks

Our model of banks is very limited.

9. A bank has

a) a unique bank identifier,

b) a mereology which “connects” it to a subset of all credit
cards and a subset of all shops,

c) and, as attributes:

i. a cash register, and

ii. a ledger.

9.c.ii. The ledger records

a) for every card, by unique credit card identifier,

b) the current balance: how much money, credit or debit,
i.e., plus or minus, that customer is owed, respectively
has borrowed from the bank,

c) the dates-of-issue and -expiry of the credit card, and

d) the name, address, and other information about the
credit card holder.

10. The wellformedness of the credit card system includes the
wellformedness of the banks with respect to the credit cards
and shops:

a) the bank mereology’s

b) must list a subset of the credit card identifiers and a
subset of the shop identifiers.

type

9. B
9.b. BM = CI-set × SI-set
9.c.i. CR = Bal
9.c.ii. LG = CI →m (Bal×DoI×DoE×...)
9.b. Bal = Int
value

9.b. mereo B: B → BM
9.c.i. attr CR: B → CR
9.c.ii. attr LG: B → LG
10. wf BM B: CCS → Bool

10. wf BM B(ccs) ≡
10. let allcis = xtr CIs(ccs), allsis = xtr SIs(ccs) in
10. ∀ b:B • b ∈ obs Bs(obs BS(ccs)) in

10.a. let (cis,sis) = mereo B(b) in

10.b. cis ⊆ ∀ cis ∧ sis ⊆ allsis
10. end end

B.4. Shops

11. A shop (besides a unique shop identifier) has a

a) mereology and some attributes.

11.a. The mereology of a shop is a pair:

a) a unique bank identifiers, and

b) a set of unique credit card identifiers.

11.a. We omit treatment of shop attributes.

11.a. The mereology of a shop

a) must list a bank of the credit card system,

b) and a subset (or all) of the unique credit identifiers.

type

11.a. SM = CI-set × BI
value

11.a. mereo S: S → SM
11.a. wf SM S: CCS → Bool
11.a. wf SM S(ccs) ≡
11.a. let allcis = xtr CIs(ccs), allbis = xtr BIs(ccs) in

11.a. ∀ s:S • s ∈ obs Ss(obs SS(ccs)) ⇒
11.a. let (cis,bi) mereo S(s) in
11.a. cis ⊆ allcis
11.b. ∧ bi ∈ allbis
11.a. end end

C. Perdurants

C.1. Behaviours

C.1.1. System

12. We ignore the behaviours related to the CCS, CS, HS
and SS parts.

13. We therefore only consider the behaviours related to the
Cs, Hs and Ss parts.

Domains: Their Simulation, Monitoring and Control 13

14. And we therefore compile the credit card system into the
parallel composition of the parallel compositions of all the
credit card, crd, all the bank, bnk, and all the shop, shp,
behaviours.

value

12. ccs:CCS
12. cs:CS = obs CS(ccs), uics:CSI = uid CS(cs),
12. bs:BS = obs BS(ccs), uibs:BSI = uid BS(bs),
12. ss:SS = obs SS(ccs), uiss:SSI = uid SS(ss),
13. socs:Cs = obs Cs(cs),
13. sobs:Bs = obs Bs(bs),
13. soss:Ss = obs Ss(ss),
14. sys: Unit → Unit,
12. sys() ≡
14. cardsuics(mereo CS(cs),...)
14. ‖ ‖{crduid C(c)(mereo C(c))|c:C•c ∈ socs}
14. ‖ banksuibs(mereo BS(bs),...)
14. ‖ ‖{bnkuid B(b)(mereo B(b))|b:B•b ∈ sobs}
14. ‖ shopsuiss(mereo SS(ss),...)
14. ‖ ‖{shpuid S(s)(mereo S(s))|s:S•s ∈ soss},
12. cardsuics(...) ≡ skip,
12. banksuibs(...) ≡ skip,
12. shopsuiss(...) ≡ skip

axiom skip ‖ behaviour(...) ≡ behaviour(...)

C.1.2. Channels

15. Credit card behaviours interact with

a) many bank (each with one) and

b) many shop behaviours.

16. Shop behaviours interact with

a) many bank (each with one) and

15.b. many credit card behaviours.

15.a.,16.a. Bank behaviours interact with many credit card and many
shop behaviours.

17. The inter-behaviour interactions concern:

a) between credit cards and banks: withdrawal requests as
to a sufficient, mk Wdrw(am), balance on the credit
card account for buying am:aM amounts of goods or
services, with the bank response of either is OK() or
is NOK(), or the revoke of a card;

b) between credit cards and shops: the buying, for an
amount, am:aM , of goods or services: mk Buy(am),
or the refund of an amount; and

c) between shops and banks: the deposit of an amount,
am:aM , in the shops’ bank account: mk Dep(am).

channel
15.a. {ch cb[ci,bi]|ci:CI,bi:BI•ci ∈ cis ∧ bi ∈ bis}:CB Msg
15.b. {ch cs[ci,si]|ci:CI,si:SI•ci ∈ cis ∧ si ∈ sis}:CS Msg
16.a {ch sb[si,bi]|si:SI,bi:BI•si ∈ sis ∧ bi ∈ bis}:SB Msg
type

17.a. CB Msg == mk Wdrw(am:aM) | is OK()
17.a. | is NOK() | mk Rev()
17.b. CS Msg == mk Buy(am:aM) | mk Ref(am:aM)
17.c. SB Msg == mk Dep((ci:CI|si:SI),am:aM)

C.1.3. Behaviour Interactions

18. The credit card initiates

a) buy transactions

i. [1.Buy] by inquiring with its bank as to sufficient
purchase funds;

ii. [2.Buy] if NOK then there are presently no further
actions; if OK

iii. [3.Buy] the credit card behaviour requests the pur-
chase from the shop – handing it an appropriate
amount am:aM ;

iv. [4.Buy] finally the shop requests its bank to deposit
the purchase amount in the shop’s bank account.

b) refund transactions

i. [1.Refund] by requesting such refunds, in the
amount of am:aM , from a[ny] shop;

ii. [2.Refund] whereupon the shop requestss its bank
to move the amount am:aM from the shop’s bank
account to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as
sketched below:

1.Buy

2.Buy

3.Buy

4.
B

uy

1.Refund

2.Refund

NOK OK

Credit Card

Bank

Shop

[1.Buy] Item 23 on the next page: ch cb[ci,bi]!mk Wdrw(am);
Item 33 on the following page: let mk Wdrw(ci,am)
= ⌈⌉⌊⌋ {ch cb[bi,bi]?|ci:CI•ci ∈ cis}

[2.Buy] Item 35 on the next page: ch cb[ci,bi]!is [N]OK()
Item 33 on the following page: let mk Wdrw(ci,am)
= ⌈⌉⌊⌋ {ch cb[ci,bi]?|ci:CI•ci ∈ cis}

[3.Buy] Item 25 on the next page: ch cs[ci,si]!mk Buy(am)
Item 45 on page 15: let mk Buy(am)
= ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis}

[4.Buy] Item 45 on page 15: ch sb[si,bi]!mk Dep(si,am)
Item 39 on the following page: let mk Dep(si,am)
=⌈⌉⌊⌋ {ch cs[ci,si]?|si:SI•si ∈ sis}

[1.Refund] Item 27 on the next page: ch cs[ci,si]!mk Ref((ci,si),am)
Item 46 on page 15: let (si,mk Ref(ci,am))
=⌈⌉⌊⌋{(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}

[2.Refund] Item 41 on the next page: ch sb[ci,bi]!mk Ref(ci,am)

C.1.4. Credit Card

19. The credit card behaviour, crd, takes the credit card unique identi-
fier, the credit card mereology, and attribute arguments (omitted).
The credit card behaviour, crd, accepts inputs from and offers out-
puts to the bank, bi, and any of the shops, si∈sis.

20. The credit card behaviour, crd, non-deterministically, internally “cy-
cles” between

a) buying,

b) getting refunds.

value

19. crdci:CI : (bi,sis):CM →
19. in,out ch cb[ci,bi],{ch cs[ci,si]|si:SI•si ∈ sis} Unit

14 Domains: Their Simulation, Monitoring and Control

19. crdci(bi,sis) ≡
20.a. (buy(ci,(bi,sis))
20. ⌈⌉
20.b. rfu(ci,(bi,sis))) ;
19. crdci(ci,(bi,sis))

21. By am:AM we mean an amount of money, and by si:SI we refer
to a shop in which we have selected a number or goods or services
(not detailed) costing am:AM .

22. The amount for which to buy and the shop from which to buy are
selected (arbitrarily).

23. The credit card (holder) withdraws am:AM from the bank, if suf-
ficient funds are available7.

24. The response from the bank

25. is either OK and the credit card [holder] completes the purchase by
buying the goods or services offered by the selected shop,

26. or the response is “not OK”, and the transaction is skipped.

type

21. AM = Int

value

20.a. buy: ci:CI × (bi,sis):CM →
20.a. in,out ch cb[ci,bi] out {ch cs[ci,si]|si:SI•si ∈ sis} Unit

20.a. buy(ci,(bi,sis)) ≡
22. let am:aM • am>0, si:SI • si ∈ sis in

22. See Discussion note 49.a on the facing page
23. let msg = (ch cb[ci,bi]!mk Wdrw(am);ch cb[ci,bi]?) in

24. case msg of

25. is OK() → ch cs[ci,si]!mk Buy(am),
26. is NOK() → skip

20.a. end end end

27. The credit card [handler] requests a refund am:aM from shop
si:SI.

This request is handled by the shop behaviour’s sub-action ref , see
lines 43.–47. page 15.

value

20.b. rfu: ci:CI × (bi,sis):CM → out {ch cs[ci,si]|si:SI•si ∈ sis} Unit

20.b. rfu(ci,(bi,sis)) ≡
27. let am:AM • am>0, si:SI • si ∈ sis in

27. See Discussion note 49.b on the next page
27. ch cs[ci,si]!mk Ref((ci,si),am)
19. end

C.1.5. Banks

28. The bank behaviour, bnk, takes the bank’s unique identifier, the
bank mereology, and the programmable attribute arguments: the
ledger and the cash register. The bank behaviour, bnk, accepts in-
puts from and offers outputs to the any of the credit cards, ci∈cis,
and any of the shops, si∈sis.

29. The bank behaviour non-deterministically internally chooses to ac-
cept

30. either withdrawal requests from credit cards

31. or deposit requests from shops or

32. or refund requests from credit cards.

value

28. bnkbi:BI : (cis,sis):BM → (LG×CR) →
28. in,out {ch cb[ci,bi]|ci:CI•ci ∈ cis}
28. {ch sb[si,bi]|si:SI•si ∈ sis} Unit

28. bnkbi((cis,sis))(lg:(bal,doi,doe,...),cr) ≡
30. withdraw(ci,(cis,sis))(lg,cr)
29. ⌈⌉
31. deposit(bi,(cis,sis))(lg,cr)
29. ⌈⌉
32. refund(bi,(cis,sis))(lg,cr)

33. The withdraw request (an action) non-deterministically, externally
offers to accept input from a credit card behaviour and marks the
only possible form of input from credit cards, (mk Wdrw(am)),
with the identity of the credit card.

34. If the requested amount (to be withdrawn) is not within balance on
the account

35. then we, at present, refrain from defining an outcome (chaos),

36. otherwise the bank behaviour informs the credit card behaviour that
the amount can be withdrawn.

37. Whereupon the bank behaviour is resumed notifying a lower balance
and “withdraws” the monies from the cash register.

value

30. withdraw: bi:BI × (cis,sis):BM → (LG×CR) →
30. in,out {ch cb[bi,ci]|ci:CI•ci ∈ cis} Unit

30. withdraw(bi,(cis,sis))(lg,cr) ≡
33. let mk Wdrw(ci,am) = ⌈⌉⌊⌋ {ch cb[ci,bi]?|ci:CI•ci ∈ cis} in

37. let (bal,doi,doe) = lg(ci) in

34. if am>bal
35. then ch cb[ci,bi]!is NOK()
36. else ch cb[ci,bi]!is OK() end ;
37. bnkbi(cis,sis)(lg†[ci 7→(bal−am,doi,doe)],cr−am)
28. end end

38. The deposit action is invoked, buy a shop behaviour, when a credit
card [holder] buy’s for a certain amount, am:aM , or requests a
refund of that amount. The deposit is made by shop behaviours, ei-
ther on behalf of themselves, hence am:aM , is to be inserted into
the shops’ bank account, si:SI, or on behalf of a credit card [i.e.,
a customer], hence am:aM , is to be inserted into the credit card
holder’s account, ci:CI.

39. The message, ch cs[ci,si]?, received from a credit card behaviour is
either concerning a buy [in which case i is a ci:CI, hence sale, or
a refund order [in which case i is a si:SI].

40. In either case, the respective bank account is “upped” by am:aM
– and the bank behaviour is resumed.

value

31. deposit: bi:BI × (cis,sis):BM → (LG×CR) →
31. in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit

31. deposit(bi,(cis,sis))(lg,cr) ≡
39. let mk Dep(si,am) = ⌈⌉⌊⌋ {ch cs[ci,si]?|si:SI•si ∈ sis} in

37. let (bal,doi,doe) = lg(si) in

40. bnkbi(cis,sis)(lg†[si 7→(bal+am,doi,doe)],cr+am)
38. end end

41. The refund action non-deterministically externally offers to accept
a mk Ref(ci,am) request from a shop behaviour, si.

42. The bank behaviour is then resumed with the credit card balance
incremented by am and the shop balance decremented by that same
amount.

value

31. refund: bi:BI × (cis,sis):BM → (LG×CR) →
31. in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit

31. refund(bi,(cis,sis))(lg,cr) ≡
41. let (si,mk Ref(ci,am))
41. = ⌈⌉⌊⌋ {(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in

37. let (balc,doic,doec) = lg(ci), (sbal,sdoi,sdoe) = lg(si) in

42. bnkbi(cis,sis)
42. (lg†[ci 7→(bcal+am,cdoi,cdoe)]
42. †[si 7→(sbal−am,sdoi,sdoe)],cr)
31. end end

7 First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes place, otherwise
not – and the credit card holder is informed accordingly.

Domains: Their Simulation, Monitoring and Control 15

C.1.6. Shops

43. The shop behaviour, shp, takes the shop’s unique identifier, the
shop mereology, and attribute arguments (omitted). The shop be-
haviour, shp, accepts inputs from and offers outputs to the any of
the credit cards, ci∈cis, and any of the shops, si∈sis.

44. The shop behaviour non-deterministically, externally

45. either offers to accept a Buy request from a credit card behaviour.
This input is (via the sale action) of the form mk Buy(am),

or

46. offers to accept a refund request in this amount, am from a credit
card [holder].
This input is (via the refe action) of the form mk Ref(am),

47. Whereupon the shop behaviour resumes being a shop behaviour.

value

43. shpsi:SI : sm:(cis:CI-set×bi:BI) × ...
43. → in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit

43. shpsi((cis,bi),...) ≡
45. (sal(si,(bi,cis),...)
44. ⌈⌉⌊⌋
46. ref(si,(cis,bi),...)):

45. sal: sm:(cis:CI-set×bi:BI) × ... →
45. in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit

45. sal(si,(cis,bi),...) ≡
45. let mk Buy(am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in

45. ch sb[si,bi]!mk Dep(si,am) end

47. shpsi((cis,bi),...)

46. ref: sm:(cis:CI-set×bi:BI) →
46. in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit

46. ref(si,(cis,bi)) ≡
46. let mk Ref((ci,si),am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in

46. ch sb[ci,bi]!mk Ref(ci,am) end

47. shpsi((cis,bi),...)

C.2. Discusssion

48. The credit card system narrated and formalised in this document is
an abstraction. We claim that it portrays an essence of credit cards.

49. The reader may object to certain things:

a) We do not model how a credit card holder selects services
from a service provider (here modelled as shops) or products in
a shop. Nor do we model that the card holder actually obtains
those services or products.
All this is summarised in Item C.1.4 on the facing page: let

am:aM • am>0, si:SI • si ∈ sis in ... end.
In other words: this is not considered an element of “an
essence” of credit cards.

b) We, “similarly” do not model how the refund request is arrived
at.
All this is summarised in Item C.1.4 on the preceding page:
let am:AM • am>0, si:SI • si ∈ sis in ... end.
In other words: this is not considered an element of “an
essence” of credit cards.

c) Also: we do not model whether the balance of the shop’s bank
account is sufficient to refund a card holder.

d) Etcetera.

The present credit card system model can “easily” be extended to
incorporate these and other matters.

50. Without showing explicit evidence we claim that present domain
description can serve as a basis for both domain and requirements
modelling standard as well as current and future credit/pay/etc.
card systems.

51. Etcetera.

