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1.From Domain via Requirements to Software Design

From Domain via Requirements to Software Design
1.1. The Compiler Development Approach
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Figure 1: The Ada Compiler Software Development Graph [Bjø77]

A Discussion of Possibilities and Problems 2 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08



3
1.From Domain via Requirements to Software Design 1.2.– as 5 MSc Thesis Projects for 6 Students

1.2. – as 5 MSc Thesis Projects for 6 Students
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1.From Domain via Requirements to Software Design 1.3.Domain Engineering

1.3. Domain Engineering
1.3.1. Denotational Semantics
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Figure 3: McCarthy [McC60, McC62], Strachey & Scott [Str68, Sco70, SS71, Sco72]
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1.From Domain via Requirements to Software Design 1.4.Requirements Engineering

1.4. Requirements Engineering
1.4.1. The Landin SECD Machine and Reynolds Closures

Abstract Syntax

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

S
o

ft
w

ar
e

D
es

ig
n

Machine Language

1st order

Landin/Reynolds

Figure 4: Landin [Lan64, Lan65a, Lan65b], Reynolds [Rey70, Rey72]
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1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.2. Macro-Expansion Semantics

1.4.2. Macro-Expansion Semantics
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Figure 5: Bekič [Bek84]
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1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.3. Compiling Algorithm

1.4.3. Compiling Algorithm
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1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.4. Machine Requirements

1.4.4. Machine Requirements
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Figure 7: The Ada Compiler Software Development Graph
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1.From Domain via Requirements to Software Design 1.5.Lines of [VDM+comment] Specifications and Man Years

1.5. Lines of [VDM+comment] Specifications and Man Years
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The Thesis of This Talk

• To describe a Domain is to give semantics
to its endurants and perdurants.

⋄⋄ That is, a Domain is viewed as a language.

⋄⋄ Description emphasis is put on semantic domains

• To prescribe Requirements is to “derive” these
from a domain description.

⋄⋄ The Requirements are for an interpretive machine.

• To specify a/the Software design
is to refine it from the requirements prescription.
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2.The Thesis of This Talk

• To verify correctness of the software design is to

⋄⋄ formally test,

⋄⋄ model check and

⋄⋄ prove property theorems.

• D,S |= R

• S |= R helps ensure correctness.

• D,S |= R helps ensure that product meets client expectations.
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The Development Dogma
3.1. The Specification Dogma

• In order to develop Software
we must have a reasonable understanding of the requirements.

• In order to understand the Requirements
we must have a reasonable understanding of the domain.

• In order to understand the Domain
we must analyse & describe it.
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3.The Development Dogma 3.2.The Verification Dogma

3.2. The Verification Dogma

• In order to have trust in the Software
it must be related formally to a Requirements.

• In order to have trust in the Requirements
it must be related formally to a Domain description.
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3.The Development Dogma 3.3.Domain Engineering

3.3. Domain Engineering
3.3.1. Domain Analysis: Manifest & Non-manifest Phenomena
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Figure 9: An Ontology of Manifest & Non-manifest Phenomena
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3.The Development Dogma 3.3.Domain Engineering 3.3.2. Domain Analysis Prompts

3.3.2. Domain Analysis Prompts
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3.3.3. Domain Description Prompts
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3.3.4. Domain Analysis: Non-manifest Properties
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3.The Development Dogma 3.4.Requirements Engineering

3.4. Requirements Engineering

• Three Stages

⋄⋄ Domain Requirements

⋄⋄ Interface Requirements

⋄⋄ Machine Requirements

• Domain Requirements

⋄⋄ Projection

⋄⋄ Instantiation

⋄⋄ Determination

⋄⋄ Extension

⋄⋄ Fitting

• Interface Requirements

⋄⋄ Shared Phenomena

⋄⋄ Shared Endurants

⋄⋄ Shared Actions

⋄⋄ Shared Events

⋄⋄ Shared Behaviours
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4.So What’s at Stake ?

So What’s at Stake ?
4.1. “States-of-Affairs”

• It seems that compiler development using formal methods

⋄⋄ such as in the DDC Ada Project (1981–1984)

⋄⋄ is still not developed the right way in industry

⋄⋄ and is also not taught that way at very, very many universities.

• It also seems that most other “application software”

⋄⋄ is mostly not developed properly:

⋄⋄ from domain descriptions

⋄⋄ via (therefrom derived) requirements prescriptions

⋄⋄ to software design etc.
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4.So What’s at Stake ? 4.2.What Would it Take ?

4.2. What Would it Take ?
4.2.1. Computer Science

• By computer science we understand the study and knowledge
of the artifacts that can exist inside computers.

4.2.2. Computing Science

• By computing science we understand the study and knowledge
of how to construct those artifacts.

4.2.3. Formal Method

• By a formal method we understand a set of principles
for selecting and applying techniques and tools
for constructing an artifact —
where the tools and techniques can be formalised,
i.e., given a logic/algebraic basis.
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4.2.4. A Remedy

• This speaker suggests, as far as universities are concerned,

⋄⋄ that we put more emphasis on computing science,

⋄⋄ that we do more research into and teach
more formal methods,

⋄⋄ that we research and teach

◦◦ domain science & engineering and

◦◦ domain, interface & machine requirements.

⋄⋄ and that we

◦◦ do experimental research into

◦◦ and pathfinder develop

domains and domain applications.
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4.3. Justification

• The Dansk Datamatik Centers Ada Compiler project
demonstrated that using formal methods
can lead to trustworthy software:
Less than 3% of original resources spent on
corrective, perfective and adaptive maintenance since 1984.

• So for programming languages we know how to do it.

• But for application domain categories
such as government systems: taxation, policing, social services, etc.
we repeatedly hear of “IT scandals”.

• I am sure that many of the abstractions, concepts and ideas
of programming languages and interpreter/compiler development
can form a strong basis for domain science & engineering.
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5.Relevant Publications & Reports

Relevant Publications & Reports

• [Bjø16b, 2015] is the definitive paper on
Manifest Domains: Analysis & Description

• [Bjø16a, 2015] is the definitive paper on
From Domain Descriptions to Requirements Prescriptions
– A Different Approach to Requirements Engineering
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5.1. Further Domain Science & Engineering Papers

•Web page www.imm.dtu.dk/˜dibj/domains/ lists the
published papers and reports mentioned below.

• I have thought about domain engineering for more than 25 years.

• But serious, focused writing only started to appear as from
[Bjø06, Part IV] — with [Bjø03, Bjø97] being exceptions:

⋄⋄ [Bjø07, 2007] suggests a number of domain science and
engineering research topics;

⋄⋄ [Bjø10a, 2008] covers the concept of domain facets;

⋄⋄ [BE10, 2008] explores compositionality and Galois
connections.
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5.Relevant Publications & Reports 5.1.Further Domain Science & Engineering Papers

⋄⋄ [Bjø08, Bjø10b, 2008,2009] show how to systematically, but,
of course, not automatically, “derive” requirements
prescriptions from domain descriptions;

⋄⋄ [Bjø11a, 2008] takes the triptych software development as a
basis for outlining principles for believable software
management;

⋄⋄ [Bjø09, Bjø14a, 2009,2013] presents a model for Stanis law
Leśniewski’s [CV99] concept of mereology;

⋄⋄ [Bjø11b, 2010] presents, based on the TripTych view of
software development as ideally proceeding from domain
description via requirements prescription to software design,
concepts such as software demos and simulators;
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5.Relevant Publications & Reports 5.1.Further Domain Science & Engineering Papers

⋄⋄ [Bjø13, 2012] analyses the TripTych, especially its domain
engineering, approach, with respect to Maslow’s Theory of
Human Motivation. Psychological Review 50(4)
(1943):370-96; and Motivation and Personality, (Third
Edition, Harper and Row Publishers, 1954.) and Peterson’s and
Seligman’s Character strengths and virtues: A handbook
and classification. (Oxford University Press, 2004);

⋄⋄ the first part of [Bjø14b, 2014] is a precursor for [Bjø16b,
2015] with its second part presenting a first formal model of
the elicitation process of analysis and description based
on the prompts more definitively presented in the current paper;
and

⋄⋄ [Bjø14c, 2014] focus on domain safety criticality.
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5.2. Some Domain Descriptions
5.2.1. 1990s: UNU–IIST

1 Scheduling and Rescheduling of Trains (China)
[BGP95, BGH+97]

2 Ministry of Finance (Vietnam)
[DCT+96] and [VGJM02, Chapter 5]

3 Radio/Telecommunications System (The Philippines)
[DG96, LM97] and [VGJM02, Chapter 4]

4 Airlines (Vietnam) [AM96]

5 Manufacturing: Production Processes [VGJM02, Chapter 7]

6 Travel Planning [VGJM02, Chapter 8]

7 Enterprise Management [JA97]
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5.2.2. 2000s and on ...

8 A Railway Systems Domain
http://euler.fd.cvut.cz/railwaydomain/ (2003)

9 Models of IT Security. Security Rules & Regulations
it-security.pdf (2006)

10 A Container Line Industry Domain
container-paper.pdf (2007)

11 The “Market”:
Consumers, Retailers, Wholesalers, Producers
themarket.pdf (2007)
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12 What is Logistics ?
logistics.pdf (2009)

13 A Domain Model of Oil Pipelines
pipeline.pdf (2009)

14 Transport Systems
comet/comet1.pdf (2010)

15 The Tokyo Stock Exchange
todai/tse-1.pdf and todai/tse-2.pdf (2010)

16 On Development of Web-based Software. A Divertimento
wfdftp.pdf (2010)

17 Documents (incomplete draft)
doc-p.pdf (2013)
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306.Conclusion

Conclusion

• So, welcome to a wonderful world of

⋄⋄ Domain Science & Engineering !

• What is there to wait for !?

• Bring your Computing/Computer Science group up to speed !

• Your students will love it.

• Young researchers will thrive.
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6.Conclusion
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