
1

A New Foundation for Computing Science
A Research & Experimental Engineering Programme

Dines Bjørner
Guimarães, Portugal

Fredsvej 11, DK–2840 Holte, Denmark

September 16, 2015: 09:08

In honour of Prof. José Nuno Oliveira

A Discussion of Possibilities and Problems 1 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

2
1.From Domain via Requirements to Software Design

From Domain via Requirements to Software Design
1.1. The Compiler Development Approach

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

S
o

ft
w

ar
e

D
es

ig
n

is covered in [Bjo77]
this dotted frame

the 7 boxes within
The methodology of

Dynamic Semantics

Figure 1: The Ada Compiler Software Development Graph [Bjø77]

A Discussion of Possibilities and Problems 2 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

3
1.From Domain via Requirements to Software Design 1.2.– as 5 MSc Thesis Projects for 6 Students

1.2. – as 5 MSc Thesis Projects for 6 Students

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

Dynamic Semantics

S
o

ft
w

ar
e

D
es

ig
n

Thesis 1

Thesis 2

Thesis 3

Thesis 4

Figure 2: [BO80]

A Discussion of Possibilities and Problems 3 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

4
1.From Domain via Requirements to Software Design 1.3.Domain Engineering

1.3. Domain Engineering
1.3.1. Denotational Semantics

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

R
eq

u
ir

em
en

ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
S

o
ft

w
ar

e
D

es
ig

n

McCarthy/Scott & Strachey

Hoare CSPD
o

m
ai

n

Figure 3: McCarthy [McC60, McC62], Strachey & Scott [Str68, Sco70, SS71, Sco72]

A Discussion of Possibilities and Problems 4 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

5
1.From Domain via Requirements to Software Design 1.4.Requirements Engineering

1.4. Requirements Engineering
1.4.1. The Landin SECD Machine and Reynolds Closures

Abstract Syntax

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

S
o

ft
w

ar
e

D
es

ig
n

Machine Language

1st order

Landin/Reynolds

Figure 4: Landin [Lan64, Lan65a, Lan65b], Reynolds [Rey70, Rey72]

A Discussion of Possibilities and Problems 5 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

6
1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.2. Macro-Expansion Semantics

1.4.2. Macro-Expansion Semantics

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

Dynamic Semantics

S
o

ft
w

ar
e

D
es

ig
n

Macro−expansion

Bekic

Figure 5: Bekič [Bek84]

A Discussion of Possibilities and Problems 6 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

7
1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.3. Compiling Algorithm

1.4.3. Compiling Algorithm

Abstract Syntax

Machine Language

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

Dynamic Semantics

S
o

ft
w

ar
e

D
es

ig
n

Compiling
Algorithm

McCarthy & Painter

Figure 6: McCarthy & Painter [MP66]

A Discussion of Possibilities and Problems 7 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

8
1.From Domain via Requirements to Software Design 1.4.Requirements Engineering 1.4.4. Machine Requirements

1.4.4. Machine Requirements

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n

1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

Dynamic Semantics

S
o

ft
w

ar
e

D
es

ig
n

128 KB Compiling Addressing Space

128 KB Run−time Addressing Space

R
eq

u
ir

em
en

ts

Figure 7: The Ada Compiler Software Development Graph

A Discussion of Possibilities and Problems 8 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

9
1.From Domain via Requirements to Software Design 1.5.Lines of [VDM+comment] Specifications and Man Years

1.5. Lines of [VDM+comment] Specifications and Man Years

Abstract Syntax

Machine Language

Compiling
Algorithm

Front End
Pass #1

Higher−order

Imperative
Stack

Macro−expansion

Resumption

Multi−pass
Administrator

D
o

m
ai

n
R

eq
u

ir
em

en
ts 1st Order

Interpreter

1st Order
Functional

Semantics

Static Semantics

Front End
Pass #2

Front End Front End
Pass #4Pass #3

Front End
Pass #5

Sequential Ada
"Denotational"

of an A[da]−Code

Multi−
Pass

Admin.

Back End
Pass #1

Back End
Pass #2

Back End
Pass #3

Back End
Pass #4

Run−time
Admin.

Run−time

Interpreter

Operational
"Parallel" Ada

Dynamic Semantics

6000

6.000

50.000

10.000

10M1.5Y

6M1Y

10M1YS
o

ft
w

ar
e

D
es

ig
n

..

120.000 Lines of subset Ada Code − incl. comments

6M0.5Y

Figure 8: The Ada Compiler Software Development Graph

A Discussion of Possibilities and Problems 9 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

102.The Thesis of This Talk

The Thesis of This Talk

• To describe a Domain is to give semantics
to its endurants and perdurants.

⋄⋄ That is, a Domain is viewed as a language.

⋄⋄ Description emphasis is put on semantic domains

• To prescribe Requirements is to “derive” these
from a domain description.

⋄⋄ The Requirements are for an interpretive machine.

• To specify a/the Software design
is to refine it from the requirements prescription.

A Discussion of Possibilities and Problems 10 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

11
2.The Thesis of This Talk

• To verify correctness of the software design is to

⋄⋄ formally test,

⋄⋄ model check and

⋄⋄ prove property theorems.

• D,S |= R

• S |= R helps ensure correctness.

• D,S |= R helps ensure that product meets client expectations.

A Discussion of Possibilities and Problems 11 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

123.The Development Dogma

The Development Dogma
3.1. The Specification Dogma

• In order to develop Software
we must have a reasonable understanding of the requirements.

• In order to understand the Requirements
we must have a reasonable understanding of the domain.

• In order to understand the Domain
we must analyse & describe it.

A Discussion of Possibilities and Problems 12 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

13
3.The Development Dogma 3.2.The Verification Dogma

3.2. The Verification Dogma

• In order to have trust in the Software
it must be related formally to a Requirements.

• In order to have trust in the Requirements
it must be related formally to a Domain description.

A Discussion of Possibilities and Problems 13 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

14
3.The Development Dogma 3.3.Domain Engineering

3.3. Domain Engineering
3.3.1. Domain Analysis: Manifest & Non-manifest Phenomena

A Triptych Manifest Domain Ontology

Describable Non−describable

Endurant

Part

Atomic Composite

Unique Identification

Mereology

Attributes

Perdurant

Behaviour
Event

Action

Component
Material

Continuous

Discrete

M
an

if
es

t
P

h
en

o
m

en
a

P
h

en
o

m
en

a
n

o
n

−
M

an
if

es
t

Figure 9: An Ontology of Manifest & Non-manifest Phenomena

A Discussion of Possibilities and Problems 14 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

15
3.The Development Dogma 3.3.Domain Engineering 3.3.2. Domain Analysis Prompts

3.3.2. Domain Analysis Prompts

Non−describable

PerdurantEndurant

Action Event Behaviour

Describable

Part

A Triptych Manifest Domain Ontology

Component

Discrete Continuous

CompositeAtomic

Material

Attributes

Mereology

Unique Identification

is_discrete, is_continuous

is_endurant, is_perdurant

has_material, has_components

is_atmomic, is_composite

is_part, is_component, is_material

Figure 10: Analysis Prompts

A Discussion of Possibilities and Problems 15 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

16
3.The Development Dogma 3.3.Domain Engineering 3.3.3. Domain Description Prompts

3.3.3. Domain Description Prompts

Non−describable

PerdurantEndurant

Action Event Behaviour

Describable

Part

A Triptych Manifest Domain Ontology

Component

Discrete Continuous

CompositeAtomic

Material

Attributes

Mereology

Unique Identification

observe_Part_Sorts

observe_Material

observe_Part_Types
observe_Components

observe_Unique_Identifier
observe_Mereology
observe_Attributes

Figure 11: Description Prompts

A Discussion of Possibilities and Problems 16 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

17
3.The Development Dogma 3.3.Domain Engineering 3.3.4. Domain Analysis: Non-manifest Properties

3.3.4. Domain Analysis: Non-manifest Properties

dynamic

active
reactive

endurant

static

inert

biddable
autonomous programmable

external attributes

Figure 12: Attributes Analysis Prompts

A Discussion of Possibilities and Problems 17 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

18
3.The Development Dogma 3.4.Requirements Engineering

3.4. Requirements Engineering

• Three Stages

⋄⋄ Domain Requirements

⋄⋄ Interface Requirements

⋄⋄ Machine Requirements

• Domain Requirements

⋄⋄ Projection

⋄⋄ Instantiation

⋄⋄ Determination

⋄⋄ Extension

⋄⋄ Fitting

• Interface Requirements

⋄⋄ Shared Phenomena

⋄⋄ Shared Endurants

⋄⋄ Shared Actions

⋄⋄ Shared Events

⋄⋄ Shared Behaviours

A Discussion of Possibilities and Problems 18 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

19
4.So What’s at Stake ?

So What’s at Stake ?
4.1. “States-of-Affairs”

• It seems that compiler development using formal methods

⋄⋄ such as in the DDC Ada Project (1981–1984)

⋄⋄ is still not developed the right way in industry

⋄⋄ and is also not taught that way at very, very many universities.

• It also seems that most other “application software”

⋄⋄ is mostly not developed properly:

⋄⋄ from domain descriptions

⋄⋄ via (therefrom derived) requirements prescriptions

⋄⋄ to software design etc.

A Discussion of Possibilities and Problems 19 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

20
4.So What’s at Stake ? 4.2.What Would it Take ?

4.2. What Would it Take ?
4.2.1. Computer Science

• By computer science we understand the study and knowledge
of the artifacts that can exist inside computers.

4.2.2. Computing Science

• By computing science we understand the study and knowledge
of how to construct those artifacts.

4.2.3. Formal Method

• By a formal method we understand a set of principles
for selecting and applying techniques and tools
for constructing an artifact —
where the tools and techniques can be formalised,
i.e., given a logic/algebraic basis.

A Discussion of Possibilities and Problems 20 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

214.So What’s at Stake ? 4.2.What Would it Take ? 4.2.4. A Remedy

4.2.4. A Remedy

• This speaker suggests, as far as universities are concerned,

⋄⋄ that we put more emphasis on computing science,

⋄⋄ that we do more research into and teach
more formal methods,

⋄⋄ that we research and teach

◦◦ domain science & engineering and

◦◦ domain, interface & machine requirements.

⋄⋄ and that we

◦◦ do experimental research into

◦◦ and pathfinder develop

domains and domain applications.

A Discussion of Possibilities and Problems 21 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

22
4.So What’s at Stake ? 4.3.Justification

4.3. Justification

• The Dansk Datamatik Centers Ada Compiler project
demonstrated that using formal methods
can lead to trustworthy software:
Less than 3% of original resources spent on
corrective, perfective and adaptive maintenance since 1984.

• So for programming languages we know how to do it.

• But for application domain categories
such as government systems: taxation, policing, social services, etc.
we repeatedly hear of “IT scandals”.

• I am sure that many of the abstractions, concepts and ideas
of programming languages and interpreter/compiler development
can form a strong basis for domain science & engineering.

A Discussion of Possibilities and Problems 22 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

23
5.Relevant Publications & Reports

Relevant Publications & Reports

• [Bjø16b, 2015] is the definitive paper on
Manifest Domains: Analysis & Description

• [Bjø16a, 2015] is the definitive paper on
From Domain Descriptions to Requirements Prescriptions
– A Different Approach to Requirements Engineering

A Discussion of Possibilities and Problems 23 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

24
5.Relevant Publications & Reports 5.1.Further Domain Science & Engineering Papers

5.1. Further Domain Science & Engineering Papers

•Web page www.imm.dtu.dk/˜dibj/domains/ lists the
published papers and reports mentioned below.

• I have thought about domain engineering for more than 25 years.

• But serious, focused writing only started to appear as from
[Bjø06, Part IV] — with [Bjø03, Bjø97] being exceptions:

⋄⋄ [Bjø07, 2007] suggests a number of domain science and
engineering research topics;

⋄⋄ [Bjø10a, 2008] covers the concept of domain facets;

⋄⋄ [BE10, 2008] explores compositionality and Galois
connections.

A Discussion of Possibilities and Problems 24 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

25
5.Relevant Publications & Reports 5.1.Further Domain Science & Engineering Papers

⋄⋄ [Bjø08, Bjø10b, 2008,2009] show how to systematically, but,
of course, not automatically, “derive” requirements
prescriptions from domain descriptions;

⋄⋄ [Bjø11a, 2008] takes the triptych software development as a
basis for outlining principles for believable software
management;

⋄⋄ [Bjø09, Bjø14a, 2009,2013] presents a model for Stanis law
Leśniewski’s [CV99] concept of mereology;

⋄⋄ [Bjø11b, 2010] presents, based on the TripTych view of
software development as ideally proceeding from domain
description via requirements prescription to software design,
concepts such as software demos and simulators;

A Discussion of Possibilities and Problems 25 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

26
5.Relevant Publications & Reports 5.1.Further Domain Science & Engineering Papers

⋄⋄ [Bjø13, 2012] analyses the TripTych, especially its domain
engineering, approach, with respect to Maslow’s Theory of
Human Motivation. Psychological Review 50(4)
(1943):370-96; and Motivation and Personality, (Third
Edition, Harper and Row Publishers, 1954.) and Peterson’s and
Seligman’s Character strengths and virtues: A handbook
and classification. (Oxford University Press, 2004);

⋄⋄ the first part of [Bjø14b, 2014] is a precursor for [Bjø16b,
2015] with its second part presenting a first formal model of
the elicitation process of analysis and description based
on the prompts more definitively presented in the current paper;
and

⋄⋄ [Bjø14c, 2014] focus on domain safety criticality.

A Discussion of Possibilities and Problems 26 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

275.Relevant Publications & Reports 5.2.Some Domain Descriptions

5.2. Some Domain Descriptions
5.2.1. 1990s: UNU–IIST

1 Scheduling and Rescheduling of Trains (China)
[BGP95, BGH+97]

2 Ministry of Finance (Vietnam)
[DCT+96] and [VGJM02, Chapter 5]

3 Radio/Telecommunications System (The Philippines)
[DG96, LM97] and [VGJM02, Chapter 4]

4 Airlines (Vietnam) [AM96]

5 Manufacturing: Production Processes [VGJM02, Chapter 7]

6 Travel Planning [VGJM02, Chapter 8]

7 Enterprise Management [JA97]

A Discussion of Possibilities and Problems 27 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

285.Relevant Publications & Reports 5.2.Some Domain Descriptions 5.2.2. 2000s and on ...

5.2.2. 2000s and on ...

8 A Railway Systems Domain
http://euler.fd.cvut.cz/railwaydomain/ (2003)

9 Models of IT Security. Security Rules & Regulations
it-security.pdf (2006)

10 A Container Line Industry Domain
container-paper.pdf (2007)

11 The “Market”:
Consumers, Retailers, Wholesalers, Producers
themarket.pdf (2007)

A Discussion of Possibilities and Problems 28 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

295.Relevant Publications & Reports 5.2.Some Domain Descriptions 5.2.2. 2000s and on ...

12 What is Logistics ?
logistics.pdf (2009)

13 A Domain Model of Oil Pipelines
pipeline.pdf (2009)

14 Transport Systems
comet/comet1.pdf (2010)

15 The Tokyo Stock Exchange
todai/tse-1.pdf and todai/tse-2.pdf (2010)

16 On Development of Web-based Software. A Divertimento
wfdftp.pdf (2010)

17 Documents (incomplete draft)
doc-p.pdf (2013)

A Discussion of Possibilities and Problems 29 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

306.Conclusion

Conclusion

• So, welcome to a wonderful world of

⋄⋄ Domain Science & Engineering !

• What is there to wait for !?

• Bring your Computing/Computer Science group up to speed !

• Your students will love it.

• Young researchers will thrive.

A Discussion of Possibilities and Problems 30 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

31
6.Conclusion

7. References
[AM96] Dao Nam Anh and Richard Moore. Formal Modelling of Large Domains — with an Application to Airline Business. Technical Report 74, UNU/IIST, P.O.Box 3058, Macau,

June 1996. Revised: September 1996. .

[BE10] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations in the Context of Software Engineering in July 2008, eds.
Martin Steffen, Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of Lecture
Notes in Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[Bek84] Hans Bekič. Programming Languages and Their Definition. In Cliff B. Jones, editor, Lecture Notes in Computer Science, Vol. 177. Springer, 1984.

[BGH+97] Dines Bjørner, Chris W. George, Bo Stig Hansen, Hans Laustrup, and Søren Prehn. A Railway System, Coordination’97, Case Study Workshop Example. Research Report 93,
UNU/IIST, P.O.Box 3058, Macau, January 1997. .

[BGP95] Dines Bjørner, Chris W. George, and Søren Prehn. Scheduling and Rescheduling of Trains. Research Report 52, UNU/IIST, P.O.Box 3058, Macau, December 1995. .

[Bjø77] Dines Bjørner. Programming Languages: Formal Development of Interpreters and Compilers. In International Computing Symposium 77 (eds. E. Morlet and D. Ribbens),
pages 1–21. European ACM, North-Holland Publ.Co., Amsterdam, 1977.

[Bjø97] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and Michael Hinchley, editors, ICFEM’97: International Conference on
Formal Engineering Methods, Los Alamitos, November 12–14 1997. IEEE Computer Society. Final Version.

[Bjø03] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verification: Theory and Practice, volume 2772 of Lecture Notes in
Computer Science, Heidelberg, October 7–11 2003. Springer–Verlag. The Zohar Manna International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[Bjø06] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

[Bjø07] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P.
Woodcock et al.), pages 1–17, Heidelberg, September 2007. Springer.

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and
José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[Bjø09] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and
Kenneth R. Wood), pages 47–70, London, UK, 2009. Springer.

[Bjø10a] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen,
pages 1–42, London, UK, 2010. Springer.

[Bjø10b] Dines Bjørner. The Rôle of Domain Engineering in Software Development. Why Current Requirements Engineering Seems Flawed! In Perspectives of Systems Informatics,
volume 5947 of Lecture Notes in Computer Science, pages 2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[Bjø11a] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.

[Bjø11b] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann
Maurer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011.

[Bjø13] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7, pages 159–177. Computational Analysis, Synthesis, and Design of
Dynamic Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[Bjø14a] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The
Netherlands, October 2014.

[Bjø14b] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra,
and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

A Discussion of Possibilities and Problems 31 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

32

[Bjø14c] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian System Safety Conference, Melbourne, 26–28 May,
December 2014.

[Bjø16a] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different Approach to Requirements Engineering. Submitted for consideration by Formal Aspects
of Computing, 35 pages. 2016.

[Bjø16b] Dines Bjørner. Manifest Domains: Analysis & Description. Expected published by Formal Aspects of Computing, 44 pages. 2016.

[BO80] Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada, volume 98 of LNCS. Springer, 1980.

[CV99] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.

[DCT+96] Do Tien Dung, Le Linh Chi, Nguyen Le Thu, Phung Phuong Nam, Tran Mai Lien, and Chris W. George. Developing a Financial Information System. Technical Report 81,
UNU/IIST, P.O.Box 3058, Macau, September 1996.

[DG96] Roderick Durmiendo and Chris W. George. Formal Development of a Digital Mutiplexed Radio-Telephone System. Research Report 67, UNU/IIST, P.O.Box 3058, Macau, Feb
1996. .

[JA97] Tomasz Janowski and Rumel V. Atienza. A Formal Model For Competing Enterprises, Applied to Marketing Decision-Making. Research Report 92, UNU/IIST, P.O.Box 3058,
Macau, January 1997. .

[Lan64] Peter J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6(4):308–320, 1964.

[Lan65a] Peter J. Landin. A Correspondence Between ALGOL 60 and Church’s Lambda-Notation (in 2 parts). Communications of the ACM, 8(2-3):89–101 and 158–165, Feb.-March
1965.

[Lan65b] Peter J. Landin. A Generalization of Jumps and Labels. Technical report, Univac Sys. Prgr. Res. Grp., N.Y., 1965.

[LM97] Hoang Thi Tung Lam and Richard Moore. Specification of a Switching Communications System. Technical Report 106, UNU/IIST, P.O.Box 3058, Macau, May 1997.

[McC60] John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by Machines, Part I. Communications of the ACM, 3(4):184–195, 1960.

[McC62] John McCarthy. Towards a Mathematical Science of Computation. In C.M. Popplewell, editor, IFIP World Congress Proceedings, pages 21–28, 1962.

[MP66] John McCarthy and James Painter. Correctness of a Compiler for Arithmetic Expressions. In [Sch67], pages 33–41, 1966. Dept. of Computer Science, Stanford University,
California, USA.

[Rey70] John C. Reynolds. GEDANKEN – a simple type-less language based on the principle of completeness and the reference concept. Communications of the ACM, 13(5):308–319,
1970.

[Rey72] John C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages. In Proc. 25th ACM Nat’l. Conf., pages 717–740, 1972.

[Sch67] J.T. Schwartz. Mathematical Aspects of Computer Science, Proc. of Symp. in Appl. Math. American Mathematical Society, Rhode Island, USA, 1967.

[Sco70] D.S. Scott. Outline of a Mathematical Theory of Computation. In Proc. 4th Ann. Princeton Conf. on Inf. Sci. and Sys., page 169, 1970.

[Sco72] D.S. Scott. Mathematical concepts in programming language semantics. In Proc. AFIPS, Spring Joint Computer Conference, 40, pages 225–234, 1972.

[SS71] D.S. Scott and C. Strachey. Towards a mathematical semantics for computer languages. In Computers and Automata, volume 21 of Microwave Research Inst. Symposia, pages
19–46, 1971.

[Str68] C. Strachey. Fundamental concepts in programming languages. Unpubl. Lecture Notes, NATO Summer School, Copenhagen, 1967, and Programming Research Group, Oxford
Univ., 1968.

[VGJM02] Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore, editors. Specification Case Studies in RAISE. Springer, 2002.

A Discussion of Possibilities and Problems 32 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – September 16, 2015: 09:08

