
Domain Science & Engineering∗

Dines Bjørner
DTU Informatics, Techn.Univ.of Denmark
bjorner@gmail.com, www.imm.dtu.dk/~dibj

September 5, 2012: 11:29

1

2
Abstract

This paper covers a new science & engineering of domains as well as a new foun-
dation for software development. We treat the latter first. Instead of commencing with 3

requirements engineering, whose pursuit may involve repeated, but unstructured forms of
domain analysis, we propose a predecessor phase of domain engineering.

That is, we single out domain analysis as an activity to be pursued prior to requirements
engineering. In emphasising domain engineering as a predecessor phase we, at the same 4

time, introduce a number of facets that are not present, we think, in current software
engineering studies and practices.

(i) One facet is the construction of separate domain descriptions. Domain descrip-
tions are void of any reference to requirements and encompass the modelling of domain
phenomena without regard to their being computable. 5

(ii) Another facet is the pursuit of domain descriptions as a free-standing activity.
In this paper we emphasize domain description development need not necessarily lead to
software development. This gives a new meaning to business process engineering, and
should lead to a deeper understanding of a domain and to possible non-IT related business
process re-engineering of areas of that domain. In this paper we shall investigate a method 6

for analysing domains, for constructing domain descriptions and some emerging scientific
bases. 7

Our contribution to domain analysis is that we view domain analysis as a variant of
formal concept analysis [38], a contribution which can be formulated by the “catch phrase”
domain entitities and their qualities form Galois connections, and further contribute
with a methodology of necessary corresponding principles and techniques of domain anal-
ysis. Those corresponding principles and techniques hinge on our view of domains as 8

having the following ontology. There are the entities that we can describe and then there
is “the rest” which we leave un-described. We analyse entities into endurant entities and
perdurant entities , that is, parts and materials as endurant entities and discrete actions,
discrete events and behaviours as perdurant entities , respectively. Another way of looking
at entities is as discrete entities , or as continuous entities. We also contribute to the analysis 9

of discrete endurants in terms of the following notions: part types and material types, part
unique identifiers, part mereology and part attributes and material attributes and material
laws. Of the above we point to the introduction, into computing science and software
engineering of the notions of materials and continuous behaviours as novel. 10

The example formalisations are expressed in RAISE [40] (with [8, 9, 10] being a rather
comprehensive monograph cum textbook), but could as well have been expressed in, for
example, Alloy [50], Event B [1] , VDM [18, 19, 35] or Z [105].

∗

1

2 Domain Science & Engineering

• Administrative Notes:

⋄⋄ This document serves as a basis for my full day tutorial at the FM 2012 Interna-
tional Symposium (http://fm2012.cnam.fr/), August 28, at Conservatoire National
des Arts et Métiers, 292 rue Saint-Martin, F-75141 Paris, France.

⋄⋄ My 31 December 2011 Tutorial Proposal, so kindly accepted by the relevant FM 2012
committees can be found at http://www2.imm.dtu.dk/˜dibj/fm2012/31-12-2011-
tutorial-bjorner.pdf.

⋄⋄ The FM 2012 Tutorial Progranme organisers have kindly prepared a volume of the
tutorial lecture notes.

◦◦ The lecture notes for the tutorial related to the present document are (most
likely) dated July 14, 2012 (or could be as early as July 3, 2012) at http://-
www2.imm.dtu.dk/˜dibj/fm2012/Bjorner-FM2012-Notes-july14.pdf.

◦◦ The present document, and the tutorial that will be presented is a rather
complete rewrite, restructuring, re-editing and, I shall claim, rather significant
improvement over earlier attempts.

◦◦ This work took place between July 14 and August 22, 2012.

• Editorial Notes:

⋄⋄ In the present document you will notice some margin numerals. They refer to slide
numbers for the of slides that correspond to this document.

⋄⋄ You will find a 4:1 reduced set of these slides at http://www2.imm.dtu.dk/˜dibj/4-
dsae-f.pdf.

• Thanks: DTU Informatics have kindly let print and bind a set of these lecture notes.

Special thanks are due to Mr. Finn Kuno Christensen, DTU Informatik.

c© August 12, 2012, Dines Bjørner

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 3

Contents

1 Introduction 13

1.1 Domains: Some Definitions . 13

Example 1: Some Domains . 13
1.1.1 Domain Analysis . 13

Example 2: A Container Line Analysis 13

1.1.2 Domain Descriptions . 13

Example 3: A Transport Domain Description 13

1.1.3 Domain Engineering . 14

1.1.4 Domain Science . 14
1.2 The Triptych of Software Development . 14

1.3 Issues of Domain Science & Engineering . 15

1.4 Structure of Paper . 16

2 The Main Example: Road Traffic System 17

Example 4: The Main Example 17

2.1 Parts . 17

2.1.1 Root Sorts . 17

2.1.2 Sub-domain Sorts and Types . 17

2.1.3 Further Sub-domain Sorts and Types 18
2.2 Properties . 19

2.2.1 Unique Identifications . 19

2.2.2 Mereology . 19

[1] Road Net Mereology: . 19

[2] Fleet of Vehicles Mereology: . 20

2.2.3 Attributes . 20
[1] Attributes of Links: . 20

[2] Attributes of Hubs: . 21

[3] Attributes of Vehicles: . 22

[4] Vehicle Positions: . 22

2.3 Definitions of Auxiliary Functions . 23

2.4 Some Derived Traffic System Concepts . 24
2.4.1 Maps . 24

2.4.2 Traffic Routes . 25

[1] Circular Routes: . 26

[2] Connected Road Nets: . 26

[3] Set of Connected Nets of a Net: 27

[4] Route Length: . 27

[5] Shortest Routes: . 28
2.5 States . 29

2.6 Actions . 29

2.7 Events . 29

2.8 Behaviours . 31

2.8.1 Traffic . 31

[1] Continuous Traffic: . 31
[2] Discrete Traffic: . 31

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

4 Domain Science & Engineering

[3] Time: An Aside: . 31
2.8.2 Globally Observable Parts . 32

2.8.3 Road Traffic System Behaviours . 33

2.8.4 Channels . 33

2.8.5 Behaviour Signatures . 33

2.8.6 The Vehicle Behaviour . 34

2.8.7 The Monitor Behaviour . 35

3 Domains 36

3.1 Delineations . 36

[1] Domain: . 36

[2] Domain Phenomena: . 36

[3] Domain Entity: . 36

[4] Endurant Entity: . 36

[5] Perdurant Entity: . 36
[6] Discrete Endurant: . 36

[7] Continuous Endurant: . 36

[8] Domain Parts and Materials: . 36

[9] Domain Analysis: . 36

[10] Domain Description: . 37

[11] Domain Engineering: . 37

[12] Domain Science: . 37

[13] Values & Types: . 37
[14] Discrete Perdurant: . 37

[15] Continuous Perdurant: . 37

[16] Extensionality: . 37

[17] Intentionality: . 37

3.2 Formal Analysis of Entities . 38

3.2.1 Theory . 38

3.2.2 Practice . 39

3.3 Discussion . 39

4 Discrete Endurant Entities 40

4.1 Parts . 40

4.1.1 What is a Part ? . 40

Example 5: Parts . 40

4.1.2 Classes of “Same Kind” Parts . 40
Example 6: Part Properties 40

4.1.3 A Preview of Part Properties . 40

4.1.4 Formal Concept Analysis: Endurants 40

4.1.5 Part Property Values . 41

Example 7: Part Property Values 41

Example 8: Distinct Parts . 41

4.1.6 Part Sorts . 41

Example 9: Part Sorts . 41
4.1.7 Atomic Parts . 41

Example 10: Atomic Types . 41

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 5

4.1.8 Composite Parts . 42
Example 11: Composite Types 42

4.1.9 Part Observers . 42
Example 12: Implementation of Observer Functions 42
Example 13: Observer Functions 42

4.1.10 Part Types . 43
Example 14: Concrete Types 43
Example 15: Has Composite Types 43

4.2 Part Properties . 43
Example 16: Property Value Scales 43

4.2.1 Unique Identifiers . 44
Example 17: Unique Identifier Functions 44

[1] A Dogma of Unique Existence: 44
[2] A Simplification on Specification of Intentional Properties: . . . 44
[3] Discussion: . 44
[4] The uid P Operator: . 44
[5] Constancy of Unique Identifiers — Some Dogmas: 45

4.2.2 Mereology . 45
Example 18: Manifest and Conceptual Parts 45

[1] Extensional and Intentional Part Relations: 45
Example 19: Shared Route Maps and Bus Time Tables . . . 45
Example 20: Monitor and Vehicle Mereologies 46

[2] Unique Part Identifier Mereologies: 46
Example 21: Road Traffic System Mereology 46
Example 22: Pipeline Mereology 46

[3] Concrete Part Type Mereologies: 47
Example 23: A Container Line Mereology 47

[4] Variability of Mereologies: . 49
Example 24: Insert Link . 49

4.2.3 Attributes . 51
Example 25: Road Transport System Part Attributes 51

[1] Stages of Attribute Analysis: . 51
Example 26: Static and Dynamic Attributes 51
Example 27: Concrete Attribute Types 51

[2] The attr A Operator: . 51
[3] Variability of Attributes: . 51

Example 28: Setting Road Intersection Traffic Lights 52
4.2.4 Properties and Concepts . 52

[1] Inviolability of Part Properties: 52
[2] Ganter & Wille: Formal Concept Analysis: 52
[3] The Extensionality of Part Attributes: 52

4.2.5 Properties of Parts . 52
4.3 States . 53

Example 29: A Variety of Road Traffic Domain States 53
4.4 An Example Domain: Pipelines . 53

Example 30: Pipeline Units and Their Mereology 53
Example 31: Pipelines: Nets and Routes 54

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

6 Domain Science & Engineering

5 Discrete Perdurant Entities 57
5.1 Formal Concept Analysis: Discrete Perdurants 57
5.2 Actions . 57

Example 32: Transport Net and Container Vessel Actions . . 57
5.2.1 Abstraction: On Modelling Domain Actions 57
5.2.2 Agents: An Aside on Actions . 58

5.2.3 Action Signatures . 58
Example 33: Action Signatures: Nets and Vessels 58

5.2.4 Action Definitions . 58
Example 34: Transport Nets Actions 58
Example 35: Container Line: Remove Container 59

Modelling Actions . 60
5.3 Events . 61

Example 36: Events . 61
5.3.1 An Aside on Events . 61
5.3.2 Event Signatures . 61

5.3.3 Event Definitions . 61
Example 37: Road Transport System Event 61

Modelling Events . 61
5.4 Discrete Behaviours . 62

5.4.1 What is Meant by ‘Behaviour’ ? . 62

5.4.2 Behaviour Narratives . 63
5.4.3 Channels . 63

5.4.4 Behaviour Signatures . 63
5.4.5 Behaviour Definitions . 64

[1] Atomic Part Behaviours: . 64

Example 38: Atomic Part Behaviours 64
[2] Composite Part Behaviours: . 64

Example 39: Compositional Behaviours 65

5.4.6 A Model of Parts and Behaviours . 65
Example 40: Syntax and Semantics of Mereology 65

[1] A Syntactic Model of Parts: . 65
[2] A Semantics Model of Parts: . 67

6 Continuous Entities 69
6.1 Materials . 69

Example 41: Materials . 69

6.1.1 Materials-based Domains . 69
Example 42: Material Processing 69

6.1.2 “Somehow Related” Parts and Materials 69
Example 43: Somehow Related Materials and Parts 69

6.1.3 Material Observers . 70

Example 44: Pipelines: Core Continuous Endurant 70
Example 45: Pipelines: Parts and Materials 70

6.1.4 Material Properties . 71
Example 46: Pipelines: Parts and Material Properties 71

6.1.5 Material Laws of Flows and Leaks 72

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 7

Example 47: Pipelines: Intra Unit Flow and Leak Law 72
Example 48: Pipelines: Inter Unit Flow and Leak Law 73

6.2 Continuous Behaviours . 74

6.2.1 Fluid Dynamics . 74
[1] Descriptions of Continuous Domain Behaviours: 74
[2] Prescriptions of Required Continuous Domain Behaviours: . . . 74

Example 49: Pipelines: Fluid Dynamics and Automatic Control 74
6.2.2 A Pipeline System Behaviour . 75

Example 50: A Pipeline System Behaviour 75

7 A Domain Discovery Calculus 78

7.1 An Overview . 78
7.1.1 Domain Analysers . 78
7.1.2 Domain Discoverers . 78

7.1.3 Domain Indexes . 78
7.2 Domain Analysers . 78

7.2.1 Some Meta-meta Discoverers . 79
7.2.2 IS MATERIALS BASED . 79

IS MATERIALS BASED . 79

Example 51: Is Materials-based Domain 79
7.2.3 IS ATOMIC . 79

IS ATOMIC . 79
Example 52: Is Atomic Type 80

7.2.4 IS COMPOSITE . 80

IS COMPOSITE . 80
Example 53: Is Composite Type 80

7.2.5 HAS A CONCRETE TYPE . 80
HAS A CONCRETE TYPE . 80

Example 54: Has Concrete Types 80

7.3 Domain Discoverers . 81
7.3.1 PART SORTS . 81

PART SORTS . 81

Example 55: Discover Part Sorts 81
7.3.2 MATERIAL SORTS . 81

MATERIAL SORTS . 81
Example 56: Material Sort . 82

7.3.3 PART TYPES . 82

PART TYPES . 82
Example 57: Part Types . 82

7.3.4 UNIQUE ID . 82
UNIQUE ID . 82

Example 58: Unique ID . 83

7.3.5 MEREOLOGY . 83
MEREOLOGY . 83

Example 59: Mereologies . 84
7.3.6 ATTRIBUTES . 84

ATTRIBUTES . 84

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

8 Domain Science & Engineering

Example 60: Attributes . 84
7.3.7 ACTION SIGNATURES . 84

ACTION SIGNATURES . 84

Example 61: Action Signatures 85
7.3.8 EVENT SIGNATURES . 85

EVENT SIGNATURES . 85

Example 62: Event Signatures 86
7.3.9 DISCRETE BEHAVIOUR SIGNATURES 86

BEHAVIOUR SIGNATURES . 86
Example 63: Behaviour Signatures 86

7.4 Some Technicalities . 87

7.4.1 Order of Analysis and “Discovery” 87
7.4.2 Analysis and “Discovery” of “Leftovers” 87

7.5 Laws of Domain Descriptions . 87
7.5.1 1st Law of Commutativity . 87
7.5.2 2nd Law of Commutativity . 88

7.5.3 3rd Law of Commutativity . 88
7.5.4 1st Law of Stability . 88

7.5.5 2nd Law of Stability . 88
7.5.6 Law of Non-interference . 89

7.6 Discussion . 89

8 Requirements Engineering 90
8.1 A Requirements “Derivation” . 90

8.1.1 Definition of Requirements . 90
IEEE Definition of ‘Requirements’ 90

8.1.2 The Machine = Hardware + Software 90
8.1.3 Requirements Prescription . 90
8.1.4 Some Requirements Principles . 90

The “Golden Rule” of Requirements Engineering 90
An “Ideal Rule” of Requirements Engineering 90

8.1.5 A Decomposition of Requirements Prescription 91

8.1.6 An Aside on Our Example . 91
8.2 Domain Requirements . 91

8.2.1 Projection . 91
8.2.2 Instantiation . 92

[1] Model Well-formedness wrt. Instantiation:: 92

8.2.3 Determination . 93
[1] Model Well-formedness wrt. Determination:: 93

8.2.4 Extension . 95
Backgorund: . 95
The Extension: . 95

The Formalisation: . 95
8.3 Interface Requirements Prescription . 97

8.3.1 Shared Parts . 98
[1] Data Initialisation:: . 98
[2] Data Refreshment:: . 98

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 9

8.3.2 Shared Actions . 98

[1] Interactive Action Execution:: . 98

8.3.3 Shared Events . 99

8.3.4 Shared Behaviours . 99

8.4 Machine Requirements . 99

8.5 Discussion of Requirements “Derivation” 99

9 Conclusion 100

9.1 Comparison to Other Work . 100

9.1.1 Ontological Engineering: . 100

9.1.2 Knowledge and Knowledge Engineering: 100

9.1.3 Prieto-D̃ıaz: Domain Analysis: . 101

9.1.4 Software Product Line Engineering: 102

9.1.5 M.A. Jackson: Problem Frames: . 102

9.1.6 Domain Specific Software Architectures (DSSA): 102

9.1.7 Domain Driven Design (DDD) . 103

9.1.8 Feature-oriented Domain Analysis (FODA): 103

9.1.9 Unified Modelling Language (UML) 103

9.1.10 Requirements Engineering: . 104

9.1.11 Summary of Comparisons . 104

9.2 What Have We Omitted: Domain Facets 104

9.2.1 Intrinsics . 105

Example 64: Road Transport System Intrinsics 105

9.2.2 Support Technologies . 105

Example 65: Tollroad System Support Technologies 105

9.2.3 Rules & Regulations . 105

[1] Rules: . 105

Example 66: Road Transport System Rules 105

[2] Regulation: . 105

Example 67: Road Transport System Regulations 105

9.2.4 Scripts . 105

Example 68: Pipeline System Scripts 105

9.2.5 Organisation & Management . 105

[1] Organisation: . 105

Example 69: Tollroad System Organisation 105

[2] Management: . 106

Example 70: Tollroad System Management 106

9.2.6 Human Behaviour . 106

9.3 What Needs More Research . 106

9.3.1 Modelling Discrete & Continuous Domains 106

9.3.2 Domain Types and Signatures Form Galois Connections 106

9.3.3 A Theory of Domain Facets ? . 106

9.3.4 Other Issues . 106

9.4 What Have We Achieved . 106

9.5 General Remarks . 107

9.6 Acknowledgements . 107

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

10 Domain Science & Engineering

10 Bibliographical Notes 109

10.1 References . 109

A A TripTychTripTych@TripTych Ontology 118

B On A Theory of Container Stowage 119

B.1 Some Pictures . 119

B.2 Parts . 120

B.2.1 A Basis . 120

B.2.2 Mereological Constraints . 121

B.2.3 Stack Indexes . 122

B.2.4 Stowage Schemas . 124

B.3 Actions . 125

B.3.1 Remove Container from Vessel . 125

B.3.2 Remove Container from CTP . 126

B.3.3 Stack Container on Vessel . 127

B.3.4 Stack Container in CTP . 127

B.3.5 Transfer Container from Vessel to CTP 127

B.3.6 Transfer Container from CTP to Vessel 128

C Indexes 129

C.1 RSL Index . 129

C.2 Formalisation Index . 130

C.3 Definition Index . 132

C.4 Example Index . 133

C.5 Concept Index . 135

C.6 Language, Method and Technology Index 154

C.7 Selected Author Index . 154

D RSL: The Raise Specification Language 157

D.1 Type Expressions . 157

D.1.1 Atomic Types . 157

D.1.2 Composite Types . 157

[1] Concrete Composite Types: . 157

[2] Sorts and Observer Functions: . 158

D.2 Type Definitions . 159

D.2.1 Concrete Types . 159

D.2.2 Subtypes . 160

D.2.3 Sorts — Abstract Types . 160

D.3 The RSL Predicate Calculus . 160

D.3.1 Propositional Expressions . 160

D.3.2 Simple Predicate Expressions . 160

D.3.3 Quantified Expressions . 161

D.4 Concrete RSL Types: Values and Operations 161

D.4.1 Arithmetic . 161

D.4.2 Set Expressions . 161

[1] Set Enumerations: . 161

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 11

[2] Set Comprehension: . 161
D.4.3 Cartesian Expressions . 162

[1] Cartesian Enumerations: . 162
D.4.4 List Expressions . 162

[1] List Enumerations: . 162
[2] List Comprehension: . 162

D.4.5 Map Expressions . 162
[1] Map Enumerations: . 162
[2] Map Comprehension: . 163

D.4.6 Set Operations . 163
[1] Set Operator Signatures: . 163
[2] Set Examples: . 163
[3] Informal Explication: . 164
[4] Set Operator Definitions: . 164

D.4.7 Cartesian Operations . 164
D.4.8 List Operations . 165

[1] List Operator Signatures: . 165
[2] List Operation Examples: . 165
[3] Informal Explication: . 165
[4] List Operator Definitions: . 166

D.4.9 Map Operations . 167
[1] Map Operator Signatures and Map Operation Examples: 167
[2] Map Operation Explication: . 167
[3] Map Operation Redefinitions: . 168

D.5 λ-Calculus + Functions . 168
D.5.1 The λ-Calculus Syntax . 168
D.5.2 Free and Bound Variables . 169
D.5.3 Substitution . 169
D.5.4 α-Renaming and β-Reduction . 169
D.5.5 Function Signatures . 169
D.5.6 Function Definitions . 170

D.6 Other Applicative Expressions . 170
D.6.1 Simple let Expressions . 170
D.6.2 Recursive let Expressions . 170
D.6.3 Predicative let Expressions . 171
D.6.4 Pattern and “Wild Card” let Expressions 171
D.6.5 Conditionals . 171
D.6.6 Operator/Operand Expressions . 172

D.7 Imperative Constructs . 172
D.7.1 Statements and State Changes . 172
D.7.2 Variables and Assignment . 173
D.7.3 Statement Sequences and skip . 173
D.7.4 Imperative Conditionals . 173
D.7.5 Iterative Conditionals . 173
D.7.6 Iterative Sequencing . 173

D.8 Process Constructs . 173
D.8.1 Process Channels . 173

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

12 Domain Science & Engineering

D.8.2 Process Composition . 174
D.8.3 Input/Output Events . 174
D.8.4 Process Definitions . 174

D.9 Simple RSL Specifications . 174

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 13

1 Introduction 11

We beg the reader to re-read the abstract, Page 1, as for the contributions of this paper.

This is primarily a methodology paper. By a methodδ we shall understand a set of prin-
ciples for selecting and applying a number of techniques and tools in order to analyse a
problem and construct an artefact. By methodologyδ we shall understand the study and
knowledge about methods. 12

This paper contributes to the study and knowledge of software engineering development
methods. Its contributions are those of suggesting and exploring domain engineering and
domain engineering as a basis for requirements engineering. We are not saying “thou must
develop software this way”, but we do suggest that since it is possible and makes sense to do
so it may also be wise to do so.

1.1 Domains: Some Definitions 13

By a domainδ we shall here understand an area of human activity characterised by observable
phenomena: entities whether endurants (manifest parts and materials) or perdurants (actions,
events or behaviours), whether discrete or continuous; and of their properties. 14

Example: 1 Some Domains Some examples are:

air traffic,
airport,
banking,
consumer market,
container lines,

fish industry,
health care,
logistics,
manufacturing,
pipelines,

securities trading,
transportation
etcetera.

1.1.1 Domain Analysis 15

By domain analysisδ we shall understand an inquiry into the domain, its entities and their
properties. 16

Example: 2 A Container Line Analysis. parts: container, vessel, terminal port, etc.;
actions: container loading, container unloading, vessel arrival in port, etc.; events: container
falling overboard; container afire; etc.; behaviour: vessel voyage, across the seas, visiting ports,
etc. Length of a container is a container property. Name of a vessel is a vessel property.
Location of a container terminal port is a port property.

1.1.2 Domain Descriptions 17

By a domain descriptionδ we shall understand a narrative description tightly coupled (say line-
number-by-line-number) to a formal description. To develop a domain description requires a
thorough amount of domain analysis. 18

Example: 3 A Transport Domain Description.

• Narrative:

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

14 Domain Science & Engineering

⋄⋄ a transport net, n:N,
consists of an aggregation of hubs, hs:HS,
which we “concretise” as a set of hubs, H-set, and
an aggregation of links, ls:LS, that is, a set L-set,

• Formalisation:

⋄⋄ type N, HS, LS, Hs = H-set, Ls = L-set, H, L
value

obs HS: N→HS,
obs LS: N→LS.
obs Hs: HS→H-set,
obs Ls: LS→L-set.

An interesting domain description is usually a document of a hundred pages or so. Each page
“listing” pairs of enumerated informal, i.e., narrative descriptions with formal descriptions.

1.1.3 Domain Engineering 19

By domain engineeringδ we shall understand the engineering of a domain description, that is,
the rigorous construction of domain descriptions, and the further analysis of these, creating
theories of domains. The size (usually, say a hundred pages), structure (usually a finely sec-20

tioned document of may subsub· · · subsections) and complexity (having many cross-references
between subsub· · · subsections) of interesting domain descriptions is usually such as to put a
special emphasis on engineering: the management and organisation of several, typically 5–6
collaborating domain describers, the ongoing check of description quality, completeness and
consistency, etcetera.

1.1.4 Domain Science 21

By domain scienceδ we shall understand two things: the general study and knowledge of how
to create and handle domain descriptions (a general theory of domain descriptions) and the
specific study and knowledge of a particular domain. The two studies intertwine.

1.2 The Triptych of Software Development 22

We suggest a “dogma”: before software can be designed one must understand1 the require-
ments; and before requirements can be expressed one must understand2 the domain.

We can therefore view software development as ideally proceeding in three (i.e., TripTych)
phases: an initial phase of domain engineering, followed by a phase of requirements engineering,
ended by a phase of software design.23

In the domain engineering phase3 (D) a domain is analysed, described and “theorised”,
that is, the beginnings of a specific domain theory is established. In the requirements engi-
neering phase4 (R) a requirements prescription is constructed — significant fragments of which
are “derived”, systematically, from the domain description. In the software design phase5 (S)

1Or maybe just: have a reasonably firm grasp of
2See previous footnote!
3See Sects. 4–6
4See Sect. 8
5We do not illustrate the software design phase in this paper.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 15

a software design is derived, systematically, rigorously or formally, from the requirements pre-
scription. Finally the Software is proven correct with respect to the Requirements under
assumption of the Domain: D,S |= R. 24

By a machineδ we shall understand the hardware and software6 of a target, i.e., a required
IT system.

In [11, 17, 14] we indicate how one can “derive” significant parts of requirements from a
suitably comprehensive domain description – basically as follows. Domain projection: from a
domain description one projects those areas that are to be somehow manifested in the software.
Domain initialisation: for that resulting projected requirements prescription one initialises a
number of part types as well as action and behaviour definitions, from less abstract to more
concrete, specific types, respectively definitions. Domain determination: hand-in-hand with 25

domain initialisation a[n interleaved] stage of making values of types less non-deterministic, i.e.,
more deterministic, can take place. Domain extension: Requirements often arise in the context
of new business processes or technologies either placing old or replacing human processes in
the domain. Domain extension is now the ‘enrichment’ of the domain requirements, so far
developed, with the description of these new business processes or technologies. Etcetera.
The result of this part of “requirements derivation” is the domain requirements. 26

A set of domain-to-requirements operators similarly exists for constructing interface re-
quirements from the domain description and, independently, also from knowledge of the ma-
chine for which the required IT system is to be developed. We illustrate the techniques of
domain requirements and interface requirements in Sect. 8.

Finally machine requirements are “derived” from just the knowledge of the machine, that
is, the target hardware and the software system tools for that hardware. Since the domain
does not “appear” in the construction of the machine requirements we shall not illustrate that
aspect of requirements prescription in Sect. 8. When you review this section (‘A Triptych of 27

Software Development’) then you will observe how ‘the domain’ predicates both the require-
ments and the software design. For a specific domain one may develop many (thus related)
requirements and from each such (set of) requirements one may develop many software de-
signs. We may characterise this multitude of domain-predicated requirements and designs as
a product line [15]. You may also characterise domain-specific developments as representing
another ‘definition’ of domain engineering.

1.3 Issues of Domain Science & Engineering 28

We specifically focus on the following issues of domain science &7 engineering: (i) which are
the “things” to be described8, (ii) how to analyse these “things” into constituent description
structures9, (iii) how to describe these “things” informally and formally, (iv) how to further
structure descriptions10, and a further study of (v) mereology11.

6By softwareδ we shall understand all the development documentation, from domain descriptions via require-
ments prescriptions to software design; all verification data: the formal tests, model checkings and proofs; the
development contracts, the management plans, the budgets and accounts; the staffing plans; the installation man-
uals, the user manuals, the (perfective, adaptive, corrective, etc.) maintenance manuals, and the development
methodology manuals; as well as all the software development tools used in the actual development.

7When we put ‘&’ between two terms that the compound term forms a whole concept.
8endurants [manifest entities henceforth called parts and materials] and perdurants [actions, events, behaviours]
9atomic and composite, unique identifiers, mereology, attributes

10intrinsics, support technology, rules & regulations, organisation & management, human behaviour etc.
11the study and knowledge of parts and relations of parts to other parts and a “whole”.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

16 Domain Science & Engineering

1.4 Structure of Paper 29

First, Sect. 1, we introduce the problem. And that was done above.
Then, in Sects. 4–6 we bring a rather careful analysis of the concept of the observable,

manifest phenomena that we shall refer to as entities. We strongly think that these sections of
this paper brings, to our taste, a simple and elegant reformulation of what is usually called
“data modelling”, in this case for domains — but with major aspects applicable as well to
requirements development and software design. That analysis focuses on endurant entities, also30

called parts and materials, those that can be observed at no matter what time, i.e., entities of
substance or continuant, and perdurant entities: action, event and behaviour entities, those that
occur, that happen, that, in a sense, are accidents. We think that this “decomposition” of31

the “data analysis” problem into discrete parts and continuous materials, atomic and composite
parts, their unique identifiers and mereology, and their attributes is novel, and differs from past
practices in domain analysis.32

In Sect. 7 we suggest for each of the entity categories parts, materials, actions, events and
behaviours, a calculus of meta-functions: analytic functions, that guide the domain description
developer in the process of selection, and so-called discovery functions, that guide that per-
son in “generating” appropriate domain description texts, informal and formal. The domain33

description calculus is to be thought of as directives to the domain engineer, mental aids that
help a team of domain engineers to steer it simply through the otherwise daunting task of
constructing a usually large domain description. Think of the calculus as directing a human
calculation of domain descriptions. Finally the domain description calculus section suggests a
number of laws that the domain description process ought satisfy.34

In Sect. 8 we bring a brief survey of the kind of requirements engineering that one can now
pursue based on a reasonably comprehensive domain description. We show how one can sys-
tematically, but not automatically “derive” significant fragments of requirements prescriptions
from domain descriptions.35

• • •

The formal descriptions will here be expressed in the RAISE [40] Specification Language, RSL.
We otherwise refer to [8]. Appendix D brings a short primer, mostly on the syntactic aspects
of RSL. But other model-oriented formal specification languages can be used with equal success;
for example: Alloy [50], Event B [1] , VDM [18, 19, 35] and Z [105].

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 17

2 The Main Example: Road Traffic System 36

Example: 4 The Main Example. The main example presents a terse narrative and for-
malisation of a road traffic domain. Since the example description conceptually covers also
major aspects of railroad nets, shipping nets, and air traffic nets, we shall use such terms as
hubs and links to stand for road (or street) intersection and road (or street) segments, train
stations and rail lines, harbours and shipping lanes, and airports and air lanes.

2.1 Parts 37

2.1.1 Root Sorts

The domain, the stepwise unfolding of whose description is to be exemplified, is that of a
composite traffic system (i) with a road net, (ii) with a fleet of vehicles (iii) of whose individual
position on the road net we can speak, that is, monitor. 38

1. We analyse the composite traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

type

1. ∆
1a. N
1b. F
1c. M
value

1a. obs N: ∆ → N
1b. obs F: ∆ → F
1c. obs M: ∆ → M

2.1.2 Sub-domain Sorts and Types 39

2. From the road net we can observe

a a composite part, HS, of road (i.e., street) intersections (hubs) and

b an composite part, LS, of road (i.e., street) segments (links).

type

2. HS, LS
value

2a. obs HS: N → HS
2b. obs LS: N → LS

40

3. From the fleet sub-domain, F, we observe a composite part, VS, of vehicles

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

18 Domain Science & Engineering

type

3. VS
value

3. obs VS: F → VS

41

4. From the composite sub-domain VS we observe

a the composite part Vs, which we concretise as a set of vehicles

b where vehicles, V, are considered atomic.

type

4a. Vs = V-set

4b. V
value

4a. obs Vs: VS → V-set

42
The “monitor” is considered atomic; it is an abstraction of the fact that we can speak of

the positions of each and every vehicle on the net without assuming that we can indeed pin
point these positions by means of for example sensors.

2.1.3 Further Sub-domain Sorts and Types 43

We now analyse the sub-domains of HS and LS.

5. From the hubs aggregate we decide to observe

a the concrete type of a set of hubs,

b where hubs are considered atomic; and

6. from the links aggregate we decide to observe

a the concrete type of a set of links,

b where links are considered atomic;
44

type

5a. Hs = H-set

6a. Ls = L-set

5b. H
6b. L
value

5. obs Hs: HS → H-set

6. obs Ls: LS → L-set

45
We have no composite parts left to further analyse into parts whether they be again composite
or atomic. That is, at various, what we shall refer to as, domain indexes12 we have discovered
the following part types:

12We shall take up the notion of domain index in Sect. 7.1.3 on Page 78.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 19

• 〈∆〉: N, F, M

• 〈∆, N〉: HS, LS

• 〈∆, F 〉: VS

• 〈∆,HS〉: Hs, H

• 〈∆, LS〉: Ls, L

• 〈∆, V S〉: Vs, V

Thus we have ended up with atomic parts.

2.2 Properties 46

Parts are distinguished by their properties: the types and the values of these. We consider
three kinds of properties: unique identifiers, mereology and attributes.

2.2.1 Unique Identifications 47

There is, for any traffic system, exactly one composite aggregation, HS, of hubs, exactly one
composite aggregation, Hs, of hubs, exactly one composite aggregation, LS, of links, exactly
one composite aggregation, Ls, of links, exactly one composite aggregation, VS, of vehicles and
exactly one composite aggregation, Vs, of vehicles, Therefore we shall not need to associate
unique identifiers with any of these.

7. We decide the following:

a each hub has a unique hub identifier,

b each link has a unique link identifier and

c each vehicle has a unique vehicle identifier.

type

7a. HI
7b. LI
7c. VI
value

7a. uid H: H → HI
7b. uid L: L → LI
7c. uid V: V → VI

2.2.2 Mereology 48

[1] Road Net Mereology: By mereology we mean the study, knowledge and practice of
understanding parts and part relations.

The relations between, that is, the mereology of, the composite parts of the road net, n:N,
are simple: there is one HS part of n:N; there is one Hs part of the only HS part of n:N;
there is one LS part of n:N; and there is one Ls part of the only LS part of n:N. Therefore we
shall not associate any special mereology based on unique identifiers which we therefore also
decided to not express for these composite parts.

8. Each link is connected to exactly two hubs, that is,

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

20 Domain Science & Engineering

a from each link we can observe its mereology, that is, the identities of these two
distinct hubs,

b and these hubs must be of the net of the link;

9. and each hub is connected to zero, one or more links, that is,

a from each hub we can observe its mereology, that is, the identities of these links,

b and these links must be of the net of the hub.
49

value

8a. mereo L: L → HI-set, axiom ∀ l:L•card mereo L(l)=2
axiom

8b. ∀ n:N,l:L,hi:HI • l ∈ obs Ls(obs LS(n)) ∧ hi ∈ mereo L(l)
8b. ⇒ ∃ h:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
value

9a. mereo H: H → LI-set
axiom

9b. ∀ n:N,h:H,li:LI • h ∈ obs Hs(obs HS(n)) ∧ li ∈ mereo H(h)
9b. ⇒ ∃ l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li

50

[2] Fleet of Vehicles Mereology: In the traffic system that we are building up there are no
relations to be expressed between vehicles, only between vehicles and the (single and only)
monitor. Thus there is no mereology needed for vehicles.

2.2.3 Attributes 51

We shall model attributes of links, hubs and vehicles. The composite parts, aggregations of
hubs, HS and Hs, aggregations of links, LS and Ls and aggregations of vehicles, VS and Vs,
also have attributes, but we shall omit modelling them here.52

[1] Attributes of Links:

10. The following are attributes of links.

a Link states, lσ:LΣ, which we model as possibly empty sets of pairs of distinct
identifiers of the connected hubs. A link state expresses the directions that are
open to traffic across a link.

b Link state spaces, lω:LΩ which we model as the set of link states. A link state
space expresses the states that a link may attain across time.

c Further link attributes are length, location, etcetera.

Link states are usually dynamic attributes whereas link state spaces, link length and link
location (usually some curvature rendition) are considered static attributes.53

type

10a. LΣ = (HI × HI)-set
axiom

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 21

10a. ∀ lσ:LΣ • 0 ≤ card lσ ≤ 2
value

10a. attr LΣ: L → LΣ
axiom

10a. ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)⊆{(hi,hi′),(hi′,hi)} end

type

10b. LΩ = LΣ-set

value

10b. attr LΩ: L → LΩ
axiom

10b. ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)∈ attr LΩ(l) end

type

10c. LOC, LEN, ...
value

10c. attr LOC: L → LOC, attr LEN: L → LEN, ...

54

[2] Attributes of Hubs:

11. The following are attributes of hubs:

a Hub states, hσ:HΣ, which we model as possibly empty sets of pairs of identifiers of
the connected links. A hub state expresses the directions that are open to traffic
across a hub.

b Hub state spaces, hω:HΩ which we model as the set of hub states. A hub state
space expresses the states that a hub may attain across time.

c Further hub attributes are location, etcetera.

Hub states are usually dynamic attributes whereas hub state spaces and hub location are
considered static attributes. 55

type

11a. HΣ = (LI × LI)-set
value

11a. attr HΣ: H → HΣ
axiom

11a. ∀ h:H • attr HΣ(h)⊆{(li,li′)|li,li′:LI•{li,li′}⊆mereo H(h)}
type

11b. HΩ = HΣ-set

value

11b. attr HΩ: H → HΩ
axiom

11b. ∀ h:H • attr HΣ(h) ∈ attr HΩ(h)
type

11c. LOC, ...
value

11c. attr LOC: L → LOC, ...

56

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

22 Domain Science & Engineering

[3] Attributes of Vehicles:

12. Dynamic attributes of vehicles include

a position

i. at a hub (about to enter the hub — referred to by the link it is coming from,
the hub it is at and the link it is going to, all referred to by their unique
identifiers or

ii. some fraction “down” a link (moving in the direction from a from hub to a to
hub — referred to by their unique identifiers)

iii. where we model fraction as a real between 0 and 1 included.

b velocity, acceleration, etcetera.

13. All these vehicle attributes can be observed.
57

type

12a. VP = atH | onL
12(a)i. atH :: fli:LI × hi:HI × tli:LI
12(a)ii. onL :: fhi:HI × li:LI × frac:FRAC × thi:HI
12(a)iii. FRAC = Real, axiom ∀ frac:FRAC • 0 ≤ frac ≤ 1
12b. VEL, ACC, ...
value

13. attr VP:V→VP, attr onL:V→onL, attr atH:V→atH
13. attr VEL:V→VEL, attr ACC:V→ACC

58

[4] Vehicle Positions:

14. Given a net, n:N, we can define the possibly infinite set of potential vehicle positions on
that net, vps(n).

a vps(n) is expressed in terms of the links and hubs of the net.

b vps(n) is the

c union of two sets:

i. the potentially13 infinite set of “on link” positions

ii. for all links of the net

and

i. the finite set of “at hub” positions

ii. for all hubs in the net.
59

13The ‘potentiality’ arises from the nature of FRAC. If fractions are chosen as, for example, 1/5’th, 2/5’th,
..., 4/5’th, then there are only a finite number of “on link” vehicle positions. If instead fraction are arbitrary
infinitesimal quantities, then there are infinitely many such.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 23

value

14. vps: N → VP-infset

14b. vps(n) ≡
14a. let ls=obs Ls(obs LS(n)), hs=obs Hs(obs HS(n)) in

14(c)i. { onL(fhi,uid(l),f,thi) | fhi,thi:HI,l:L,f:FRAC •

14(c)ii. l ∈ ls ∧ {fhi,thi}=mereo L(l) }
14c. ∪
14(c)i. { atH(fli,uid H(h),tli) | fli,tli:LI,h:H •

14(c)ii. h ∈ hs ∧ {fli,tli}⊆mereo H(h) }
14a. end

60
Given a net and a finite set of vehicles we can distribute these over the net, i.e., assign ini-

tial vehicle positions, so that no two vehicles “occupy” the same position, i.e., are “crashed” !
Let us call the non-deterministic assignment function, i.e., a relation, for vpr.

15. vpm:VPM is a bijective map from vehicle identifiers to (distinct) vehicle positions.

16. vpr has the obvious signature.

17. vpr(vs)(n) is defined in terms of

18. a non-deterministic selection, vpa, of vehicle positions, and

19. a non-deterministic assignment of these vehicle positions to vehicle identifiers —

20. being the resulting distribution.
61

type

15. VPM′ = VI →m VP
15. VPM = {| vpm:VPM′

• card dom vpm = card rng vpm |}
value

16. vpr: V-set × N → VMP
17. vpr(vs)(n) ≡
18. let vpa:VP-set • vpa ⊆ vps(vs)(n) ∧ card vpa = vard vs in

19. let vpm:VPM • dom vpm = vps ∧ rng vpm = vpa in

20. vpm end end

2.3 Definitions of Auxiliary Functions 62

21. From a net we can extract all its link identifiers.

22. From a net we can extract all its hub identifiers.

value

21. xtr LIs: N → LI-set
21. xtr LIs(n) ≡ {uid L(l)|l:L•l ∈ obs Ls(obs LS(n))}
22. xtr HIs: N → HI-set
22. xtr HIs(n) ≡ {uid H(l)|h:H•h ∈ obs Hs(obs HS(n))}

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

24 Domain Science & Engineering

23. Given a link identifier and a net get the link with that identifier in the net.

24. Given a hub identifier and a net get the hub with that identifier in the net.
63

value

26. get H: HI → N
∼
→ H

26. get H(hi)(n) ≡ ι h:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
26. pre: hi ∈ xtr HIs(n)

26a. get L: LI → N
∼
→ L

26a. get L(li)(n) ≡ ι l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li
26a. pre: hl ∈ xtr LIs(n)

The ι a:A•P(a) expression yields the unique value a:A which satisfies the predicate P(a). If
none, or more than one exists then the function is undefined.

2.4 Some Derived Traffic System Concepts 64

2.4.1 Maps

25. A road map is an abstraction of a road net. We define one model of maps below.

a A road map, RM, is a finite definition set function, M, (a specification language
map) from

• hub identifiers (the source hub)

• to (such finite definition set) functions from link identifiers

• to hub identifiers (the target hub).

type

25a. RM′ = HI →m (LI →m HI)

If a hub identifier in the source or an rm:RM maps into the empty map then the “correspond-
ing” hub is “isolated”: has no links emanating from it.65

26. These road maps are subject to a well-formedness criterion.

a The target hubs must be defined also as source hubs.

b If a link is defined from source hub (referred to by its identifier) shi via link li to a
target hub thi, then, vice versa, link li is also defined from source thi to target shi.

type

26. RM = {| rm:RM′ • wf RM(rm) |}
value

26. wf RM: RM′ → Bool

26. wf RM(rm) ≡
26a. ∪ { rng(rm(hi))|hi:HI•hi ∈ dom rm } ⊆ dom rm
26b. ∧ ∀ shi:HI•shi ∈ dom rm ⇒
26b. ∀ li:LI • li ∈ dom rm(shi) ⇒
26b. li ∈ dom rm((rm(shi))(li)) ∧ (rm((rm(shi))(li)))(li)=shi

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 25

66

27. Given a road net, n, one can derive “its” road map.

a Let hs and ls be the hubs and links, respectively of the net n.

b Every hub with no links emanating from it is mapped into the empty map.

c For every link identifier uid L(l) of links, l, of ls and every hub identifier, hi, in the
mereology of l

d hi is mapped into a map from uid L(l) into hi’

e where hi’ is the other hub identifier of the mereology of l.
67

value

27. derive RM: N → RM
27. derive RM(n) ≡
27a. let hs = obs Hs(obs HS(n)), ls = obs Ls(obs LS(n)) in

27b. [hi 7→ [] | hi:HI • ∃ h:H • h ∈ hs ∧ mereo H(h) = {}] ∪
27d. [hi 7→ [uid L(l) 7→ hi′

27e. | hi′:HI • hi′ = mereo L(l)\{hi}]
27c. | l:L,hi:HI • l ∈ ls ∧ hi ∈ mereo L(l)] end

Theorem: If the road net, n, is well-formed then wf RM(derive RM(n)).

2.4.2 Traffic Routes 68

28. A traffic route, tr, is an alternating sequence of hub and link identifiers such that

a li:LI is in the mereology of the hub, h:H, identified by hi:HI, the predecessor of li:LI
in route r, and

b hi’:HI, which follows li:LI in route r, is different from hi, and is in the mereology of
the link identified by li.

type

28. R′ = (HI|LI)∗

28. R = {| r:R′ • ∃ n:N • wf R(r)(n) |}
value

28. wf R: R′ → N → Bool

28. wf R(r)(n) ≡
28. ∀ i:Nat • {i,i+1}⊆inds r ⇒
28a. is HI(r(i)) ⇒ is LI(r(i+1)) ∧ r(i+1) ∈ mereo H(get H(r(i))(n)),
28b. is LI(r(i)) ⇒ is HI(r(i+1)) ∧ r(i+1) ∈ mereo L(get L(r(i))(n))

69

29. From a well-formed road map (i.e., a road net) we can generate the possibly infinite set
of all routes through the net.

a Basis Clauses:

i. The empty sequence of identifiers is a route.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

26 Domain Science & Engineering

ii. The one element sequences of link and hub identifiers of links and hubs of a
road map (i.e., a road net) are routes.

iii. If hi maps into some li in rm then 〈hi,li〉 and 〈li,hi〉 are routes of the road map
(i.e., of the road net).

b Induction Clause:

i. Let r̂〈i〉 and 〈i′〉̂r′ be two routes of the road map.

ii. If the identifiers i and i′ are identical, then r̂〈i〉̂r′ is a route.

c Extremal Clause:

i. Only such routes that can be formed from a finite number of applications of
the above clauses are routes.

70

value

29. gen routes: M → Routes-infset

29. gen routes(m) ≡
29(a)i. let rs = {〈〉}
29(a)ii. ∪ {〈li,hi〉,〈hi,li〉|li:LI,hi:HI•...}
29(b)i. ∪ {let r̂〈li〉,〈li′〉̂r′:R • {r̂〈li〉,〈li′〉̂r′}⊆rs,
29(b)i. r′′̂〈hi〉,〈hi′〉̂r′′′:R • {r′′̂〈hi〉,〈hi′〉̂r′′′}⊆rs in

29(b)ii. r̂〈li〉̂r′,r′′̂〈hi〉̂r′′′ end} in

29(c)i. rs end

71

[1] Circular Routes:

30. A route is circular if the same identifier occurs more than once.

value

30. is circular route: R → Bool

30. is circular route(r) ≡ ∃ i,j:Nat • {i,j}⊆inds r ∧ i6=j ⇒ r(i)=r(j)

72

[2] Connected Road Nets:

31. A road net is connected if there is a route from any hub (or any link) to any other hub
or link in the net.

31. is conn N: N → Bool

31. is conn N(n) ≡
31. let m = derive RM(n) in

31. let rs = gen routes(m) in

31. ∀ i,i′:(LI|HI) • {i,i′}⊆xtr LIs(n)∪ xtr HIs(n)
31. ∃ r:R • r ∈ rs ∧ r(1)=i ∧ r(len r)=i′ end end

73

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 27

[3] Set of Connected Nets of a Net:

32. The set, cns, of connected nets of a net, n, is

a the smallest set of connected nets, cns,

b whose hubs and links together “span” those of the net n.

value

32. conn Ns: N → N-set

32. conn Ns(n) as cns
32a. pre: true

32b. post: conn spans HsLs(n)(cns)
32a. ∧ ∼∃ kns:N-set • card kns < card cns
32a. ∧ conn spans HsLs(n)(kns)

74

32b. conn spans HsLs: N → N → Bool

32b. conn spans HsLs(n)(cns) ≡
32b. ∀ cn:N•cn ∈ cns ⇒ is connected N(n)(cn)
32b. ∧ let (hs,ls) = (obs Hs(obs HS(n)),obs Ls(obs LS(n))),
32b. chs = ∪{obs Hs(obs HS(cn))|cn ∈ cns},
32b. cls = ∪{obs Ls(obs LS(cn))|cn ∈ cns} in

32b. hs = chs ∧ ls = cls end

75

[4] Route Length:

33. The length attributes of links can be

a added and subtracted,

b multiplied by reals to obtain lengths,

c divided to obtain fractions,

d compared as to whether one is shorter than another, etc., and

e there is a “zero length” designator.

value

33a. +,− : LEN × LEN → LEN
33b. ∗ : LEN × Real → LEN
33c. / : LEN × LEN → Real

33d. <,≤,=,6=,≥,> : LEN × LEN → Bool

33e. ℓ0 : LEN

76

34. One can calculate the length of a route.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

28 Domain Science & Engineering

value

34. length: R → N → LEN
34. length(r)(n) ≡
34. case r of:
34. 〈〉 → ℓ0,
34. 〈si〉̂r′ →
34. is LI(si)→attr LEN(get L(si)(n))+length(r′)(n)
34. is HI(si)→length(r′)(n)
34. end

77

[5] Shortest Routes:

35. There is a predicate, is R, which,

a given a net and two distinct hub identifiers of the net,

b tests whether there is a route between these.

value

35. is R: N → (HI×HI) → Bool

35. is R(n)(fhi,thi) ≡
35a. fhi 6= thi ∧ {fht,thi}⊆xtr HIs(n)
35b. ∧ ∃ r:R • r ∈ routes(n) ∧ hd r = fhi ∧ r(len r) = thi

78

36. The shortest between two given hub identifiers

a is an acyclic route, r,

b whose first and last elements are the two given hub identifiers

c and such that there is no route, r′ which is shorter.

value

36. shortest route: N → (HI×HI) → R
36a. shortest route(n)(fhi,thi) as r
36b. pre: pre shortest route(n)(fhi,thi)
36c. post: pos shortest route(n)(r)(fhi,thi)

79

36b. pre shortest route: N → (HI×HI) → Bool

36b. pre shortest route(n)(fhi,thi) ≡
36b. is R(n)(fhi,thi) ∧ fhi6=thi ∧ {fhi,thi}⊂xtr HIs(n)

36c. pos shortest route: N → R → (HI×HI) → Bool

36c. pos shortest route(n)(r)(fhi,thi) ≡
36c. r ∈ routes(n)
36c. ∧ ∼∃ r′:R • r′ ∈ routes(n) ∧ length(r′) < length(r)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 29

2.5 States 80

There are different notions of state. In our example these are some of the states: the road
net composition of hubs and links; the state of a link, or a hub; and the vehicle position.

2.6 Actions 81

An action is what happens when a function invocation changes, or potentially changes a state.
Examples of traffic system actions are: insertion of hubs, insertion of links, removal of hubs,
removal of links, setting of hub state (hσ), setting of link state (lσ), moving a vehicle along a
link, moving a vehicle from a link to a hub and moving a vehicle from a hub to a link. 82

37. The insert action applies to a net and a hub and conditionally yields an updated net.

a The condition is that there must not be a hub in the “argument” net with the
same unique hub identifier as that of the hub to be inserted and

b the hub to be inserted does not initially designate links with which it is to be
connected.

c The updated net contains all the hubs of the initial net “plus” the new hub.

d and the same links.
83

value

37. ins H: N → H
∼
→ N

37. ins H(n)(h) as n′, pre: pre ins H(n)(h), post: post ins H(n)(h)

37a. pre ins H(n)(h) ≡
37a. ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
37b. ∧ mereo H(h) = {}

37c. post ins H(n)(h)(n′) ≡
37c. obs Hs(n) ∪ {h} = obs Hs(n′)
37d. ∧ obs Ls(n) = obs Ls(n′)

2.7 Events 84

By an event we understand a state change resulting indirectly from an unexpected application
of a function, that is, that function was performed “surreptitiously”. Events can be charac-
terised by a pair of (before and after) states, a predicate over these and, optionally, a time
or time interval. Events are thus like actions: change states, but are usually either caused by
“previous” actions, or caused by “an outside action”. 85

38. Link disappearance is expressed as a predicate on the “before” and “after” states of the
net. The predicate identifies the “missing” ℓink (!).

39. Before the disappearance of link ℓ in net n

a the hubs h′ and h′′ connected to link ℓ

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

30 Domain Science & Engineering

b were connected to links identified by {l′1, l
′
2, . . . , l

′
p} respectively {l′′1 , l′′2 , . . . , l′′q}

c where, for example, l′i, l
′′
j are the same and equal to uid Π(ℓ).

38. link dis: N × N → Bool

38. link dis(n,n′) ≡
38. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)
39. pre link dis: N × L → Bool

39. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)

86

40. After link ℓ disappearance there are instead

a two separate links, ℓi and ℓj, “truncations” of ℓ

b and two new hubs h′′′ and h′′′′

c such that ℓi connects h′ and h′′′ and

d ℓj connects h′′ and h′′′′;

e Existing hubs h′ and h′′ now have mereology

i. {l′1, l
′
2, . . . , l

′
p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}

41. All other hubs and links of n are unaffected.
87

42. We shall “explain” link disappearance as the combined, instantaneous effect of

a first a remove link “event” where the removed link connected hubs hij and hik;

b then the insertion of two new, “fresh” hubs, hα and hβ;

c “followed” by the insertion of two new, “fresh” links ljα and lkβ such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ

88

value

42. post link dis(n,ℓ,n′) ≡
42. let h a,h b:H •

42. let {li a,li b}=mereo L(ℓ) in

42. (get H(li a)(n),get H(li b)(n)) end in

42a. let n′′ = rem L(n)(uid L(ℓ)) in

42b. let hα,hβ:H • {hα,hβ}∩obs Hs(n)={} in

42b. let n′′′ = ins H(n′′)(hα) in

42b. let n′′′′ = ins H(n′′′)(hβ) in

42c. let ljα,lkβ:L • {ljα,lkβ}∩obs Ls(n)={}
42c. ∧ mereo L(ljα) = {uid H(h a),uid H(hα)}
42c. ∧ mereo L(lkβ) = {uid H(h b),uid H(hβ)} in

42(c)i. let n′′′′′ = ins L(n′′′′)(ljα) in

42(c)ii. n′ = ins L(n′′′′′)(lkβ) end end end end end end end

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 31

2.8 Behaviours 89

2.8.1 Traffic

[1] Continuous Traffic: For the road traffic system perhaps the most significant example of
a behaviour is that of its traffic

43. the continuous time varying discrete positions of vehicles, vp:VP14,

44. where time is taken as a dense set of points.

type

44. cT
43. cRTF = cT → (V →m VP)

90

[2] Discrete Traffic: We shall model, not continuous time varying traffic, but

45. discrete time varying discrete positions of vehicles,

46. where time can be considered a set of linearly ordered points.

46. dT

45. dRTF = dT →m (V →m VP)

47. The road traffic that we shall model is, however, of vehicles referred to by their unique
identifiers.

type

47. RTF = dT →m (VI →m VP)

91

[3] Time: An Aside: We shall take a rather simplistic view of time [21, 65, 81, 98].

48. We consider dT, or just T, to stand for a totally ordered set of time points.

49. And we consider TI to stand for time intervals based on T.

50. We postulate an infinitesimal small time interval δ.

51. T, in our presentation, has lower and upper bounds.

52. We can compare times and we can compare time intervals.

53. And there are a number of “arithmetics-like” operations on times and time intervals.

92

14For VP see Item 12a on Page 22.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

32 Domain Science & Engineering

type

48. T

49. TI

value

50. δ:TI

51. MIN, MAX: T → T

51. <,≤,=,≥,>: (T×T)|(TI×TI) → Bool

52. −: T×T → TI

53. +: T×TI,TI×T → T

53. −,+: TI×TI → TI

53. ∗: TI×Real → TI

53. /: TI×TI → Real

93

54. We postulate a global clock behaviour which offers the current time.

55. We declare a channel clk ch.

value

54. clock: T → out clk ch Unit

54. clock(t) ≡ ... clk ch!t ... clock(t ⌈⌉ t+δ)
channnel
55. clk ch:T

2.8.2 Globally Observable Parts 94

There is given

56. a net, n:N,

57. a set of vehicles, vs:V-set, and

58. a monitor, m:M.

The n:N, vs:V-set and m:M are observable from the road traffic system domain.

value

56. n:N = obs N(∆)
56. ls:L-set = obs Ls(obs LS(n)), hs:H-set = obs Hs(obs HS(n)),
56. lis:LI-set = {uid L(l)|l:L•l ∈ ls}, his:HI-set = {uid H(h)|h:H•h ∈ hs}
57. vs:V-set = obs Vs(obs VS(obs F(∆))), vis:V-set = {uid V(v)|v:V•v ∈ vs}
58. m:obs M(∆)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 33

2.8.3 Road Traffic System Behaviours 95

59. Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

b the monitor behaviour, based on

c the monitor and its unique identifier,

d an initial vehicle position map, and

e an initial starting time.
96

value

59c. mi:MI = uid (m)
59d. vpm:VPM = vpr(vs)(n)
59e. t0:T = clk ch?

59. rts() =
59a. ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59b. ‖ mon(mi)(m)([t0 7→ vpm])

where the “extra” monitor argument records the discrete road traffic, RTF, initially set to the
singleton map from an initial start time, t0 to the initial assignment of vehicle positions.

2.8.4 Channels 97

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate
their positions to the monitor via a vehicle to monitor channel. In order for the monitor to
time-stamp these positions it must be able to “read” a clock.

60. Thus we declare a set of channels indexed by the unique identifiers of vehicles and
communicating vehicle positions.

channel

60. {vm ch[mi,vi]|vi:VI•vi ∈ vis}:VP

2.8.5 Behaviour Signatures 98

61. The road traffic system behaviour, rts, takes no arguments (hence the first Unit); and
“behaves”, that is, continues forever (hence the last Unit).

62. The vehicle behaviours are indexed by the unique identifier, uid V(v):VI, the vehicle
part, v:V and the vehicle position; offers communication to the monitor behaviour (on
channel vm ch[vi]); and behaves “forever”.

63. The monitor behaviour takes the so far unexplained monitor part, m:M, as one argument
and the discrete road traffic, drtf:dRTF, being repeatedly “updated” as the result of
input communications from (all) vehicles; the behaviour otherwise runs forever.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

34 Domain Science & Engineering

value

61. rts: Unit → Unit

62. veh: vi:VI → v:V → VP → out vm ch[vi],mi:MI Unit

63. mon: mi:MI → m:M → dRTF → in {vm ch[mi,vi]|vi:VI•vi ∈ vis},clk ch Unit

2.8.6 The Vehicle Behaviour 99

64. A vehicle process is indexed by the unique vehicle identifier vi:VI, the vehicle “as such”,
v:V and the vehicle position, vp:VPos.

The vehicle process communicates with the monitor process on channel vm[vi] (sends,
but receives no messages), and otherwise evolves “in[de]finitely” (hence Unit).100

65. We describe here an abstraction of the vehicle behaviour at a Hub (hi).

a Either the vehicle remains at that hub informing the monitor,

b or, internally non-deterministically,

i. moves onto a link, tli, whose “next” hub, identified by thi, is obtained from
the mereology of the link identified by tli;

ii. informs the monitor, on channel vm[vi], that it is now on the link identified by
tli,

iii. whereupon the vehicle resumes the vehicle behaviour positioned at the very
beginning (0) of that link,

c or, again internally non-deterministically,

d the vehicle “disappears — off the radar” !

101

65. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
65a. vm ch[mi,vi]!vp ; veh(vi)(v)(vp)
65b. ⌈⌉
65(b)i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
65(b)ii. vm ch[mi,vi]!onL(tli,hi,0,thi) ;
65(b)iii. veh(vi)(v)(onL(tli,hi,0,thi)) end

65c. ⌈⌉
65d. stop

102

66. We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

a the vehicle remains at that link position informing the monitor,

b or, internally non-deterministically,

c if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing the
monitor of this, or

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 35

ii. else, while obtaining a “next link” from the mereology of the hub (where that
next link could very well be the same as the link the vehicle is about to leave),

A. the vehicle informs the monitor that it is now at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

67. or, internally non-deterministically,

68. the vehicle “disappears — off the radar” !
103

64. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
66a. vm ch[mi,vi]!vp ; veh(vi)(v)(vp)
66b. ⌈⌉
66c. if f + δ<1
66(c)i. then vm ch[mi,vi]!onL(fhi,li,f+δ,thi) ;
66(c)i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
66(c)ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

66(c)iiA. vm ch[mi,vi]!atH(li,thi,li′);
66(c)iiB. veh(vi)(v)(atH(li,thi,li′)) end end

67. ⌈⌉
68. stop

2.8.7 The Monitor Behaviour 104

69. The monitor behaviour evolves around the attributes of an own “state”, m:M, a table
of traces of vehicle positions, while accepting messages about vehicle positions and
otherwise progressing “in[de]finitely”.

70. Either the monitor “does own work”

71. or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle identified by vi.

b That message is appended to that vehicle’s movement trace,

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified vehicles.
105

69. mon(mi)(m)(rtf) ≡
70. mon(mi)(own mon work(m))(rtf)
71. ⌈⌉
71a. ⌈⌉⌊⌋ { let ((vi,vp),t) = (vm ch[mi,vi]?,clk ch?) in

71b. let rtf′ = rtf † [t 7→ rtf(max dom rtf) † [vi 7→ vp]] in

71c. mon(mi)(m)(rtf′) end

71d. end | vi:VI • vi ∈ vis }

70. own mon work: M → dRTF → M

We do not describe the clock behaviour by other than stating that it continually offers the
current time on channel clkm ch.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

36 Domain Science & Engineering

3 Domains 106

3.1 Delineations

We characterise a number of terms.

[1] Domain: By a domainδ we shall here understand an area of human activity characterised
by observable phenomena: entities whether endurants (manifest parts and materials) or perdu-
rants (actions, events or behaviours), whether discrete or continuous; and of their properties.107

[2] Domain Phenomena: By a domain phenomenonδ we shall understand something that
can be observed by the human senses or by equipment based on laws of physics and chem-
istry. Those phenomena that can be observed by the human eye or touched, for example, by
human hands, we call parts and materials. Those phenomena that can be observed of parts
and materials can usually be measured and we call them properties of these parts and those
materials.108

[3] Domain Entity: By a domain entityδ we shall understand a manifest domain phenomenon
or a domain concept, i.e., an abstraction, derived from a domain entity.

The distinction between a manifest domain phenomenon and a concept thereof, i.e., a
domain concept, is important. Really, what we describe are the domain concepts derived from
domain phenomena or from other domain concepts.109

[4] Endurant Entity: We distinguish between endurants and perdurants.

From Wikipedia: By an endurantδ (also known as a continuantδ or a substanceδ) we shall
understand an entity that can be observed, i.e., perceived or conceived, as a complete concept,
at no matter which given snapshot of time. Were we to freeze time we would still be able to
observe the entire endurant.110

[5] Perdurant Entity: From Wikipedia: Perdurant: Also known as occurrent, accident or
happening. Perdurants are those entities for which only a fragment exists if we look at them at
any given snapshot in time. When we freeze time we can only see a fragment of the perdurant.
Perdurants are often what we know as processes, for example ’running’. If we freeze time then
we only see a fragment of the running, without any previous knowledge one might not even be
able to determine the actual process as being a process of running. Other examples include an
activation, a kiss, or a procedure.111

[6] Discrete Endurant: We distinguish between discrete endurants and continuous endurants.

By a discrete endurantδ, that is, a part, we shall understand something which is separate
or distinct in form or concept, consisting of distinct or separate parts.112

[7] Continuous Endurant: By a continuous endurantδ, that is, a material, we shall understand
an endurant whose spatial characteristics are prolonged, without interruption, in an unbroken
spatial series or pattern.113

[8] Domain Parts and Materials: By a partδ we mean a discrete endurant, a manifest entity
which is fixed in shape and extent. By a materialδ a continuous endurant, a manifest entity
which typically varies in shape and extent.114

[9] Domain Analysis: By domain analysisδ we shall understand an examination of a domain,
its entities, their possible composition, properties and relations between entities,115

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 37

[10] Domain Description: By a domain descriptionδ we shall understand a narrative descrip-
tion tightly coupled (say line-number-by-line-number) to a formal description. 116

[11] Domain Engineering: By domain engineeringδ we shall understand the engineering of a
domain description, that is, the rigorous construction of domain descriptions, and the further
analysis of these, creating theories of domains15, etc. 117

[12] Domain Science: By domain scienceδ we shall understand two things: the general study
and knowledge of how to create and handle domain descriptions (a general theory of domain
descriptions) and the specific study and knowledge of a particular domain. The two studies
intertwine. 118

[13] Values & Types: By a valueδ we mean some mathematical quantity. By a typeδ we
mean a largest set of values, each characterised by the same predicate, such that there are no
other values, not members of the set, but which still satisfy that predicate. We do not give
examples here of the kind of type predicates that may characterise types. 119

When we observe a domain we observe instances of entities; but when we describe those
instances (which we shall call values) we describe, not the values, but their type and properties:
parts and materials have types and values; actions, events and behaviours, all, have types and
values, namely as expressed by their signatures; and actions, events and behaviours have
properties, namely as expressed by their function definitions. Values are phenomena and types
are concepts thereof. 120

[14] Discrete Perdurant: By a discrete perdurantδ we shall understand a perdurant which
we consider as taking place instantaneously, in no time, or where whatever time interval it
may take to complete is considered immaterial. 121

[15] Continuous Perdurant: By a continuous perdurantδ we shall understand a perdurant
whose temporal characteristics are likewise prolonged, without interruption, in an unbroken
temporal series or pattern. 122

[16] Extensionality: By extensionalityδ Merriam-Webster16 means “something which relates
to, or is marked by extension,” “that is, concerned with objective reality”. Our use basically
follows this characterisation: We think of extensionality as a syntactic notion, one that charac-
terises an exterior appearance or form We shall therefore think of part types and material types
whether parts are atomic or composite, and how composite parts are composed as extensional
features. 123

[17] Intentionality: By intentionalityδ Merriam-Webster17 means: “done by intention or de-
sign”, “intended”, “of or relating to epistemological intention”, “having external reference”. Our
use basically follows this characterisation: we think of intentionality as a semantic notion,
one that characterises an intention. We shall therefore think of part attributess and material
attributes as intentional features.

15Section 2 (Pages 17–35) is an example of the basis for a theory of road traffic systems.
16Extensionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).
17Intentionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

38 Domain Science & Engineering

3.2 Formal Analysis of Entities 124

3.2.1 Theory

This section is a transcription of Ganter & Wille’s [38] Formal Concept Analysis, Mathematical
Foundations, the 1999 edition, Pages 17–18.125

Some Notation: By E we shall understand the type of entities; by E we shall understand
a value of type E ; by Q we shall understand the type of qualities; by Q we shall understand
a value of type Q; by E-set we shall understand the type of sets of entities; by ES we shall
understand a value of type E-set; by Q-set we shall understand the type of sets of qualities;
and by QS we shall understand a value of type Q-set.126

Definition: 1 Formal Context: A formal contextδ K := (ES, I, QS) consists of two sets; ES of
entities, QS of qualities, and a relation I between E and Q.

To express that E is in relation I to a Quality Q we write E·I·Q, which we read as “entity E has

quality Q”. Example endurant entities are a specific vehicle, another specific vehicle, etcetera;127

a specific street segment (link), another street segment, etcetera; a specific road intersection
(hub), another specific road intersection, etcetera, a monitor. One can also list perdurant
entities. Example endurant entity qualities are has mobility, has possible velocity, has possible
acceleration, has length, has location, has traffic state, can vehicles be sensed, etcetera. One can
also list perdurant entity qualities.128

Definition: 2 Qualities Common to a Set of Entities: For any subset, sES ⊆ ES, of entities
we can define

DQ : E-set → (E-set×I ×Q-set) → Q-set

DQ(sES)(ES, I, QS) ≡ {Q | Q:Q, E:E • E∈sES ∧ E · I · Q}
pre: sES ⊆ ES

“the set of qualities common to entities in sES”.

Definition: 3 Entities Common to a Set of Qualities: For any subset, sQS ⊆ QS, of qualities
we can define

DE: Q-set → (E-set×I ×Q-set) → E-set

DE(sQS)(ES, I, QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I · Q },
pre: sQS ⊆ QS

“the set of entities which have all qualities in sQ”.

129

Definition: 4 Formal Concept: A formal conceptδ of a context K is a pair:

• (sQ, sE) where

⋄⋄ DQ(sE)(E, I, Q) = sQ and

⋄⋄ DE(sQ)(E, I, Q) = sE;

• sQ is called the intentδ of K and sE is called the extentδ of K.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 39

Now comes the “crunch”: In the TripTych domain analysis we strive to find formal concepts
and, when we think we have found one, we assign a type to it.130

In mathematical terms it turns out that formal concepts are Galois connections. We can,
in other words, characterise domain analysis to be the “hunting” for Galois connections. Or,
even more “catchy”: domain types, whether they be endurant entity types or they be perdurant
entity signatures are Galois connections. 131

• • •

The entities referred to by E are the domain entities that we shall deal with in this paper, and
the qualities referred to by Q are the mereologies and attributes of discrete endurant entities
and the signatures of actions, events and behaviours of discrete perdurant entities; with these
terms becoming clearer as we progress through this paper. 132

• • •

Earlier in this section, two signatures were expressed as DQ: E → K → Q and DE : Q → K
→ E The “switch” between using K for types and K for values of that type is “explained”:

• K is the Cartesian type: E × I ×Q, and

• K = (E, I, Q) is a value of that type.

3.2.2 Practice 133

3.3 Discussion 134

The crucial characterisation is that of domain entity, see Sect. 3.1[3] (Page 36). It is pivotal
since all we describe: narrate and formalise, are domain entities. If we get the characterisation
wrong we get everything wrong ! What might get the characterisation, or its interpretation,
wrong is the interpretation of domain entities: “those phenomena that can be observed by the
human eye or touched, for example, by human hands,” and “manifest domain phenomena or
domain concepts, i.e., abstractions, derived from a domain entities”. 135

The whole thing hinges of what can be described, what constitutes a description and when
is a text a bona fide description.

Another set of questions are of what we have chosen to constitute entities which should we
describe, which not ? 136

Philosophers have dealt with these questions. Recent writings are [5, 90, 36] and [26, 61,
104]. Going back in time we find [62, 58, 27]. Among the classics we mention [85, 84, 24, 63].

137

We shall only indirectly contribute to this philosophical discussion and do so by presenting
the material of this paper; having studied, over the years, fragments of the above cited
publications we have concluded with the suggestions of this paper: following the principles,
techniques and tools presented here can lead the domain engineer to a large class of domain
descriptionss, large enough for our “immediate future” needs ! We shall, in the conclusion,
return to the questions of what can be described, what constitutes a description and when is
a text a bona fide description ?

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

40 Domain Science & Engineering

4 Discrete Endurant Entities 138

For pragmatics reasons we structure our treatment of discrete endurant domain entities as
follows: First we treat the extensional aspects of parts, then their properties: the intentional
aspects. One could claim that when we say “first parts” we mean fist: a syntactic analysis
of parts into atomic and composite parts, etcetera; and when we say “then their properties”
we mean: then a partial semantic analysis, something which “throws” light over parts, since
parts really are distinguishable only through their properties.

4.1 Parts 139

4.1.1 What is a Part ?

By a partδ we mean an observable manifest endurant.

Discussion: We use the term ‘part’ where others use different terms, for example, ‘indi-
vidual’, ‘object’, ‘particular’, ‘thing’, ‘unit’, or other.140

Example: 5 Parts. Example parts have their types defined in the items as follows: N Item 1a
Page 17, F Item 1b Page 17, M Item 1c Page 17, HS Item 2a Page 17, LS Item 2b Page 17, VS
Item 3 Page 17, Vs Item 4a Page 18, V Item 4b Page 18, Hs Item 5 Page 18, Ls Item 6 Page 18,
H Item 5a Page 18, L Item 6b Page 18.

4.1.2 Classes of “Same Kind” Parts 141

We repeat: the domain describer does not describe instances of parts, but seeks to describe
classes of parts of the same kind. Instead of the term ‘same kind’ we shall use either the
terms part sort or part type.

By a same kind class of partsδ, that is a part sort or part type we shall mean a class all of
whose members, i.e., parts, enjoy “exactly” the same properties where a property is expressed
as a proposition.142

Example: 6 Part Properties. We continue Example 4. Examples of part properties are: has
unique identity (was exemplified, will be properly defined), has mereology (was exemplified,
will be properly defined), has length, has location, has traffic movement restriction (as for
vehicles along a link, one direction, both directions or closed), has position (example: vehicle
position), has velocity and has acceleration (the last two holds for vehicles).

4.1.3 A Preview of Part Properties 143

For pragmatic reasons we group endurant properties into two categories: a group which we shall
refer to as meta properties: is discrete, is continuous, is atomic , is composite, has observers, is
sort and has concrete type; and a group which we shall refer to as part properties has unique
existence, has mereology and has attributes. The first group is treated in this section; the
second group in Sect. 6.

4.1.4 Formal Concept Analysis: Endurants 144

We refer to Sect. ?? on Page ??: Formal Concept Analysis.
The domain analyser examines collections of parts. (i) In doing so the domain analyser

discovers and thus identifies and lists a number of properties. (ii) Each of the parts examined

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 41

usually satisfies only a subset of these properties. (iii) The domain analyser now groups parts
into collections such that each collection have its parts satisfy the same set of properties, such
that no two distinct collections are indexed, as it were, by the same set of properties, and
such that all parts are put in some collection. (iv) The domain analyser now assigns distinct
type names (same as sort names) to distinct collections. That is how we assign types to parts.
The quality of the part type universe depends on how thoroughly the domain analysers do their
job: (α) collecting sufficiently many examples of parts, (β) enumerating sufficiently many
examples of property propositions, and (γ) “assigning” appropriate properties to parts. This
step of domain description development is crucial to the appropriateness and acceptability
of the resulting domain description. Examining too few parts, enumerating too few and/or
irrelevant property propositions sloppiness in general can often result in domain models that
turn out to be “unwieldy”, models that do not capture, sufficiently elegantly the core domain
concepts. For good advice in seeking elegance in models see [52, M.A. Jackson: Lexicon ...].

We shall return later to a proper treatment of formal concept analysis [38].

4.1.5 Part Property Values 145

By a part property valueδ, i.e., a property valueδ of a part, we mean the value associated with
an intentional property of the part.

Example: 7 Part Property Values. A link, l:L, may have the following intentional property
values: LOCation value loc set, LENgth value 123 meters and mereology value {κi, κj}.

146

Two parts of the same type are different if for at least one of the intentional properties of that
part type they have different part property values. slut

Example: 8 Distinct Parts. Two links, la,lb:L, may have the following respective property
values: LOCation values loc seta, and loc setb, LENgth value 123 meters and 123 meters, i.e.,
the same, and mereology values {κi, κj} and {κm, κn} where {κi, κj} 6= {κm, κn}. When so,
they are distinct, and the cadestral space loc seta must not share any point with cadestral
space loc setb.

4.1.6 Part Sorts 147

By an abstract typeδ, or a sortδ, we shall understand a type which has been given a name
but is otherwise undefined, that is, is a set of values of further undefined quantities [72, 71].
where these are given properties which we may express in terms of axioms over sort (including
property) values. All of the above examples are examples of sorts. 148

Example: 9 Part Sorts. The discovery of N, F and M was made as a result of examining
the domain, ∆, at domain index 〈∆〉; HS and LS at domain index 〈∆,N〉; Hs and H (Ls and L)
at domain indexes 〈∆,HS〉 (〈∆,LS〉); and Vs and V at domain index 〈∆,VS〉.

4.1.7 Atomic Parts 149

By an atomic partδ we mean a part which, in a given context, is deemed not to consist of
meaningful, separately observable proper sub-parts. A sub-part is a part. 150

Example: 10 Atomic Types. We have exemplified the following atomic types: H (Item 5b
on Page 18), L (Item 6b on Page 18), V (Item 4b on Page 18) and M (Item 1c on Page 17).

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

42 Domain Science & Engineering

Implicit tests, at domain indexes, by the domain analyser, for atomicity were performed as
follows: for H at 〈∆,N,HS,Hs,H〉; for L at 〈∆,N,LS,Ls,L〉; for V at 〈∆,F,VS,Vs,V〉; and for M
at 〈∆,M〉.

4.1.8 Composite Parts 151

By a composite partδ we mean a part which, in a given context, is deemed to indeed consist of
meaningful, separately observable proper sub-parts.152

Example: 11 Composite Types. We have exemplified the following composite types: N
(Items 2a– 2b on Page 17), HS (Item 5 on Page 18), LS (Item 6 on Page 18), Hs (Item 5a
on Page 18), Ls (Item 6a on Page 18), F (Item 3 on Page 17), VS (Item 4a on Page 18),
Va (Item 4a on Page 18), respectively. Tests for compostionality of these were implicitly
performed; for N at index 〈∆,N〉; for HS and LS at index 〈∆,N,HS〉 and 〈∆,N,LS〉; for Hs and
Ls at indexes 〈∆,N,HS,Hs〉 and 〈∆,N,LS,Ls〉; for F at index 〈∆,F〉; for VS at index 〈∆,F,VS〉;
and for Vs at index 〈∆,F,VS,Vs〉.

4.1.9 Part Observers 153

By a part observerδ or a material observerδ we mean a meta-physical operatorδ (a meta function),

72. obs B: P → B

that is, one performed by the domain analyser, which “applies” (i.e., who applies it) to a
composite part value18, P, and which yields the sub-part of type B, of the examined part. The
obs “keyword” prefix to a part type name B is intended to alert the reader to the fact that
obs B is a meta function.154

We name these obs erver functions obs X to indicate that they are observing parts of type
X. The obs erver functions are not computable. They can not be mechanised. Therefore we
refer to them as mental. They can be “implemented” as, for example, follows:155

Example: 12 Implementation of Observer Functions. I take you around a particular
road net, n,say in my town. I point out to you, one-by-one, all the street intersections,
h1, h2, . . . , hn, of that net. You “write” them down: as many characteristics as you (and I)
can come across, including some choice of unique identifiers, their mereologies, and attributes,
“one-by-one”. In the end we have identified, i.e., visited, all the hubs in my town’s road net
n.

156

Example: 13 Observer Functions. We have exemplified the following obs erver functions:
obs N (Item 1a on Page 17), obs F (Item 1b on Page 17), obs M (Item 1c on Page 17),
obs HS (Item 2a on Page 17), obs LS (Item 2b on Page 17), obs VS (Item 3 on Page 17),
obs Vs (Item 4a on Page 18), obs Hs (Item 5 on Page 18) and obs Ls (Item 6 on Page 18),
where we list their “definitions”, not their many uses.

18or composite part type

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 43

4.1.10 Part Types 157

By a concrete typeδ we shall understand a type, T, which has been given both a name and a
defining type expression of, for example the form T = A-set, T = A-infset, T = A×B×· · ·×C,
T = A∗, T = Aω, T = A →m B, T = A→B, T = A

∼
→B, or T = A|B|· · · |C. where A, B, . . . , C

are type names or type expressions.

Example: 14 Concrete Types. Example concrete part types were exemplified in Vs = V-set:
Item 4a on Page 18, Hs = H-set: Item 5a Page 18, Ls = L-set: Item 6a Page 18.

158

Example: 15 Has Composite Types. The discovery of concrete types were done as follows:
for HS, Hs = H-set at 〈∆,N,HS〉, for LS, Ls = L-set at 〈∆,N,LS〉, and for VS, Vs = V-set at
〈∆,F,VS〉.

4.2 Part Properties 159

(I) By a property19 we mean a pair a (finite) collection of one or more propositions.
(II) By an endurant property a property which holds of an endurant — which we model as

a pair of a type and a value (of that type)20.
(III) By a perdurant propertyδ we shall mean a property which holds of an perdurant —

which we, as a minimum, model as a pair of a perdurant name and a function type, that is, as
a function signature. 160

Property Value Scales: With intentional properties we associate a property value scale. By
a property value scaleδ of a part type we shall mean a value range that parts of that type will
have their property values range over.

Example: 16 Property Value Scales. We continue Example 4. (i) The mereology property
value scaleδ for hubs of a net range over finite sets of link identifiers of that net. (ii)The
mereology property value scaleδ for links of a net range over two element sets of hub identifiers
for that net. (iii)The range of location values for any one hub of a net is restricted to not
share any cadestral point with any other hub’s location value for that net.

161

Discussion: The notion of ‘property’ is central to much philosophical discussion; we men-
tion a few (that we have studied): [36, The Ontology of Language: Properties, Individuals
and Discourse], [89, Parts: A Study in Ontology] and [67, Properties].21 Their reading has
influenced our work. 162

The notion of ‘property’ is also central to the recent notion of concept analysis [38, Formal
Concept Analysis – Mathematical Foundations]. Here the term concept is understood as a
property of a part. There is no associated type and value notions such as we have expressed

19By saying ‘a property’ we definitely mean to distinguish our use of the term from one which refers to legal
property such as physical (land) or intangible (legal rights) property.

20 The type value may be a singleton, or lie within a range of discrete values, or lie within a range of
continuous values. The ranges may be finite or may be infinite.

21 A reading of the contents listing of [67] reveals an interpretation of parts and properties:
I Function and Concept, Gottlob Frege
II The World of Universals, Bertrand Russell
III On our Knowledge of Universals, Bertrand Russell
IV Universals, F. P. Ramsey
V On What There Is, W. V. Quine
VI Statements about Universals, Frank Jackson
VII ’Ostrich Nominalism’ or ’Mirage Realism’, Michael Devitt
VIII Against ’Ostrich’ Nominalism, D. M. Armstrong

IX On the Elements of Being: I, Donald C. Williams
X The Metaphysic of Abstract Particulars, Keith Campbell
XI Tropes, Chris Daly
XII Properties, D. M. Armstrong
XIII Modal Realism at Work: Properties, David Lewis
XIV New Work for a Theory of Universals, David Lewis
XV Causality and Properties, Sydney Shoemaker
XVI Properties and Predicates, D. H. Mellor.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

44 Domain Science & Engineering

in (II) on the previous page and Footnote 20 on the preceding page. We shall have more to
say about the relations between our concept of domain analysis and Will & Ganter’s concept
analysis in Sect. ?? on Page ?? and in Item (iii) Sect. 9.1.11 on Page 104.

We shall now unravel our ‘Property Theory’22 of parts.163

We see three categories of part properties: unique identifiers, mereology and (general) at-
tributes.

Each and every part has unique existence — which we model through unique identifiers.
Parts relate (somehow) to other parts, that is, mereology — which we model a relations between
unique identifiers. And parts usually have other, additional properties which we shall refer to
as attributes — which we model as pairs of attribute types and attribute values.

4.2.1 Unique Identifiers 164

Example: 17 Unique Identifier Functions. We have only exemplified the following unique
identifier meta-functions and types: uid H, HI Item 7a on Page 19, uid L, LI Item 7b on Page 19
and uid V, VI Item 7c on Page 19. We did not find a need for defining unique identifier meta-
functions for N, F, M, HS, Hs, LS, Ls, VS, and Vs.

165

[1] A Dogma of Unique Existence: We take, as a dogma, that every two parts whose
intentional property values differ for at least one property, other than their unique identifiers,
are distinct and thus have distinct unique identifiers.166

[2] A Simplification on Specification of Intentional Properties: So we make a simplification
in our treatment of intentional part properties By postulating distinct unique identifiers we
are forcing distinctness of parts and can dispense with, that is, do not have to explicitly
ascribe such intentional properties whose associated values would then have to differ in order
to guarantee distinctness of parts,167

[3] Discussion: Parts have unique existence. Whether they be spatial or conceptual. Two
manifest parts cannot overlap spatially. A part is a conceptual part if it is an abstraction of
a part. Two conceptual parts are identical if they have identical properties, that is, abstract
the same manifest part, otherwise they are distinct. We shall therefore associate with each
part a unique identifier, whether we may need to refer to that property or not. There are only
manifest parts and conceptual parts. The above deserves a whole separate inquiry. In defense
of the above, perhaps somewhat dogmatically phrased position, we refer to Russel’s [86].168

[4] The uid P Operator: More specifically we postulate, for every part, p:P, a meta-function:

73. uid P: P → Π

where Π is the type of the unique identifiers of parts p:P. The uid “keyword” prefix to a
part type name P is intended to alert the reader to the fact that uid P is a meta function. In169

practice we “construct” the unique identifier type name for parts of type P by “suffixing” I
to P, and we explicitly “postulate define” the meta-function shown in Item 73. How is the
uid PI meta-function “implemented” ? Well, for a domain description it suffices to postulate
it. If we later were to develop software in support of the described domain, then there are
many ways of “implementing” the uid PIs.170

22— with apologies to [96, 97, 36].
September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 45

[5] Constancy of Unique Identifiers — Some Dogmas: We postulate the following dogmas:
parts may be “added” to or “removed” from a domain; parts that are “added” to a domain
have unique identifiers that are not identifiers of any other part of the history of the domain;
parts that are “removed” from a domain will not have their identifiers reused should parts
subsequently be “added” to the domain; and domains do not allow for the changing (update)
of unique identifier values.

4.2.2 Mereology 171

Mereology: By mereologyδ (Greek: µǫρoς) we shall understand the study and knowledge
about the theory of part-hood relations: of the relations of part to whole and the relations of
part to part within a whole. 172

In the following please observe the type font distinctions: part, etc., and part (etc.).

In the above definition of the term mereology we have used the terms part-hood, part and
whole in a more general sense than we use the term part. 173

In this the “more general sense” we interpret part to include, besides what the term part
covers in this paper, also concepts, abstractions, derived from the concept of part. 174

That is, by part we mean not only manifest phenomena but also intangible phenomena that
may be abstract models of parts, or may be (further) abstract models of parts.

Example: 18 Manifest and Conceptual Parts. We refer to Example 4. A net, n:N (Item 1a
on Page 17), is a manifest part whereas a map, rm:RM (Item 26 on Page 24), is a part.

175

[1] Extensional and Intentional Part Relations: Henceforth we shall “merge” the two terms
part and part into one meaning.

So henceforth the term part shall refer to both manifest, tangible and discrete endurants
and to abstractions of these. We are forced to do so by necessity. Instead of describing the 176

manifest phenomena we are describing conceptual models of these; that is, instead of describing
manifest parts we are describing their part types and part properties. 177

Thus we choose “mereology” to model relations between both parts and parts. We can
thus distinguish between two kinds of such relations: extensional part relations which typically
are spatial relations between manifest parts and intentional part relations which typically are
conceptual relations between abstract parts. 178

Extensional relations between manifest parts are of the kind: one part, p:P, is “adjacent to”
(“physically neighbouring”) another part, q:Q, one part, p:P, is “embedded within” (“physi-
cally surrounded by”) another part, q:Q, and one part, p:P, “overlaps with” another part, q:Q.23

We model these relations, “equivalently”, as follows: in the mereology of p, mereo P(p), there
is a reference, uid Q(q), to q, and in the mereology of q, mereo Q(q), there is a reference,
uid P(p), to p. 179

Intentional relations between abstractions are of the kind: part p:P has an attribute whose
value always stand in a certain relation (for example, a copy of a fragment or the whole) to
another part q:Q’s “corresponding” attribute value.

Example: 19 Shared Route Maps and Bus Time Tables. We continue and we extend
Example 4. The ‘Road Transport Domain’ of Example 4 has its fleet of vehicles be that of

23The reader may wonder: How can a manifest physical part “overlap” another such part ? We shall comment
on this conundrum later in this paper. [Conundrum: a question or problem having only a conjectural answer.]

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

46 Domain Science & Engineering

a metropolitan city’s busses which ply some of the routes according to the city road map
(i.e., the net) and according to a bus time table — which we leave undefined. We can now180

re-interpret the road traffic monitor to represent a coordinating bus traffic authority, CBTA. CBTA
is now the “new” monitor, i.e., is a part. Two of its attributes are: a metropolitan area road map
and a metropolitan area bus time table Vehicles are now busses and each bus follows a route
of the metropolitan area road map of which it has a copy, as a vehicle attribute, “shared” with
CBTA; each bus additionally runs according to the metropolitan area bus time table of which it
has a copy, as a vehicle attribute, “shared” with CBTA.

181

We model these attribute value relations, “ equivalently”, as above: in the mereology of p,
mereo P(p), there is a reference, uid Q(q), to q, and in the mereology of q, mereo Q(q),
there is a reference, uid P(p), to p.

Example: 20 Monitor and Vehicle Mereologies. We continue Example 19 on the previous
page.

74. value mereo M: VI-set

75. type MI

76. value uid M: M → MI

77. value mereo V: V → MI

182

[2] Unique Part Identifier Mereologies: To express a unique part identifier mereology assumes
that the related parts have been endowed, say explicitly, with unique part identifiers., say of
unique identifier types Πj, Πk, . . . , Πℓ. A mereology meta function is now postulated:

78. value mereo P: P → (Πj | Πk | . . . | Πℓ)-set,

or of some such signature, one which applies to parts, p:P, and yields unique identifiers of
other, “the related”, parts — where these “other parts” can be of any part type, including P.
The mereo “keyword” prefix to a part type name P is intended to alert the reader to the
fact that mereo P is a meta function.183

Example: 21 Road Traffic System Mereology. We have exemplified unique part identifier
mereologies for hubs, mereo H Item 8a on Page 20 and links, mereo L Item 9a on Page 20.

Example: 22 Pipeline Mereology. This is a somewhat lengthy example from a domain now
being exemplified. We start by narrating a pipeline domain of pipelines and pipeline units.184

79. A pipeline consists of pipeline units.

80. A pipeline unit is either

a a well unit output connected to a pipe or a pump unit;

b a pipe, a pump or a valve unit input and output connected to two distinct pipeline
units other than a well;

c a fork unit input connected to a pipeline unit other than a well and output con-
nected to two pipeline units other than wells and sinks;

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 47

d a join unit input connected to two pipeline units other than wells and output
connected to a a pipeline unit other than a sink; and

e a sink unit input connected to a valve.

185

type

79. PL
value

79. obs Us: PL → U-set

type

80. U = WeU | PiU | PuU | VaU | FoU | JoU | SiU
value

80. uid U: U → UI
80. mereo U: U → UI-set × UI-set
80. i mereo U,o mereo U: U → UI-set
80. i UIs(u) ≡ let (ius,) = mereo U(u) in ius end

80. o UIs(u) ≡ let (,ous) = mereo U(u) in ous end

axiom

∀ pl:PL,u:U • u ∈ obs Us(pl) ⇒
80a. is WeU(u) → card i UIs(u)=0 ∧ card o UIs(u)=1,
80b. (is PiU|is PuU|is VaU)(u) → card i UIs(u)=1=card o UIs(u),
80c. is FoU(u) → card i UIs(u)=1 ∧ card o UIs(u)=2,
80d. is JoU(u) → card i UIs(u)=2 ∧ card o UIs(u)=1,
80e. is SiU(u) → card i UIs(u)=1 ∧ card o UIs(u)=0

The UI “typed” value and axiom Items 80 “reveal” the mereology of pipelines.
186

[3] Concrete Part Type Mereologies: Let Ai and Bj, for suitable i, j denote distinct part
types and let Bj I Let there be the following concrete type definitions:

type

a1:A1 = bs:B1-set

a2:A2 = bc:B21
× B22

× ... × B2n

a3:A3 = bl:B3
∗

a4:A4 = bm:BI4 →m B4

The above part type definitions can be interpreted mereologically: Part a:A1 has sub-parts
b1i

,b12
,...,b1m :B1 of bs parthood related to just part a:A1. Parts a:A2 has sub-parts b21

,b22
,. . . ,b2m :B2

of bc parthood related only to parts a:A1 Parts a:A3 has sub-parts b3i
, for all indices i of the

list bℓ, parthood related to parts a:A3, and to part b3i−1
and part b3i+1

, for 1<i<len bℓ by
being “neighbours” and also to other b3j

if the index j is known to b3i
for i6=j. Parts a:A4

have all parts bm(bij) for index bij in the definition set dom bm, be parthood related to a:A4

and to other such bm:B4 parts if they know their indexes. 187

Example: 23 A Container Line Mereology. This example brings yet another domain into
consideration.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

48 Domain Science & Engineering

81. Two parts, sets of container vessels, CV-set, and sets of container terminal ports, CTP-

set, are crucial to container lines, CL.

82. Crucial parts of container vessels and container terminal ports are their structures of
bays, bs:BS.

83. A bay structure consists of an indexed set of bays.

84. A bay consists of an indexed set of rows

85. A row consists of an index set of stacks.

86. A stack consists of a linear sequence of containers.

188

type

81. CP, CVS, CTPS
value

81. obs CVS: CL → CVS
81. obs CTPS: CL → CTPS
type

81. CVS = CV-set

81. CTPS = CTP-set

value

82. obs BS: (CV|CTP) → BS
type

83. BI, BS, B = BI →m B
value

84. obs RS: B → RS
type

84. RI, RS, R = RI →m R
value

85. obs SS: R → SS
type

85. SI, SS, C = SI →m S
86. S = C∗

189

190 In Fig. 1 on the facing page is shown a container line domain index lattice. At the top
(“root”) there is the container line domain type name. Immediately below it are the, in this
case, two sub-domains (that we consider), CVS and CTPS. For each of these two there are
the corresponding CV and CTP sun-domains. For each of these one can observe the container
bays, hence, definition-wise, shared sub-domain. It is then defined in terms of a sequence
of increasingly more “narrowly” defined sub-domains. The lattice “ends” with the atomic
sub-domain of containers, C.

• • •

Discussion: Mereology is a discipline of study within both philosophy and logic. Mereology,
in one form or another, has been studied, by philosophers, over the millennia, in ‘Ancient
Greece’ (Plato, Aristotle), ‘Roman Times’ (Boethius), ‘Medieval Ages’ (Abelard, Aquinas)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 49

BS

B

RS

R

SS

C

S

CL

CTPCV

CVS CTPS

Figure 1: A container line domain index lattice

and in the ‘Age of Enlightenment’ (Kant), mereology became the subject also of a rigorous
mathematical treatment, in the 1920s, by the Polish mathematician Stanis law Leshniewski
[64, 70, 92]. Now it is also becoming a study within computer science [12, 16]. Modern study
of mereology [102, 101, 25] treats it axiomatically. We shall, in contrast, suggest model-
oriented descriptions of mereology. In [16] we indicate how a general model, M, of mereology
satisfies an axiomatic presentation, A, a theory, that is, M |= A.

We present two classes of models of domain mereologies. One class of mereology models
are based on the use of unique part identifiers. The other class of mereology models are based
on concrete part type definitions. In either set of models the mereology that we shall express
is about how a part is related to other parts and we “lightly” understand that relationship
as a kind of connection: whether spatial connection in the form of a part, p, being either
“somehow” contained within another, an “embracing” part, p′, or “somehow” adjacent to
another, a “neigbouring” part, p′; or conceptual connection in the form of properties of one
part, p, being related to properties of one part, p, whether these properties be spatial or
otherwise. 191

[4] Variability of Mereologies: The mereology of parts (of type P) may be a constant, i.e.,
static, or a variable, i.e., dynamic. That is, for some, or all, parts of a part type may need to
be updated. We express the update of a part mereology as follows:

87. value upd mereo P: (Πi|Πi|. . . |Πi)-set → P → P

where upd mereo P({πa, πb, . . . , πc})(p) results in a part p′:P where all part properties of p′

other than its mereology are as they “were” in p but the mereology of p′ is {πa, πb, . . . , πc}. 192

Example: 24 Insert Link. We continue Example 4, Item 42 on Page 30: In the post link dis
predicate we referred to the undefined link insert function, ins L. We now define that function:

88. The insert Link action applies to a net, n, and a link, l,

89. and yields a new net, n′. 193

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

50 Domain Science & Engineering

90. The conditions for a successful insertion are

a that the link, l, is not in the links of net n,

b that the unique identifier of l is not in the set of unique identifiers of the net n, and

c that the mereology of link l has been prepared to be, i.e., is the two element set of
unique identifiers of two hubs in net n.

91. The result of a successful insertion is

a that the links of the new net, n′, are those of the previous net, n, “plus” link l;

b that the hubs, “originally” h a,h b, connected by l, are only mereo-logically updated
to each additional include the unique identifier of l; and

c that all other hubs of n and n′ are unchanged.
194

88. ins L: N → L → N
89. ins L(n)(l) as n′

90. pre:
90a. l 6∈ obs Ls(obs LS(n))
90b. ∧ uid L(l) 6∈ in xtr LIs(n)
90c. ∧ mereo L(l) ⊆ xtr HIs(n)
91. post:
91a. obs Ls(obs LS(n′))=obs Ls(obs LS(n))∪{l}
91. ∧ let {hi a,hi b}=mereo L(l) in

91. let {h a,h b}={get H(hi a)(n),get H(hi b)(n)} in

91b. get H(hi a)(n′)=upd mereo H(h a)(mereo H(h a)∪{uid L(l)})

91b. ∧ get H(hi b)(n′)=upd mereo H(h b)(mereo H(h b)∪{uid L(l)})

91c. ∧ obs Hs(obs HS(n))=obs Hs(obs HS(n))\{hi a,hi b}∪{h a′,h b′} end end

195
As for the very many other function definitions in this paper we illustrate one form of function
definition annotations, and not always consistently the same “style”. We do not pretend that
our function definitions are novel, let alone a contribution of this paper; instead we rely on
the reader having learnt, more laboriously than we this paper can muster, an appropriate
function definition narrative style.

• • •

This point in this paper may also be an appropriate one for briefly discussing another aspect
the form of of formal function definitions. Even to us, even though we certainly do not always
adhere to this desiderata, a function definition ought be formulated in a few lines: 2–3, at most
4. If, as above, we do not achieve that, in a “first attempt”,24 then the developer ought split
that function definition into several such. To do so often amounts to the separate development
of a domain theory: a number of more-or-less “ultra-short” definitions and their repeated
re-use in many contexts while also developing a number of theorems based also on axioms of
that domain theory .

24We refer to some such “not too tersely expressed” function definitions: wf RM Item 26 on Page 24 (where
we suggest that the three line Item26b become the body of an auxiliary predicate), and, notably, the above
ins L Item 88 on the previous page.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 51

4.2.3 Attributes 196

Attribute: By a part attributeδ we mean a part property other than part unique identifier and
part mereology, and its associated attribute property value.

Example: 25 Road Transport System Part Attributes. We have exemplified, Example 4, a
number of part attribute observation functions: attr LΣ Item 10a on Page 20, attr LΩ Item 10b
on Page 20, attr LOC, attr LEN Item 10c on Page 20, attr HΣ Item 11a on Page 21, attr HΩ
Item 11b on Page 21, attr LOC Item 11c on Page 21, attr VP, attr onL, attr atH, attr VEL
and attr ACC Item 13 on Page 22.

197

[1] Stages of Attribute Analysis: There are four facets to deciding upon part attributes:
(i) determining on which attributes to focus; (ii) selecting appropriate attribute type names,
(viz., LΣ, LΩ, HΣ, HΩ, LEN, LOC, VP, atH, onL, VEL and ACC from the above example); (iii)
determining whether an attribute type is a static attribute type (having constant value) (viz.,
LEN, LOC), or a dynamic attribute type (having variable values)) (viz., LΣ, LΩ, HΣ, HΩ, VP,
atH, onL, VEL, ACC); and (iv) deciding upon possible concrete type definitions for (some of)
those attribute types (viz., LΣ, LΩ, HΣ, HΩ, VP, atH, onL). 198

Example: 26 Static and Dynamic Attributes. Continuing Example 4 we have: Dynamic
attributes: LΣ Item 10a on Page 20; HΣ Item 11a on Page 21; VP, atH, onL Items 12a–12(a)ii
on Page 22; and VEL and ACC both Item 13 on Page 22. All other attributes are considered
static. 199

Example: 27 Concrete Attribute Types. From Example 4: LΣ=(HI×HI) Item 10a on
Page 20, LΩ=LΣ-set Item 10b on Page 20, HΣ=(LI×LI)-set Item 11a on Page 21 and
HΩ=HΣ-set Item 11b on Page 21.

200

[2] The attr A Operator: To observe a part attribute we therefore describe the attribute
observer signature

92. attr A: P → A,

where P is the part type being examined for attributes, and A is one of the chosen attribute type
names. The attr “keyword” prefix to an attribute type name A is intended to alert the reader
to the fact that attr A is a meta function. The “hunt” for part attributes, i.e., attribute types,
the resulting attribute function signatures and the chosen concrete attribute types is crucial for
achieving successful domain descriptions. 201

[3] Variability of Attributes: Static attributes are constants. Dynamic attributes are vari-
ables. To express the update of any one specific dynamic attributevalue we use the meta-
operator:

93. value upd attr A: A → P → P

where upd attr A(a)(p) results in a part p′:P where all part properties of p′ other than its the
attribute value for attribute A are as they “were” in p but the attribute value for attribute A
is a. The upd attr “keyword” prefix to an attribute type name A is intended to alert the
reader to the fact that upd attr A is a meta function. 202

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

52 Domain Science & Engineering

Example: 28 Setting Road Intersection Traffic Lights. We refer to Example 4, Items 11a
(HΣ) and 11b (HΩ) on Page 21. The intent of the hub state model (a hub state as a set
of pairs of unique link identifiers) is that it expresses the possibly empty set of allowed hub
traversals, from a link incident upon the hub to a link emanating from that hub. 203

94. In order to “change” a hub state the set hub state action is performed,

95. It takes a hub and a hub state and yields a changed hub.
The argument hub state must be in the state space of the hub.
The result of setting the hub state is that the resulting hub has the argument state as
its (updated) hub state.

value

94. set hub state: H → HΣ → H
95. set hub state(h)(hσ) ≡ upd attr HΣ(h)(hσ)

95. pre: hσ ∈ attr HΩ(h)

The hub state has not changed if attr HΣ(h) = hσ.

4.2.4 Properties and Concepts 204

Some remarks are in order.

[1] Inviolability of Part Properties: Given any part p of type P one cannot “remove” any
one of its properties and still expect the the part to be of type P . Properties are what “makes”
parts. To put the above remark in “context” let us review Ganter & Wille’s formal concept
analysis [38].

205

[2] Ganter & Wille: Formal Concept Analysis: This review is based on [38].

to be written

206

[3] The Extensionality of Part Attributes:

to be written

4.2.5 Properties of Parts 207

The properties of parts and materials are fully captured by (i) the unique part identifiers, (ii)
the part mereology and (iii) the full set ofpart attributes and material attributes We therefore
postulate a property function when when applied to a part or a material yield this triplet, (i–iii),
of properties in a suitable structure.

type

Props = {|PI|nil|} × {|(PI-set×...×PI-set)|nil|} × Attrs
value

props: Part|Material → Props

208
where Part stands for a part type, Material stands for a material type, PI stand for unique part
identifiers and PI-set×...×PI-set for part mereologies. The {|...|} denotes a proper specification
language sub-type and nil denotes the empty type.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 53

4.3 States 209

By a stateδ we mean a collection of such parts some of whose part attribute values are dynamic,
that is, can vary.

Example: 29 A Variety of Road Traffic Domain States. We continue Example 4. A link,
l:L, constitutes a state by virtue of if its link traffic state lσ:attr LΣ. A hub, h:H, constitutes
a state by virtue of its hub traffic state hσ:attr HΣ, and indepenently, its hub mereology
lis:LI-set:mereo H. A net, n:N, constitutes a state by virtue of if its link and hub states. A
monitor, m:M, constitutes a state by virtue of if its vehicle position map vpm:attr VPM.

4.4 An Example Domain: Pipelines 210

We close Sect. 4 with a “second main example”, albeit “smaller”, in text size, than Exam-
ple 4. The domain is that of pipelines. The reason we bring this example is the following:
Not all domain endurants are discrete domain endurants. Some domains possess continuous
domain endurants. We shall call them materials. Two such materials are liquids, like oil (or
petroleum), and gaseous, like natural gas. The description of such, as we shall later call 211

them, materials-based domains requires additional description concepts and new description
techniques. The examples of this subsection, i.e., Sect. 4.4 illustrates these new concepts and
techniques as do the examples of Sect. 6.1. 212

Example: 30 Pipeline Units and Their Mereology.

96. A pipeline consists of connected units, u:U.

97. Units have unique identifiers.

98. And units have mereologies, ui:UI:

a pump25, pu:Pu, pipe, pi:Pi, and valve26, va:Va, units have one input connector and
one output connector;

b fork, fo:Fo, [join, jo:Jo] units have one [two] input connector[s] and two [one] output
connector[s];

c well27, we:We, [sink28, si:Si] units have zero [one] input connector and one [zero]
output connector.

d Connectors of a unit are designated by the unit identifier of the connected unit.

e The auxiliary sel UIs in selector funtion selects the unique identifiers of pipeline
units providing input to a unit;

f sel UIs out selects unique identifiers of output recipients.

213

25We abstract from such distinctions between oil pipeline pumps and gas pipeline compressors.
26We abstract regulator stations (where the pipeline operator can release some of the pressure from the

pipeline) and block valve stations (where the operator can isolate any segment of a pipeline for maintenance
work or isolate a rupture or leak) into valves.

27We abstract wells into initial injection stations where the liquid or gaseous material is injected into the
line.

28We abstract partial and final delivery stations into sinks, places where the material is delivered to an agent
outside the pipeline system.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

54 Domain Science & Engineering

type

96. U = Pu | Pi | Va | Fo | Jo | Si | We
97. UI
value

97. uid U: U → UI
98. mereo U: U → UI-set × UI-set
98. wf mereo U: U → Bool

98. wf mereo U(u) ≡
98a. let (iuis,ouis) = mereo U(u) in

98a. is (Pu|Pi|Va)(u) → card iusi = 1 = card ouis,
98b. is Fo(u) → card iuis = 1 ∧ card ouis = 2,
98b. is Jo(u) → card iuis = 2 ∧ card ouis = 1,
98c. is We(u) → card iuis = 0 ∧ card ouis = 1,
98d. is Si(u) → card iuis = 1 ∧ card ouis = 0 end

98e. sel UIs in: U → UI-set
98e. sel UIs in(u) ≡ let (iuis,)=mereo U(u) in iuis end

98f. sel UIs out: U → UI-set
98f. sel UIs out(u) ≡ let (,ouis)=mereo U(u) in ouis end

214

Example: 31 Pipelines: Nets and Routes.

99. A pipeline net consists of several properly connected pipeline units.

Example 30 on the preceding page already described pipeline units.

Here we shall concentrate on their connectedness, i.e., the wellformednes of pipeline
nets.

100. A pipeline net is well-formed if

a all routes of the net are acyclic, and

b there are a non-empty set of well-to-sink routes that connect any well to some sink,
and

c all other routes of the net are embedded in the well-to-sink routes
215

type

99. PLN′

99. PLN = {| pln:PLN′ • is wf PLN(pln) |}
value

99. obs Us: PLN → U-set

100. is wf PLN: PLN′ → Bool

100. is wf PLN(pln) ≡
100. let rs = routes{pln} in

100b. well to sink routes(pln)6={}
100c. ∧ embedded routes(pln) end

216

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 55

101. An acyclic route is a route where any element occurs at most once.

102. A well-to-sink route of a net, pln, is a route whose first element designates a well in pln
and whose last element designates a sink in pln.

103. One non-empty route, r′, is embedded in another route, r if the latter can be expressed
as the concatenation of three routes: r = r′′̂r′̂r′′′ where r′′ or r′′′ may be empty routes
(〈〉).

217

type

105. R′ = UI∗

100a. R = {r:R′•is acyclic(r)}
value

100a. is acyclic: R → Bool

100a. is acyclic(r) ≡ ∀ i,j:Nat•i6=j∧{i,j}⊆inds r⇒r[i]6=r[j]

100b. well to sink routes: PLN → R-set

100b. well to sink routes(pln) ≡
100b. {r|r:R•r ∈ routes(pln) ∧ ∃ we:WE,si:Si •

100b. {we,si}⊆obs Us(pln) ⇒ r[1]=we ∧ r[len r]=si}

218

104. One non-empty route, er, is embedded in another route, r,

a if there are two indices, i, j, into r

b such that the sequence of r elements from and including i to and including j is er.

value

104. is embedded: R × R → Bool

104. is embedded(er,r) ≡
104a. ∃ i,j:Nat•{i,j}⊆inds r
104b. ⇒ er = 〈r[k]|k:Nat • i≤k≤j〉
104. pre: er 6=〈〉

219

105. A route, r, of a pipeline net is a sequence of unique unit identifiers, satisfying the following
properties:

a if r[i]=uii has uii designate a unit, u, of the pipeline then 〈uii〉 is a route of the net;

b if rî〈uii〉 and 〈uij〉̂rj are routes of the net

i. where ui and uj are the units (of the net) designated by uii and uij

ii. and uij is in the output mereology of ui and uii is in the input mereology of uj

iii. then rî〈uii〉̂〈uij〉̂rj is a route of the net.

c Only such routes that can be constructed by a finite number of “applications” of
Items 105a and 105b are routes.

220

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

56 Domain Science & Engineering

105. routes: PLN → R-set

105. routes(pln) ≡
105a. let rs = {〈uid UI(u)〉|u:U•u ∈ obs Us(pln)}
105(b)iii. ∪ { rî〈uii〉̂〈uij〉̂rj

105b. | rî〈uii〉,〈uij〉̂ri:R • {rî〈uii〉,〈uij〉̂rj}⊆rs
105(b)i. ∧ let ui,uj:U•{ui,ui}⊆obs Us(pln)∧uii=uid U(ui)∧uij=uid U(uj)
105(b)ii. in uii ∈ iuis(uj) ∧ uij ∈ ouis(ui) end }
105c. in rs end

Section 6.1 will continue with several examples (Example 44 on Page 70, Example 45 on
Page 70, Example 46 on Page 71, Example 47 on Page 72 and Example 48 on Page 73)
following up on the two examples of this section.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 57

5 Discrete Perdurant Entities 221

From Wikipedia: Perdurant: Also known as occurrent, accident or happening. Perdurants are
those entities for which only a fragment exists if we look at them at any given snapshot in time.
When we freeze time we can only see a fragment of the perdurant. Perdurants are often what
we know as processes, for example ’running’. If we freeze time then we only see a fragment
of the running, without any previous knowledge one might not even be able to determine the
actual process as being a process of running. Other examples include an activation, a kiss, or a
procedure.

A discrete perdurantδ is a perdurant which is a discrete entity. We shall consider the 222

following discrete perdurants. actions (Sect. 5.2), events (Sect. 36), and discrete behaviours
(Sect. 5.4).

Actions and events occur instantaneously, that is, in time, but taking no time, and to
therefore be discrete actionδs and discrete eventδs.

5.1 Formal Concept Analysis: Discrete Perdurants 223

We refer to Sect. ?? on Page ??: Formal Concept Analysis.

The domain analyser examines collections of discrete perdurants. (i) In doing so the domain
analyser discovers and thus identifies and lists a number of perdurant properties. (ii) Each of
the discrete perdurants examined usually satisfies only a subset of these properties. (iii) The
domain analyser now groups discrete perdurant into collections such that each collection have
its discrete perdurants satisfy the same set of properties, such that no two distinct collections
are indexed, as it were, by the same set of properties, and such that all discrete perdurants are
put in some collection. (iv) The domain analyser now classify collections as actions, events or
behaviours, and assign signatures to distinct collections. That is how we assign signatures to
discrete perdurants.

5.2 Actions 224

By a functionδ we understand a mathematical concept, a thing which when applied to a value,
called its argument, yields a value, called its result. A discrete actionδ can be understood as a
function invoked on a state value and is one that potentially changes that value. Other terms
for action are function invocationδ and function applicationδ. 225

Example: 32 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered actions.

• Setting the traffic signals for a hub (which has such signals) is considered an action.

• Loading and unloading containers from or unto the top of a container stack are consid-
ered actions.

5.2.1 Abstraction: On Modelling Domain Actions 226

We claim that we describe domain actions, but we actually describe functions, which are
“somewhat far removed” from domains. So what are we actually claiming ? We are claiming
that there is an interesting class of actions and that they can all be abstracted into one,

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

58 Domain Science & Engineering

possibly non-deterministic function whose properties are then claimed to “mimic” those of the
actions in the interesting class.

5.2.2 Agents: An Aside on Actions 227

Think’st thou existence doth depend on time?
It doth; but actions are our epochs.

George Gordon Noel Byron,
Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

“An action is something an agent does that was ‘intentional under some description’ ” [31, David-
son 1980, Essay 3]. That is, actions are performed by agents. We shall not yet go into any
deeper treatment of agency or agents. We shall do so in Sect. 5.4. Agents will here, for
simplicity, be considered behaviours, and are treated in Sect. 5.4. As to the relation between228

intention and action we note that Davidson wrote: ‘intentional under some description’ and
take that as our cue: the agent follows a script, that is, a behaviour description, and invokes
actions accordingly, that is, follow, or honours that script.

5.2.3 Action Signatures 229

By an action signature we understand a quadruple: a function name, a function definition set
type expression, a total or partial function designator (→, respectively

∼
→), and a function image

set type expression: fct name: A → Σ (→|
∼
→) Σ [× R], where (X | Y) means either X or

Y , and [Z] means that for some signatures there may be a Z component meaning that the
action also has the effect of “leaving” a type Z value.29230

Example: 33 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼
→N;

remove Hub: N→HI
∼
→N;

set Hub Signal: N→HI
∼
→HΣ

∼
→N

load Container: V→C→StackId
∼
→V; and

unload Container: V→StackId
∼
→(V×C).

5.2.4 Action Definitions 231

There are a number of ways in which to characterise an action. One way is to characterise
its underlying function by a pair of predicates: precondition: a predicate over function argu-
ments — which includes the state, and postcondition: a predicate over function arguments,
a proper argument state and the desired result state. If the precondition holds, i.e., is true,
then the arguments, including the argument state, forms a proper ‘input’ to the action. If
the postcondition holds, assuming that the precondition held, then the resulting state [and
possibly a yielded, additional “result” (R)] is as they would be had the function been applied.

232

Example: 34 Transport Nets Actions. In Example 4 we gave an explicit example of an
action: ins H: Items 37–37d, while implicit references to net actions were made in the event
predicates link dis, pre link dis: Items 38–39c, post link dis (Items 38–39c): rem L Item 42a and
ins L Items 42(c)i–42(c)ii.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 59

233

What is not expressed, but tacitly assume in the above pre- and post-conditions is that the
state, here n, satisfy invariant criteria before (i.e. n) and after (i.e., n′) actions, whether these
be implied by axioms or by well-formedness predicates. over parts. This remark applies to
any definition of actions, events and behaviours.

Example: 35 Container Line: Remove Container. We refer to Example 23 (Pages 47–48).

106. The remove Container from Vessel action applies to a vessel and a stack address and
conditionally yields an updated vessel and a container.

a We express the ‘remove from vessel’ function primarily by means of an auxiliary
function remove C from BS, remove C from BS(obs BS(v))(stid), and some further
post-condition on the before and after vessel states (cf. Item 106d).

b The remove C from BS function yields a pair: an updated set of bays and a con-
tainer.

c When obs erving the BayS from the updated vessel, v′, and pairing that with what
is assumed to be a vessel, then one shall obtain the result of remove C from -
BS(obs BS(v))(stid).

d Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a vessel
must leave all other properties of the vessel unchanged.

107. The pre-condition for remove C from BS(bs)(stid) is

a that stid is a valid address in bs, and

b that the stack in bs designated by stid is non empty.

108. The post-condition for remove C from BS(bs)(stid) wrt. the updated bays, bs′, is

a that the yielded container, i.e., c, is obtained, get C(bs)(stid), from the top of the
non-empty, designated stack,

b that the mereology of bs′ is unchanged, unchanged mereology(bs,bs′). wrt. bs.

c that the stack designated by stid in the “input” state, bs, is popped, popped -
designated stack(bs,bs′)(stid), and

d that all other stacks are unchanged in bs′ wrt. bs, unchanged non designated -
stacks(bs,bs′)(stid).

value

106. remove C from V: V → StackId
∼
→ (V×C)

106. remove C from V(v)(stid) as (v′,c)
106c. (obs Bs(obs BS(v′),c)) = remove C from BS(obs Bs(obs BS(v)))(stid)
106d. ∧ props(v)=props(v′′)

106b. remove C from BS: BS → StackId → (BS×C)
106a. remove C from BS(bs)(stid) as (bs′,c)
107a. pre: valid address(bs)(stid)

29We shall not here speculate on “what happens” to that resulting value.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

60 Domain Science & Engineering

107b. ∧ non empty designated stack(bs)(stid)
108a. post: c = get C(bs)(stid)
108b. ∧ unchanged mereology(bs,bs′)
108c. ∧ popped designated stack(bs,bs′)(stid)
108d. ∧ unchanged non designated stacks(bs,bs′)(stid)

The props function was introduced in Sect. 4.2.5 on Page 52.
This example hints at a theory of container vessel bays, rows and stacks. More on that

is found in Appendix B. There you will find explanations of the valid address (Item 202 on
Page 122), non empty designated stack (Item 203), unchanged mereology (Item 204), popped -
designated stack (Item 205) and unchanged non designated stacks (Item 206) functions.

There are other ways of defining functions. But the form of these are not germane to the
aims of this paper.234

Modelling Actions

• We refer to Sect. 5.1: Formal Concept Analysis of Discrete Perdurants on Page 57.

• The domain describer has decided that an entity is a perdurant and is, or represents an
action: was “done by an agent and intentionally under some description” [31].

⋄⋄ The domain describer has further decided that the observed action is of a class
of actions — of the “same kind” — that need be described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described by the same
function signature and function definition.

235

• The domain describer must decide on the underlying function signature.

⋄⋄ The argument type and the result type of the signature are those of either previ-
ously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.

236

• Sooner or later the domain describer must decide on the function definition.

⋄⋄ The form30 must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have developed, “on
the side”, a theory of mereology for the part types involved in the function signa-
ture.

30Only the pre/post-condition form has so far been illustrated. Other function definition forms, incl. predi-
cate functions, will emerge in further examples below.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 61

5.3 Events 237

By an eventδ we understand a state change resulting indirectly from an unexpected application
of a function, that is, that function was performed “surreptitiously”.

Events can be characterised by a pair of (before and after) states, a predicate over these
and, optionally, a time or time interval.

Events are thus like actions: change states, but are usually either caused by “previous”
actions, or caused by “an outside action”. 238

Example: 36 Events. Container vessel: A container falls overboard sometimes between
times t and t′. Financial service industry: A bank goes bankrupt sometimes between times t
and t′. Health care: A patient dies sometimes between times t and t′. Pipeline system: A pipe
breaks sometimes between times t and t′. Transportation: A link “disappears” sometimes
between times t and t′.

5.3.1 An Aside on Events 239

We may observe an event, and then we do so at a specific time or during a specific time interval.
But we wish to describe, not a specific event but a class of events of “the same kind”. In
this paper we therefore do not ascribe time points or time intervals with the occurrences of
events31.

5.3.2 Event Signatures 240

An event signatureδ is a predicate signature having an event name (evt), a pair of state types
(Σ × Σ), a total function space operator (→) and a Boolean type constant: evt: (Σ×Σ) →
Bool.

Sometimes there may be a good reason for indicating the type, ET, of an event cause
value, if such a value can be identified: evt: ET × (Σ × Σ) → Bool.

5.3.3 Event Definitions 241

An event definitionδ takes the form of a predicate definition: a predicate name and argument
list, usually just a state pair, an existential quantification over some part (of the state) or over
some dynamic attribute of some part (of the state) or combinations of the above a pre-condition
expression over the input argument(s), an implication symbol (⇒), and a post-condition expression
over the argument(s): evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).

There may be variations to the above form. 242

Example: 37 Road Transport System Event. Example 4, Sect. 2.7, Items 38–42(c)ii (Pages
29–30) exemplified an event definition.

243

Modelling Events

• We refer to Sect. 5.1: Formal Concept Analysis of Discrete Perdurants on Page 57.

• The domain describer has decided that an entity is a perdurant and is, or represents an
event: occurred surreptitiously, that is, was not an action that was “done by an agent

31As we do not ascribe time points or time intervals with neither actions nor behaviours.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

62 Domain Science & Engineering

and intentionally under some description” [31].

⋄⋄ The domain describer has further decided that the observed event is of a class of
events — of the “same kind” — that need be described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described by the same
predicate function signature and predicate function definition.

244

• First the domain describer must decide on the underlying predicate function signature.

⋄⋄ The argument type and the result type of the signature are those of either previ-
ously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on the predicate function definition.

⋄⋄ For predicate function definitions it appears to be convenient to have developed,
“on the side”, a theory of mereology for the part types involved in the function
signature.

5.4 Discrete Behaviours 245

We shall distinguish between discrete behaviours (this section) and continuous behaviours
(Sect. 6.2). Roughly discrete behaviours proceed in discrete (time) steps — where, in this
section, we omit considerations of time. Each step corresponds to an action or an event or a
time interval between these. Actions and events may take some (usually inconsiderable time),
but the domain analyser has decided that it is not of interest to understand what goes on in
the domain during that time (interval). Hence the behaviour is considered discrete.246

Continuous behaviours are continuous in the sense of the calculus of mathematical analysis;
to qualify as a continuous behaviour time must be an essential aspect of the behaviour.

Discrete behaviours can be modelled in many ways, for example using CSP [45]. MSC [49],
Petri Nets [82] and Statechart [42]. We refer to Chaps. 12–14 of [9]. In this paper we shall
use RSL/CSP.

5.4.1 What is Meant by ‘Behaviour’ ? 247

We give two characterisations of the concept of ‘behaviour’. a “loose” one and a “slanted one.

A loose characterisation runs as follows: by a behaviourδ we understand a set of sequences
of actions, events and behaviours.248

A “slanted” characterisation runs as follows: by a behaviourδ we shall understand ei-
ther a sequential behaviourδ consisting of a possibly infinite sequence of zero or more ac-
tions and events; or one or more communicating behaviourδs whose output actions of one
behaviour may synchronise and communicate with input actions of another behaviour; or two

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 63

or more behaviours acting either as internal non-deterministic behaviourδs (⌈⌉) or as external
non-deterministic behaviourδs (⌈⌉⌊⌋). 249

This latter characterisation of behaviours is “slanted” in favour of a CSP, i.e., a com-
municating sequential behaviour, view of behaviours. We could similarly choose to “slant” a
behaviour characterisation in favour of Petri Nets, or MSCs, or Statecharts, or other.

5.4.2 Behaviour Narratives 250

Behaviour narratives may take many forms. A behaviour may best be seen as composed from
several interacting behaviours. Instead of narrating each of these, as was done in Example 4,
one may proceed by first narrating the interactions of these behaviours. Or a behaviour may
best be seen otherwise, for which, therefore, another style of narration may be called for, one
that “traverses the landscape” differently. Narration is an art. Studying narrations – and
practice – is a good way to learn effective narration.

5.4.3 Channels 251

We remind the reader that we are focusing exclusively on domain behaviours. Domain be-
haviours, as we shall see in Sect. 5.4.6, take their “root” in parts. We shall find, even when
“parts” take the form of concepts, that these do not “overlap”. They may share proper-
ties, but we can consider them “disjoint”.32 Hence communication between processes can be
thought of as communication between “disjoint parts”, and, as such, can be abstracted as
taking place in a non-physical medium which we shall refer to as channels. 252

By a channelδ we shall understand a means of communicating entities between [two] be-
haviours.

To express channel communications we, at present, make use of RSL [39]’s output (ch ! v)
/ input (ch ?) clauses and channel declarations,

type M
channel ch M,
value ch!v, ch?,

Variations of the above clauses are

type ChIdx, ChJdx
channel {ch[i]|i:ChIdx•P(i,...)}:M, {ch[i,j]|i:ChIdx,j:ChJdx•P(i,j,...)}:M
value ch[i]!v, ch[i]?, ch[i,j]!v, ch[i,j]?

where P is a suitable predicate over channel indices and possibly global domain values.

5.4.4 Behaviour Signatures 253

By a behaviour signatureδ we shall understand a a function signature augmented by a clause
which declares the in channels on which the function accepts inputs and the out channels on
which the function offers output.

32These previous sentences really beg more careful, at times philosophical arguments. Once this present, and
at present, excluding Sect. 8, 90 page document, has found a reasonably stable form (after now 4–5 iterations,
we plan to separate out a number of the places, such as this, which warrant careful motivations.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

64 Domain Science & Engineering

value behaviour: A → in in chs out out chs B

where (i) the form in in chs out out chs may be just in in chs or out out chs or both in in chs
out out chs that is, behaviour accepts input(s), or offers output(s), or both; where (ii) A typi-254

cally is of the forms Unit if the behaviour “takes no arguments”, that is: behaviour(), or PI×P
if the behavior is directly based on a part, p:P, for that is: behaviour(uid P(p),p); where (iii)255

in chs and out chs are of the form either ch, or {ch[i]|i:ChIdx•Q(i,...)} or {ch[i,j]|i:ChIdx,j:ChJdx•R(i,j,...)},
Q, R are appropriate predicates; and where (iv) either B is either just Unit when the be-
haviour is typically a never-ending (i.e., cyclic) behaviours, or is some result type C.

5.4.5 Behaviour Definitions 256

This section is about the basic form of behaviour function definitions. We shall only be con-
cerned with behaviours which define part behaviours.

By a part behaviourδ we shall understand a behaviour whose state is that of the part for
which it is the behaviour.

There are basically two cases for which we are interested in the form of the behaviour
definition: (i) the atomic part behaviour, and (ii) the composite part behaviour.257

[1] Atomic Part Behaviours: Let p:P be an atomic part of type P. Then the basic form of a
cyclic atomic behaviour definition is

value

atomic core part behaviour(uid P(p))(p) ≡
let p′ = A(uid P(p))(p) in

atomic core part behaviour(uid P(p))(p′) end

post: uid P(p) = uid P(p′),

A: PI → P → in ... out ... P,

where A usually is a terminating function which synchronises and communicates with other
part behaviours.258

Example: 38 Atomic Part Behaviours. Example 4, Sect. 2.8.6 on Page 34 and Sect. 2.8.7
on Page 35 illustrates cyclic atomic behaviours: vehicle at Hub: Items 65–65d, on Page 34,
vehicle on Link: Items 64–68, on Page 35 and monitor: Items 69–71d, on Page 35.

259

[2] Composite Part Behaviours: Let p:P be an atomic part of type P. Then the basic form
of a cyclic atomic behaviour definition is

value

composite part behaviour(uid P(p))(p) ≡
composite core part behaviour(uid P(p))(p)

‖ { part behaviour(uid P(p′))(p′)|p′:P•p′ ∈ obs (p)}

core part behaviour: PI → P → in ... out ... Unit

core part behaviour(uid P(p))(p) ≡
let p′ = C(uid P(p))(p) in

composite core part behaviour(uid P(p))(p′) end

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 65

post: uid P(p) = uid P(p′)

C: PI → P → in ... out ... P,

260
where C usually is a terminating function which synchronises and communicates with other
part behaviours.

Example: 39 Compositional Behaviours. Example 4, Sect. 2.8.3 on Page 33 illustrated
compositionality, cf. Items 59– 59b on Page 33.

The next section illustrates the basic principles that we recommend when modelling be-
haviours of domains consisting of composite and atomic parts.

5.4.6 A Model of Parts and Behaviours 261

How often have you not “confused”, linguistically, the perdurant notion of a train process:
progressing from railway station to railway station, with the endurant notion of the train, say
as it appears listed in a train time table, or as it is being serviced in workshops, etc. There is
a reason for that — as we shall now see: parts may be considered syntactic quantities denoting
semantic quantities. We therefore describe a general model of parts of domains and we show
that for each instance of such a model we can ‘compile’ that instance into a CSP ‘program’. 262

The example additionally has a more general aim, namely that of showing that to every
mereology (or parts) there is a λ-expression here in the form of basically a CSP [45] program. 263

Example: 40 Syntax and Semantics of Mereology. 264

[1] A Syntactic Model of Parts:

109. The whole contains a set of parts.

110. Parts are either atomic or composite.

111. From composite parts one can observe a set of parts.

112. All parts have unique identifiers
265

type

109. W, P, A, C
110. P = A | C
value

111. obs Ps: (W|C) → P-set

type

112. PI
value

112. uid Π: P → Π

266

113. From a whole and from any part of that whole we can extract all contained parts.

114. Similarly one can extract the unique identifiers of all those contained parts.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

66 Domain Science & Engineering

115. Each part may have a mereology which may be “empty”.

116. A mereology ’s unique part identifiers must refer to some other parts other than the
part itself.

267

value

113. xtr Ps: (W|P) → P-set

113. xtr Ps(w) ≡ {xtr Ps(p)|p:P•p ∈ obs Ps(p)}
113. pre: is W(p)
113. xtr Ps(p) ≡ {xtr Ps(p)|p:C•p∈ obs Ps(p)}∪{p}
113. pre: is P(p)
114. xtr Πs: (W|P) → Π-set

114. xtr Πs(wop) ≡ {uid P(p)|p ∈ xtr Ps(wop)}
115. mereo P: P → Π-set

axiom

116. ∀ w:W
116. let ps = xtr Ps(w) in

116. ∀ p:P • p ∈ ps • ∀ π:Π • π ∈ mereo P(p) ⇒ π ∈ xtr Πs(p) end

268

117. An attribute map of a part associates with attribute names, i.e., type names, their values,
whatever they are.

118. From a part one can extract its attribute map.

119. Two parts share attributes if their respective attribute maps share attribute names.

120. Two parts share properties if the y

a either share attributes

b or the unique identifier of one is in the mereology of the other.

269

type

117. AttrNm, AttrVAL,
117. AttrMap = AttrNm →m AttrVAL
value

118. attr AttrMap: P → AttrMap
119. share Attributes: P×P → Bool

119. share Attributes(p,p′) ≡
119. dom attr AttrMap(p) ∩
119. dom attr AttrMap(p′) 6= {}
120. share Properties: P×P → Bool

120. share Properties(p,p′) ≡
120a. share Attributes(p,p′)
120b. ∨ uid P(p) ∈ mereo P(p′)
120b. ∨ uid P(p′) ∈ mereo P(p)

270

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 67

[2] A Semantics Model of Parts:

121. We can define the set of two element sets of unique identifiers where

• one of these is a unique part identifier and

• the other is in the mereology of some other part.

• We shall call such two element “pairs” of unique identifiers connectors.

• That is, a connector is a two element set, i.e., “pairs”, of unique identifiers for
which the identified parts share properties.

122. Let there be given a ‘whole’, w:W.

123. To every such “pair” of unique identifiers we associate a channel

• or rather a position in a matrix of channels indexed over the “pair sets” of unique
identifiers.

• and communicating messages m:M.
271

type

121. K = Π-set axiom ∀ k:K•card k=2
value

121. xtr Ks: (W|P) → K-set

121. xtr Ks(wop) ≡
121. let ps = xtr Ps(w) in

121. {{uid P(p),π}|p:P,π:Π•p∈ ps ∧ ∃ p′:P•p′6=p∧π=uid P(p′) ∧ uid P(p)∈uid P(p′)} end

122. w:W

123. channel {ch[k]|k:xtr Ks(w)}:M

272

124. Now the ‘whole’ behaviour whole is the parallel composition of part processes, one for
each of the immediate parts of the whole.

125. A part process is

a either an atomic part process, atom, if the part is an atomic part,

b or it is a composite part process, comp, if the part is a composite part.
273

124. whole: W → Unit

124. whole(w) ≡ ‖ {part(uid P(p))(p) | p:P•p ∈ xtr Ps(w)}

125. part: π:Π → P → Unit

125. part(π)(p) ≡
125a. is A(p) → atom(π)(p),
125b. → comp(π)(p)

274

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

68 Domain Science & Engineering

126. A composite process, part, consists of

a a composite core process, comp core, and

b the parallel composition of part processes one for each contained part of part.

.

value

126. comp: π:Π → p:P → in,out {ch[{π,π′}|{π′∈ mereo P(p)}]} Unit

126. comp(π)(p) ≡
126a. comp core(π)(p) ‖
126b. ‖ {part(uid P(p′))(p′) | p′:P•p′ ∈ obs Ps(p)}

275

127. An atomic process consists of just an atomic core process, atom core

127. atom: π:Π → p:P → in,out {ch[{π,π′}|{π′∈ mereo P(p)}]} Unit

127. atom(π)(p) ≡ atom core(π)(p)

276

128. The core behaviours both

a update the part properties and

b recurses with the updated properties,

c without changing the part identification.

We leave the update action undefined.

277

value

128. core: π:Π → p:P → in,out {ch[{π,π′}|{π′∈ mereo P(p)}]} Unit

128. core(π)(p) ≡
128a. let p′ = update(π)(p)
128b. in core(π)(p′) end

128b. assert: uid P(p)=π=uid P(p′)

278
The model of parts can be said to be a syntactic model. No meaning was “attached” to parts.
The conversion of parts into CSP programs can be said to be a semantic model of parts, one
which to every part associates a behaviour which evolves “around” a state which is that of
the properties of the part.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 69

6 Continuous Entities 279

There are two kinds of continuous entities: materials (Sect. 6.1) and continuous behaviours
(Sect. 6.2). By a materialδ we small mean a continuous endurant, a manifest entity which
typically varies in shape and extent. By a continuous behaviourδ we small mean a continuous
perdurant, which we may think of as a function from continuous Time to some structure,
simple or complicated, of parts and materials.

6.1 Materials 280

Let us start with examples of materials.

Example: 41 Materials. Examples of endurant continuous entities are such as coal, air,
natural gas, grain, sand, iron ore33, minerals, crude oil, solid waste, sewage, steam and water.

281

The above materials are either liquid materials (crude oil, sewage, water), gaseous materials
(air, gas, steam), or granular materials (coal, grain, sand, iron ore, mineral, or solid waste). 282

Endurant continuous entities, or materials as we shall call them, are the core endurants of
process domains, that is, domains in which those materials form the basis for their “raison
d’être”.

6.1.1 Materials-based Domains

By a materials based domainδ we shall mean a domain many of whose parts serve to transport
materials, and some of whose actions, events and behaviours serve to monitor and control the
part transport of materials. 283

Example: 42 Material Processing. (i) Oil or gas materials are ubiquitous to pipeline
systems — so pipeline systems are oil or gas-based systems. (ii) Sewage is ubiquitous to
waste management systems — so waste management systems are sewage-based systems. (iii)
Water is ubiquitous to systems composed from reservoirs, tunnels and aqueducts which again
are ubiquitous to hydro-electric power plants, irrigation systems or water supply utilities —
so hydro-electric power plants, irrigation systems and water supply utilities are water-based
systems. 284

Ubiquitous means ‘everywhere’. A continuous entity, that is, a material is a core material, if it
is “somehow related” to one or more parts of a domain.

6.1.2 “Somehow Related” Parts and Materials

We explain our use of the term “somehow related”. 285

Example: 43 Somehow Related Materials and Parts. With teletype font we designate
materials and with slanted font we imply parts or part processes. (i) Oil is pumped from
wells, runs through pipes, is “lifted” by pumps, diverted by forks, “runs together” by means
of joins, and is delivered to sinks. (ii) Grain is delivered to silos by trucks, piped through
a network of pipes, forks and valves to vessels, etc. (iii) Minerals are mined, conveyed by
belts to lorries or trains or cargo vessels and finally deposited. (iv) Iron ore, for example, is
‘conveyed’34 into smelters, ‘roasted’, ‘reduced’ and ‘fluxed’, ‘mixed’ with other mineral ores
to produce a molten, pure metal, which is then ‘collected’ into ingots.

33– whether molten or not
34The single quote terms are verbs to which there corresponds part processes.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

70 Domain Science & Engineering

6.1.3 Material Observers 286

When analysing domains a key question, in view of the above notion of core continuous en-
durants (i.e., materials) is therefore: does the domain embody a notion of core continuous
endurants (i.e., materials); if so, then identify these “early on” in the domain analysis. Identi-
fying materials — their types and attributes — is slightly different from identifying discrete
endurants, i.e., parts.287

Example: 44 Pipelines: Core Continuous Endurant. We continue Examples 30 on Page 53
and 31 on Page 54. The core continuous endurant, i.e., material, of (say oil) pipelines is, yes,
oil:

type

O material

value

obs O: PLN → O

The keyword material is a pragmatic.

Materials are “few and far between” as compared to parts, we choose to mark the type
definitions which designate materials with the keyword material. In contrast, we do not
mark the type definitions which designate parts with the keyword discrete. First we do not288

associate the notion of atomicity or composition with a material. Materials are continuous.
Second, amongst the attributes, none have to do with geographic (or cadestral) matters.
Materials are moved. And materials have no unique identification or mereology. No “part”35

of a material distinguishes it from other “parts”. But they do have other attributes when
occurring in connection with, that is, related to parts, for example, volume or weight.289

Example: 45 Pipelines: Parts and Materials. We continue Examples 30 on Page 53 and 31
on Page 54.

129. From an oil pipeline system one can, amongst others,

a observe the finite set of all its pipeline bodies,

b units are composite and consists of a unit,

c and the oil, even if presently, at time of observation, empty of oil.

130. Whether the pipeline is an oil or a gas pipeline is an attribute of the pipeline system.

a The volume of material that can be contained in a unit is an attribute of that unit.

b There is an auxiliary function which estimates the volume of a given “amount” of
oil.

c The observed oil of a unit must be less than or equal to the volume that can be
contained by the unit.

290

35The term part is not the technical term for discrete endurants, but the more conventional term.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 71

type

129. PLS, B, U, Vol
129. O material

value

129a. obs Bs: PLS → B-set

129b. obs U: B → U
129c. obs O: B → O
130. attr PLS Type: PLS → {”oil”|”gas”}
130a. attr Vol: U → Vol
130b. vol: O → Vol
axiom

130c. ∀ pls:PLS,b:B•b ∈ obs Bs(pls)⇒vol(obs O(b))≤attr Vol(obs U(b))

Notice how bodies are composite and consists of a discrete, atomic part, the unit, and a
material endurant, the oil. We refer to Example 46.

6.1.4 Material Properties 291

These are some of the key concerns in domains focused on materials: transport, flows, leaks
and losses, and input to systems and output from systems, Other concerns are in the direc-
tion of dynamic behaviours of materials focused domains (mining and production), including
stability, periodicity, bifurcation and ergodicity. In this paper we shall, when dealing with sys-
tems focused on materials, concentrate on modelling techniques for transport, flows, leaks
and losses, and input to systems and output from systems. 292

Formal specification languages like Alloy [50], Event B [1] , CASL [29]CafeOBJ [37], RAISE
[40], VDM [18, 19, 35] and Z [105] do not embody the mathematical calculus notions of continu-
ity, hence do not “exhibit” neither differential equations nor integrals. Hence cannot formalise
dynamic systems within these formal specification languages. We refer to Sect. 9.3.1 where we
discuss these issues at some length. 293

Example: 46 Pipelines: Parts and Material Properties. We refer to Examples 30 on
Page 53, 31 on Page 54 and 45 on the preceding page.

131. Properties of pipeline units additionally include such which are concerned with flows
(F) and leaks (L) of materials36:

a current flow of material into a unit input connector,

b maximum flow of material into a unit input connector while maintaining laminar
flow,

c current flow of material out of a unit output connector,

d maximum flow of material out of a unit output connector while maintaining laminar
flow,

e current leak of material at a unit input connector,

f maximum guaranteed leak of material at a unit input connector,

g current leak of material at a unit input connector,

36Here we think of flows and leaks as measured in terms of volume per time unit.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

72 Domain Science & Engineering

h maximum guaranteed leak of material at a unit input connector,

i current leak of material from “within” a unit,

j maximum guaranteed leak of material from “within” a unit.
294

132. There are “the usual” arithmetic and comparison operators of flows and leaks, and there
is a smallest detectable (flow and) leak.

type

132. F, L

value

132. ⊕,⊖: (F|L)×(F|L) → (F|L)
132. <,≤,=: (F|L)×(F|L) → Bool

132. ⊗: (F|L)×Real → (F|L)
132. /: (F|L)×(F|L) → Real

132. ℓ0:L

131a. attr cur iF: U → UI → F
131b. attr max iF: U → UI → F
131c. attr cur oF: U → UI → F
131d. attr max oF: U → UI → F
131e. attr cur iL: U → UI → L
131f. attr max iL: U → UI → L
131g. attr cur oL: U → UI → L
131h. attr max oL: U → UI → L
131i. attr cur L: U → L
131j. attr max L: U → L

295

The maximum flow attributes are static attributes and are typically provided by the manu-
facturer as indicators of flows below which laminar flow can be expected. The current flow
attributes as dynamic attributes.

133. Properties of pipeline materials may additionally include

a kind of material37,

b paraffins,

c naphtenes,

d aromatics,

e asphatics,

f viscosity,

g etcetera.

We leave it to the reader to provide the formalisations.

6.1.5 Material Laws of Flows and Leaks 296

It may be difficult or costly, or both to ascertain flows and leaks in materials-based domains.
But one can certainly speak of these concepts. This casts new light on domain modelling.
That is in contrast to incorporating such notions of flows and leaks in requirements modelling
where one has to show implementability.

Modelling flows and leaks is important to the modelling of materials-based domains.297

Example: 47 Pipelines: Intra Unit Flow and Leak Law. We continue our line of Pipeline
System examples (cf. the opening line of Example 46 on the preceding page).

134. For every unit of a pipeline system, except the well and the sink units, the following
law apply.

135. The flows into a unit equal

37For example Brent Blend Crude Oil

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 73

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.
298

axiom

134. ∀ pls:PLS,b:B\We\Si,u:U •

134. b ∈ obs Bs(pls)∧u=obs U(b)⇒
134. let (iuis,ouis) = mereo U(u) in

135. sum cur iF(iuis)(u) =
135a. sum cur iL(iuis)(u)
135b. ⊕ attr cur L(u)
135c. ⊕ sum cur oF(ouis)(u)
135d. ⊕ sum cur oL(ouis)(u)
134. end

136. The sum cur iF (cf. Item 135) sums current input flows over all input connectors.

137. The sum cur iL (cf. Item 135a) sums current input leaks over all input connectors. 299

138. The sum cur oF (cf. Item 135c) sums current output flows over all output connectors.

139. The sum cur oL (cf. Item 135d) sums current output leaks over all output connectors.

136. sum cur iF: UI-set → U → F
136. sum cur iF(iuis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ iuis〉
137. sum cur iL: UI-set → U → L
137. sum cur iL(iuis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ iuis〉
138. sum cur oF: UI-set → U → F
138. sum cur oF(ouis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ ouis〉
139. sum cur oL: UI-set → U → L
139. sum cur oL(ouis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ ouis〉

⊕: (F×F)|F∗ → F | (L×L)|L∗ → L

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks.
300

Example: 48 Pipelines: Inter Unit Flow and Leak Law.

140. For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output
connector

b equals the flow into that other unit at the connector from the given unit plus the
leak at that connector.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

74 Domain Science & Engineering

140. ∀ pls:PLS,b,b′:B,u,u′:U•

140. {b,b′}⊆obs Bs(pls)∧b 6=b′∧u′=obs U(b′)
140. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
140. ui=uid U(u),ui′=uid U(u′) in

140. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
140a. attr cur oF(us′)(ui′) ⊖ attr leak oF(us′)(ui′)
140b. = attr cur iF(us)(ui) ⊕ attr leak iF(us)(ui)
140. end

140. comment: b′ precedes b

301
From the above two laws one can prove the theorem: what is pumped from the wells equals
what is leaked from the systems plus what is output to the sinks. We need formalising the
flow and leak summation functions.

6.2 Continuous Behaviours 302

This section is still under research and development.
The aim of this section is to relate discrete behaviour domain models of some fragments of

a domain to continuous behaviour domain models of other fragments of that domain.
By a continuous behaviour modelδ we mean a domain description that emphasises the be-

haviour of materials, that is, how they flow through parts, and related matters.

6.2.1 Fluid Dynamics 303

Continuous behaviour domain models classically express the fluid dynamicsδ of flows of fluids,
that is, the natural science of liquids and gasses.304

The natural science of fluids (from Wikipedia:) “are based on foundational axioms of fluid
dynamics which are the conservation laws, specifically, conservation of mass, conservation of
linear momentum (also known as Newton’s Second Law of Motion), and conservation of energy
(also known as First Law of Thermodynamics). These are based on classical mechanics. They
are expressed using the Reynolds Transport Theorem.”305

[1] Descriptions of Continuous Domain Behaviours: We are not going to exemplify such
descriptive natural science models. Their mathematics, besides being elegant and beautiful,
includes familiarity with Bernoulli Equations, Navier Stokes Equations, etc.

For continuous behaviour domain models we shall refer to such mathematical models of the
natural science of fluids.306

[2] Prescriptions of Required Continuous Domain Behaviours: By a prescriptive domain
modelδ we mean a desirable behaviour specification as in, for example, a requirements prescription
of a continuous time dynamic system.

We are also not going to illustrate prescriptive domain models. Their mathematics, besides
also being elegant and beautiful, is based on the descriptive natural science models; but are
now part of the engineering realm of Control Theory. It includes such disciplines as fuzzy
control [69], stochastic control [56] and adaptive control [4], etc.307

Example: 49 Pipelines: Fluid Dynamics and Automatic Control. We refer to Example 50
on the next page. In that example, next, we expect domain models for the fluid dynamics

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 75

of individual pipeline units: wells, pumps, pipes, valves, forks, joins and sinks, as well as
models (one or more) for sequences of such units, extending, preferably to entire nets: from
wells to sinks. And we expect requirements description models again for each of some of the
individual units: pumps and valves in particular: when they need and how they are controlled:
regulating pumps and valves and which unit attributes need be monitored.

6.2.2 A Pipeline System Behaviour 308

We shall model the behaviours of a composite pipeline system. We shall be using basically
the same form of the description as first illustrated in Sects. 2.8.2—2.8.7 (Pages 32–35) of
Example 4. That system, Sects. 2.8.2—2.8.7, can be interpreted as illustrating the central
monitoring of vehicles spread over a wide geographical area. The system to be illustrated in
Example 50 can likewise be interpreted as illustrating the central monitoring of pipeline units
(and their oil) spread over a wide geographical area. 309

Example: 50 A Pipeline System Behaviour. We consider (cf. Examples 30 on Page 53
and 31 on Page 54) the pipeline system units to represent also the following behaviours:
pls:PLS, Item 129a on Page 70, to also represent the system process, pipeline system, and
for each kind of unit, cf. Example 30, there are the unit processes: unit, well (Item 98c on
Page 53), pipe (Item 98a), pump (Item 98a), valve (Item 98a), fork (Item 98b), join (Item 98b)
and sink (Item 98d on Page 53). 310

channel

{ pls u ch[ui]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ui,uj]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
98c. is We(u) → well(uid U(u))(u),
98a. is Pu(u) → pump(uid U(u))(u),
98a. is Pi(u) → pipe(uid U(u))(u),
98a. is Va(u) → valve(uid U(u))(u),
98b. is Fo(u) → fork(uid U(u))(u),
98b. is Jo(u) → join(uid U(u))(u),
98d. is Si(u) → sink(uid U(u))(u)

311
We illustrate essentials of just one of these behaviours.

98b. fork: ui:UI → u:U → out,in pls u ch[ui],
in { u u ch[iui,ui] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ui,oui] | iui:UI • oui ∈ sel UIs out(u) } Unit

98b. fork(ui)(u) ≡
98b. let u′ = core fork behaviour(ui)(u) in

98b. fork(ui)(u′) end

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

76 Domain Science & Engineering

The core fork behaviour(ui)(u) distributes what oil (or gas) in receives, on the one input
sel UIs in(u) = {iui}, along channel u u ch[iui] to its two outlets sel UIs out(u) = {oui1,oui2},
along channels u u ch[oui1], u u ch[oui2].312

The core · · · behaviour[s](ui)(u) also communicate with the pipeline system behaviour. What
we have in mind here is to model a traditional supervisory control and data acquisition, SCADA
system.

Figure 2: A supervisory control and data acquisition system

313

141. SCADA is then part of the scada pipeline system behaviour.

141. scada pipeline system: PLS →
141. in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

141. scada pipeline system(pls) ≡
141. scada(props(pls)) ‖ pipeline system(pls)

props was defined in Sect. 4.2.5 Page 52.

We refer to Example 49 on Page 74: for all the core · · · behaviours we expect the scada
monitor to be expressed in terms of a prescriptive domain model which prescribes some optimal
form of control of the pipeline net.314

142. scada non-deterministically (internal choice, ⌈⌉), alternates between continually

a doing own work,

b acquiring data from pipeline units, and

c controlling selected such units.

type

142. Props
value

142. scada: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis } Unit

142. scada(props) ≡
142a. scada(scada own work(props))
142b. ⌈⌉ scada(scada data acqui work(props))
142c. ⌈⌉ scada(scada control work(props))

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 77

315
We leave it to the readers imagination to describe scada own work.

143. The scada data acqui work

a non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

b and scada input updates the scada state —

c from any of the pipeline units.

value

143. scada data acqui work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis } Props
143. scada data acqui work(props) ≡
143a. ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ui] ? in

143b. scada input update(ui,data)(props) end

143c. | ui:UI • ui ∈ uis }

143b. scada input update: UI × Data → Props → Props
type

143a. Data

316

144. The scada control work

a analyses the scada state (props) thereby selecting a pipeline unit, ui, and the con-
trols, ctrl, that it should be subjected to;

b informs the units of this control, and

c scada output updates the scada state.

144. scada control work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis } Props
144. scada control work(props) ≡
144a. let (ui,ctrl) = analyse scada(ui,props) in

144b. pls ui ch[ui] ! ctrl ;
144c. scada output update(ui,ctrl)(props) end

144c. scada output update UI × Ctrl → Props → Props
type

144a. Ctrl

We leave it to the reader to suggest definitions of the core SCADA functions: scada own work,
analyse scada and scada internal update These functions depend on the system being moni-
tored & controlled. Typically they are formulated in the realm of automatic control theory.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

78 Domain Science & Engineering

7 A Domain Discovery Calculus 317

to be written

7.1 An Overview 318

to be written

7.1.1 Domain Analysers 319

more to come

• IS ENTITY,
IS ENDURANT,
IS PERDURANT,
IS DISCRETE,
IS CONTINUOUS,
IS MATERIALS BASED,
IS ATOMIC,
IS COMPOSITE and
HAS CONCRETE TYPES.

7.1.2 Domain Discoverers 320

more to come

• PART SORTS,
MATERIAL SORTS,
PART TYPES,
UNIQUE ID,
MEREOLOGY,
ATTRIBUTES,
ACTION SIGNATURES,
EVENT SIGNATURES and
BEHAVIOUR SIGNATURES.

7.1.3 Domain Indexes 321

We first made a reference to the concept of a “domain lattice” in Sect. 2.1.3 (Page 18).

In Fig. 3 on the facing page we show a similar “lattice” for the domain of road transport
systems as illustrated in this paper.322

more to come

7.2 Domain Analysers 323

to be written

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 79

∆

N F

VS

Vs

V

HS

Hs

H L

LS

Ls

M

Hubs Links

Hub Link

FleetNet Monitor

Vehicles

Vehicle

Vehicle Monitoring Domain

< >,∆
∆ ∆
∆
∆
∆

< ,N>, < ,F>, < ,M>∆
< ,N,HS>, < ,N,LS>, < ,F,VS>∆ ∆

< ,N,HS,Hs,H>, < ,N,LS,Ls,L>, < ,F,VS,Vs,V>∆∆
< ,N,HS,Hs>, < ,N,LS,Ls>, < ,F,VS,Vs>,∆∆

Figure 3: A domain lattice for the road transport system and the full set of domain indexes

7.2.1 Some Meta-meta Discoverers 324

• IS ENTITY more to come

• IS ENDURANT more to come

• IS PERDURANT more to come

• IS DISCRETE more to come

• IS CONTINUOUS more to come

7.2.2 IS MATERIALS BASED 325

IS MATERIALS BASED
An early decision has to be made as to whether a domain is significantly based on materials
or not:

145. IS MATERIALS BASED(〈∆Name〉).

If Item 145 holds of a domain ∆Name then the domain describer can apply
MATERIAL SORTS (Item 148 on Page 81).

Example: 51 Is Materials-based Domain. Example 45 on Page 70 Item 129 on Page 71.

7.2.3 IS ATOMIC 326

IS ATOMIC

The IS ATOMIC analyser serves that purpose:

value

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

80 Domain Science & Engineering

IS ATOMIC: Index
∼
→ Bool

IS ATOMIC(ℓ̂〈t〉) ≡ true | false | chaos

Example: 52 Is Atomic Type. The IS ATOMIC analyser has been applied in the following
cases in Example 4: Sect. 2.1.1 on Page 17 Item 1c (M) on Page 17, Sect. 2.1.2 on Page 17
Item 4b (V) on Page 18, Sect. 2.1.3 on Page 18 Item 5b (H) on Page 18 and Sect. 2.1.3 on
Page 18 Item 6b (L) on Page 18.

7.2.4 IS COMPOSITE 327

IS COMPOSITE

The IS COMPOSITE analyser is similarly applied by the domain describer to a part type t
to help decide whether t is a composite type.

value

IS COMPOSITE: Index
∼
→ Bool

IS COMPOSITE(ℓ̂〈t〉) ≡ true | false | chaos

328

Example: 53 Is Composite Type. The IS COMPOSITE analyser has been applied in the
following cases in Example 4: N: Sect. 2.1.2 on Page 17 Items 2a and 2b on Page 17, HS:
Sect. 2.1.2 on Page 17 Item 2a on Page 17, Hs: Sect. 2.1.3 on Page 18 Item 5a on Page 18,
LS: Sect. 2.1.2 on Page 17 Item 2b on Page 17, Ls: Sect. 2.1.3 on Page 18 Item 6a on Page 18,
F: Sect. 2.1.2 on Page 17 Item 3 on Page 18, VS: Sect. 2.1.2 on Page 17 Item 4b on Page 18
and Vs: Sect. 2.1.2 on Page 17 Item 4a on Page 18.

7.2.5 HAS A CONCRETE TYPE 329

HAS A CONCRETE TYPE

146. Thus we introduce the analyser:

146 HAS A CONCRETE TYPE: Index
∼
→ Bool

146 HAS A CONCRETE TYPE(ℓ̂〈t〉): true | false | chaos

330

Example: 54 Has Concrete Types. The HAS CONCRETE TYPE analyser has been ap-
plied in the following cases in Example 4: VS, Vs: Sect. 2.1.2 on Page 17 Item 4a on Page 18,
HS, Hs: Sect. 2.1.3 on Page 18 Item 5a on Page 18, LS, Ls: Sect. 2.1.3 on Page 18 Item 6a on
Page 18

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 81

7.3 Domain Discoverers 331

7.3.1 PART SORTS 332

PART SORTS

147. The part type discoverer PART SORTS

a applies to a simply indexed domain, ℓ̂〈t〉,

b where t denotes a composite type, and yields a pair

i. of narrative text38and

ii. formal text which itself consists of a pair:

A. a set of type names

B. each paired with a part (sort) observer.

333
value

147. PART SORTS: Index
∼
→ (Text×RSL)

147a. PART SORTS(ℓ̂〈t〉):
147(b)i. [narrative, possibly enumerated texts ;
147(b)iiA. type t1,t2,...,tm,
147(b)iiB. value obs t1:t→t1,obs t2:t→t2,...,obs tm:t→tm

147b. pre: IS COMPOSITE(ℓ̂〈t〉)]

334

Example: 55 Discover Part Sorts. We refer to Example 4. The PART SORTS discoverer
has been applied in the followig cases: ∆: Sect. 2.1.1 on Page 17 Items 1a–1c on Page 17, N,
HS, LS: Sect. 2.1.2 on Page 17 Items 2a–2b on Page 17, HS: Sect. 2.1.2 on Page 17 Item 5 on
Page 18, LS: Sect. 2.1.2 on Page 17 Item 6 on Page 18, Hs: Sect. 2.1.2 on Page 17 Item 5a on
Page 18, Ls: Sect. 2.1.2 on Page 17 Item 6a on Page 18, F, VS: Sect. 2.1.2 on Page 17 Item 3
on Page 18, and VS, Vs: Sect. 2.1.2 on Page 17 Item 4a on Page 18.

7.3.2 MATERIAL SORTS 335

MATERIAL SORTS

148. The MATERIAL SORTS discovery function applies to a domain, usually designated
by 〈∆Name〉 where Name is a pragmatic hinting at the domain by name.

149. The result of the domain discoverer applying this meta-function is some narrative text

150. and the types of the discovered materials

151. usually affixed a comment

a which lists the “somehow related” part types

38In this paper we omit the narratives.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

82 Domain Science & Engineering

b and their related materials observers.

336
148. MATERIAL SORTS: 〈∆〉 → (Text × RSL)
148. MATERIAL SORTS(〈∆Name〉):
149. [narrative text ;
150. type Ma, Mb, ..., Mc materials

151. comment: related part types: Pi, Pj, ..., Pk

151. obs Mn : Pm → Mn, ...]
145. pre: IS MATERIALS BASED(〈∆Name〉)

Example: 56 Material Sort. The MATERIAL SORTS discoverer has been applied: O:
Example 45 on Page 70, Items 129 and 129c on Page 71.

7.3.3 PART TYPES 337

PART TYPES

152. The PART TYPES discoverer applies to a composite sort, t, and yields a pair

a of narrative, possibly enumerated texts [omitted], and

b some formal text:

i. a type definition, tc = te,

ii. together with the sort definitions of so far undefined type names of te.

iii. An observer function observes tc from t.

iv. The PART TYPES discoverer is not defined if the designated sort is judged
to not warrant a concrete type definition.

338

152. PART TYPES: Index
∼
→ (Text×RSL)

152. PART TYPES(ℓ̂〈t〉):
152a. [narrative, possibly enumerated texts ;
152(b)i. type tc = te,
152(b)ii. tα, tβ , ..., tγ ,
152(b)iii. value obs tc: t → tc

152(b)iv. pre: HAS CONCRETE TYPE(ℓ̂〈t〉)]
152(b)ii. where: type expression te contains
152(b)ii. type names tα, tβ , ..., tγ

339

Example: 57 Part Types. The PART TYPES discoverer has been applied in Example 4:
VS, Vs: Sect. 2.1.2 on Page 17 Item 4a on Page 18, HS, Hs: Sect. 2.1.3 on Page 18 Item 5 on
Page 18, and LS, Ls: Sect. 2.1.3 on Page 18 Item 6 on Page 18.

7.3.4 UNIQUE ID 340

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 83

UNIQUE ID

153. For every part type t we postulate a unique identity analyser function uid t.

value

153. UNIQUE ID: Index → (Text×RSL)
153. UNIQUE ID(ℓ̂〈t〉):
153. [narrative, possibly enumerated text ;
153. type ti
153. value uid t: t → ti]

341

Example: 58 Unique ID. We refer to Example 4, Sect. 2.2.1 Page 19: LI, Item 7a, HI, Item 7b
and VI, Item 7c.

7.3.5 MEREOLOGY 342

MEREOLOGY

154. Let type names t1, t2, . . . , tn denote the types of all parts of a domain.

155. Let type names ti1, ti2, . . . , tin
39, be the corresponding type names of the unique

identifiers of all parts of that domain.

156. The mereology analyser MEREOLOGY is a generic function which applies to a pair
of an index and an index set and yields some structure of unique identifiers. We
suggest two possibilities, but otherwise leave it to the domain analyser to formulate the
mereology function.

157. Together with the “discovery” of the mereology function there usually follows some
axioms.

343
type

154. t1, t2, ..., tn

155. tidx = ti1 | ti2 | ... | tin

156. MEREOLOGY: Index
∼
→ Index-set

∼
→ (Text×RSL)

156. MEREOLOGY(ℓ̂〈t〉)({ℓî〈tj〉,...,ℓk̂〈tl〉}):
156. [narrative, possibly enumerated texts ;
156. either: {}
156. or: value mereo t: t → tix
156. or: value mereo t: t → tix-set × tiy-set × ... × tix-set
157. axiom Predicate over values of t′ and tidx]

where none of the tix, tiy, . . . , tiz are equal to ti.

344

39We here assume that all parts have unique identifications.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

84 Domain Science & Engineering

Example: 59 Mereologies. The MEREOLOGY discoverer was applied in Example 4,
Sect. 2.2.2 on Page 19, Items 8a–9b on Page 20, Example 20 on Page 46, Items 74–77 on
Page 46, Example 22 on Page 46, Items 79–80e on Page 47 and Example 30 on Page 53,
Items 96–98d on Page 54.

7.3.6 ATTRIBUTES 345

ATTRIBUTES

158. Attributes have types. We assume attribute type names to be distict from part type
names.

159. ATTRIBUTES applies to parts of type t and yields a pair of

a narrative text and

b formal text, here in the form of a pair

i. a set of one or more attribute types, and

ii. a set of corresponding attribute observer functions attr at, one for each at-
tribute sort at of t.

346
type

158. at = at1 | at2 | ... | atn

value

159. ATTRIBUTES: Index → (Text×RSL)
159. ATTRIBUTES(ℓ̂〈t〉):
159a. [narrative, possibly enumerated texts ;
159(b)i. type at1, at2, ..., atm

159(b)ii. value attr at1:t→at1,attr at2:t→at2,...,attr atm:t→atm]

where m≤n

347

Example: 60 Attributes. The ATTRIBUTES discoverer was applied in Example 4, Sect. 2.2.3
for attributes of Links, Items 10–10c Pages 20–21, Hubs, Items 11–11c Pages 21–21, and Vehicles,
Items 12–12 Pages 22–22; as well as in many other examples.

7.3.7 ACTION SIGNATURES 348

ACTION SIGNATURES

160. The ACTION SIGNATURES meta-function, besides narrative texts, yields

a a set of auxiliary sort or concrete type definitions and

b a set of action signatures each consisting of an action name and a pair of definition
set and range type expressions where

c the type names that occur in these type expressions are defined by in the domains
indexed by the index set.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 85

349
160 ACTION SIGNATURES: Index → Index-set

∼
→ (Text×RSL)

160 ACTION SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
160 [narrative, possibly enumerated texts ;
160 type ta,tb,... tc,
160b value

160b acti:teid
∼
→teir ,actj :tejd

∼
→tejr ,...,actk:tekd

∼
→tekr

160c where:

160c type names in te(i|j|...|k)d
and in te(i|j|...|k)r

are either

160c type names ta, tb, ... tc or are type names defined by the
160c indices which are prefixes of ℓm̂〈Tm〉 and where Tm is
160c in some signature acti|j|...|k]

350

Example: 61 Action Signatures. The ACTION SIGNATURES discoverer was applied in
Example 4: ins H, Item 37 on Page 29, Sect. 5.2.3 on Page 58, see Example 33 on Page 58,
etcetera.

7.3.8 EVENT SIGNATURES 351

EVENT SIGNATURES

161. The EVENT SIGNATURES meta-function, besides narrative texts, yields

a a set of auxiliary event sorts or concrete type definitions and

b a set of event signatures each consisting of an event name and a pair of definition
set and range type expressions where

c the type names that occur in these type expressions are defined either in the
domains indexed by the indices or by the auxiliary event sorts or types.

352
161 EVENT SIGNATURES: Index → Index-set

∼
→ (Text×RSL)

161 EVENT SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
161a [narrative, possibly enumerated texts omitted ;
161a type ta,tb,... tc,
161b value

161b evt predi: tedi
× teri

→ Bool

161b evt predj: tedj
× terj

→ Bool

161b ...
161b evt predk: tedk

× terk
→ Bool]

161c where: t is any of ta,tb,...,tc or type names listed in in indices; type names of
the ‘d’efinition set and ‘r’ange set type expressions ted and ter are type names
listed in domain indices or are in ta,tb,...,tc, the auxiliary discovered event types.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

86 Domain Science & Engineering

353

Example: 62 Event Signatures. Example 4, Sect. 2.7 on Page 29 Item 38 on Page 30.

7.3.9 DISCRETE BEHAVIOUR SIGNATURES 354

BEHAVIOUR SIGNATURES

162. The BEHAVIOUR SIGNATURES meta-function, besides narrative texts, yields

163. It applies to a set of indices and results in a pair,

a a narrative text and

b a formal text:

i. a set of one or more message types,

ii. a set of zero, one or more channel index types,

iii. a set of one or more channel declarations,

iv. a set of one or more process signatures with each signature containing a be-
haviour name, an argument type expression, a result type expression, usually
just Unit, and

v. an input/output clause which refers to channels over which the signatured
behaviour may interact with its environment.

355
162. BEHAVIOUR SIGNATURES: Index→ Index-set

∼
→ (Text×RSL)

162. BEHAVIOUR SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
163a. [narrative, possibly enumerated texts ;
163(b)i. type m = m1 | m 2 | ... | mµ, µ≥1
163(b)ii. i = i1 | i2 | ... | in, n≥0
163(b)iii. channel c:m, {vc[x]|x:ia}:m, {mc[x,y]|x:ib,y:ic}:m,...
163(b)iv. value

163(b)iv. bhv1: ate1 → inout1 rte1,
163(b)iv. ... ,
163(b)iv. bhvm: atem → inoutm rtem.]
163(b)iv. where type expressions ateii and rtei for all i involve at least
163(b)iv. two types t′i, t′′j of respective indexes ℓî〈ti〉, ℓĵ〈tj〉,

163(b)v. where Unit may appear in either atei or rtej or both.
163(b)v. where inouti: in k | out k | in,out k
163(b)v. where k: c or vc[x] or {vc[x]|x:ia•x ∈ xs} or

163(b)v. {mc[x,y]|x:ib,y:ic • x ∈ xs ∧ y ∈ ys} or ...

356

Example: 63 Behaviour Signatures. The BEHAVIOUR SIGNATURES discoverer was
applied in several examples: Example 4, Sect. 2.8.5 on Page 33 Items 61–63 on Page 34;
Sects. 5.4.3 on Page 63 to 5.4.4 on Page 63 inclusive, ; Example 50 on Page 75; etcetera.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 87

7.4 Some Technicalities 357

7.4.1 Order of Analysis and “Discovery”

Analysis and “discovery”, that is, the “application” of the analysis meta-functions of Sect. 7.2
and the “discovery” meta-functions of Sect. 7.3 has to follow some order: starts at the “root”,
that is with index 〈∆〉, and proceeds with indices appending part domain type names already
discovered.

7.4.2 Analysis and “Discovery” of “Leftovers” 358

The analysis and discovery meta-functions focus on types, that is, the types of abstract parts,
i.e., sorts, of concrete parts, i.e., concrete types, of unique identifiers, of mereologies, and of
attributes – where the latter has been largely left as sorts. In this paper we do not suggest 359

any meta-functions for such analyses that may lead to concrete types from non-part sorts, or
to action, event and behaviour definitions say in terms of pre/post-conditions, etcetera. So,
for the time, we suggest, as a remedy for the absence of such “helpers”, good “old-fashioned”
domain engineer ingenuity.

7.5 Laws of Domain Descriptions 360

By a domain description law we shall understand some desirable property that we expect (the
‘human’) results of the (the ‘human’) use of the domain description calculus to satisfy. We
may think of these laws as axioms which an ideal domain description ought satisfy, something
that domain describers should strive for. 361

Notational Shorthands:

• (f ; g; h)(ℜ) = h(g(f(ℜ)))

• (f1; f2; . . . ; fm)(ℜ) ≃ (g1; g2; . . . ; gn)(ℜ)
means that the two “end” states are equivalent modulo appropriate renamings of types,
functions, predicates, channels and behaviours.

• [f ; g; . . . ; h; α]
stands for the Boolean value yielded by α (in state ℜ).

7.5.1 1st Law of Commutativity 362

We make a number of assumptions: the following two are well-formed indices of a domain:
ι′: 〈∆〉̂ℓ′̂〈A〉, ι′′: 〈∆〉̂ℓ′′̂〈B〉, where ℓ′ and ℓ′′ may be different or empty (〈〉) and A and B
are distinct; that F and G are two, not necessarily distinct discovery functions; and that the
domain at ι′ and at ι′′ have not yet been explored. 363

We wish to express, as a desirable property of domain description development that explor-
ing domain ∆ at either ι′ first and then ι′′ or at ι′′ first and then ι′, the one right after the
other (hence the “;”), ought yield the same partial description fragment:

164. (G(ι′′) ; (F(ι′)))(ℜ) ≃ (F(ι′) ; (G(ι′′)))(ℜ)

When a domain description development satisfies Law 164., under the above assumptions, then
we say that the development — modulo type, action, event and behaviour name “assignments”
— satisfies a mild form of commutativity.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

88 Domain Science & Engineering

7.5.2 2nd Law of Commutativity 364

Let us assume that we are exploring the sub-domain at index ι: 〈∆〉̂ℓ̂〈A〉. Whether we first
“discover” Attributes and then Mereology (including Unique identifiers) or first “discover”
Mereology (including Unique identifiers) and then Attributes should not matter. We make365

some abbreviations: A stand for the ATTRIBUTES, U stand for the UNIQUE IDENTIFIER,
M stand for the MEREOLOGY, ι for index 〈∆〉̂ℓ̂〈A〉, and ιs for a suitable set of indices.
Thus we wish the following law to hold:

165. (A(ι);U(ι);M(ι)(ιs))(ℜ) ≃
(U(ι);M(ι)(ιs);A(ι))(ℜ) ≃
(U(ι);A(ι);M(ι)(ιs))(ℜ).

here modulo attribute and unique identifier type name renaming.

7.5.3 3rd Law of Commutativity 366

Let us again assume that we are exploring the sub-domain at index ι: 〈∆〉̂ℓ̂〈A〉 where ιs is a
suitable set of indices. Whether we are exploring actions, events or behaviours at that domain
index in that order, or some other order ought be immaterial. Hence with A now standing367

for the ACTION SIGNATURES, E standing for the EVENT SIGNATURES, B standing for
the BEHAVIOUR SIGNATURES, discoverers, we wish the following law to hold:

166. (A(ι)(ιs); E(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(A(ι)(ιs);B(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);A(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);B(ι)(ιs);A(ι)(ιs))(ℜ) ≃
(B(ι)(ιs);A(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(B(ι)(ιs); E(ι)(ιs);A(ι)(ιs))(ℜ).

here modulo action function, event predicate, channel, message type and behaviour (and all
associated, auxiliary type) renamings.

7.5.4 1st Law of Stability 368

Re-performing the same discovery function over the same sub-domain, that is with identical
indices, one or more times, ought not produce any new description texts. That is:

167. (D(ι)(ιs);A and D seq)(ℜ) ≃ (D(ι)(ιs);A and D seq;D(ι)(ιs))(ℜ)

where D is any discovery function, A and D seq is any specific sequence of intermediate
analyses and discoveries, and where ι and ιs are suitable indices, respectively sets of indices.

7.5.5 2nd Law of Stability 369

Re-performing the same analysis functions over the same sub-domain, that is with identical
indices, one or more times, ought not produce any new analysis results. That is:

168. [A(ι)] = [A(ι); . . . ;A(ι)]

where A is any analysis function, “. . . ” is any sequence of intermediate analyses and discov-
eries, and where ι is any suitable index.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 89

7.5.6 Law of Non-interference 370

When performing a discovery meta-operation, D on any index, ι, and possibly index set, ιs,
and on a repository state, ℜ, then using the [D(ι)(ιs)] notation expresses a pair of a narrative
text and some formulas, [txt,rsl], whereas using the (D(ι)(ιs))(ℜ) notation expresses a next
repository state, ℜ′. What is the “difference” ? Informally and simplifying we can say that
the relation between the two expressions is:

169. [D(ι)(ιs)]: [txt,rsl]
(D(ι)(ιs))(ℜ) = ℜ′

where ℜ′ = ℜ ∪ {[txt,rsl]}
371

We say that when 169. is satisfied for any discovery meta-function D, for any indices ι and
ιs and for any repository state ℜ, then the repository is not interfered with, that is, “what
you see is what you get:” and therefore that the discovery process satisfies the law on non-
interference.

7.6 Discussion 372

The above is just a hint at domain development laws that we might wish orderly developments
to satisfy. We invite the reader to suggest other laws.

The laws of the analysis and discovery calculus forms an ideal set of expectations that we
have of not only one domain describer but from a domain describer team of two or more domain
describers whom we expect to work, i.e., loosely collaborate, based on “near”-identical domain
development principles. 373

These are quite some expectations. But the whole point of a highest-level academic scien-
tific education and engineering training is that one should expect commensurate development
results. 374

Now, since the ingenuity and creativity in the analysis and discovery process does differ
between domain developers we expect that a daily process of “buddy checking”, where indi-
vidual team members present their findings and where these are discussed by the team will
result in adherence to the laws of the calculus.

The laws of the analysis and discovery calculus expressed some properties that we wish the
repository to exhibit. We have deliberately abstained from “over-defining” the structure of 375

repositories and the “hidden” operations (i.e., ‘update’, etc.) repositories. We expect further
research into, development of, possible changes to and use of the calculus to yield such insight
as to lead to a firmer understanding of the nature of repositories. 376

In the analysis and discovery calculus such as we have presented it we have emphasised the
types of parts, sorts and immediate part concrete types, and the signatures of actions, events
and behaviours — as these predominantly featured type expressions. We have therefore, in 377

this paper, not investigated, for example, pre/post conditions of action function, form of event
predicates, or behaviour process expressions. We leave that, substantially more demanding
issue, for future explorative and experimental research.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

90 Domain Science & Engineering

8 Requirements Engineering 378

We shall give a terse overview of some facets of requirements engineering. Namely those which
“relate” domain engineering to requirements engineering. The relation is the following: one can
“derive”, not automatically, but systematically, domain requirements and significant aspects
of interface requirements from domain descriptions.

8.1 A Requirements “Derivation” 379

8.1.1 Definition of Requirements

IEEE Definition of ‘Requirements’

By a requirements we understand (cf. IEEE Standard 610.12 [48]): “A condition or capability
needed by a user to solve a problem or achieve an objective”.

8.1.2 The Machine = Hardware + Software 380

By ‘the machine’ we shall understand the software to be developed and hardware (equipment
+ base software) to be configured for the domain application.

8.1.3 Requirements Prescription 381

The core part of the requirements engineering of a computing application is the requirements
prescription. A requirements prescription tells us which parts of the domain are to be sup-
ported by ‘the machine’. A requirements is to satisfy some goals. Usually the goals cannot
be prescribed in such a manner that they can serve directly as a basis for software design.
Instead we derive the requirements from the domain descriptions and then argue (incl. prove)
that the goals satisfy the requirements. In this paper we shall not show the latter but shall
show the former.

8.1.4 Some Requirements Principles 382

The “Golden Rule” of Requirements Engineering

Prescribe only such requirements that can be objectively shown to hold for the designed
software.

An “Ideal Rule” of Requirements Engineering

When prescribing (including formalising) requirements, formulate tests (theorems, proper-
ties for model checking) whose actualisation show adherence to the requirements.

We shall not show adherence to the above rules.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 91

8.1.5 A Decomposition of Requirements Prescription 383

We consider three forms of requirements prescription: the domain requirements, the interface
requirements and the machine requirements. Recall that the machine is the hardware and
software (to be required). Domain requirements are those whose technical terms are from the
domain only. Machine requirements are those whose technical terms are from the machine
only. Interface requirements are those whose technical terms are from both.

8.1.6 An Aside on Our Example 384

We shall continue our “ongoing” example. Our requirements is for a tollway system. By a
requirements goal we mean “an objective the system under consideration should achieve” [99].
The goals of having a tollway system are: to decrease transport times between selected hubs of
a general net; and to decrease traffic accidents and fatalities while moving on the tollway net
as compared to comparable movements on the general net. The tollway net, however, must 385

be paid for by its users. Therefore tollway net entries and exits occur at tollway plazas with
these plazas containing entry and exit toll collectors where tickets can be issued, respectively
collected and travel paid for. We shall very briefly touch upon these toll collectors, in the
Extension part (as from Page 95) of the next section, Sect. 8.2. So all the other parts of the
next section serve to build up to the Extension section, Sect. 8.2.4 on Page 95.

8.2 Domain Requirements 386

Domain requirements cover all those aspects of the domain — parts and materials, actions,
events and behaviours — which are to be supported by ‘the machine’. Thus domain re- 387

quirements are developed by systematically “revising” cum “editing” the domain description:
which parts are to be projected: left in or out; which general descriptions are to be in-
stantiated into more specific ones; which non-deterministic properties are to be made more
determinate; and which parts are to be extended with such computable domain description
parts which are not feasible without IT. 388

Thus projection, instantiation, determination and extension are the basic engineering tasks
of domain requirements engineering. An example may best illustrate what is at stake. The 389

example is that of a tollway system — in contrast to the general nets. See Fig. 4 on the
following page.

The links of the general net of Fig. 4 on the next page are all two-way links, so are the
plaza-to-tollway links of the tollway net of Fig. 4. The tollway links are all one-way links. The
hubs of the general net of Fig. 4 are assumed to all allow traffic to move in from any link and
onto any link. The plaza hubs do not show links to “an outside” — but they are assumed.
Vehicles enter the tollway system from the outside and leave to the outside. The tollway hubs
allow traffic to move in from the plaza-to-tollway link and back onto that or onto the one or
two tollway links emanating from that hub, as well as from tollway links incident upon that
hub onto tollway links emanating from that hub or onto the tollway-to-plaza link. 390

8.2.1 Projection 391

By domain projectionδ we mean that a subset of the domain description is kept. In the tollway
example we actually keep all the parts, their properties and therefore the types and functions

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

92 Domain Science & Engineering

.....

.....
hubs

links

h1 h2 h7 h8

p1 p3p2 p7 p8

hub
plaza

to
plaza

h4

General Net

links

"twinned"

Tollway Net

tollway

tollway links
tollway hub

Figure 4: General and Tollway Nets

derived from these, Thus we keep: 1a–1c (N, F, M) 2–2b (HS, LS), 5a–6b (Hs, Ls, H, L),
7a–7b (HI, LI), 10a–10c (LΣ, LΩ, LEN, LOC) and 11a–11c (HΣ, HΩ, LOC) , 3–4b, 7c (VS, Vs,
V), 8a–9b (mereo L), 12a–12(a)iii, 13 (VP, atH, onL, FRAC, attr VP), We do not keep any
actions or events (!), But we keep the behaviours: 59–59b (trs), 61–63 (trs, veh, mon), 65–65d,
64–68 (veh), 69–71d (mon).

8.2.2 Instantiation 392
393

From the general net model of earlier formalisations we instantiate, that is, make more con-
crete, the tollway net model now described.

170. The net is now concretely modelled as a pair of sequences.

171. One sequence models the plaza hubs, their plaza-to-tollway link and the connected tollway hub.

172. The other sequence models the pairs of “twinned” tollway links.

173. From plaza hubs one can observe their hubs and the identifiers of these hubs.

174. The former sequence is of m such plaza “complexes” where m ≥ 2; the latter sequence is of m−1 “twinned”
links.

175. From a tollway net one can abstract a proper net.
394

type

170. TWN = PC∗ × TL∗

171. PC = PH × L × H
172. TL = L × L
value

171. obs H: PH → H, obs HI: PH → HI
axiom

174. ∀ (pcl,tll):TWN •

174. 2≤len pcl∧len pcl=len tll+1

value

175. abs HsLs: TWN → (Hs×Ls)
175. abs HsLs(pcl,tll) as (hs,ls)
175. pre: wf TWN(pcl,tll)
175. post:
175. hs = {h,h′|(h, ,h′):PC • (h, ,h′)∈ elems pcl}
175. ∧ ls = {l|(,l,):PC • (,l,)∈ elems pcl} ∪
175. {l,l′|(l,l′):TL•(l,l′)∈ elems tll}

395

[1] Model Well-formedness wrt. Instantiation:: Instantiation restricts general nets to toll-
way nets. Well-formedness deals with proper mereology: that observed identifier references
are proper. The well-formedness of instantiation of the tollway system model can be defined
as follows:

176. The i’plaza complex, (pi, li, hi), is instantiation-well-formed if

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 93

a link li identifies hubs pi and hi, and

b hub pi and hub hi both identifies link li; and if

177. the i’th pair of twinned links, tli, tl
′
i,

a has these links identify the tollway hubs of the i’th and i+1’st plaza complexes
((pi, li, hi) respectively (pi+1, li+1, hi1)).

396

value

Instantiation wf TWN: TWN → Bool

Instantiation wf TWN(pcl,tll) ≡
176. ∀ i:Nat • i ∈ inds pcl⇒
176. let (pi,li,hi)=pcl(i) in

176a. obs LIs(li)={obs HI(pi),obs HI(hi)}
176b. ∧ obs LI(li)∈ obs LIs(pi)∩ obs LIs(hi)
177. ∧ let (li′,li′′) = tll(i) in

177. i < len pcl ⇒
177. let (pi′,li′′′,hi′) = pcl(i+1) in

177a. obs HIs(li) = obs HIs(li′)
177a. = {obs HI(hi),obs HI(hi′)}

end end end

8.2.3 Determination 397

By domain determinationδ we mean, as illustrated in this example, making part property values
less in-determinate, i.e., more determinate.

The state sets contain only one set. Twinned tollway links allow traffic only in opposite
directions. Plaza to tollway hubs allow traffic in both directions. tollway hubs allow traffic
to flow freely from plaza to tollway links and from incoming tollway links to outgoing tollway
links and tollway to plaza links. The determination-well-formedness of the tollway system
model can be defined as follows40: 398

[1] Model Well-formedness wrt. Determination:: We need define well-formedness wrt. de-
termination. Please study Fig. 5 on the following page. 399

178. All hub and link state spaces contain just one hub, respectively link state.

179. The i’th plaza complex, pcl(i):(pi, li, hi) is determination-well-formed if

a li is open for traffic in both directions and

b pi allows traffic from hi to “revert”; and if

180. the i’th pair of twinned links (li′, li′′) (in the context of the i+1st plaza complex, pcl(i+1):(pi+1, li+1, hi+1))
are determination-well-formed if

a link l′i is open only from hi to hi+1 and

b link l′′i is open only from hi+1 to hi; and if

40i ranges over the length of the sequences of twinned tollway links, that is, one less than the length of the
sequences of plaza complexes. This “discrepancy” is reflected in out having to basically repeat formalisation
of both Items 179a and 179b.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

94 Domain Science & Engineering

l1 li ln

lm’li’lj’

lj’’ li’’ lm’’l1’’

l1’

j=i−1 m = n−1 = len tll = len pcl − 1

... ...

Figure 5: Hubs and Links

181. the jth tollway hub, hj (for 1 ≤ j ≤ lenpcl) is determination-well-formed if, depending on whether j is the
first, or the last, or any “in-between” plaza complex positions,

a [the first:] hub i = 1 allows traffic in from l1 and l′′1 , and onto l1 and l′1.

b [the last:] hub j = i + 1 = len pcl allows traffic in from llen tll and l′′len tll−1
, and onto llen tll and

l′len tll−1
.

c [in-between:] hub j = i allows traffic in from li, l′′i and l′i and onto li, l′i−1 and l′′i .
400

value

179. Determination wf TWN: TWN → Bool

179. Determination wf TWN(pcl,tll) ≡
179. ∀ i:Nat• i ∈ inds tll ⇒
179. let (pi,li,hi) = pcl(i),
179. (npi,nli,nhi) = pcl(i+1), in

179. (li′,li′′) = tll(i) in

178. obs HΩ(pi)={obs HΣ(pi)}∧obs HΩ(hi)={obs HΣ(hi)}
178. ∧ obs LΩ(li)={obs LΣ(li)}∧obs LΩ(li′)={obs LΣ(li′)}
178. ∧ obs LΩ(li′′)={obs LΣ(li′′)}
179a. ∧ obs LΣ(li)
179a. = {(obs HI(pi),obs HI(hi)),(obs HI(hi),obs HI(pi))}
179a. ∧ obs LΣ(nli)
179a. = {(obs HI(npi),obs HI(nhi)),(obs HI(nhi),obs HI(npi))}
179b. ∧ {(obs LI(li),obs LI(li))}⊆obs HΣ(pi)
179b. ∧ {(obs LI(nli),obs LI(nli))}⊆obs HΣ(npi)
180a. ∧ obs LΣ(li′)={(obs HI(hi),obs HI(nhi))}
180b. ∧ obs LΣ(li′′)={(obs HI(nhi),obs HI(hi))}
181. ∧ case i+1 of

181a. 2 → obs HΣ(h 1)=
181a. {(obs LΣ(l 1),obs LΣ(l 1)), (obs LΣ(l 1),obs LΣ(l 1′′)),
181a. (obs LΣ(l′′ 1),obs LΣ(l 1)), (obs LΣ(l′′ 1),obs LΣ(l′ 1))},
181b. len pcl → obs HΣ(h i+1)=
181b. {(obs LΣ(l len pcl),obs LΣ(l len pcl)),
181b. (obs LΣ(l len pcl),obs LΣ(l′ len tll)),
181b. (obs LΣ(l′′ len tll),obs LΣ(l len pcl)),
181b. (obs LΣ(l′′ len tll),obs LΣ(l′ len tll))},

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 95

181c. → obs HΣ(h i)=
181c. {(obs LΣ(l i),obs LΣ(l i)), (obs LΣ(l i),obs LΣ(l′ i)),
181c. (obs LΣ(l i),obs LΣ(l′′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i)),
181c. (obs LΣ(l′′ i),obs LΣ(l′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i))}
179. end end

8.2.4 Extension 401

By domain extensionδ we understand the introduction of domain entities, actions, events and
behaviours that were not feasible in the original domain, but for which, with computing and
communication, there is the possibility of feasible implementations, and such that what is
introduced become part of the emerging domain requirements prescription. 402

Backgorund: The road traffic monitoring domain of Example 4, notably Sects. 2.8.6–2.8.7,
(Items 65–71d Pages 34–35), illustrated the intangible abstraction of road traffic in the form of
the recording of a discrete version of that traffic:41

46. dT

45. dRTF = dT →m (VI →m VP)

by the road traffic system:

value

59. trs() =
59a. ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59b. ‖ mon(mi)(m)([t0 7→ vpm])

403
We say that the road traffic, dRTF is intangible since the dRTF function, being a function, is an
intangible. The domain extension is now making that “function” a tangible notion. There is no
presumption, in defining the monitor behaviour, that there is indeed a mechanised behaviour,
i.e., a computerised process that “implements” that monitor. Since one can speak of the
monitor behaviour, one can, as well define it. 404

The Extension: We now “implement” a version of the above monitor behaviour. The pro-
posed domain extension builds upon the monitor and the ability of vehicles to communicate
their vehicle positions to the monitor, cf. Items 65a and 65a Page 34, Items 66a, 66(c)i and
66(c)iiA Page 34 and Item 71a Page 35. Instead of this “directness” we interpret links and 405

hubs of the tollway system as behaviours endowed with sensors. Vehicle behaviours now in-
teract with link and hub behaviours communicating their positions which the link and hub
behaviours communicate to a tollway system monitor. The domain extension then consists of
the extension of links and hubs with sensors and the modelling of their vehicle interactions
and their interaction with the tollway system monitor. 406

The Formalisation: We introduce

182. rather simple link and hub behaviours, and

41In dRTF we change V into a reference to vehicles VI.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

96 Domain Science & Engineering

183. an array of channels for the interaction of vehicle behaviours with link and hub be-
haviours.

And we modify

184. the vehicle and monitor behaviours and

185. the vehicle/monitor channel

the latter to now serve at the channel for link and hub interactions with the refined monitor
behaviour.407

value

175. (hs,ls):(Hs,Ls) = abs HsLs(twn)
22. his:HI-set = {uid H(h)|h:H•h ∈ hs}
21. lis:LI-set = {uid L(l)|l:L•l ∈ ls}
channel

183. {vlh ch[vi,si]|vi:VI,si:(LI|HI)•vi ∈ vis∧si ∈ lis ∪ his}:VP
185. {lhm ch[si,mi]|si:(LI|HI)•si ∈ lis ∪ his}:(VI×VP)
value

183. link: li:LI → L → in { vlh ch[vi,si]|si:LI•si ∈ lis } Unit

183. hub: hi:HI → H → in { vlh ch[vi,si]|si:HI•si ∈ his } Unit

182. link(li)(l) ≡
182. (...⌈⌉ ⌈⌉⌊⌋ {let (vi,vp) = vlh ch[vi,li]? in lhm ch[li,mi]!(vi,vp)|vi:VI•vi ∈ vis end});link(li)(l)
182. hub(hi)(h) ≡
182. (...⌈⌉ ⌈⌉⌊⌋ {let (vi,vp) = vlh ch[vi,hi]? in lhm ch[hi,mi]!(vi,vp)|vi:VI•vi ∈ vis end});hub(hi)(h)
59. trs() =
59a. ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59b. ‖ mon(mi)(m)([t0 7→ vpm])
182. ‖ {link(uid L(l))(l)|l:L•l ∈ ls}
182. ‖ {hub(uid H(h))(h)|h:H•h ∈ hs}

408
The modifications to the vehicle behaviour is shown in Items 65a′, 65(b)ii′, 66a′, 66(c)i′,
66(c)iiA′ and 71a′ (Pages 96–97).

65. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
65a′. vlh ch[vi,hi]!(vi,vp) ; veh(vi)(v)(vp)
65b. ⌈⌉
65(b)i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
65(b)ii′. vlh ch[vi,tli]!(vi,onL(hi,tli,0,thi)) ;
65(b)iii. veh(vi)(v)(onL(hi,tli,0,thi)) end

65c. ⌈⌉
65d. stop

409

64. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
66a′. vlh ch[vi,li]!(vi,vp) ; veh(vi)(v)(vp)
66b. ⌈⌉
66c. if f + δ<1

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 97

66(c)i′. then vlh ch[vi,li]!(vi,onL(fhi,li,f+δ,thi)) ;
66(c)i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
66(c)ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

66(c)iiA′. vlh ch[vi,thi]!(vi,atH(li,thi,li′)) ;
66(c)iiB. veh(vi)(v)(atH(li,thi,li′)) end end

67. ⌈⌉
68. stop

69. mon(mi)(m)(rtf) ≡
70. mon(mi)(own mon work(m))(rtf)
71. ⌈⌉
71a′. ⌈⌉⌊⌋ { let ((vi,vp),t) = (lhm ch[si,mi]?,clk ch?) in

71b. let rtf′ = rtf † [t 7→ rtf(max dom rtf) † [vi 7→ vp]] in

71c. mon(mi)(m)(rtf′) end

71d. end | si:(LI|HI) • si ∈ lis ∪ his}

410
The extension, in this example, does not really amount to much. We say that we have
extended links and hubs with sensors. But we have not really modelled these sensors. We
have modelled their intent, but not their extent. A more complete extension, which has to
be done, but which is not shown in this paper, would now model these sensors as they rely
on the unique vehicle identifier to be sensed. We shall, regrettably, omit this aspect of our 411

presentation of the extension. There are so very many ways in which sensors and their object:
the vehicles, can interact. Vehicles can be equipped with radio frequency identification tags,
etcetera. Whichever sensor technology is chosen, it must be described. A description includes
both it proper and its erroneous functioning. Such (IT equipment &c.) descriptions may be
expressed in a number of steps: First, as here, a RSL/CSP [47, 8]. model. Then a “derived”
description models temporal properties — using Duration Calculus, DC [106], or Temporal
Logic of Actions, TLA+ [59]. Finally a timed-automata [2, 73] model which “implements”
the DC model.

8.3 Interface Requirements Prescription 412

A systematic reading of the domain requirements shall result in an identification of all shared
parts and materials, actions, events and behaviours. An entity is said to be a shared entityδ

if it is present in some related forms, in both the domain and the machine. 413

Each such shared phenomenon shall then be individually dealt with: part and materials
sharing shall lead to interface requirements for data initialisation and refreshment; action
sharing shall lead to interface requirements for interactive dialogues between the machine
and its environment; event sharing shall lead to interface requirements for how events are
communicated between the environment of the machine and the machine. behaviour
sharing shall lead to interface requirements for action and event dialogues between the
machine and its environment.

• • •

We shall now illustrate these domain interface requirements development steps with respect
to our ongoing example.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

98 Domain Science & Engineering

8.3.1 Shared Parts 414

The main shared parts of the main example of this section are the net, hence the hubs and
the links. As domain parts they repeatedly undergo changes with respect to the values of
a great number of attributes and otherwise possess attributes — most of which have not
been mentioned so far: length, cadestral information, namings, wear and tear (where-ever
applicable), last/next scheduled maintenance (where-ever applicable), state and state space,
and many others.415

We “split” our interface requirements development into two separate steps: the develop-
ment of dr.net (the common domain requirements for the shared hubs and links), and the
co-development of dr.db:i/f (the common domain requirements for the interface between dr.net

and DBrel — under the assumption of an available relational database system DBrel When416

planning the common domain requirements for the net, i.e., the hubs and links, we enlarge
our scope of requirements concerns beyond the two so far treated (dr.toll, dr.maint.) in order
to make sure that the shared relational database of nets, their hubs and links, may be useful
beyond those requirements. We then come up with something like hubs and links are to be417

represented as tuples of relations; each net will be represented by a pair of relations a hubs
relation and a links relation; each hub and each link may or will be represented by several
tuples; etcetera. In this database modelling effort it must be secured that “standard” actions
on nets, hubs and links can be supported by the chosen relational database system DBrel.418

[1] Data Initialisation:: As part of dr.net one must prescribe data initialisation, that is pro-
vision for an interactive user interface dialogue with a set of proper display screens, one for
establishing net, hub or link attributes (names) and their types and, for example, two for the
input of hub and link attribute values. Interaction prompts may be prescribed: next input,
on-line vetting and display of evolving net, etc. These and many other aspects may therefore
need prescriptions.

Essentially these prescriptions concretise the insert link action.419

[2] Data Refreshment:: As part of dr.net one must also prescribe data refreshment: an
interactive user interface dialogue with a set of proper display screens one for updating net,
hub or link attributes (names) and their types and, for example, two for the update of hub
and link attribute values. Interaction prompts may be prescribed: next update, on-line
vetting and display of revised net, etc. These and many other aspects may therefore need
prescriptions.

These prescriptions concretise remove and insert link actions.

8.3.2 Shared Actions 420

The main shared actions are related to the entry of a vehicle into the tollway system and the
exit of a vehicle from the tollway system.

[1] Interactive Action Execution:: As part of dr.toll we must therefore prescribe the varieties
of successful and less successful sequences of interactions between vehicles (or their drivers)
and the toll gate machines.

The prescription of the above necessitates determination of a number of external events,
see below.

(Again, this is an area of embedded, real-time safety-critical system prescription.)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 99

8.3.3 Shared Events 421

The main shared external events are related to the entry of a vehicle into the tollway system,
the crossing of a vehicle through a tollway hub and the exit of a vehicle from the tollway
system.

As part of dr.toll we must therefore prescribe the varieties of these events, the failure of
all appropriate sensors and the failure of related controllers: gate opener and closer (with
sensors and actuators), ticket “emitter” and “reader” (with sensors and actuators), etcetera.

The prescription of the above necessitates extensive fault analysis.

8.3.4 Shared Behaviours 422

The main shared behaviours are therefore related to the journey of a vehicle through the
tollway system and the functioning of a toll gate machine during “its lifetime”. Others can
be thought of, but are omitted here.

In consequence of considering, for example, the journey of a vehicle behaviour, we may
“add” some further, extended requirements: (a) requirements for a vehicle statistics “pack-
age”; (b) requirements for tracing supposedly “lost” vehicles; (c) requirements limiting tollway
system access in case of traffic congestion; etcetera.

8.4 Machine Requirements 423

The machine requirements make hardly any concrete reference to the domain description; so
we omit its treatment altogether.

8.5 Discussion of Requirements “Derivation” 424

We have indicated how the domain engineer and the requirements engineer can work together to
“derive” significant fragments of a requirements prescription. This puts requirements engineering 425

in a new light. Without a previously existing domain descriptions the requirements engineer
has to do double work: both domain engineering and requirements engineering but without
the principles of domain description, as laid down in this paper that job would not be so
straightforward as we now suggest.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

100 Domain Science & Engineering

9 Conclusion 426

This paper, meant as the basis for my tutorial at FM 2012 (CNAM, Paris, August 28), “grew”
from a paper being written for possible journal publication. Sections 4–7 possibly represent
two publishable journal papers. Section 8 has been “added” to the ‘tutorial’ notes. The style427

of the two tutorial “parts”, Sects. 4–7 and Sect. 8 are, necessarily, different: Sects. 4–7 are in
the form of research notes, whereas Sect. 8 is in the form of “lecture notes” on methodology.
Be that as it may. Just so that you are properly notified !

9.1 Comparison to Other Work 428

In this section we shall only compare our contribution to domain science & engineering as
presented above to that found in the broader literature with respect to the computer science
and software engineering term ‘domain’. Finally we shall also not compare our work on a
description calculus as we find no comparable literature ! Our comparison hinges on basically429

the following two facets: domain analysis and domain description. We shall see that the former
term, seen across the surveyed literature, covers techniques that are claimed used in many
steps of software engineering, but that they seldom, if ever, involve formal concept analysis as
we understand it (cf. Sects. ?? on Page ??, 4.1.4 on Page 40 and 5.1 on Page 57).

9.1.1 Ontological Engineering: 430

Ontological engineering is described mostly on the Internet, see however [7]. Ontology engi-
neers build ontologies. And ontologies are, in the tradition of ontological engineering, “formal
representations of a set of concepts within a domain and the relationships between those con-
cepts” — expressed usually in some logic. Published ontologies usually consists of thousands
of logical expressions. These are represented in some, for example, low-level mechanisable
form so that they can be interchanged between ontology groups building upon one-anothers
work and processed by various tools. There does not seem to be a concern for “deriving”431

such ontologies into requirements for software. Usually ontology presentations either start
with the presentation or makes reference to its reliance of an upper ontology. Instead the
ontology databases appear to be used for the computerised discovery and analysis of relations
between ontologies.432

The TripTych form of domain science & engineering differs from conventional ontological
engineering in the following, essential ways: The TripTych domain descriptions rely essentially
on a “built-in” upper ontology: types, abstract as well as model-oriented (i.e., concrete)
and actions, events and behaviours. Domain science & engineering is not, to a first degree,
concerned with modalities, and hence do not focus on the modelling of knowledge and belief,
necessity and possibility, i.e., alethic modalities, epistemic modality (certainty), promise and
obligation (deontic modalities), etcetera.

9.1.2 Knowledge and Knowledge Engineering: 433

The concept of knowledge has occupied philosophers since Plato. No common agreement on
what ‘knowledge’ is has been reached. From Wikipedia we may learn that knowledge is a
familiarity with someone or something; it can include facts, information, descriptions, or skills
acquired through experience or education; it can refer to the theoretical or practical understand-

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 101

ing of a subject; knowledge is produced by socio-cognitive aggregates (mainly humans) and is
structured according to our understanding of how human reasoning and logic works. 434

The aim of knowledge engineering was formulated, in 1983, by an originator of the concept,
Edward A. Feigenbaum [34]: knowledge engineering is an engineering discipline that involves
integrating knowledge into computer systems in order to solve complex problems normally
requiring a high level of human expertise. Knowledge engineering focuses on continually build- 435

ing up (acquire) large, shared data bases (i.e., knowledge bases), their continued maintenance,
testing the validity of the stored ‘knowledge’, continued experiments with respect to knowledge
representation, etcetera. 436

Knowledge engineering can, perhaps, best be understood in contrast to algorithmic engineer-
ing: In the latter we seek more-or-less conventional, usually imperative programming language
expressions of algorithmswhose algorithmic structure embodies the knowledge required to solve
the problem being solved by the algorithm. The former seeks to solve problems based on an
interpreter inferring possible solutions from logical data. This logical data has three parts:a
collection that “mimics” the semantics of, say, the imperative programming language, a collection
that formulates the problem, and a collection that constitutes the knowledge particular to the
problem. We refer to [20]. 437

The concerns of TripTych domain science & engineering is based on that of algorithmic
engineering. Domain science & engineering is not aimed at letting the computer solve prob-
lems based on the knowledge it may have stored. Instead it builds models based on knowledge
of the domain.

Further references to seminal exposés of knowledge engineering are [93, 57].

9.1.3 Prieto-D̃ıaz: Domain Analysis: 438

There are different “schools of domain analysis”. Domain analysis, or product line analysis (see
below), as it was first conceived in the early 1980s by James Neighbors is the analysis of related
software systems in a domain to find their common and variable parts. It is a model of wider
business context for the system. This form of domain analysis turns matters “upside-down”:
it is the set of software “systems” (or packages) that is subject to some form of inquiry, albeit
having some domain in mind, in order to find common features of the software that can be
said to represent a named domain. 439

In this section we shall mainly be comparing the TripTych approach to domain analysis
to that of Reubén Prieto-D̃ıaz’s approach [78, 79, 80]. Firstly, the two meanings of domain
analysis basically coincide. Secondly, in, for example, [78], Prieto-D̃ıaz’s domain analysis is
focused on the very important stages that precede the kind of domain modelling that we
have described. Major concerns of Prieto-D̃ıaz’s approach are selection of what appears to 440

be similar, but specific entities, identification of common features, abstraction of entities and
classification. In comparison selection and identification is assumed in our approach, but
using Ganter & Wille’s Formal Concept Analysis [38] where Prieto-D̃ıaz really does not report
on a systematic, let alone formal approach to identification. Abstraction (from values to
types and signatures) and classification into parts, materials, actions, events and behaviours
is what we have focused on; as we have also focused on their formalisation. All-in-all we 441

find Prieto-D̃ıaz’s work relevant to our work: relating to it by providing guidance to pre-
modelling steps, thereby emphasising issues that are necessarily informal, yet difficult to get
started on by most software engineers. Where we might differ is on the following: although
Prieto-D̃ıaz does mention a need for domain specific languages, he does not show examples

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

102 Domain Science & Engineering

of domain descriptions in such DSLs. We, of course, basically use mathematics as the DSL. In
the TripTych approach to domain analysis we provide a full ontology and suggest a domain
description calculus. In our approach we do not consider requirements, let alone software
components, as does Prieto-D̃ıaz, but we find that that is not an important issue.

9.1.4 Software Product Line Engineering: 442

Software product line engineering, earlier known as domain engineering, is the entire pro-
cess of reusing domain knowledge in the production of new software systems. Key concerns
of software product line engineering are reuse, the building of repositories of reusable soft-
ware components, and domain specific languages with which to, more-or-less automatically
build software based on reusable software components. These are not the primary concerns of443

TripTych domain science & engineering. But they do become concerns as we move from do-
main descriptions to requirements prescriptions. But it strongly seems that software product line
engineering is not really focused on the concerns of domain description — such as is TripTych
domain engineering. It seems that software product line engineering is primarily based, as is,
for example, FODA: Feature-oriented Domain Analysis, on analysing features of software
systems. Our [15] puts the ideas of software product lines and model-oriented software devel-
opment in the context of the TripTych approach. Notable sources on software product line
engineering are [6, 103, 3, 94, 43, 87, 23, 28, 32, 75].

9.1.5 M.A. Jackson: Problem Frames: 444

The concept of problem frames is covered in [53]. Jackson’s prescription for software develop-
ment focuses on the “triple development” of descriptions of the problem world, the requirements
and the machine (i.e., the hardware and software) to be built. Here domain analysis means,
the same as for us, the problem world analysis. In the problem frame approach the software445

developer plays three, that is, all the TripTych rôles: domain engineer, requirements engineer
and software engineer “all at the same time”, well, iterating between these rôles repeatedly.
So, perhaps belabouring the point, domain engineering is done only to the extent needed by
the prescription of requirements and the design of software. These, really are minor points.
But in “restricting” oneself to consider only those aspects of the domain which are mandated446

by the requirements prescription and software design one is considering a potentially smaller
fragment [51] of the domain than is suggested by the TripTych approach. At the same time
one is, however, sure to consider aspects of the domain that might have been overlooked when
pursuing domain description development the TripTych, “more general”, approach. There
are a number of aspects of software development that we have not treated in this paper. They
have to do with software verification and validation. These aspects are covered in [41, 51]. .

9.1.6 Domain Specific Software Architectures (DSSA): 447

It seems that the concept of DSSA was formulated by a group of ARPA42 project “seekers”
who also performed a year long study (from around early-mid 1990s); key members of the
DSSA project were Will Tracz, Bob Balzer, Rick Hayes-Roth and Richard Platek [95]. The
[95] definition of domain engineering is “the process of creating a DSSA: domain analysis and
domain modelling followed by creating a software architecture and populating it with software

42ARPA: The US DoD Advanced Research Projects Agency

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 103

components.” This definition is basically followed also by [68, 88, 66]. Defined and pursued 448

this way, DSSA appears, notably in these latter references, to start with the with the analysis
of software components, “per domain”, to identify commonalities within application software,
and to then base the idea of software architecture on these findings. Thus DSSA turns matter 449

“upside-down” with respect to TripTych requirements development by starting with software
components, assuming that these satisfy some requirements, and then suggesting domain spe-
cific software built using these components. This is not what we are doing: We suggest that
requirements can be “derived” systematically from, and related back, formally to domain de-
scriptionss without, in principle, considering software components, whether already existing,
or being subsequently developed. Of course, given a domain descriptions it is obvious that one 450

can develop, from it, any number of requirements prescriptions and that these may strongly
hint at shared, (to be) implemented software components; but it may also, as well, be the
case two or more requirements prescriptions “derived” from the same domain description may
share no software components whatsoever ! So that puts a “damper” of my “enthusiasm” for
DSSA. It seems to this author that had the DSSA promoters based their studies and practice 451

on also using formal specifications, at all levels of their study and practice, then some very
interesting insights might have arisen.

9.1.7 Domain Driven Design (DDD) 452

Domain-driven design (DDD)43“is an approach to developing software for complex needs by
deeply connecting the implementation to an evolving model of the core business concepts;
the premise of domain-driven design is the following: placing the project’s primary focus on
the core domain and domain logic; basing complex designs on a model; initiating a creative
collaboration between technical and domain experts to iteratively cut ever closer to the con-
ceptual heart of the problem.”44 We have studied some of the DDD literature, mostly only 453

accessible on The Internet, but see also [44], and find that it really does not contribute to
new insight into domains such as wee see them: it is just “plain, good old software engineering
cooked up with a new jargon.

9.1.8 Feature-oriented Domain Analysis (FODA): 454

Feature oriented domain analysis (FODA) is a domain analysis method which introduced fea-
ture modelling to domain engineering FODA was developed in 1990 following several U.S.
Government research projects. Its concepts have been regarded as critically advancing soft-
ware engineering and software reuse. The US Government supported report [55] states: “FODA
is a necessary first step” for software reuse. To the extent that TripTych domain engineering 455

with its subsequent requirements engineering indeed encourages reuse at all levels: domain
descriptions and requirements prescription, we can only agree. Another source on FODA is [30].
Since FODA “leans” quite heavily on ‘Software Product Line Engineering’ our remarks in that
section, above, apply equally well here.

9.1.9 Unified Modelling Language (UML) 456

Three books representative of UML are [22, 83, 54]. The term domain analysis appears nu-
merous times in these books, yet there is no clear, definitive understanding of whether it, the

43Eric Evans: http://www.domaindrivendesign.org/
44http://en.wikipedia.org/wiki/Domain-driven design

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

104 Domain Science & Engineering

domain, stands for entities in the domain such as we understand it, or whether it is wrought
up, as in several of the ‘approaches’ treated in this section, to wit, Items [3,4,6,7,8], with
either software design (as it most often is), or requirements prescription. Certainly, in UML,457

in [22, 83, 54] as well as in most published papers claiming “adherence” to UML, that do-
main analysis usuallyis manifested in some UML text which “models” some requirements facet.
Nothing is necessarily wrong with that; but it is therefore not really the TripTych form of
domain analysis with its concepts of abstract representations of endurant and perdurants, and
with its distinctions between domain and requirements, and with its possibility of “deriving”
requirements prescriptions from domain descriptions.458

There is, however, some important notions of UML and that is the notions of class diagrams,
objects, etc. How these notions relate to the discovery of part types, unique part identifiers,
mereology and attributes, as well as action, event and behaviour signatures and channels, as
discovered at a particular domain index, is not yet clear to me. That there must be some
relation seems obvious. We leave that as an interesting, but not too difficult, research topic.

9.1.10 Requirements Engineering: 459

There are in-numerous books and published papers on requirements engineering. A seminal
one is [100]. I, myself, find [60] full of very useful, non-trivial insight. [33] is seminal in that it
brings a number or early contributions and views on requirements engineering. Conventional460

text books, notably [74, 77, 91] all have their “mandatory”, yet conventional coverage of
requirements engineering. None of them “derive” requirements from domain descriptions, yes,
OK, from domains, but since their description is not mandated it is unclear what “the domain”
is. Most of them repeatedly refer to domain analysis but since a written record of that domain
analysis is not mandated it is unclear what “domain analysis” really amounts to. Axel van461

Laamsweerde’s book [100] is remarkable. Although also it does not mandate descriptions
of domains it is quite precise as to the relationships between domains and requirements.
Besides, it has a fine treatment of the distinction between goals and requirements, also formally.
Most of the advices given in [60] can beneficially be followed also in TripTych requirements
development. Neither [100] nor [60] preempts TripTych requirements development.

9.1.11 Summary of Comparisons 462

It should now be clear from the above that there are basically two notions from above that
relate to our notion of domain analysis. (i) Prieto-D̃ıaz’s notion of ‘Domain Analysis’, and (ii)
Jackson’s notion of Problem Frames. But it should also be clear that none of the surveyed
literature, except, of course, Ganter & Wille’s [38] Formal Concept Analysis, Mathematical
Foundations, covers our notion of domain analysis as it hinges crucially on Ganter & Wille’s
formal concept analysis.

9.2 What Have We Omitted: Domain Facets 463

One can further structure domain descriptions along the lines of the following domain facets:

• intrinsics,

• support technologies,

• rules & regulations,

• incl. scripts,

• organisation & management and

• human behaviour

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 105

of domains. We refer to [13] for an early treatment of domain facets.

9.2.1 Intrinsics 464

By intrinsicsδ we shall mean the entities in terms of which all other domain facets are expressed.

Example: 64 Road Transport System Intrinsics. We refer to Example 4. The following
parts are typical of intrinsic parts: N, HS, Hs, LS, Ls, H, L; F, VS, Vs, V.

9.2.2 Support Technologies 465

By a support technologyδ we shall mean a human (soft technological) or a hard technolog-
ical means of supporting, that is, presenting entities and carrying out functions: actions and
behaviours.

Example: 65 Tollroad System Support Technologies. We refer to Example 8.2.4 (Pages 95–
97). The link sensors, the hub sensors, and the monitor are examples of support technologies.

9.2.3 Rules & Regulations 466

[1] Rules: By a ruleδ we shall mean some, usually syntactically expressed predicate which
expresses whether an action (say of a behaviour) violates some state property.

Example: 66 Road Transport System Rules. We refer to Sect. 8.2.4 (Pages 95–97). If a
vehicle somehow disables its ability to be sensed then a rule has been violated.

467

[2] Regulation: By a regulationδ we shall mean some, usually syntactically expressed state-to-
state transformer which expresses how an erroneous state resulting from a rule violation can be
restored to a state in which rule adherence is “restored”.

Example: 67 Road Transport System Regulations. We refer to Sect. 8.2.4 (Pages 95–97).
A pseudo vehicle identification and position replaces a failed sensing of a vehicle at a hub or
link. Additional precautionary measures may be taken.

9.2.4 Scripts 468

By a scriptδ we shall mean a usually syntactic text which describes as set of actions expected to
be taken by human actors of a system, including the assumptions under which these actions, or
alternatives are to be taken. 469

Example: 68 Pipeline System Scripts. We refer to Example 50. When closing a valve
somewhere along a route all pumps upstream from the valve must first be shut down. Similarly
when starting a pump somewhere along a route all valves downstream from the pump must
first be opened. For a specific pipeline net this gives rise to a number of scripts, basically one
for each pump and valve action.

9.2.5 Organisation & Management 470

[1] Organisation: By organisationδ we shall mean a partitioning of parts, actions and be-
haviours.

Example: 69 Tollroad System Organisation. We refer to Sect. 8.2.4 (Pages 95–97). A
simplest reasonable organisation is the set of links and hubs, including their sensors, and the
monitor. 471

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

106 Domain Science & Engineering

[2] Management: By managementδ we shall mean a partitioning of human staff into possibly
a hierarchy strategy, tactics and operational managers, each taking care of the monitoring and
control of the rules & regulations for decreasing size sets of organisation partitions.472

Example: 70 Tollroad System Management. We refer to Sect. 8.2.4 (Pages 95–97). There
is one strategic management structure for up to several tollroad systems. It is to be commonly
described wrt., for example, policies of fixed or varying fee structures; etcetera. In the case of
tollroad systems it seems reasonable to also have just one tactical management structure. It is
to be commonly described wrt., for example, when to invoke one from a set of fee structures;
etcetera. Etcetera.

9.2.6 Human Behaviour 473

By human behaviourδ we shall mean the sometimes diligent, sometimes sloppy, sometimes
delinquent, or sometimes outright criminal carrying out of actions and behaviours of the domain.

We omit giving examples.

9.3 What Needs More Research 474

more to come

9.3.1 Modelling Discrete & Continuous Domains

more to come

9.3.2 Domain Types and Signatures Form Galois Connections

We plan, in the Fall of 2012, to study whether an altogether different treatment of endurant
domain entity types and perdurant domain entity signatures can illuminate the veracity of the
title of this section.

9.3.3 A Theory of Domain Facets ?

We refer to Sect. 9.2. more to come

9.3.4 Other Issues

more to come

9.4 What Have We Achieved 475

We claim that there are four major contributions being reported upon: (i) strongly hint-
ing that domain types and signatures form Galois connections, (ii) the separation of domain
engineering from requirements engineering, (iii) the separate treatment of domain science &
engineering: as “free-standing” with respect, ultimately, to computer science, and endowed
with quite a number of domain analysis principles and domain description principles; and (iv)476

the identification of a number of techniques for “deriving” significant fragments of require-
ments prescriptions from domain descriptions — where we consider this whole relation between
domain engineering and requirements engineering to be novel. Yes, we really do consider the

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 107

possibility of a systematic ‘derivation’ of significant fragments of requirements prescriptions
from domain descriptions to cast a different light on requirements engineering.477

What we have not shown in this paper is the concept of domain facets; this concept is
dealt with in [13] — but more work has to be done to give a firm theoretical understanding
of domain facets of domain intrinsics, domain support technology, domain scripts, domain rules
and regulations, domain management and organisation, and human domainbehaviour.

9.5 General Remarks 478

Perhaps belaboring the point: one can pursue creating and studying domain descriptions
without subsequently aiming at requirements development, let alone software design. That is,
domain descriptions can be seen as “free-standing”, of their “own right”, useful in simply just
understanding domains in which humans act. Just like it is deemed useful that we study 479

“Mother Nature”, the physical world around us, given before humans “arrived”; so we think
that there should be concerted efforts to study and create domain models, for use in studying
“our man-made domains of discourses”; possibly proving laws about these domains; teaching,
from early on, in middle-school, the domains in which the middle-school students are to be
surrounded by; etcetera 480

How far must one formalise such domain descriptions ? Well, enough, so that possible
laws can be mathematically proved. Recall that domain descriptions usually will or must be
developed by domain researchers — not necessarily domain engineers — in research centres, say
universities, where one also studies physics. And, when we base requirements development on 481

domain descriptions, as we indeed advocate, then the requirements engineers must understand
the formal domain descriptions, that is, be able to perform formal domain projection, domain
instantiation, domain determination, domain extension, etcetera. This is similar to the situa- 482

tion in classical engineering which rely on the sciences of physics, and where, for example,
Bernoulli’s equations, Navier-Stokes equations, Maxwell’s equations, etcetera were developed
by physicists and mathematicians, but are used, daily, by engineers: read and understood,
massaged into further differential equations, etcetera, in order to calculate (predict, deter-
mine values), etc. Nobody would hire non-skilled labour for the engineering development 483

of airplane designs unless that “labourer” was skilled in Navier-Stokes equations, or for the
design of mobile telephony transmission towers unless that person was skilled in Maxwell’s
equations. 484

So we must expect a future, we predict, where a subset of the software engineering can-
didates from universities are highly skilled in the development of formal domain descriptions
formal requirements prescriptions in at least one domain, such as transportation, for example,
air traffic, railway systems, road traffic and shipping; or manufacturing, services (health care,
public administration, etc.), financial industries, or the like.

9.6 Acknowledgements 485

I thank the tutorial organisers of the FM 2012 event for accepting my Dec. 31. 2011 tutorial
proposal. I thank that part of participants who first met up for this tutorial this morning
(Tuesday 28 August, 2012) to have remained in this room for most, if not all of the time. I
thank colleagues and PhD students around Europe for having listened to previous, somewhat
less polished versions of this paper. I in particular thank Dr. Magne Haveraaen of the Uni-
versity of Bergen for providing an important step in the development of the present material.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

108 Domain Science & Engineering

And I thank my wife for her patience during the spring and summer of 2012 where I ought
to have been tending to the garden, etc. !

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 109

10 Bibliographical Notes 486

10.1 References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England, 1996
and 2009.

[2] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994. (Preliminary versions appeared in Proc. 17th ICALP, LNCS 443,
1990, and Real Time: Theory in Practice, LNCS 600, 1991).

[3] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss. Software product lines: a case study.
Software: Practice and Experience, 2000.

[4] K. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley Publishing Company,
1989.

[5] A. Badiou. Being and Event. Continuum, 2005. (Lêtre et l’événements, Edition du Seuil,
1988).

[6] J. Bayer, J.-M. DeBaud, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, and
T. Widen. PuLSE: A Methodology to Develop Software Product Lines. In Symposium on
Software Reusability, volume SSR’99, pages 122–131, May 1999.

[7] V. Benjamins and D. Fensel. The Ontological Engineering Initiative (KA)2. In-
ternet publication + Formal Ontology in Information Systems, University of Ams-
terdam, SWI, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands and Uni-
versity of Karlsruhe, AIFB, 76128 Karlsruhe, Germany, 1998. http://www.aifb.uni-
karlsruhe.de/WBS/broker/KA2.htm.

[8] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. .

[9] D. Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are
primarily authored by Christian Krog Madsen.

[10] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

110 Domain Science & Engineering

.

[11] D. Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of
Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José
Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[12] D. Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work
of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R.
Wood), pages 47–70, London, UK, 2009. Springer.

[13] D. Bjørner. Domain Engineering. In P. Boca and J. Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London,
UK, 2010. Springer.

[14] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics, Part I of II: The Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May
2010.

[15] D. Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of
Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer
on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and
A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011.

[16] D. Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds.
Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, September
2012.

[17] D. Bjørner. The Role of Domain Engineering in Software Development. Why Current Re-
quirements Engineering Seems Flawed! In Perspectives of Systems Informatics, volume
5947 of Lecture Notes in Computer Science, pages 2–34, Heidelberg, Wednesday, January
27, 2010. Springer.

[18] D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer, 1978.

[19] D. Bjørner and C. B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 111

[20] D. Bjørner and J. F. Nilsson. Algorithmic & Knowledge Based Methods — Do they “Unify” ?
In International Conference on Fifth Generation Computer Systems: FGCS’92, pages 191–
198. ICOT, June 1–5 1992.

[21] W. D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic
Logic, 55(1):74–89, March 1990.

[22] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

[23] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. ACM Press/Addison-Wesley, New York, NY, 2000.

[24] R. Carnap. Der Logische Aufbau der Welt. Weltkreis, Berlin, 1928.

[25] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT
Press, 1999.

[26] R. Casati and A. Varzi. Events. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Spring 2010 edition, 2010.

[27] B. L. Clarke. A Calculus of Individuals Based on ‘Connection’. Notre Dame J. Formal Logic,
22(3):204–218, 1981.

[28] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

[29] CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2960 of Lecture
Notes in Computer Science (IFIP Series). Springer–Verlag, 2004.

[30] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Appli-
cations. Addison Wesley, 2000.

[31] D. Davidson. Essays on Actions and Events. Oxford University Press, 1980.

[32] R. de Almeida Falbo, G. Guizzardi, and K. C. Duarte. An Ontological Approach to Domain
Engineering. International Conference on Software Engineering and Knowledge Engineering,
SEKE’02, Ischia, Italy, 2002.

[33] M. Dorfman and R. H. Thayer, editors. Software Requirements Engineering. IEEE Computer
Society Press, 1997.

[34] E. A. Feigenbaum and P. McCorduck. The fifth generation. Addison-Wesley, Reading, MA,
USA, 1st ed. edition, 1983.

[35] J. Fitzgerald and P. G. Larsen. Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building, Cambridge
CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[36] C. Fox. The Ontology of Language: Properties, Individuals and Discourse. CSLI Publica-
tions, Center for the Study of Language and Information, Stanford University, California,
ISA, 2000.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

112 Domain Science & Engineering

[37] K. Futatsugi, A. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic
Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The
Netherlands, 2000. Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[38] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations. Springer-
Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $ 44.95.

[39] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn,
and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1992.

[40] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The
RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hamp-
stead, England, 1995.

[41] C. A. Gunter, E. L. Gunter, M. A. Jackson, and P. Zave. A Reference Model for Requirements
and Specifications. IEEE Software, 17(3):37–43, May–June 2000.

[42] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[43] M. Harsu. A Survey on Domain Engineering. Technical Report, Institute of Software
Systems, Tampere University of Technology, Finland, 2002. P.O. Box 553, 33101 Tampere.

[44] D. Haywood. Domain-Driven Design Using Naked Objects. The Pragmatic Bookshelf (an
imprint of ‘The Pragmatic Programmers, LLC.’), http://pragprog.com/, 2009.

[45] C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/csp-
book.pdf (2004).

[46] T. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985.

[47] T. Hoare. Communicating Sequential Processes. Published electronically: http://www.-

usingcsp.com/cspbook.pdf, 2004. Second edition of [46]. See also http://www.-

usingcsp.com/.

[48] IEEE Computer Society. IEEE–STD 610.12-1990: Standard Glossary of Software Engineer-
ing Terminology. Technical report, IEEE, IEEE Headquarters Office, 1730 Massachusetts
Avenue, N.W., Washington, DC 20036-1992, USA. Phone: +1-202-371-0101, FAX: +1-
202-728-9614, 1990.

[49] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996,
1999.

[50] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[51] M. Jackson. Program Verification and System Dependability. In P. Boca and J. Bowen,
editors, Formal Methods: State of the Art and New Directions, pages 43–78, London, UK,
2010. Springer.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 113

[52] M. A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[53] M. A. Jackson. Problem Frames — Analyzing and Structuring Software Development
Problems. ACM Press, Pearson Education. Addison-Wesley, England, 2001.

[54] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1999.

[55] K. C. Kang, S. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA). Feasibility Study CMU/SEI-90-TR-021, note =, Software Engi-
neering Institute, Carnegie Mellon University.

[56] S. Karlin and H. M. Taylor. An Introduction to Stochastic Modeling. Academic Press, 1998.
ISBN 0-12-684887-4.

[57] S. Kendal and M. Green. An introduction to knowledge engineering. Springer, London,
2007.

[58] S. Kripke. Naming and Necessity. Harvard University Press, Cambridge, MA, USA, 1980.
(See also: http://plato.stanford.edu/entries/rigid-designators).

[59] L. Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.

[60] S. Lauesen. Software Requirements - Styles and Techniques. Addison-Wesley, UK, 2002.

[61] H. Laycock. Object. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Winter 2011 edition, 2011.

[62] H. S. Leonard and N. Goodman. The Calculus of Individuals and its Uses. Journal of
Symbolic Logic, 5:45–44, 1940.

[63] S. Leśniewksi. 0 Podstawack Matematyki (Foundations of Mathematics). Prezeglad
Filosoficzny, 30-34, 1927-1931.

[64] E. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam, The Nether-
lands, 1962.

[65] J. M. E. McTaggart. The Unreality of Time. Mind, 18(68):457–84, October 1908. New
Series. See also: [76].

[66] N. Medvidovic and E. Colbert. Domain-Specific Software Architectures (DSSA). Power
Point Presentation, found on The Internet, Absolute Software Corp., Inc.: Abs[S/W], 5
March 2004.

[67] D. H. Mellor and A. Oliver, editors. Properties. Oxford Readings in Philosophy. Oxford
Univ Press, May 1997. ISBN: 0198751761, 320 pages.

[68] E. Mettala and M. H. Graham. The Domain Specific Software Architecture Program. Project
Report CMU/SEI-92-SR-009, Software Engineering Institute Carnegie Mellon University
Pittsburgh, Pennsylvania 15213, June 1992.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

114 Domain Science & Engineering

[69] K. Michels, F. Klawonn, R. Kruse, and A. Nürnberger. Fuzzy Control: Fundamentals,
Stability and Design of Fuzzy Controllers. Springer, 19 October 2010.

[70] D. Miéville and D. Vernant. Stanis law Leśniewksi aujourd’hui. Grenoble, October 8-10,
1992.

[71] R. Milne. RSL Proof Rules. Research Report RAISE/CRI/DOC/5/V1, CRI A/S, 30 March
1990.

[72] R. Milnes. Semantic Foundations for RSL. Research Report RAISE/CRI/DOC/4/V1, CRI
A/S, 30 March 1990.

[73] E.-R. Olderog and H. Dierks. Real-Time Systems: Formal Specification and Automatic
Verification. Cambridge University Press, UK, 2008.

[74] S. L. Pfleeger. Software Engineering, Theory and Practice. Prentice–Hall, 2nd edition,
2001.

[75] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering. Springer,
Berlin, Heidelberg, New York, 2005.

[76] R. L. Poidevin and M. MacBeath, editors. The Philosophy of Time. Oxford University
Press, 1993.

[77] R. S. Pressman. Software Engineering, A Practitioner’s Approach. International Edition,
Computer Science Series. McGraw–Hill, 5th edition, 1981–2001.

[78] R. Prieto-D́ıaz. Domain Analysis for Reusability. In COMPSAC 87. ACM Press, 1987.

[79] R. Prieto-D́ıaz. Domain analysis: an introduction. Software Engineering Notes, 15(2):47–54,
1990.

[80] R. Prieto-D́ıaz and G. Arrango. Domain Analysis and Software Systems Modelling. IEEE
Computer Society Press, 1991.

[81] A. N. Prior. Papers on Time and Tense. Clarendon Press, Oxford, UK, 1968.

[82] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der
Informatik. Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-
2.

[83] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

[84] B. Russel. “Preface,” Our Knowledge of the External World. G. Allen & Unwin, Ltd.,
London, 1952.

[85] B. Russell. On Denoting. Mind, 14:479–493, 1905.

[86] B. Russell. The Philosophy of Logical Atomism. The Monist: An International Quarterly
Journal of General Philosophical Inquiry,, xxxviii–xxix:495–527, 32–63, 190–222, 345–380,
1918–1919.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 115

[87] K. Schmid. Scoping Software Product Lines. In Software Product Lines: Experience and
Research Directions. Kluwer Academic Press, 2000.

[88] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[89] P. M. Simons. Parts: A Study in Ontology. Clarendon Press, 1987.

[90] B. Smith. Ontology and the Logistic Analysis of Reality. In G. Haefliger and P. M. Simons,
editors, Analytic Phenomenology. Dordrecht/Boston/London: Kluwer, Padua, Italy, 1993.

[91] I. Sommerville. Software Engineering. Pearson, 8th edition, 2006.

[92] J. Srzednicki and Z. Stachniak, editors. Leśniewksi’s Lecture Notes in Logic. Dordrecht,
1988.

[93] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge Engineering: Principles and Methods.
Data & Knowledge Engineering, 25:161–197, 1998.

[94] S. Thiel and F. Peruzzi. Starting a product line approach for an envisioned market. In
Software Product Lines, Experience and Research Directions. Kluwer Academic Press, 2000.

[95] W. Tracz. Domain-specific software architecture (DSSA) frequently asked questions (FAQ).
Software Engineering Notes, 1994.

[96] R. Turner. Truth and Modality for Knowledge Representation. Pitman, 1990.

[97] R. Turner. Computational Linguistics and Formal Semantics, chapter Properties, Proposi-
tions and Semantic Theory, pages 159–180. Studies in Natural Langhuage Processing, eds.
M. Rosner and R. Johnson. Cambridge University Press, 1992.

[98] J. van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Episte-
mology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer
Academic Publishers, P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edition,
1983, 1991.

[99] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In 5th
IEEE International Symposium of Requirements Engineering, volume RE’01, pages 249–
263, Toronto, Canada, August 2001. IEEE CS Press.

[100] A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, 2009.

[101] A. C. Varzi. On the Boundary between Mereology and Topology, pages 419–438. Hölder-
Pichler-Tempsky, Vienna, 1994.

[102] A. C. Varzi. Spatial Reasoning in a Holey45 World, volume 728 of Lecture Notes in Artificial
Intelligence, pages 326–336. Springer, 1994.

[103] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-Based Soft-
wareDevelopment Process. Addison–Wesley, 1999.

45holey: something full of holes

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

116 Domain Science & Engineering

[104] G. Wilson and S. Shpall. Action. In E. N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Summer 2012 edition, 2012.

[105] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

[106] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real–time Systems.
Monographs in Theoretical Computer Science. An EATCS Series. Springer–Verlag, 2004.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 117

Appendices

• A TripTych Ontology 118–118

• On A Theory of Container Stowage 119–128

• Indexes 129–156

⋄⋄ RSL Index 129

⋄⋄ Formalisation Index 130

⋄⋄ Definition Index 132

⋄⋄ Example Index 133

⋄⋄ Concept Index 135

⋄⋄ Language, Method and Technology Index 154

⋄⋄ Selected Author Index 154

• An RSL Primer 157–175

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

118 Domain Science & Engineering

A A TripTych Ontology

186. domains Sect. 3 pg 36

a domain Sect. 3.1.1 pg 36

b domain phenomenon Sect. 3.1.2 pg 36

c domain entity Sect. 3.1.3 pg 36

d domain analysis Sect. 3.1.4 pg 36

e domain description Sect. 3.1.5 pg 37

f domain engineering Sect. 3.1.6 pg 37

g domain science Sect. 3.1.7 pg 37

h domain values and types Sect. 3.1.8 pg 37

i endurant entity Sect. 3.1.9 pg 36

j perdurant entity Sect. 3.1.10 pg 36

k discrete endurant Sect. 3.1.11 pg 36

l continuous endurant Sect. 3.1.12 pg 36

m discrete perdurant Sect. 3.1.13 pg 37

n continuous perdurant Sect. 3.1.14 pg 37

187. discrete endurant domain entities Sect. 4 pg 40

a parts Sect. 4.1 pg 40

i. abstract sorts Sect. 4.1.6 pg 41

ii. atomic parts Sect. 4.1.7 pg 41

iii. composite parts Sect. 4.1.8 pg 42

iv. part observers Sect. 4.1.9 pg 42

v. concrete types Sect. 4.1.10 pg 43

b part properties Sect. 4.2 pg 43

i. unique identifiers Sect. 4.2.1 pg 44

ii. mereology Sect. 4.2.2 pg 45

iii. attributes Sect. 4.2.3 pg 51

c states Sect. 4.3 pg 53

188. discrete perdurant domain entities Sect. 5 pg 57

a actions Sect. 5.2 pg 57

i. action signatures Sect. 5.2.3 pg 58

ii. action definitions Sect. 5.2.4 pg 58

b events Sect. 5.3 pg 61

i. event signatures Sect. 5.3.2 pg 61

ii. event predicate definitions Sect. 5.3.3 pg 61

c discrete behaviours Sect. 5.4 pg 62

i. behaviour signatures Sect. 5.4.4 pg 63

ii. behaviour definitions Sect. 5.4.5 pg 64

189. continous entities Sect. 6 pg 69

a materials Sect. 6.1 pg 69

i. materials-based domains Sect. 6.1.1 pg 69

ii. part/material relations Sect. 6.1.2 pg 69

iii. material observers Sect. 6.1.3 pg 70

iv. material properties Sect. 6.1.4 pg 71

v. laws of material flows and losses Sect. 6.1.5 pg 72

b continuous behaviours Sect. 6.2 pg 74

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 119

B On A Theory of Container Stowage 487

This section is under development. The idea of this section is not so much to present a
container domain description, but rather to present fragments, “bits and pieces”, of a theory
of such a domain. The purpose of having a theory is to “draw” upon the ‘bits and pieces’
when expressing properties of endurants and definitions of actions, events and behaviours.
Again: this section is very much in embryo.

B.1 Some Pictures 488

A container vessel with ‘bay’ numbering

Container vessels ply the seven seas and in-numerous other waters. They carry containers
from port to port. The history of containers46 goes back to the late 1930s. The first container
vessels made their first transports in 1956. Malcolm P. McLean is credited to have invented
the container. To prove the concept of container transport he founded the container line
Sea-Land Inc. which was sold to Maersk Lines at the end of the 1990s. 489

Bay numbers. Ship stowage cross section

Down along the vessel, horisontally, from front to aft, containers are grouped, in numbered
bays. 490

Row and tier numbers

Bays are composed from rows, horisontally, across the vessel. Rows are composed from stacks,
horisontally, along the vessel. And stacks are composed, vertically, from [tiers of] containers

46http://www.containerhandbuch.de/chb e/stra/index.html?/chb e/stra/stra 01 01 00.html

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

120 Domain Science & Engineering

B.2 Parts 491

B.2.1 A Basis

190. From a container vessel (cv:CV) and from a container terminal port (ctp:CTP) one can
observe their bays (bays:BAYS).

type

190. CV, CTP, BAYS
value

190. obs BAYS: (CV|CTP) → BAYS

492

191. The bays, bs:BS, (of a container vessel or a container terminal port) are mereologically
structured as an (BId) indexed set of individual bays (b:B).

type

191. BId, B
191. BS = BId →m B
value

191. obs BS: BAYS → BS (i.e., BId →m B)

493

192. From a bay, b:B, one can observe its rows, rs:ROWS.

193. The rows, rs:RS, (of a bay) are mereologically structured as an (RId) indexed set of
individual rows (r:R).

type

192. ROWS, RId, R
193. RS = RId →m R
value

192. obs ROWS: B → ROWS
193. obs RS: ROWS → RS (i.e., RId →m R)

494

194. From a row, r:R, one can observe its stacks, STACKS.

195. The stacks, ss:SS (of a row) are mereologically structured as an (SId) indexed set of
individual stacks (s:S).

type

194. STACKS, SId, S
195. SS = SId →m S
value

194. obs STACKS: R → STACKS
195. obs SS: STACKS → SS (i.e., SId →m S)

495

196. A stack (s:S) is mereologically structured as a linear sequence of containers (c:C).

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 121

type

196. C
196. S = C∗

The containers of the same stack index across stacks are called the tier at that index, cf.
photo on Page 119.. 496

197. A container is here considered a composite part

a of the container box, k:K

b and freight, f:F.

198. Freight is considered composite

a and consists of zero, one or more colli (package, indivisible unit of freight),

b each having a unique colli identifier (over all colli of the entire world !).

c Container boxes likewise have unique container identifiers.

497

type

197. C, K, F, P
value

197a. obs K: C → K
197b. obs F: C → F
198a. obs Ps: F → P-set

type

198b. PI
198c. CI
value

198b. uid P: P → PI
198c. uid C: C → CI

B.2.2 Mereological Constraints 498

199. For any bay of a vessel the index sets of its rows are identical.

200. For a bay of a vessel the index sets of its stacks are identical.

axiom

199. ∀ cv:CV •

199. ∀ b:B•b ∈ rng obs BS(obs BAYS(cv))⇒
199. let rws=obs ROWS(b) in

199. ∀ r,r′:R•{r,r′}⊆rng obs RS(b)⇒dom r=dom r′

200. ∧ dom obs SS(r) = dom obs SS(r′) end

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

122 Domain Science & Engineering

B.2.3 Stack Indexes 499

201. A container stack (and a container) is designated by an index triple: a bay index, a row
index and a stack index.

202. A container index triple is valid, for a vessel, if its indices are valid indices.

type

201. StackId = BId×RId×SId
value

202. valid address: BS → StackId → Bool

202. valid address(bs)(bid,rid,sid) ≡
202. bid ∈ dom bs
202. ∧ rid ∈ dom (obs RS(bs))(bid)
202. ∧ sid ∈ dom (obs SS((obs RS(bs))(bid)))(rid)

500
The above can be defined in terms of the below.

type

BayId = BId
RowId = BId×RId

value

202. valid BayId: V → BayId → Bool

202. valid BayId(v)(bid) ≡ bid ∈ dom obs BS(obs BAYS(v))

202. get B: V → BayId
∼
→ B

202. get B(v)(bid) ≡ (get B(bs))(bid) pre: valid BId(v)(bid)

202. get B: BS → BayId
∼
→ B

202. get B(bs)(bid) ≡ (obs BS(obs BAYS(v)))(bid) pre: bid ∈ dom bs

501

202. valid RowId: V → RowId → Bool

202. valid RowId(v)(bid,rid) ≡ rid ∈ dom obs RS(get B(v)(bid))
202. pre: valid BayId(v)(bid)

202. get R: V → RowId
∼
→ R

202. get R(v)(bid,rid) ≡ get R(obs BS(v))(bid,rid) pre: valid RowId(v)(bid,rid)

202. get R: BS → RowId
∼
→ R

202. get R(bs)(bid,rid) ≡ (obs RS(get RS(bs(bid))))(rid)
202. pre: valid RowId(v)(bid,rid)

502

202. get S: V → StackId
∼
→ S

202. get S(v)(bid,rid,sid) ≡ (obs SS(get R(get B(v)(bid,rid))))(sid)
202. pre: valid address(v)(bid,rid,sid)

503

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 123

202. get C: V → StackId
∼
→ C

202. get C(v)(stid) ≡ get C(obs BS(v))(stid) pre: get S(v)(bid,rid,sid) 6= 〈〉

202. get C: BS → StackId
∼
→ C

202. get C(bs)(bid,rid,sid) ≡ hd(obs SS(get R((bs(bid))(rid))))(sid)
202. pre: get S(bs)(bid,rid,sid) 6= 〈〉

202. valid addresses: V → StackId-set

202. valid addresses(v) ≡ {adr|adr:StackId•valid address(adr)(v)}

504

203. The predicate non empty designated stack checks whether the designated stack is non-
empty.

203. non empty designated stack: V → StackId → Bool

203. non empty designated stack(v)(bid,rid,sid) ≡ get S(v)(bid,rid,sid) 6= 〈〉

505

204. Two vessels have the same mereology if they have the same set of valid-addresses.

value

204. unchanged mereology: BS × BS → Bool

204. unchanged mereology(bs,bs′) ≡ valid addresses(bs) = valid addresses(bs′)

506

205. The designated stack, s′, of a vessel, v′ is popped with respect the “same designated”
stack, s, of a vessel, v

a if the ordered sequence of the containers of s′ are identical to the ordered sequence
of containers of all but the first container of s.

205. popped designated stack: BS × BS → StackId → Bool

205. popped designated stack(bs,bs′)(stid) ≡
205a. tl get S(v)(stid) = get S(bs′)(stid)

507

206. For a given stack index, valid for two bays (bs, bs′) of two vessels or two container termi-
nal ports, and say stid, these two bays enjoy the unchanged non designated stacks(bs,bs′)(stid)
property

a if the stacks (of the two bays) not identified by stid are identical.

206. unchanged non designated stacks: BS × BS → StackId → Bool

206. unchanged non designated stacks(bs,bs′)(stid) ≡
206a. ∀ adr:StackId•adr ∈ valid addresses(v)\{stid}⇒
206a. get S(bs)(adr) = get S(bs′)(adr)
206. pre: unchanged mereology(bs,bs′)

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

124 Domain Science & Engineering

B.2.4 Stowage Schemas 508

207. By a stowage schema of a vessel we understand a “table”

a which for every bay identifier of that vessel records a bay schema

b which for every row identifier of an identified bay records a row schema

c which for every stack identifier of an identified row records a stack schema

d which for every identified stack records its tier schema.

e A stack schema records for every tier index (which is a natural number) the type
of container (contents) that may be stowed at that position.

f The tier indexes of a stack schema form a set of natural numbers from one to the
maximum number in the index set.47

509

value

207. obs StoSchema: V → StoSchema
type

207a. StoSchema = BId →m BaySchema
207b. BaySchema = RId →m RowSchema
207c. RowSchema = SId →m StaSchema
207d. StaSchema = Nat →m C Type
207e. C Type
axiom

207f. ∀ stsc:StaSchema • dom stsc = {1..maxdom stsc}

510

208. One can define a function which from an actual vessel “derives” its “current stowage
schema”.

208. cur sto schema: V → StoSchema
208. cur sto schema(v) ≡
208. let bs = obs BS(obs BAYS(v)) in

208. [bid 7→ let rws = obs RS(obs ROWS(bs(bid))) in

208. [rid 7→ let ss = obs SS(obs STACKS(rws)(rid)) in

208. [sid 7→ 〈 analyse container(ss(i))|i:Nat•i ∈ inds ss 〉
208. | sid:SId•sid ∈ ss] end

208. | rid:RId•rid ∈ dom rws] end

208. | bid:BId•bid ∈ dom ds] end

208. analyse container: C → C Type

511

209. Given a stowage schema and a current stowage schema one can check the latter for
conformance wrt. the former.

47That maximum number designates the maximum height of the stack at that stack position. For any actual
stack the height is between zero and the maximum height, inclusive.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 125

209. conformance: StoSchema × StoSchema → Bool

209. conformance(stosch,cur stosch) ≡
209. dom cur stosch = dom stosch
209. ∧ ∀ bid:BId • bid ∈ dom stosch ⇒
209. dom cur stosch(bid) = dom stosch(bid)
209. ∧ ∀ rid:RId • rid ∈ dom(stosch(bid))(rid) ⇒
209. dom(cur stosch(bid))(rid) = dom(stosch(bid))(rid)
209. ∧ ∀ sid:SId • sid ∈ dom(cur stosch(bid))(rid)
209. ∀ i:Nat • i ∈ inds((cur stosch(bid))(rid))(sid) ⇒
209. conform((((cur stosch(bid))(rid))(sid))(i),
209. (((stosch(bid))(rid))(sid))(i))

209. conform: C Type × C Type → Bool

512

210. From a vessel one can observe its mandated stowage schema.

211. The current stowage schema of a vessel must always conform to its mandated stowage
schema.

value

210. obs StoSchema: V → StoSchema

211. stowage conformance: V → Bool

211. stowage conformance(v) ≡
211. let mandated = obs StoSchema(v),
211. current = cur sto schema(v) in

211. conformance(mandated,current) end

B.3 Actions 513

B.3.1 Remove Container from Vessel

106. The remove Container from Vessel action applies to a vessel and a stack address and
conditionally yields an updated vessel and a container.

106a. We express the ‘remove from vessel’ function primarily by means of an auxiliary
function remove C from BS, remove C from BS(obs BS(v))(stid), and some further
post-condition on the before and after vessel states (cf. Item 106d).

106b. The remove C from BS function yields a pair: an updated set of bays and a con-
tainer.

106c. When obs erving the BayS from the updated vessel, v′, and pairing that with what
is assumed to be a vessel, then one shall obtain the result of remove C from -
BS(obs BS(v))(stid).

106d. Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a vessel
must leave all other properties of the vessel unchanged.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

126 Domain Science & Engineering

107. The pre-condition for remove C from BS(bs)(stid) is

107a. that stid is a valid address in bs, and

107b. that the stack in bs designated by stid is non empty.

108. The post-condition for remove C from BS(bs)(stid) wrt. the updated bays, bs′, is

108a. that the yielded container, i.e., c, is obtained, get C(bs)(stid), from the top of the
non-empty, designated stack,

108b. that the mereology of bs′ is unchanged, unchanged mereology(bs,bs′). wrt. bs.

108c. that the stack designated by stid in the “input” state, bs, is popped, popped -
designated stack(bs,bs′)(stid), and

108d. that all other stacks are unchanged in bs′ wrt. bs, unchanged non designated -
stacks(bs,bs′)(stid).

514

value

106. remove C from V: V → StackId
∼
→ (V×C)

106. remove C from V(v)(stid) as (v′,c)
106c. (obs Bs(obs BS(v′),c)) = remove C from BS(obs Bs(obs BS(v)))(stid)
106d. ∧ props(v)=props(v′′)

106b. remove C from BS: BS → StackId → (BS×C)
106a. remove C from BS(bs)(stid) as (bs′,c)
107a. pre: valid address(bs)(stid)
107b. ∧ non empty designated stack(bs)(stid)
108a. post: c = get C(bs)(stid)
108b. ∧ unchanged mereology(bs,bs′)
108c. ∧ popped designated stack(bs,bs′)(stid)
108d. ∧ unchanged non designated stacks(bs,bs′)(stid)

The props function was introduced in Sect. 4.2.5 on Page 52.

B.3.2 Remove Container from CTP 515

We define a remove action similar to that of Sect. B.3.1 on the previous page.

212. Instead of vessel bays we are now dealing with the bays of container terminal ports.

We omit the narrative — which is very much like that of narrative Items 106c and 106d.

value

212. remove C from CTP: CTP → StackId
∼
→ (CTP×C)

212. remove C from CTP(ctp)(stid) as (ctp′,c)
106c. (obs BS(ctp′),c) = remove C from BS(obs BS(ctp))(stid)
106d. ∧ props(ctp)=props(ctp′′)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 127

B.3.3 Stack Container on Vessel 516

213. Stacking a container at a vessel bay stack location

a

b

c

value

213. stack C on vessel: BS → StackId
∼
→ C

∼
→ BS

213a. stack C on vessel(bs)(stid)(c) as bs′

213a. comment: bs is bays of a v:V, i.e., bs = obs BS(v)
213b. pre:
213c. post:

B.3.4 Stack Container in CTP 517

214.

215.

216.

217.

value

214. stack C in CTP: CTP → StackId → C
∼
→ CTP

215. stack C in CTP(ctp)(stid)(c) as ctp′

216. pre:
217. post:

B.3.5 Transfer Container from Vessel to CTP 518

218.

219.

220.

221.

value

218. transfer C from V to CTP: V→StackId
∼
→CTP→StackId

∼
→(V×CTP)

219. transfer C from V to CTP(v)(v stid)(ctp)(ctp stid) ≡
220. let (c,v′) = remove C from V(v)(v stid) in

220. (v′,stack C in CTP(ctp)(ctp stid)(c)) end

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

128 Domain Science & Engineering

B.3.6 Transfer Container from CTP to Vessel 519

222.

223.

224.

value

222. transfer C from CTP to V: CTP→StackId
∼
→V→StackId

∼
→(CTP×V)

223. transfer C from CTP to V(ctp)(ctp stid)(v)(v stid) ≡
224. let (c,ctp′) = remove C from CTP(ctp)(ctp stid) in

224. (ctp′,stack C in CTP(ctp)(ctp stid)(c)) end

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 129

C Indexes 520

C.1 RSL Index

Arithmetics

...,-2,-1,0,1,2,..., 158

ai*aj , 161

ai+aj , 161

ai/aj , 161

ai=aj , 160

ai≥aj , 160

ai>aj , 160

ai≤aj , 160

ai<aj , 160

ai 6=aj , 160

ai−aj , 161

Cartesians

(e1,e2,...,en) , 162

Chaos

chaos, 164, 166

Clauses

... elsif ... , 171

case be of pa1 → c1, ... pan → cn end ,
172

if be then cc else ca end , 171

Combinators

let a:A • P(a) in c end , 171

let pa = e in c end , 170

Functions

f(args) as result, 170

post P(args,result), 170

pre P(args), 170

f(a), 168

f(args) ≡ expr, 170

Imperative

case be of pa1 → c1, ... pan → cn end ,
173

do stmt until be end , 173

for e in listexpr • P(b) do stm(e) end ,
173

if be then cc else ca end , 173

skip , 173

variable v:Type := expression , 173

while be do stm end , 173

f(), 172

stm1;stm2;...;stmn; , 173

v := expression , 173

Lists

<Q(l(i))|i in<1..lenl> •P(a)> , 162

hAB, 162

ℓ(i) , 165

〈ei ..ej 〉, 162

〈e1, e2, ..., enB , 162

elems ℓ , 165

hd ℓ , 165

inds ℓ , 165

len ℓ , 165

tl ℓ , 165

Logics

bi ∨ bj , 160

∀ a:A • P(a) , 161

∃! a:A • P(a) , 161

∃ a:A • P(a) , 161

∼ b , 160

false, 157, 160

true, 157, 160

ai=aj , 161

ai≥aj , 161

ai>aj , 161

ai≤aj , 161

ai<aj , 161

ai 6=aj , 161

bi ⇒ bj , 160

bi ∧ bj , 160

Maps

[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)] ,
163

[] , 162

[u1 7→v1,u2 7→v2,...,un 7→vn] , 162

mi \ mj , 167

mi ◦ mj , 167

mi / mj , 167

dom m , 167

rng m , 167

mi = mj , 167

mi ∪mj , 167

mi † mj , 167

mi 6= mj , 167

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

130 Domain Science & Engineering

m(e) , 167
Processes

channel c:T , 173
channel {k[i]:T•i:KIdx} , 173
c ! e , 174
c ? , 174
k[i] ! e , 174
k[i] ? , 174
P⌈⌉Q, 174
P–‖ Q, 174
P:Unit→ in c out k[i] Unit , 174
P[]Q, 174
P‖ Q, 174
Q: i:KIdx →out c in k[i] Unit, 174

Sets

{Q(a)|a:A•a∈s∧P(a)} , 161
{} , 161
{e1, e2, ..., en} , 161
∩{s1,s2,...,sn} , 163
∪{s1,s2,...,sn} , 163
card s , 163
e∈s , 163
e6∈s , 163
si=sj , 163
si∩sj , 163
si∪sj , 163

si⊂sj , 163
si⊆sj , 163
si 6=sj , 163
si\sj , 163

Types

(T1×T2×... ×Tn), 157
T∗, 157
Tω, 157
T1 × T2 × ... × Tn, 157
Bool, 157
Char, 157
Int, 157
Nat, 157
Real, 157
Text, 157
Unit, 172, 174
mk id(s1:T1,s2:T2,...,sn:Tn), 157
s1:T1 s2:T2 ... sn:Tn, 157
T = Type Expr, 159
T1 | T2 | ... | T1 | Tn , 157
T={| v:T′• P(v)|} , 159, 160
T==TE1 | TE2 | ... | TEn , 159
Ti

∼
→Tj, 157

Ti→Tj, 157
T-infset, 157
T-set, 157

C.2 Formalisation Index

Concept

Functions

conn Ns ι32, 27

derive RM ι27, 25

gen routes ι29, 26

is circular route ι30, 26

is conn N ι31, 26

spans HsLs ι32b, 27

vpr ι16, 23

vps ι14, 23

Types

TI ι49, 32

T ι48, 32

cT ι44, 31

cRTF ι43, 31

dT ι46, 31, 95

dRTF ι45, 31, 95

dRTF ι47, 31
R ι28, 25
RM ι26, 24
RM’ ι25a, 24
Routes-infset ι29, 26
VPM ι15, 23
VP-infset ι14, 23

Values
δ ι50, 32
lis:LI-set ι56, 32
t0:T ι59e, 33
vpm:VPM ι59d, 33

Domain
∆ ι1, 17

Endurant Extraction Functions
xtr HIs ι22, 23

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 131

xtr LIs ι21, 23
Endurant Part

Attribute Observer
attr ACC ι13, 22
attr HΩ ι11b, 21
attr HΣ ι11a, 21
attr LΩ ι10b, 21
attr LΣ ι10a, 21
attr LEN ι10c, 21
attr LOC ι10c, 21
attr LOC ι11c, 21
attr VEL ι13, 22
attr VP ι13, 22
attr atH ι13, 22
attr onL ι13, 22

Attribute Type Axioms
HΩ ι11b, 21
HΣ ι11a, 21
LΩ ι10b, 21
LΣ ι10a, 21

Attribute Types
ACC ι12b, 22
atH ι12(a)ii, 22
HΩ ι11b, 21
HΣ ι11a, 21
LΩ ι10b, 21
LΣ ι10a, 20
LEN ι10c, 21
LOC ι10c, 21
onL ι12(a)i, 22
VEL ι12b, 22
VP ι12a, 22

Auxiliary Functions
get H ι26, 24
get L ι26a, 24

Mereology Axioms
H ι9b, 20
L ι8a, 20

Mereology Observers
mereo H ι9a, 20
mereo L ι8a, 20

Observers
obs F ι1b, 17
obs HS ι2a, 17
obs Hs ι5, 18
obs LS ι2b, 17
obs Ls ι6, 18

obs M ι1c, 17
obs N ι1a, 17

obs VS ι3, 18

obs Vs ι4a, 18
Types

F ι1b, 17

H ι5b, 18
HS ι2, 17

Hs ι5a, 18

L ι6b, 18
LS ι2, 17

Ls ι6a, 18

M ι1c, 17
N ι1a, 17

V ι4b, 18

VS ι3, 18
Vs ι4a, 18

Unique Identifier Observer

uid H ι7a, 19
uid L ι7b, 19

uid V ι7c, 19

Unique Identifier Types

HI ι7a, 19
LI ι7b, 19

LV ι7c, 19

Values
ls:L-set ι56, 32

m:M ι58, 32

n:N ι56, 32
vs:V-set ι57, 32

Meta Functions Definitions:

attr A ι92, 51
mereo P ι78, 46

uid P ι73, 44

upd attr A ι93, 51
upd mereo P ι87, 49

Perdurant Channnels

clk ch ι55, 32
vm ch[...] ι60, 33

Perdurant Functions

Actions
ins H ι37, 29

post ins H ι37c, 29

pre ins H ι37a, 29
Behaviours

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

132 Domain Science & Engineering

clock ι54, 32

mon ι63, 34

mon ι69, 35, 97

own mon work ι70, 35

tra ι59, 33, 95, 96

tra ι61, 34

veh ι62, 34

veh ι64, 35, 96

veh ι65, 34, 96
Events

link dis ι38, 30
post link dis ι42, 30
pre link dis ι39, 30

Wellformedness
wf R ι28, 25
wf RM ι26, 24

C.3 Definition Index

abstract
type, 41

atomic
part, 41

behaviour, 62
signature, 63

channel, 63
communicating

behaviour, 62
composite

part, 42

concrete
type, 43

connector, 67
continuant, 36

continuous

behaviour, 69
model, 74

endurant, 36
perdurant, 37

data
initialisation, 98

refreshment, 98

determination, 91
discrete

action, 57
endurant, 36

event, 57

perdurant, 37, 57
domain, 13, 36

analysis, 13, 36
description, 13, 37

law, 87
determination, 93
engineering, 14, 37
entity, 36
extension, 95
instantiation, 92
phenomenon, 36
projection, 91
requirements, 91
science, 14, 37

endurant, 36
event, 61

definition, 61
signature, 61

event, 29
extension, 91
extensionality, 37
extent, 38
external

non-deterministic
behaviour, 63

fluid
dynamics, 74

formal
concept, 38
context, 38

function, 57
application, 57
invocation, 57

goal
requirements, 91

human

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 133

behaviour, 106

instantiation, 91
intent, 38
intentionality, 37
interface

requirements, 91

internal
non-deterministic

behaviour, 63
intrinsics, 105

knowledge, 100

machine, 15, 90

requirements, 91
management, 106
material, 36, 69

observer, 42
materials

based
domain, 69

mereology, 19, 45
meta-physical

operator, 42

method, 13
methodology, 13

ontological engineering, 100
organisation, 105

part, 36, 40

attribute, 51
behaviour, 64
observer, 42
property

value, 41
perdurant

property, 43
prescriptive

domain
model, 74

projection, 91
property

value, 41
scale, 43

regulation, 105
requirements, 90

domain, 91
goal, 91
interface, 91
machine, 91

rule, 105

same kind
class of parts, 40

script, 105
sequential

behaviour, 62
shared

entity, 97
software, 15
sort, 41
state, 53
substance, 36
support

technology, 105

type, 37

value, 37

C.4 Example Index

2 A Container Line Analysis, 13

23 A Container Line Mereology, 47–48

50 A Pipeline System Behaviour, 75–77

3 A Transport Domain Description, 13–14

29 A Variety of Road Traffic Domain States,
53

33 Action Signatures: Nets and Vessels, 58

61 Action Signatures, 85

38 Atomic Part Behaviours, 64

10 Atomic Types, 41–42

60 Attributes, 84

63 Behaviour Signatures, 86

11 Composite Types, 42

39 Compositional Behaviours, 65

27 Concrete Attribute Types, 51

14 Concrete Types, 43

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

134 Domain Science & Engineering

35 Container Line: Remove Container, 59–60

55 Discover Part Sorts, 81

8 Distinct Parts, 41

62 Event Signatures, 86

36 Events, 61

15 Has Composite Types, 43

54 Has Concrete Types, 80

12 Implementation of Observer Functions, 42

24 Insert Link, 49–50

52 Is Atomic Type, 80

53 Is Composite Type, 80

51 Is Materials-based Domain, 79

18 Manifest and Conceptual Parts, 45

56 Material Sort, 82

41 Materials, 69

59 Mereologies, 84

20 Monitor and Vehicle Mereologies, 46

13 Observer Functions, 42

6 Part Properties, 40

7 Part Property Values, 41

9 Part Sorts, 41

57 Part Types, 82

5 Parts, 40

22 Pipeline Mereology, 46–47

68 Pipeline System Scripts, 105

30 Pipeline Units and Their Mereology, 53–54

44 Pipelines: Core Continuous Endurant, 70

49 Pipelines: Fluid Dynamics and Automatic
Control, 74–75

48 Pipelines: Inter Unit Flow and Leak Law,
73–74

47 Pipelines: Intra Unit Flow and Leak Law,
72–73

31 Pipelines: Nets and Routes, 54–56

46 Pipelines: Parts and Material Properties,
71–72

45 Pipelines: Parts and Materials, 70–71

16 Property Value Scales, 43

21 Road Traffic System Mereology, 46

37 Road Transport System Event, 61

64 Road Transport System Intrinsics, 105

25 Road Transport System Part Attributes,
51

67 Road Transport System Regulations, 105

66 Road Transport System Rules, 105

28 Setting Road Intersection Traffic Lights, 52

19 Shared Route Maps and Bus Time Tables,
45–46

43 Somehow Related Materials and Parts, 69
26 Static and Dynamic Attributes, 51

40 Syntax and Semantics of Mereology, 65–68
4 The Main Example, 17–35
70 Tollroad System Management, 106

69 Tollroad System Organisation, 105
65 Tollroad System Support Technologies, 105

32 Transport Net and Container Vessel Ac-
tions, 57

34 Transport Nets Actions, 58
58 Unique ID, 83

17 Unique Identifier Functions, 44
42 Material Processing, 69

Material Processing (# 42), 69
1 Some Domains, 13

A Container Line Analysis (# 2), 13

A Container Line Mereology (# 23), 47–48
A Pipeline System Behaviour (# 50), 75–77

A Transport Domain Description (# 3), 13–14
A Variety of Road Traffic Domain States

(# 29), 53
Action Signatures (# 61), 85

Action Signatures: Nets and Vessels (# 33),
58

Atomic Part Behaviours (# 38), 64
Atomic Types (# 10), 41–42

Attributes (# 60), 84

Behaviour Signatures (# 63), 86

Composite Types (# 11), 42
Compositional Behaviours (# 39), 65

Concrete Attribute Types (# 27), 51
Concrete Types (# 14), 43

Container Line: Remove Container (# 35),
59–60

Discover Part Sorts (# 55), 81
Distinct Parts (# 8), 41

Event Signatures (# 62), 86
Events (# 36), 61

Has Composite Types (# 15), 43
Has Concrete Types (# 54), 80

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 135

Implementation of Observer Functions
(# 12), 42

Insert Link (# 24), 49–50
Is Atomic Type (# 52), 80
Is Composite Type (# 53), 80
Is Materials-based Domain (# 51), 79

Manifest and Conceptual Parts (# 18), 45
Material Sort (# 56), 82
Materials (# 41), 69
Mereologies (# 59), 84
Monitor and Vehicle Mereologies (# 20), 46

Observer Functions (# 13), 42

Part Properties (# 6), 40
Part Property Values (# 7), 41
Part Sorts (# 9), 41
Part Types (# 57), 82
Parts (# 5), 40
Pipeline Mereology (# 22), 46–47
Pipeline System Scripts (# 68), 105
Pipeline Units and Their Mereology (# 30),

53–54
Pipelines: Core Continuous Endurant (# 44),

70
Pipelines: Fluid Dynamics and Automatic

Control (# 49), 74–75
Pipelines: Inter Unit Flow and Leak Law

(# 48), 73–74
Pipelines: Intra Unit Flow and Leak Law

(# 47), 72–73
Pipelines: Nets and Routes (# 31), 54–56
Pipelines: Parts and Material Properties

(# 46), 71–72

Pipelines: Parts and Materials (# 45), 70–71

Property Value Scales (# 16), 43

Road Traffic System Mereology (# 21), 46

Road Transport System Event (# 37), 61

Road Transport System Intrinsics (# 64), 105

Road Transport System Part Attributes
(# 25), 51

Road Transport System Regulations (# 67),
105

Road Transport System Rules (# 66), 105

Setting Road Intersection Traffic Lights
(# 28), 52

Shared Route Maps and Bus Time Tables
(# 19), 45–46

Somehow Related Materials and Parts (# 43),
69

Static and Dynamic Attributes (# 26), 51

Syntax and Semantics of Mereology (# 40),
65–68

The Main Example (# 4), 17–35

Tollroad System Management (# 70), 106

Tollroad System Organisation (# 69), 105

Tollroad System Support Technologies
(# 65), 105

Transport Net and Container Vessel Actions
(# 32), 57

Transport Nets Actions (# 34), 58

Unique ID (# 58), 83

Unique Identifier Functions (# 17), 44

C.5 Concept Index

abstract, 15

model, 45

part, 45

abstraction, 36, 45

intangible, 95

account, 15

action, 13, 15, 16, 36, 57, 58, 60–62, 69

discrete, 1

domain, 57

input, 62

output, 62

shared, 98

sharing, 97

signature, 58

adaptive

control, 74

agency, 58

agent, 58

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

136 Domain Science & Engineering

algorithmic
engineering, 101

analyse, 1, 13
analyser

domain, 40–42, 57, 62, 83
analysis, 1

concept, 43, 44
formal, 1, 41, 52, 100, 104

domain, 1, 13, 16, 39, 44, 70, 100–104
principle, 106

formal
concept, 1, 41, 52, 100, 104

mathematical, 62
principle

domain, 106
problem

world, 102
product line, 101
world

problem, 102
analytic

function, 16
and data acquisition

control
supervisory, 76

supervisory
control, 76

annotation
definition

function, 50
function

definition, 50
apply, 13
architecture

software, 102, 103
area

bus time table
metropolitan, 46

metropolitan
bus time table, 46
road map, 46

road map
metropolitan, 46

argument, 57
type, 60, 62

artefact, 13
atomic, 15, 37

behaviour
definition, 64
part, 64

definition
behaviour, 64

part, 16, 64
behaviour, 64

attribute, 15, 16, 42, 44–46, 51, 75
concrete

type, 51
dynamic, 51

type, 51
function

signatures, 51
map, 66
material, 1, 37, 52
name

type, 51, 84
observation function

part, 51
part, 1, 51, 52

observation function, 51
value, 53

property
value, 51

relation
value, 46

signatures
function, 51

static
type, 51

type, 44, 51
concrete, 51
dynamic, 51
name, 51, 84
static, 51

value, 44, 45, 51
part, 53
property, 51
relation, 46

vehicle, 46
attributes

part, 37
automatic

control
theory, 77

theory

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 137

control, 77
axiom, 41, 50, 83

bases

knowledge, 101
behaviour, 1, 13, 15, 16, 36, 57, 58, 61–63, 69

atomic
definition, 64
part, 64

communicating
sequential, 63

composite
part, 64

continuous, 1, 62

domain model, 74
core, 68

definition
atomic, 64
function, 64

desirable
specification, 74

discrete, 57, 62

domain model, 74
domain model

continuous, 74
discrete, 74

dynamic, 71

function
definition, 64

narrative, 63
part, 64, 65

atomic, 64

composite, 64
sequential

communicating, 63
shared, 99
sharing, 97

specification
desirable, 74

behaviours
continuous, 69

bifurcation, 71

budget, 15
bus, 46

coordinating
traffic authority, 46

table

time, 46
time

table, 46

traffic authority
coordinating, 46

bus time table

area
metropolitan, 46

metropolitan
area, 46

business

engineering
process, 1

process
engineering, 1
re-engineering, 1

re-engineering
process, 1

calculation
human, 16

calculus, 16, 62

description
domain, 16, 87, 102

domain
description, 16, 87, 102

channel, 63

checking
model, 15

class
diagram, 104
interesting, 57, 58

communicate, 62
communicating

behaviour
sequential, 63

sequential

behaviour, 63
component

reusable
software, 102

software, 103

reusable, 102
composite, 15, 37

behaviour
part, 64

part, 16, 37

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

138 Domain Science & Engineering

behaviour, 64
type, 42
value, 42

type, 80
part, 42

value
part, 42

composite, 17
composition, 36
computing

science, 1
concept, 36, 43

analysis, 43, 44
formal, 1, 41, 52, 100, 104

domain, 36, 41
formal, 39

analysis, 1, 41, 52, 100, 104
mathematical, 57

concepts
formal, 39

conceptual
connection, 49
part, 44
relation, 45

concrete, 15
attribute

type, 51
definition

part type, 49
type, 51

part
type, 43

part type
definition, 49

type
attribute, 51
definition, 51
part, 43

connection
conceptual, 49
Galois, 39
spatial, 49

connector, 67
constant, 49

value, 51
construct, 13
container

description
domain, 119

domain
description, 119

context, 38
continuous, 13, 36, 62

behaviour, 1, 62
domain model, 74

behaviours, 69
core

endurant, 70
domain

endurant, 53
domain model

behaviour, 74
dynamic system

time, 74
endurant, 36, 69

core, 70
domain, 53
entities, 69

entities, 1, 69
endurant, 69

entity, 69
material, 16
perdurant, 37, 69
time

dynamic system, 74
contract

development, 15
control, 75

adaptive, 74
and data acquisition

supervisory, 76
automatic

theory, 77
fuzzy, 74
stochastic, 74
supervisory

and data acquisition, 76
theory

automatic, 77
coordinating

bus
traffic authority, 46

traffic authority
bus, 46

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 139

core
behaviour, 68
continuous

endurant, 70
endurant, 69

continuous, 70

material, 69

data

initialisation, 98
refreshment, 98

verification, 15
definition

annotation

function, 50
atomic

behaviour, 64
behaviour

atomic, 64

function, 64
concrete

part type, 49

type, 51
event, 61

formal
function, 50

function, 37, 50, 60

annotation, 50
behaviour, 64

formal, 50
narrative style, 50
predicate, 62

narrative style
function, 50

part type
concrete, 49

predicate

function, 62
type, 70

concrete, 51
definition set

function

type expression, 58
type expression

function, 58
derivation

requirements, 15

describer
domain, 40, 60, 61, 79, 80, 87, 89

team, 89
team

domain, 89
description

calculus
domain, 16, 87, 102

container
domain, 119

developer
domain, 16

development
domain, 1, 41, 87, 102

domain, 1, 13–16, 41, 44, 51, 90, 91, 99,
100, 102–104, 106, 107

calculus, 16, 87, 102
container, 119
developer, 16
development, 1, 41, 87, 102
law, 87
principle, 106
process, 16
text, 16

formal, 13, 37
law

domain, 87
model

requirements, 75
narrative, 13, 37
principle

domain, 106
process

domain, 16
requirements

model, 75
text

domain, 16
descriptions

domain, 39, 103, 104
descriptive

model
natural science, 74

natural science
model, 74

design
phase

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

140 Domain Science & Engineering

software, 14
software, 14–16, 102, 104, 107

phase, 14
desirable

behaviour
specification, 74

specification
behaviour, 74

determinate, 93
determination, 91

domain, 107
deterministic, 15
developer, 50

description
domain, 16

domain, 89
description, 16

development
contract, 15
description

domain, 1, 41, 87, 102
documentation, 15
domain

description, 1, 41, 87, 102
law, 89
principle, 89

law
domain, 89

manual
methodology, 15

methodology
manual, 15

model-oriented
software, 102

principle
domain, 89

requirements, 16, 103, 104, 107
software, 1

model-oriented, 102
tool, 15

tool
software, 15

diagram
class, 104

discoverer
domain, 81

discovery, 104

function, 16
discrete, 13, 36

action, 1
behaviour, 57, 62

domain model, 74
domain

endurant, 53
domain model

behaviour, 74
endurant, 1, 36, 45, 70

domain, 53
entities, 1
entity, 57
event, 1
part, 16
perdurant, 37, 57

documentation
development, 15

domain, 69, 97, 103, 104
action, 57
analyser, 40–42, 57, 62, 83
analysis, 1, 13, 16, 39, 44, 70, 100–104

principle, 106
calculus

description, 16, 87, 102
concept, 36, 41
container

description, 119
continuous

endurant, 53
describer, 40, 60, 61, 79, 80, 87, 89

team, 89
description, 1, 13–16, 41, 44, 51, 90, 91,

99, 100, 102–104, 106, 107
calculus, 16, 87, 102
container, 119
developer, 16
development, 1, 41, 87, 102
law, 87
principle, 106
principles, 99
process, 16
text, 16

descriptions, 39, 103, 104
determination, 15, 107
developer, 89

description, 16

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 141

development
description, 1, 41, 87, 102
law, 89
principle, 89

discoverer, 81
discrete

endurant, 53
endurant, 53

continuous, 53
discrete, 53

engineer, 16, 39, 99, 102, 107
engineering, 1, 13–15, 90, 99, 102, 103,

106
phase, 14

entity, 36, 39
extension, 15, 95, 107
facet, 104, 105, 107
human, 107
index, 18, 41, 42, 104
initialisation, 15
instantiation, 107
intrinsics, 107
language

specific, 101, 102
law

description, 87
development, 89

management and organisation, 107
manifest

phenomenon, 36
mereologies, 49
model, 41, 107

prescriptive, 74, 76
modelling, 72, 101, 102
phase

engineering, 14
phenomena, 1
phenomenon

manifest, 36
prescriptive

model, 74, 76
principle

analysis, 106
description, 106
development, 89

process
description, 16

projection, 15, 107
requirements, 15, 90, 91
researcher, 107

rules and regulations, 107
script, 107
software

specific, 103
specific

language, 101, 102
software, 103
theory, 14

support technology, 107
team

describer, 89
text

description, 16

theory, 14, 37
specific, 14

types, 39
domain model

behaviour

continuous, 74
discrete, 74

continuous
behaviour, 74

discrete

behaviour, 74
dynamic, 49, 53

attribute, 51
type, 51

behaviour, 71

system, 71
type

attribute, 51
dynamic system

continuous

time, 74
time

continuous, 74

endurant, 13, 15, 36, 43
continuous, 36, 69

core, 70
domain, 53

entities, 69
entity, 69

core, 69

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

142 Domain Science & Engineering

continuous, 70
discrete, 1, 36, 45, 70

domain, 53
domain, 53

continuous, 53
discrete, 53

entities, 1
continuous, 69

entity, 16
type, 39

manifest
observable, 40

observable
manifest, 40

properties, 40
property, 43
type

entity, 39
engineer

domain, 16, 39, 99, 102, 107
requirements, 99, 102, 107
software, 102

engineering, 14, 37
algorithmic, 101
business

process, 1
domain, 1, 13–15, 90, 99, 102, 103, 106

phase, 14
knowledge, 101
ontological, 100
phase

domain, 14
requirements, 14

process
business, 1

product line
software, 102

requirements, 1, 13, 14, 16, 90, 99, 103,
104, 106, 107

phase, 14
software, 1, 100

product line, 102
entities, 1, 63

continuous, 1, 69
endurant, 69

discrete, 1
endurant, 1

continuous, 69
perdurant, 1

entity, 13, 16, 36, 60, 61

continuous, 69
discrete, 57
domain, 36, 39

endurant
type, 39

instance, 37
manifest, 36, 69
perdurant

signature, 39
signature

perdurant, 39
type

endurant, 39

ergodicity, 71
event, 13, 15, 16, 29, 36, 57, 61, 62, 69

definition, 61
discrete, 1
external

shared, 99
name, 61

shared
external, 99

sharing, 97

expression
type, 43

extension, 91
domain, 95, 107

extensional

feature, 37
part

relation, 45
relation, 45

part, 45

external
event

shared, 99
shared

event, 99

facet
domain, 104, 105, 107

feature
extensional, 37
intentional, 37

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 143

fleet, 45
flow, 71
fluid, 74
formal

analysis
concept, 1, 41, 52, 100, 104

concept, 39
analysis, 1, 41, 52, 100, 104

concepts, 39
definition

function, 50
description, 13, 37
function

definition, 50
languages

specification, 71
specification

languages, 71
test, 15

formal specification
language

model-oriented, 16
model-oriented

language, 16
frame

problem, 102
frames

problem, 102
function, 57, 69

analytic, 16
annotation

definition, 50
application, 57
attribute

signatures, 51
behaviour

definition, 64
definition, 37, 50, 60

annotation, 50
behaviour, 64
formal, 50
narrative style, 50
predicate, 62

definition set
type expression, 58

discovery, 16
formal

definition, 50
image set

type expression, 58

invocation, 57
mereology, 83

meta, 42, 44, 46, 51

name, 58
narrative style

definition, 50

non-deterministic, 58
partial, 58

predicate

definition, 62
signature, 62

property, 37, 52

signature, 43, 60, 63
predicate, 62

signatures

attribute, 51
space

total, 61

total

space, 61
type, 43

type expression

definition set, 58
image set, 58

fuzzy

control, 74

Galois

connection, 39

gas, 74
gaseous, 53

material, 69

goal, 90, 91, 104
requirements, 91

golden rule

requirements, 90
granular

material, 69

hardware, 15, 90, 102
hub

sensor, 105

human
calculation, 16

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

144 Domain Science & Engineering

domain, 107

ideal rule
of requirements, 90

identifier
part

unique, 1, 46, 49, 51, 52
type

unique, 46

type name
unique, 44

unique, 15, 16, 42, 44–46, 50
part, 1, 46, 49, 51, 52
type, 46

type name, 44
unit, 55

value, 45
vehicle, 97

unit

unique, 55
value

unique, 45

vehicle
unique, 97

identifiers
part

unique, 52

unique
part, 52

image set
function

type expression, 58

type expression
function, 58

imperative
language

programming, 101

programming
language, 101

in-determinate, 93
index, 42

domain, 18, 41, 42, 104

initialisation
data, 98

initialise, 15
input

action, 62

installation
manual, 15

instance

of entity, 37
instantiation, 91

domain, 107

intangible, 95
abstraction, 95

phenomena, 45

intention, 58
intentional

feature, 37

part
properties, 44

relation, 45

properties, 43, 44
part, 44

property, 41

value, 41, 44
relation, 45

part, 45

value

property, 41, 44
interesting

class, 57, 58

interface
requirements, 15, 90, 91

interval

time, 29, 61
intrinsics

domain, 107

IT
system, 15

knowledge, 100

bases, 101
engineering, 101

representation, 101

language
domain

specific, 101, 102

formal specification
model-oriented, 16

imperative

programming, 101
model-oriented

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 145

formal specification, 16
programming

imperative, 101

specific
domain, 101, 102

languages

formal
specification, 71

specification
formal, 71

law, 16

description
domain, 87

development
domain, 89

domain

description, 87
development, 89

laws
material, 1

leak, 71

line
product, 15

link
sensor, 105

liquid, 53, 74

material, 69

machine, 15, 90, 97, 102

requirements, 15, 91
maintenance

manual, 15

management
plan, 15

strategic
structure, 106

structure

strategic, 106
tactical, 106

tactical
structure, 106

management and organisation

domain, 107
manifest, 45

domain
phenomenon, 36

endurant

observable, 40
entity, 36, 69
observable

endurant, 40
part, 44, 45
phenomena, 45
phenomenon

domain, 36
manual

development
methodology, 15

installation, 15
maintenance, 15
methodology

development, 15
user, 15

map
attribute, 66
road, 46

material, 1, 13, 15, 16, 36, 52, 69, 71
attribute, 1, 37, 52
continuous, 16
core, 69
gaseous, 69
granular, 69
laws, 1
liquid, 69
type, 1, 37, 52

mathematical
analysis, 62
concept, 57
model, 74
quantity, 37

mereologies
domain, 49
part, 52

mereology, 15, 16, 42, 44, 45, 49, 50
function, 83
model, 49
part, 1, 49, 51, 52
part identifier

unique, 46
unique

part identifier, 46
meta

function, 42, 44, 46, 51
properties, 40

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

146 Domain Science & Engineering

methodology, 13
development

manual, 15
manual

development, 15
metropolitan

area
bus time table, 46
road map, 46

bus time table
area, 46

road map
area, 46

model
abstract, 45
checking, 15
description

requirements, 75
descriptive

natural science, 74
domain, 41, 107

prescriptive, 74, 76
mathematical, 74
mereology, 49
natural science

descriptive, 74
prescriptive

domain, 74, 76
requirements

description, 75
model-oriented

development
software, 102

formal specification
language, 16

language
formal specification, 16

software
development, 102

modelling, 1
domain, 72, 101, 102
requirements, 72

mon, 105
monitor, 46, 75

road
traffic, 46

traffic

road, 46

name

attribute
type, 51, 84

event, 61

function, 58

part
type, 42, 44, 46, 84

perdurant, 43

sort, 41
type, 41, 43

attribute, 51, 84

part, 42, 44, 46, 84
narrative

description, 13, 37

narrative style
definition

function, 50

function
definition, 50

natural

science, 74
natural science

descriptive

model, 74
model

descriptive, 74

net, 46

non-deterministic, 15
function, 58

object, 104
observable

endurant

manifest, 40

manifest
endurant, 40

phenomenon, 16

observation function
attribute

part, 51

part
attribute, 51

ontological

engineering, 100
ontology, 1

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 147

upper, 100
output

action, 62

part, 1, 13, 15, 16, 36, 37, 40–46, 49, 52, 53,
63, 69, 70

abstract, 45

atomic, 64
behaviour, 64

attribute, 1, 51, 52

observation function, 51
value, 53

attributes, 37
behaviour, 64, 65

atomic, 64

composite, 64
composite, 16, 37

behaviour, 64
type, 42
value, 42

conceptual, 44
concrete

type, 43
discrete, 16

extensional
relation, 45

identifier

unique, 1, 46, 49, 51, 52
identifiers

unique, 52
intentional

properties, 44

relation, 45
manifest, 44, 45

mereologies, 52
mereology, 1, 49, 51, 52
name

type, 42, 44, 46, 84
observation function

attribute, 51
properties, 40, 44, 45, 49, 51, 68

intentional, 44

property, 51
value, 41, 93

relation
extensional, 45
intentional, 45

shared, 98
sharing, 97
sort, 40
type, 1, 37, 40, 41, 43, 45, 46, 49, 51, 52,

80, 81
composite, 42
concrete, 43
name, 42, 44, 46, 84
universe, 41

unique
identifier, 1, 46, 49, 51, 52
identifiers, 52

universe
type, 41

value
attribute, 53
composite, 42
property, 41, 93

part identifier
mereology

unique, 46
unique

mereology, 46
part type

concrete
definition, 49

definition
concrete, 49

partial
function, 58

perdurant, 13, 15, 36, 37, 43, 57, 60, 61
continuous, 69
discrete, 57
entities, 1
entity

signature, 39
name, 43
properties, 57
signature

entity, 39
periodicity, 71
phase

design
software, 14

domain
engineering, 14

engineering

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

148 Domain Science & Engineering

domain, 14
requirements, 14

requirements
engineering, 14

software
design, 14

phenomena
domain, 1
intangible, 45
manifest, 45

phenomenon
domain

manifest, 36
manifest

domain, 36
shared, 97

plan
management, 15
staffing, 15

point
time, 61

postcondition, 58
precondition, 58
predicate

definition
function, 62

function
definition, 62
signature, 62

signature, 61
function, 62

type, 37
prescription

requirements, 14, 15, 74, 90, 99, 102–104,
106, 107

prescriptions
requirements, 16

prescriptive
domain

model, 74, 76
model

domain, 74, 76
principle, 13

analysis
domain, 106

description
domain, 106

development
domain, 89

domain
analysis, 106
description, 106
development, 89

problem, 13
analysis

world, 102
frame, 102
frames, 102
world, 102

analysis, 102
process

business
engineering, 1
re-engineering, 1

description
domain, 16

domain
description, 16

engineering
business, 1

re-engineering
business, 1

product
line, 15

product line
analysis, 101
engineering

software, 102
software, 102

engineering, 102
programming

imperative
language, 101

language
imperative, 101

project, 15
projection, 91

domain, 107
proof, 15
properties, 40, 41, 57

endurant, 40
intentional, 43, 44

part, 44
meta, 40

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 149

part, 40, 44, 45, 49, 51, 68
intentional, 44

perdurant, 57

property, 13, 36, 37, 40, 41, 43
attribute

value, 51

endurant, 43
function, 52

intentional, 41

value, 41, 44
part, 51

value, 41, 93

proposition, 41
propositions, 41

scale

value, 43
state, 105

value, 41, 43

attribute, 51
intentional, 41, 44

part, 41, 93

scale, 43

proposition, 40
property, 41

propositions

property, 41
props, 60, 126

quantities

semantic, 65
syntactic, 65

quantity

mathematical, 37

range

value, 43

re-engineering
business

process, 1

process
business, 1

refreshment

data, 98
relation

attribute

value, 46
conceptual, 45

extensional
part, 45

intentional
part, 45

part
extensional, 45
intentional, 45

spatial, 45
value

attribute, 46
representation

knowledge, 101
requirements, 102–104

derivation, 15
description

model, 75
development, 16, 103, 104, 107
domain, 15, 90, 91
engineer, 99, 102, 107
engineering, 1, 13, 14, 16, 90, 99, 103, 104,

106, 107
phase, 14

goal, 91
golden rule, 90
ideal rule, 90
interface, 15, 90, 91
machine, 15, 91
model

description, 75
modelling, 72
phase

engineering, 14
prescription, 14, 15, 74, 90, 99, 102–104,

106, 107
prescriptions, 16

researcher
domain, 107

result, 57
type, 60, 62

reusable
component

software, 102
software

component, 102
reuse, 102
road

map, 46

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

150 Domain Science & Engineering

monitor
traffic, 46

traffic

monitor, 46
road map

area

metropolitan, 46
metropolitan

area, 46
route, 46
rule

of requirements, golden, 90
of requirements, ideal, 90

rules and regulations
domain, 107

scale
property

value, 43

value
property, 43

science

computing, 1
natural, 74

script
domain, 107

select, 13

semantic
quantities, 65

sensor
hub, 105
link, 105

sequential
behaviour

communicating, 63
communicating

behaviour, 63

shared
action, 98

behaviour, 99
event

external, 99

external
event, 99

part, 98
phenomenon, 97

signature, 37, 57

action, 58
entity

perdurant, 39
function, 43, 60, 63

predicate, 62
perdurant

entity, 39
predicate, 61

function, 62
signatures

attribute
function, 51

function
attribute, 51

software, 15, 90, 102
architecture, 102, 103
component, 103

reusable, 102
design, 14–16, 102, 104, 107

phase, 14
development, 1

model-oriented, 102
tool, 15

domain
specific, 103

engineer, 102
engineering, 1, 100

product line, 102
model-oriented

development, 102
phase

design, 14
product line, 102

engineering, 102
reusable

component, 102
specific

domain, 103
tool

development, 15
somehow related, 69, 81
sort, 41

name, 41
part, 40

space
function

total, 61

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 151

total
function, 61

spatial
connection, 49
relation, 45

specific
domain

language, 101, 102
software, 103
theory, 14

language
domain, 101, 102

software
domain, 103

theory
domain, 14

specification
behaviour

desirable, 74
desirable

behaviour, 74
formal

languages, 71
languages

formal, 71
stability, 71
staffing

plan, 15
state

property, 105
type, 61
value, 57

static, 49
attribute

type, 51
type

attribute, 51
stochastic

control, 74
strategic

management
structure, 106

structure
management, 106

structure
management

strategic, 106

tactical, 106
strategic

management, 106

tactical
management, 106

sub-part, 41, 42

supervisory
and data acquisition

control, 76
control

and data acquisition, 76

support
technologies, 105

support technology
domain, 107

synchronise, 62

syntactic
quantities, 65

system
dynamic, 71
IT, 15

table
bus

time, 46
time

bus, 46

tactical
management

structure, 106
structure

management, 106

tangible, 45, 95
team

describer
domain, 89

domain

describer, 89
techniques, 13, 15

technologies
support, 105

test

formal, 15
text

description
domain, 16

domain

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

152 Domain Science & Engineering

description, 16
theorem, 50
theory

automatic
control, 77

control
automatic, 77

domain
specific, 14

mereology, 60, 62
specific

domain, 14
time, 29, 61, 62

bus
table, 46

continuous
dynamic system, 74

dynamic system
continuous, 74

interval, 29, 61, 62
point, 61
table

bus, 46
tool

development
software, 15

software
development, 15

tools, 13
total

function, 58
space, 61

space
function, 61

traffic
monitor

road, 46
road

monitor, 46
traffic authority

bus
coordinating, 46

coordinating
bus, 46

TripTych, 14, 39, 100–104, 117, 118
type, 37, 39–43, 52

argument, 60, 62

attribute, 44, 51
concrete, 51
dynamic, 51
name, 51, 84
static, 51

composite, 80
part, 42

concrete
attribute, 51
definition, 51
part, 43

definition, 70
concrete, 51

dynamic
attribute, 51

endurant
entity, 39

entity
endurant, 39

expression, 43
function, 43
identifier

unique, 46
material, 1, 37, 52
name, 41, 43

attribute, 51, 84
part, 42, 44, 46, 84

part, 1, 37, 40, 41, 43, 45, 46, 49, 51, 52,
80, 81

composite, 42
concrete, 43
name, 42, 44, 46, 84
universe, 41

predicate, 37
result, 60, 62
state, 61
static

attribute, 51
unique

identifier, 46
universe

part, 41
value, 43

type expression
definition set

function, 58
function

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 153

definition set, 58
image set, 58

image set

function, 58
type name

identifier

unique, 44
unique

identifier, 44
type P, 49
types

domain, 39

ubiquitous, 69

Unified Modelling Language
UML, 103, 104

unique
identifier, 15, 16, 42, 44–46, 50

part, 1, 46, 49, 51, 52

type, 46
type name, 44
unit, 55

value, 45
vehicle, 97

identifiers
part, 52

mereology

part identifier, 46
part

identifier, 1, 46, 49, 51, 52
identifiers, 52

part identifier

mereology, 46
type

identifier, 46
type name

identifier, 44

unit
identifier, 55

value
identifier, 45

vehicle

identifier, 97
unit

identifier
unique, 55

unique

identifier, 55
universe

part

type, 41
type

part, 41

update, 49
upper

ontology, 100
user

manual, 15

value, 37, 41, 43, 57
attribute, 44, 45, 51

part, 53
property, 51

relation, 46
composite

part, 42

constant, 51
identifier

unique, 45

intentional
property, 41, 44

part
attribute, 53
composite, 42

property, 41, 93
property, 41, 43

attribute, 51
intentional, 41, 44
part, 41, 93

scale, 43
range, 43

relation
attribute, 46

scale

property, 43
state, 57

type, 43
unique

identifier, 45

variable, 51
variable, 49

value, 51
vehicle, 45

attribute, 46

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

154 Domain Science & Engineering

identifier

unique, 97

unique

identifier, 97

verification

data, 15

world
analysis

problem, 102
problem, 102

analysis, 102

yield, 57

C.6 Language, Method and Technology Index

Alloy, 1, 16, 71
B

Bourbaki, 1, 16, 71
CASL

Common Algebraic Specification Lan-
guage, 71

CSP, 65
Communicating Sequential Processes, 62

CafeOBJ, 71
DSL

domain specific language, 101
DSSA

Domain Specific Software Architecture,
102–103

Event B, 1, 16, 71
FODA

Feature-oriented Domain Analysis, 102–
103

MSC

Message Sequence Charts, 62
Petri Net, 62
RAISE

Rigorous Approach to Industrial Software
Engineering, 1, 16, 71

RSL

CSP, 62
the RAISE Specification Language, 1, 16,

63, 71
SCADA, 76, 77
Statechart, 62
TLA+

Temporal Logic of Actions, 97
UML

Unified Modelling Language, 103, 104
VDM

Vienna Development Method, 1, 16, 71
Z

Zermelo, 1, 16, 71

C.7 Selected Author Index

Jean-Raymond Abrial, 1, 16, 71

R. Alur, 97

M. Ardis, 102

G. Arrango, 101

A. Badiou, 39

Bob Balzer, 102

J. Bayer, 102

V.R. Benjamins, 100, 101

Dines Bjørner, 1, 15, 16, 49, 62, 71, 97, 101,
102, 107

Wayne D. Blizard, 31

G. Bockle, 102

Grady Booch, 103, 104

J. Bosch, 102

Rudolf Carnap, 39

R. Casati, 49

Bowman L. Clarke, 39

P. Clements, 102

E. Colbert, 103

K. Czarnecki, 103

N. Daley, 102

Jim Davies, 1, 16, 71

R. de Almeida Falbo, 102

J. M. DeBaud, 102

H. Dierks, 97

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 155

D.L. Dill, 97
M. Dorfman, 104
K. C. Duarte, 102

A.W. Eisenecker, 103

Edward A. Feigenbaum, 101
D. Fensel, 100
John Fitzgerald, 1, 16, 71
O. Flege, 102
Chris Fox, 43, 44

B. Ganter, 38, 41, 43, 52, 101
D. Garlan, 103
Chris W. George, 1, 16, 63, 71
N. Goodman, 39
M.H. Graham, 103
M. Green, 101
G. Guizzardi, 102
C.A. Gunter, 102
E.L. Gunter, 102

Michael Reichhardt Hansen, 97
David Harel, 62
Maarit Harsu, 102
Rick Hayes-Roth, 102
C.A.R. Hoare, 62, 65, 97
D. Hoffman, 102

Michael A. Jackson, 41, 102, 104
Daniel Jackson, 1, 16, 71
Ivar Jacobson, 103, 104
Cliff B. Jones, 1, 16, 71

P. Knauber, 102
S. Kendal, 101
Kokichi Futatsugi, 71
S. Kripke, 39

C. T. R. Lai, 102
Leslie A. Lamport, 97
R. Laqua, 102
Peter Gorm Larsen, 1, 16, 71
Søren Lauesen, 104
H. Laycock, 39
H.S. Leonard, 39
S. Leśniewksi, 49
Stani law Leśniewksi, 39
E. Luschei, 49

P. McCorduck, 101
J.M.E. McTaggart, 31
N. Medvidovic, 103
D.H. Mellor, 43
E. Mettala, 103
R.E. Milne, 41
Till Mossakowski, 71
Peter David Mosses, 71
D. Muthig, 102

J.F. Nilsson, 101
L. Northrop, 102

Ernst-Rüdiger Olderog, 97
A. Oliver, 43

F. Peruzzi, 102
S.L. Pfleeger, 104
Rickard Platek, 102
K. Pohl, 102
Søren Prehn, 1, 16, 63, 71
R.S. Pressman, 104
R. Prieto-D̃ıaz, 101–102, 104
A.N. Prior, 31

Wolfgang Reisig, 62
James Rumbaugh, 103, 104
B. Russel, 39, 44

K. Schmid, 102
Scpall, 39
M. Shaw, 103
H. Siy, 102
B. Smith, 39
Ian Sommerville, 104
R. Studer, 101

R.H. Thayer, 104
S. Thiel, 102
Will Tracz, 102
R. Turner, 44

Axel van Laamsverde, 91, 104
F. van der Linden, 102
Johan van Benthem, 31
A.C. Varzi, 49

D.M. Weiss, 102
T. Widen, 102
R. Wille, 38, 41, 43, 52, 101

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

156 Domain Science & Engineering

Wilson, 39
Jim Woodcock, 1, 16, 71

P. Zave, 102
Zhou ChaoChen, 97

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 157

D RSL: The Raise Specification Language 521

D.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values
(of “that” type).

D.1.1 Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper
constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural
numbers, reals, characters, and texts. 522

type

[1] Bool true, false

[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

D.1.2 Composite Types 523

Composite types have composite values. That is, values which we consider to have proper
constituent (sub-)values, i.e., can be meaningfully “taken apart”. There are two ways of
expressing composite types: either explicitly, using concrete type expressions, or implicitly,
using sorts (i.e., abstract types) and observer functions. 524

[1] Concrete Composite Types: From these one can form type expressions: finite sets,
infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

158 Domain Science & Engineering

2. The integer type on integers ..., –2, –1, 0, 1, 2,

3. The natural number type of positive integer values 0, 1, 2, ...

4. The real number type of real values, i.e., values whose numerals can be written as an
integer, followed by a period (“.”), followed by a natural number (the fraction).

5. The character type of character values ′′a′′, ′′b′′, ...

6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

7. The set type of finite cardinality set values.

8. The set type of infinite and finite cardinality set values.

9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.

11. The list type of infinite and finite length list values.

12. The map type of finite definition set map values.

13. The function type of total function values.

14. The function type of partial function values.

15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression
kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the
parentheses serve as simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list,
or (A|B) →m (C|D|(E →m F)), etc.

16. The postulated disjoint union of types A, B, . . . , and C.

17. The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are
values of respective types. The distinct identifiers sel a, etc., designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of
respective types. The distinct identifiers sel a, etc., designate selector functions.

525

[2] Sorts and Observer Functions:

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three values — and
these are of type B, C, . . . , and D. A concrete type definition corresponding to the above
presupposing material of the next section

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 159

type

B, C, ..., D
A = B × C × ... × D

D.2 Type Definitions 526

D.2.1 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

type

A = Type expr

Some schematic type definitions are:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

527

where a form of [2–3] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due
to the use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

160 Domain Science & Engineering

D.2.2 Subtypes 528

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
The set of values b which have type B and which satisfy the predicate P, constitute the subtype
A:

type

A = {| b:B • P(b) |}

D.2.3 Sorts — Abstract Types 529

Types can be (abstract) sorts in which case their structure is not specified:

type

A, B, ..., C

D.3 The RSL Predicate Calculus 530

D.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or
false [or chaos]). Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean
connectives (i.e., operators). They can be read as: not, and, or, if then (or implies), equal

and not equal.

D.3.2 Simple Predicate Expressions 531

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ...,
z (or term expressions) designate non-Boolean values and let i, j, . . ., k designate number
values, then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 161

D.3.3 Quantified Expressions 532

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate
predicate expressions in which x, y and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at
least) one y (value in type Y) such that the predicate Q(y) holds; and there exists a unique
z (value in type Z) such that the predicate R(z) holds.

D.4 Concrete RSL Types: Values and Operations 533

D.4.1 Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

D.4.2 Set Expressions 534

[1] Set Enumerations: Let the below a’s denote values of type A, then the below designate
simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

535

[2] Set Comprehension: The expression, last line below, to the right of the ≡, expresses set
comprehension. The expression “builds” the set of values satisfying the given predicate. It is
abstract in the sense that it does not do so by following a concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

162 Domain Science & Engineering

D.4.3 Cartesian Expressions 536

[1] Cartesian Enumerations: Let e range over values of Cartesian types involving A, B, . . .,
C, then the below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

D.4.4 List Expressions 537

[1] List Enumerations: Let a range over values of type A, then the below expressions are
simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses the
set of integers from the value of ei to and including the value of ej . If the latter is smaller
than the former, then the list is empty.538

[2] List Comprehension: The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

D.4.5 Map Expressions 539

[1] Map Enumerations: Let (possibly indexed) u and v range over values of type T1 and
T2, respectively, then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u 7→v], ..., [u17→v1,u27→v2,...,un 7→vn] ∀ ∈ M

540

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 163

[2] Map Comprehension: The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

D.4.6 Set Operations 541

[1] Set Operator Signatures:

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset

22 ∪: (A-infset)-infset → A-infset

23 ∩: A-infset × A-infset → A-infset

24 ∩: (A-infset)-infset → A-infset

25 \: A-infset × A-infset → A-infset

26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

542

[2] Set Examples:

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

543

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

164 Domain Science & Engineering

[3] Informal Explication:

19. ∈: The membership operator expresses that an element is a member of a set.

20. 6∈: The nonmembership operator expresses that an element is not a member of a set.

21. ∪: The infix union operator. When applied to two sets, the operator gives the set whose
members are in either or both of the two operand sets.

22. ∪: The distributed prefix union operator. When applied to a set of sets, the operator
gives the set whose members are in some of the operand sets.

23. ∩: The infix intersection operator. When applied to two sets, the operator gives the set
whose members are in both of the two operand sets.

24. ∩: The prefix distributed intersection operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.544

25. \: The set complement (or set subtraction) operator. When applied to two sets, the
operator gives the set whose members are those of the left operand set which are not in
the right operand set.

26. ⊆: The proper subset operator expresses that all members of the left operand set are
also in the right operand set.

27. ⊂: The proper subset operator expresses that all members of the left operand set are
also in the right operand set, and that the two sets are not identical.

28. =: The equal operator expresses that the two operand sets are identical.

29. 6=: The nonequal operator expresses that the two operand sets are not identical.

30. card: The cardinality operator gives the number of elements in a finite set.
545

[4] Set Operator Definitions: The operations can be defined as follows (≡ is the definition
symbol):

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

D.4.7 Cartesian Operations 546

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 165

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

D.4.8 List Operations 547

[1] List Operator Signatures:

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

548

[2] List Operation Examples:

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

549

[3] Informal Explication:

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty
lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

166 Domain Science & Engineering

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of
elements larger than or equal to i, gives the ith element of the list. 550

• ̂: Concatenates two operand lists into one. The elements of the left operand list are
followed by the elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:551

[4] List Operator Definitions:

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

552

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 167

D.4.9 Map Operations 553

[1] Map Operator Signatures and Map Operation Examples:

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a17→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a17→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a7→b,a′ 7→b′,a′′7→b′′] † [a′ 7→b′′,a′′ 7→b′] = [a7→b,a′ 7→b′′,a′′7→b′]

554

∪: M × M → M [merge ∪]
[a7→b,a′ 7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a7→b,a′ 7→b′,a′′ 7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a7→b,a′ 7→b′,a′′7→b′′]\{a} = [a′ 7→b′,a′′ 7→b′′]

/: M × A-infset → M [restriction to]
[a7→b,a′ 7→b′,a′′7→b′′]/{a′,a′′} = [a′ 7→b′,a′′7→b′′]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a7→b,a′ 7→b′] ◦ [b 7→c,b′7→c′,b′′7→c′′] = [a7→c,a′ 7→c′]

555

[2] Map Operation Explication:

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like
an override of the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a re-
striction of the left operand map to the elements that are not in the right operand set.

556

• /: Restriction. When applied to two operand maps, it gives the map which is a restric-
tion of the left operand map to the elements of the right operand set.

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

168 Domain Science & Engineering

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition
set elements of the left operand map, m1, to the range elements of the right operand
map, m2, such that if a is in the definition set of m1 and maps into b, and if b is in the
definition set of m2 and maps into c, then a, in the composition, maps into c.

557

[3] Map Operation Redefinitions: The map operations can also be defined as follows:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

D.5 λ-Calculus + Functions 558

D.5.1 The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 169

D.5.2 Free and Bound Variables 559

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

D.5.3 Substitution 560

In RSL, the following rules for substitution apply:

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

D.5.4 α-Renaming and β-Reduction 561

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M).
We can rename the formal parameter of a λ-function expression provided that no free
variables of its body M thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free
variables of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

D.5.5 Function Signatures 562

For sorts we may want to postulate some functions:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: B×C → A

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

170 Domain Science & Engineering

D.5.6 Function Definitions 563

Functions can be defined explicitly:

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

564
Or functions can be defined implicitly:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments.

Partial functions should be assisted by preconditions stating the criteria for arguments to be
meaningful to the function.

D.6 Other Applicative Expressions 565

D.6.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

D.6.2 Recursive let Expressions 566

Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 171

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

D.6.3 Predicative let Expressions 567

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in
the body B(a).

D.6.4 Pattern and “Wild Card” let Expressions 568

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a7→b] ∪ m = map in ... end

let [a7→b,] ∪ m = map in ... end

D.6.5 Conditionals 569

Various kinds of conditional expressions are offered by RSL:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

172 Domain Science & Engineering

elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

D.6.6 Operator/Operand Expressions 570

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

D.7 Imperative Constructs 571

D.7.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative con-
structs. Imperative constructs are thus inevitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type
Unit.

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 173

D.7.2 Variables and Assignment 572

0. variable v:Type := expression
1. v := expr

D.7.3 Statement Sequences and skip 573

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value
or side-effect.

2. skip

3. stm 1;stm 2;...;stm n

D.7.4 Imperative Conditionals 574

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

D.7.5 Iterative Conditionals 575

6. while expr do stm end

7. do stmt until expr end

D.7.6 Iterative Sequencing 576

8. for e in list expr • P(b) do S(b) end

D.8 Process Constructs 577

D.8.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes,
then:

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values
of the designated types (A and B).

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

174 Domain Science & Engineering

D.8.2 Process Composition 578

Let P and Q stand for names of process functions, i.e., of functions which express willingness
to engage in input and/or output events, thereby communicating over declared channels. Let
P() and Q stand for process expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes:
either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two
processes are forced to communicate only with one another, until one of them terminates.

D.8.3 Input/Output Events 579

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively
“writes” an output.

D.8.4 Process Definitions 580

The below signatures are just examples. They emphasise that process functions must somehow
express, in their signature, via which channels they wish to engage in input and output events.

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

D.9 Simple RSL Specifications 581

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as
is often done in RSL. An RSL specification is simply a sequence of one or more types, values
(including functions), variables, channels and axioms:

type

...
variable

September 5, 2012: 11:29 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark Domain Science & Engineering

Domain Science & Engineering 175

...
channel

...
value

...
axiom

...

In practice a full specification repeats the above listings many times, once for each “module”
(i.e., aspect, facet, view) of specification. Each of these modules may be “wrapped” into
scheme, class or object definitions.48

48For schemes, classes and objects we refer to [9, Chap. 10]

A Precursor for Requirements Engineering c© Dines Bjørner September 5, 2012: 11:29, DTU Informatics, Techn.Univ.of Denmark

