
1

From Domain to Requirements⋆

Dines Bjørner

1 Faculté des Sciences, Bureau 266, LORIA & Université Henri Poincaré Nancy 1,
BP 239, F-54506 Vandœuvre lès Nancy, France.⋆⋆

2 Professor emeritus, DTU Informatics, Bldg. 325, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark.

3 Fredsvej 11, DK-2840 Holte, Danmark.
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Abstract We first present a summary of essentials of domain engineering, its
motivation, and its modelling of abstractions of domains through the mod-
elling of the intrinsics, support technologies, management and organisation,
rules and regulations, scripts, and human behaviour of whichever domain is
being described.

Then we present the essence of two (of three) aspects of requirements:
the domain requirements and the interface requirements prescriptions as they
relate to domain descriptions and we survey the basic operations that ”turn”
a domain description into a domain requirements prescription: projection,
instantiation, determination, extension and fitting. An essence of interface
requirements is also presented: the “merging” of shared entities, operations,
events and behaviours of the domain with those of the machine (i.e., the
hardware and software to be designed).

1.1 Introduction

This paper presents a model of early stages of software development that
is not conventional. The model is presented in two alternating ways: (i) we
present some of the principles and techniques of that unconventional software
development method, and (ii) we present — what in the end, that is, taken
across the paper, amounts to a relatively large example.

In summary: the objective of the present paper is to relate domain en-
gineering to requirements engineering and to show that one can obtain an
altogether different basis for requirements engineering.

⋆ Invited paper for the Festschrift for Ugo Montanari on the occasion of his 65th
anniversary June 12, 2008. Edited by Rocco di Nicola et al.

⋆⋆ This paper was written with the financial support of Université Henri Poincaré
and INRIA during the author’s two month visit: October 15 – December 14, 2007.

2 Dines Bjørner

1.2 The Triptych Principle of Software Engineering

We start, unconventionally, by enunciating a principle. The principle ex-
presses how we see software development as centrally consisting of three
“programming-like” phases based on the following observation: before soft-
ware can be designed we must understand its requirements, and before re-
quirements can be prescribed we must understand the application domain.
We therefore see software development proceeding, ideally, in three phases: a
first phase of domain engineering, a second phase of requirements engineering,
and a third phase of software design.

The first paragraphs of Sects. 1.3 and 1.4 explain what the objectives of
domain engineering and requirements engineering are. The sections otherwise
outline major development stages and steps of these two phases.

1.3 Domain Engineering

The objective of domain engineering is to create a domain description. A
domain description specifies entities, functions, events and behaviours of the
domain such as the domain stakeholders think they are. A domain description
thus (indicatively) expresses what there is. A domain description expresses no
requirements let alone anything about the possibly desired (required) software.

1.3.1 Stages of Domain Engineering

To develop a proper domain description necessitates a number of development
stages: (i) identification of stakeholders, (ii) domain knowledge acquisition,
(iii) business process rough-sketching, (iv) domain analysis, (v) domain mod-
elling: developing abstractions and verifying properties, (vi) domain validation
and (vii) domain theory building.

Business process (BP) rough-sketching amount to rough, narrative outlines
of the set of business processes as experienced by each of the stakeholder
groups. BP engineering is in contrast to BR re-engineering (BPR) which we
shall cover later, but briefly in Sect. 1.4.2.

We shall only cover domain modelling.

1.3.2 First Example of a Domain Description

We exemplify a transportation domain. By transportation we shall mean the
movement of vehicles from hubs to hubs along the links of a net.

1 From Domain to Requirements 3

Rough Sketching — Business Processes

The basic entities of the transportation “business” are the (i) nets with their
(ii) hubs and (iii) links, the (iv) vehicles, and the (v) traffic (of vehicles on the
net). The basic functions are those of (vi) vehicles entering and leaving the
net (here simplified to entering and leaving at hubs), (vii) for vehicles to make
movement transitions along the net, and (viii) for inserting and removing links
(and associated hubs) into and from the net. The basic events are those of
(ix) the appearance and disappearance of vehicles, and (x) the breakdown
of links. And, finally, the basic behaviours of the transportation business are
those of (xi) vehicle journey through the net and (xii) net development &
maintenance including insertion into and removal from the net of links (and
hubs).

Narrative — Entities

By an entity we mean something we can point to, i.e., something manifest, or
a concept abstracted from, such a phenomenon or concept thereof.

Among the many entities of transportation we start with nets, hubs, and links.
A transportation net consists of hubs and links. Hubs and links are different

kinds of entities. Conceptually hubs (links) can be uniquely identified. From
a link one can observe the identities of the two distinct hubs it links. From a
hub one can observe the identities of the one or more distinct links it connects.

Other entities such as vehicles and traffic could as well be described. Please
think of these descriptions of entities as descriptions of the real phenomena
and (at least postulated) concepts of an actual domain.

Formalisation — Entities

type H, HI, L, LI, N = H-set × L-set

value obs HI: H→HI, obs LI: L→LI, obs HIs: L→HI-set,obs LIs: H→LI-set
axiom

∀ (hs,ls):N •

card hs≥2 ∧ card ls≥1 ∧ ∀ h:H • h ∈ hs ⇒
∀ li:LI • li ∈ obs LIs(h) ⇒

∃ l′:L • l′ ∈ ls∧li=obs LI()∧obs HI(h) ∈ obs HIs(l′)∧
∀ l:L • l ∈ ls ⇒

∃ h′,h′′:H • {h′,h′′}⊆hs∧obs HIs(l)={obs HI(h′),obs HI(h′′)}
value xtr HIs: N → HI-set,xtr LIs: N → LI-set

4 Dines Bjørner

Narrative — Operations

By an operation (of a domain) we mean a function that applies to entities of
the domain and yield entities of that domain — whether these entities are
actual phenomena or concepts of these or of other phenomena.

Actions (by domain stakeholders) amount to the execution of operations.

Among the many operations performed in connection with transportation
we illustrate some on nets. To a net one can join new links in either of three
ways: The new link connects two new hubs — so these must also be joined ,
or The new link connects a new hub with an existing hub — so it must also
be joined, or The new link connects two existing hubs. In any case we must
either provide the new hubs or identify the existing hubs.

From a net one can remove a link. Three possibilities now exists: The
removed link would leave its two connected hubs isolated unless they are also
removed — so they are; The removed link would leave one of its connected
hubs isolated unless it is also removed — so it is; or The removed link connects
two hubs into both of which other links are connected — so all is OK. (Note
our concern for net invariance.) Please think of these descriptions of operations
as descriptions of the real phenomena and (at least postulated) concepts of an
actual domain. (Thus they are not prescriptions of requirements to software
let alone specifications of software operations.)

Formalisation — Operations

type

NetOp = InsLnk | RemLnk
InsLnk == 2Hs(h1:H,l:L,h2:H)|1H(hi:HI,l:L,h:H)|0H(hi1:HI,l:L,hi2:HI)
RemLnk == RmvL(li:LI)

value

int NetOp: NetOp → N
∼

→ N
pre int NetOp(op)(hs,ls) ≡

case op of

2Hs(h1,l,h2) →
{h1,h2}∩ hs={}∧l6∈ ls∧
obs HIs(l)={obs HI(h1),obs HI(h2)}∧

{obs HI(h1),obs HI(h2)}∩ xtr HIs(hs)={}∧
obs LIs(h1)={li}∧obs LIs(h2)={li},

1H(hi,l,h) → ...,
0H(hi1,l,hi2) → ...

end

int NetOp(op)(hs,ls) ≡
case op of

1 From Domain to Requirements 5

2Hs(h1,l,h2) →
(hs ∪ {h1,h2},ls ∪ {l}),

1H(hi,l,h) →
(hs\{xtr H(hi,hs)}∪{h,aLI(xtr H(hi,hs),obs LI(l))},ls ∪ {l}),

0H(hi1,l,hi2) → ...,
RmvL(li) → ...

end

xtr H: HI × H-set
∼

→ H
xtr H(hi,hs) ≡ let h:H • h ∈ hs ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ hs ∧ obs HI(h)=hi

aLI: H × LI → H, sLI: H × LI → H
aLI(h,li) as h′,

pre li 6∈ obs LIs(h), post obs LIs(h′)={li} ∪ obs LIs(h)∧ ...

sLI(h′,li) as h,
pre li ∈ obs LIs(h′), post obs LIs(h)=obs LIs(h′)\{li}∧ ...

The ellipses, . . . , shall indicate that previous properties of h holds for h′.

Narrative — Events

By an event of a domain we shall here mean an instantaneous change of domain
state (here, for example, “the” net state) not directly brought about by some
willed action of the domain but either by “external” forces or implicitly, as
an unintended result of a willed action.

Among the “zillions” of events that may occur in transportation we single out
just one. A link of a net ceases to exist as a link.4

In order to model transportation events we — ad hoc — introduce a trans-
portation state notion of a net paired with some — ad hoc — “conglomerate”
of remaining state concepts referred to as ω : Ω.

Formalisation — Events

type

Link Disruption == LiDi(li:LI)
channel

x:(Link Disruption|...)
value

transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

... ⌈⌉ let xv = x? in

6 Dines Bjørner

case xv of

LiDi(li) → (int NetOp(RmvL(li))(hs,ls),line dis(ω))
... end end ⌈⌉ ...

line dis: Ω → Ω

Narrative — Behaviours

By a behaviour we mean a possibly infinite sequence of zero, one or more
actions and events.

We illustrate just one of very many possible transportation behaviours.
A net behaviour is a sequence of zero, one or more executed net operations:

the openings (insertions) of new links (and implied hubs) and the closing
(removals) of existing links (and implied hubs), and occurrences of external
events (limited here to link disruptions).

Formalisation — Behaviours

channel

x:...
value

transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

... ⌈⌉ let xv = x? in case xv of ... end end

... ⌈⌉ let op:NetOp • pre IntNetOp(op)(n) in IntNetOp(op)(n) end ...

transportation: (N × Ω) → in x Unit

transportation(n,ω) ≡
let (n′,ω′) = transportation transition(n,ω) in

transportation (n′,ω′) end

1.3.3 Domain Modelling: Describing Facets

Domain modelling, as we shall see, entails modelling a number of domain
facets.

By a domain facet we mean one amongst a finite set of generic ways of
analysing a domain: a view of the domain, such that the different facets cover
conceptually different views, and such that these views together cover the
domain.

These are the facets that we find “span” a domain in a pragmatically
sound way: intrinsics, support technology, management & organisation, rules
& regulations, scripts and human behaviour: We shall now survey these facets.

1 From Domain to Requirements 7

Domain Intrinsics

By domain intrinsics we mean those phenomena and concepts of a domain
which are basic to any of the other facets (listed earlier and treated, in some
detail, below), with such domain intrinsics initially covering at least one spe-
cific, hence named, stakeholder view.

For the large example of Sect. 1.3.2, we claim that the net, hubs and links were
intrinsic phenomena of the transportation domain; and that the operations of
joining and removing links were not: one can explain transportation without
these operations. We will now augment the domain description of Sect. 1.3.2
with an intrinsic concept, namely that of the states of hubs and links: where
these states indicate desirable directions of flow of movement.

A Transportation Intrinsics — Narrative.

With a hub we can associate a concept of hub state. The pragmatics of a hub
state is that it indicates desirable directions of flow of vehicle movement from
(incoming) links to (outgoing) links. The syntax of indicating a hub state is
(therefore) that of a possibly empty set of triples of two link identifiers and
one hub identifier where the link identifiers are those observable from the
identified hub.

With a link we can associate a concept of link state. The pragmatics of a
link state is that it indicates desirable directions of flow of vehicle movement
from (incoming, identified) hubs to (outgoing, identified) hubs along an identi-
fied link. The syntax of indicating a link state is (therefore) that of a possibly
empty set of triples of pairs of identifiers of link connected hub and a link
identifier where the hub identifiers are those observable from the identified
link.

A Transportation Intrinsics — Formalisation.

type

X = LI×HI×LI [crossings of a hub], P = HI×LI×HI [paths of a link]
HΣ = X-set [hub states], LΣ = P-set [link states]

value

obs HΣ: H → HΣ, obs LΣ: L → LΣ,
xtr Xs: H → X-set, xtr Ps: L → P-set

xtr Xs(h) ≡
{(li,hi,li′)|li,li′:LI,hi:HI•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

xtr Ps(l) ≡
{(hi,li,hi′)|hi,hi′:HI,li:LI•{hi,hi′}=obs HIs(l)∧li=obs LI(l)}

axiom ∀ n:N,h:H;l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
obs HΣ(h)⊆xtr Xs(h) ∧ obs LΣ(l)⊆xtr Ps(l)

8 Dines Bjørner

Domain Support Technologies

By domain support technologies we mean ways and means of implementing
certain observed phenomena or certain conceived concepts.

A Transportation Support Technology Facet — Narrative, 1.

Earlier we claimed that the concept of hub and link states was an intrinsics
facet of transport nets. But we did not describe how hubs or links might change
state, yet hub and link state changes should also be considered intrinsic facets.
We there introduce the notions of hub and link state spaces and hub and link
state changing operations. A hub (link) state space is the set of all states
that the hub (link) may be in. A hub (link) state changing operation can be
designated by the hub and a possibly new hub state (the link and a possibly
new link state).

A Transportation Support Technology Facet — Formalisation, 1.

type HΩ = HΣ-set, LΩ = LΣ-set

value obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom ∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
value

chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′, pre hσ ∈ obs HΩ(h), post obs HΣ(h′)=hσ

chg LΣ(l,lσ) as l′, pre lσ ∈ obs LΩ(h), post obs HΣ(l′)=lσ

A Transportation Support Technology Facet — Narrative, 2.

Well, so far we have indicated that there is an operation that can change
hub and link states. But one may debate whether those operations shown are
really examples of a support technology. (That is, one could equally well claim
that they remain examples of intrinsic facets.) We may accept that and then
ask the question: How to effect the described state changing functions ? In
a simple street crossing a semaphore does not instantaneously change from
red to green in one direction while changing from green to red in the cross
direction. Rather there is are intermediate sequences of green/yellow/red and
red/yellow/green states to help avoid vehicle crashes and to prepare vehicle
drivers. Our “solution” is to modify the hub state notion.

A Transportation Support Technology Facet — Formalisation, 2.

type

Colour == red | yellow | green
X = LI×HI×LI×Colour [crossings of a hub]
HΣ = X-set [hub states]

1 From Domain to Requirements 9

value

obs HΣ: H → HΣ, xtr Xs: H → X-set

xtr Xs(h) ≡
{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

A Transportation Support Technology Facet — Narrative, 3.

We consider the colouring, or any such scheme, an aspect of a support tech-
nology facet. There remains, however, a description of how the technology
that supports the intermediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of
“stable” (that is non-yellow coloured) hub states (hσi,hσf) to well-ordered se-
quences of intermediate “un-stable’ (that is yellow coloured) hub states paired
with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉
and so that each of these intermediate states can be set, according to the time
interval information,5 before the final hub state (hσf) is set.

A Transportation Support Technology Facet — Formalisation, 3.

type

TI [time interval]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema,
chg HΣ: H × HΣ → H,
chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg HΣ Seq(h,hσ) ≡
let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else

let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);
wait tδ;
sig seq(h′)(tl sigseq) end end end

10 Dines Bjørner

Domain Management & Organisation

By domain management we mean people (such decisions) (i) who (which)
determine, formulate and thus set standards (cf. rules and regulations, a later
lecture topic) concerning strategic, tactical and operational decisions; (ii) who
ensure that these decisions are passed on to (lower) levels of management, and
to “floor” staff; (iii) who make sure that such orders, as they were, are indeed
carried out; (iv) who handle undesirable deviations in the carrying out of
these orders cum decisions; and (v) who “backstop” complaints from lower
management levels and from floor staff.

We use the connective ‘&’ (ampersand) in lieu of the connective ‘and’ in
order to emphasise that the joined concepts (A & B) hang so tightly together
that it does not make sense to discuss one without discussing the other.

By domain organisation we mean the structuring of management and non-
management staff levels; the allocation of strategic, tactical and operational
concerns to within management and non-management staff levels; and hence
the “lines of command”: who does what and who reports to whom — admin-
istratively and functionally.

A Transportation Management & Organisation Facet — Narrative.

In the previous section on support technology we did not describe who or
which “ordered” the change of hub states. We could claim that this might
very well be a task for management.

(We here look aside from such possibilities that the domain being modelled
has some further support technology which advices individual hub controllers
as when to change signals and then into which states. We are interested in
finding an example of a management & organisation facet — and the upcoming
one might do!)

So we think of a ‘net hub state management’ for a given net. That man-
agement is divided into a number of ‘sub-net hub state managements’ where
the sub-nets form a partitioning of the whole net. For each sub-net man-
agement there are two kinds management interfaces: one to the overall hub
state management, and one for each of interfacing sub-nets. What these man-
agements do, what traffic state information they monitor, etcetera, you can
yourself “dream” up. Our point is this: We have identified a management
organisation.

A Transportation Management & Organisation Facet — Formalisation.

type

HIsLIs = HI-set×LI-set,
MgtNet′ = HIsLIs×N, MgtNet={|mgtnet:MgtNet′•wf MgtNet(mgtnet)|}
Part′ = HIsLIs-set×N, Part={|part:Part′•wf Part(part)|}

value

1 From Domain to Requirements 11

wf MgtNet: MgtNet′ → Bool

wf MgtNet((his,lis),n) ≡
[The his component contains all the hub ids.
of links identified in lis]

wf Part: Part′ → Bool

wf Part(hisliss,n) ≡
∀ (his,lis):HIsLIs •

(his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[no sub−net overlap and together they ′′span′′ n]

Etcetera.

Domain Rules & Regulations

Domain Rules.

By a domain rule we mean some text (in the domain) which prescribes how
people or equipment are expected to behave when dispatching their duty,
respectively when performing their function.

Domain Regulations.

By a domain regulation we mean some text (in the domain) which prescribes
what remedial actions are to be taken when it is decided that a rule has not
been followed according to its intention.

A Transportation Rules & Regulations Facet — Narrative.

The purpose of maintaining an appropriate set of hub (and link) states may
very well be to guide traffic into “smooth sailing” — avoiding traffic accidents
etc. But this requires that vehicle drivers obey the hub states, that is, the
signals. So there is undoubtedly a rule that says: Obey traffic signals.And, in
consequence of human nature, overlooking or outright violating signals there
is undoubtedly a regulation that says: Violation of traffic signals is subject to
fines and

A Transportation Rules & Regulations Facet — Formalisation.

We shall, regretfully, not show any formalisation of the above mentioned rule
and regulation. To do a proper job at such a formalisation would require that
we formalise traffics, say as (a type of) continuous functions from time to
pairs of net and vehicle positions, that we define a number of auxiliary (traffic
monitoring) functions, including such which test whether from one instance
of traffic, say at time t to a “next” instance of time, t′, some one or more

12 Dines Bjørner

vehicles have violated the rule6, etc. The “etcetera” is ominous: It implies
modelling traffic wardens (police trying to apprehend the “sinner”), ‘etc.’ !
We rough-sketch an incomplete formalisation.

type

T [time], V [vehicle], Rel Distance = {| f:Rel • 0<f<1 |}
VPos == VatH(h:H) | VonL(hif:HI,l:L,hit:HI,rel distance:Rel Distance)
Traffic = T → (N × (V →m VPos))

value violations: Traffic → (T×T) → V-set

Vehicle positions are either at hubs or some fraction f down a link (l) from
some hub (hit) towards the connected hub (hit). Traffic maps time into vehicle
positions. We omit a lengthy description of traffic well-formedness.

Domain Scripts

By a domain script we mean the structured, almost, if not outright, formally
expressed, wording of a rule or a regulation that has legally binding power,
that is, which may be contested in a court of law.

A Transportation Script Facet — Narrative.

Regular buses ply the network according to some time table. We consider a
train time table to be a script. Let us take the following to be a sufficiency
narrative description of a train time table. For every train line, identified by
a line number unique to within, say a year of operation, there is a list of train
hub visits. A train hub visit informs of the intended arrival and departure
times at identified hubs (i.e., train stations) such that “neighbouring” hub
visits, (tai

, hi, tdi
) and (taj

, hj, tdj
), satisfy the obvious that a train cannot

depart before it has arrived, and cannot arrive at the next, the “neighbouring”
station before it has departed from the previous station, in fact, taj

− tdi
must

be commensurate with the distance between the two stations.

A Transportation Script Facet — Formalisation.

type

TLin
HVis = T × HI × T
Journey′ = HVis∗, Journey = {|j:Journey′

•len j≥2|}
TimTbl′ = (TLin →m Journey) × N
TimTbl = {| timtbl:TimTbl′ • wf TimTbl(timtbl) |}

value

wf TimTbl: TimTbl′ → Bool

wf TimTbl(tt,n) ≡

1 From Domain to Requirements 13

[all hubs designated in tt must be hubs of n]
[and all journeys must be along feasible links of n]
[and with commensurate timing net n constraints]

Domain Human Behaviour

By human behaviour we mean any of a quality spectrum of carrying out as-
signed work: from (i) careful, diligent and accurate, via (ii) sloppy dis-
patch, and (iii) delinquent work, to (iv) outright criminal pursuit.

Transportation Human Behaviour Facets — Narrative.

We have already exemplified aspects of human behaviour in the context of the
transportation domain, namely vehicle drivers not obeying hub states. Other
example can be given: drivers moving their vehicle along a link in a non-open
direction, drivers waving their vehicle off and on the link, etcetera. Whether
rules exists that may prohibit this is, perhaps, irrelevant. In any case we can
“speak” of such driver behaviours — and then we ought formalise them !

Transportation Human Behaviour Facets — Formalisation.

But we decide not to. For the same reason that we skimped proper formali-
sation of the violation of the “obey traffic signals” rule. But, by now, you’ve
seen enough formulas and you ought trust that it can be done.

off on link: Traffic → (T×T)
∼

→ (V →m VPos×VPos)

wrong direction: Traffic → T
∼

→ (V →m VPos)

1.3.4 Discussion

We have given a mere glimpse of a domain description. A full description of
a reasonably “convincing” domain description will take years to develop and
will fill many pages (hundreds, . . . (!)).

1.4 Requirements Engineering

The objective of requirements engineering is to create a requirements prescrip-
tion: A requirements prescription specifies externally observable properties of
entities, functions, events and behaviours of the machine such as the require-
ments stakeholders wish them to be. The machine is what is required: that

14 Dines Bjørner

is, the hardware and software that is to be designed and which are to satisfy
the requirements. A requirements prescription thus (putatively) expresses what
there should be. A requirements prescription expresses nothing about the de-
sign of the possibly desired (required) software. We shall show how a major
part of a requirements prescription can be “derived” from “its” prerequisite
domain description.

The Example Requirements

The domain was that of transportation. The requirements is now basically
related to the issuance of tickets upon vehicle entry to a toll road net and
payment of tickets upon the vehicle leaving the toll road net both issuance
and collection/payment of tickets occurring at toll booths which are hubs
somehow linked to the toll road net proper. Add to this that vehicle tickets
are sensed and updated whenever the vehicle crosses an intermediate toll road
intersection.

tp1 tp2 tp3 tpntpn−1tpj

l12

l21 l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

Fig. 1.1. A simple, linear toll road net: tpi: toll plaza i, ti1, tin: terminal intersection
k, iik: intermediate intersection k, 1<k<n lxy: tollway link from ix to iy , y=x+1
or y=x-1 and 1≤x<n.

1.4.1 Stages of Requirements Engineering

The following are the stages of requirements engineering: stakeholder iden-
tification, business process re-engineering , domain requirements development,
interface development, machine requirements development, requirements veri-
fication and validation, and requirements satisfiability and feasibility.

The domain requirements development stage consists of a number of steps:
projection, instantiation, determination, extension, and fitting.

We shall basically only cover business process re-engineering and domain
requirements development

1 From Domain to Requirements 15

1.4.2 Business Process Re-engineering

Business process re-engineering (BPR) re-evaluates the intrinsics, support
technologies, management & organisation, rules & regulations, scripts, and
human behaviour facets while possibly changing some or all of these, that is,
possibly rewriting the corresponding parts of the domain description.

Re-engineering Domain Entities

The net is arranged as a linear sequence of two or more (what we shall call)
intersection hubs. Each intersection hub has a single two-way link to (what
we shall call) an entry/exit hub (toll plaza); and each intersection hub has
either two or four one-way (what we shall call) tollway links: the first and the
last intersection hub (in the sequence) has two tollway links and all (what we
shall call) intermediate intersections has four tollway links. We introduce a
pragmatic notion of net direction: “up” and “down” the net, “from one end
to the other”. This is enough to give a hint at the re-engineered domain.

Re-engineering Domain Operations

We first briefly sketch the tollgate Operations. Vehicles enter and leave the
tollway net only at entry/exit hubs (toll plazas). Vehicles collect and re-
turn their tickets from and to tollgate ticket issuing, respectively payment
machines. Tollgate ticket-issuing machines respond to sensor pressure from
“passing” vehicles or by vehicle drivers pressing ticket-issuing machine but-
tons. Tollgate payment machines accept credit cards, bank notes or coins in
designated currencies as payment and returns any change.

We then briefly introduce and sketch an operation performed when vehicles
cross intersections: The vehicle is assumed to possess the ticket issued upon
entry (in)to the net (at a tollgate). At the crossing of each intersection, by
a vehicle, its ticket is sensed and is updated with the fact that the vehicle
crossed the intersection.

The updated domain description section on support technology will detail
the exact workings of these tollgate and internal intersection machines and
the domain description section on human behaviour will likewise explore the
man/machine facet.

Re-engineering Domain Events

The intersections are highway-engineered in such a way as to deter vehicle
entry into opposite direction tollway links, yet, one never knows, there might
still be (what we shall call ghost) vehicles, that is vehicles which have somehow
defied the best intentions, and are observed moving along a tollway link in
the wrong direction.

16 Dines Bjørner

Re-engineering Domain Behaviours

The intended behaviour of a vehicle of the tollway is to enter at an entry hub
(collecting a ticket at the toll gate), to move to the associated intersection,
to move into, where relevant, either an upward or a downward tollway link,
to proceed (i.e., move) along a sequence of one or more tollway links via
connecting intersections, until turning into an exit link and leaving the net at
an exit hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed
to requirements prescription proper.

1.4.3 Domain Requirements Prescription

A domain requirements prescription is that part of the overall requirements pre-

scription which can be expressed solely using terms from the domain description.

Thus to construct the domain requirements prescription all we need is col-
laboration with the requirements stakeholders (who, with the requirements
engineers, developed the BPR) and the possibly rewritten (resulting) domain
description.

Domain Projection

By a domain projection we mean a subset of the domain description, one which
leaves out all those entities, functions, events, and (thus) behaviours that
the stakeholders do not wish represented by the machine.

The resulting document is a partial domain requirements prescription.

Domain Projection — Narrative.

We copy the domain description and call the copy a 0th version domain re-
quirements prescription. From that document we remove all mention of link
insertion and removal functions, to obtain a 1st version domain requirements
prescription.

Domain Projection — Formalisation.

We do not show the resulting formalisation.

Domain Instantiation

By domain instantiation we mean a refinement of the partial domain require-
ments prescription, resulting from the projection step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours

1 From Domain to Requirements 17

of the partial domain requirements prescription more concrete, more specific.
Instantiations usually render these concepts less general.

Domain Instantiation — Narrative.

The 1st version domain requirements prescription is now updated with respect
to the properties of the toll way net: We refer to Fig. 1.1 and the preliminary
description given in Sect. 1.4.2. There are three kinds of hubs: tollgate hubs
and intersection hubs: terminal intersection hubs and proper, intermediate
intersection hubs. Tollgate hubs have one connecting two way link. linking
the tollgate hub to its associated intersection hub. Terminal intersection hubs
have three connecting links: (i) one, a two-way link, to a tollgate hub, (ii) one
one-way link emanating to a next up (or down) intersection hub, and (iii) one
one-way link incident upon this hub from a next up (or down) intersection
hub. Proper intersection hubs have five connecting links: one, a two way
link, to a tollgate hub, two one way links emanating to next up and down
intersection hubs, and two one way links incident upon this hub from next
up and down intersection hub. (Much more need be narrated.) As a result we
obtain a 2nd version domain requirements prescription.

Domain Instantiation — Formalisation, Toll Way Net.

type

TN = ((H × L) × (H × L × L))∗ × H × (L × H)
value

abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,(,hn)) ≡

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):
((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

tn links: TN → L-set

tn links(hll, ,(ln,)) ≡ ... as above ...

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

Domain Instantiation — Formalisation, Well-formedness.

type

LnkM == plaza | way

18 Dines Bjørner

ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk
lnk

lkn

thn

ln

hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. 1.2. A simple, linear toll road net: thi: toll plaza i, h1, hn: terminal
intersections, h2, hj , h

′

j , hk: intermediate intersections, 1<j≤k, k=n-1 lxy, lyx: toll-
way link from hx to hy and from hy to hx, 1≤x<n. lx−1x, lxx−1: tollway link from
hx−1 to hx and hx to hx−1, 1≤x<n, dashed links are not in formulas.

value

wf TN: TN → Bool

wf TN(tn:(hll,h,(ln,hn))) ≡
wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [to be defined under Determination]

value

wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool

wf Toll Ways(hll,h) ≡
∀ j:Nat • {j,j+1}⊆inds hll ⇒

let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),
(,(hj′, ,)) = hll(j+1) in

wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in

wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

value
wf Toll Lnk: (H×L×H) → LnkM → Bool

wf Toll Lnk(h,l,h′)(m) ≡
obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),

(obs HI(h′),obs LI(l),obs HI(h))} ∧
obs Σ(l) = case m of

plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

1 From Domain to Requirements 19

Domain Determination

By domain determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours
of the partial domain requirements prescription less non-determinate, more
determinate. Instantiations usually render these concepts less general.

Domain Determination — Narrative.

We single out only two ’determinations’: The link state spaces. There is only
one link state: the set of all paths through the link, thus any link state space is
the singleton set of its only link state. The hub state spaces are the singleton
sets of the “current” hub states which allow these crossings: (i) from terminal
link back to terminal link, (ii) from terminal link to emanating tollway link,
(iii) from incident tollway link to terminal link, and (iv) from incident tollway
link to emanating tollway link. Special provision must be made for expressing
the entering from the outside and leaving toll plazas to the outside.

Domain Determination — Formalisation.

wf State Spaces: TN → Bool

wf State Spaces(hll,hn,(thn,tln)) ≡
let ((th1,tl1),(h1,l12,l21)) = hll(1),

((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in

wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = { [crossings at toll plazas]

(′′external′′,obs HI(th),obs LI(tl)),
(obs LI(tl),obs HI(th),′′external′′),

(obs LI(tl),obs HI(th),obs LI(tl))} ∧
obs HΩ(th) = {obs HΣ(th)} ∧ obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = {[crossings at 3−link end hubs]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

20 Dines Bjørner

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[crossings at properly intermediate, 5−link hubs]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we
should — in principle — be satisfied.

Domain Extension

By domain extension we understand the introduction of domain entities, func-
tions, events and behaviours that were not feasible in the original domain, but
for which, with computing and communication, there is the possibility of fea-
sible implementations, and such that what is introduced become part of the
emerging domain requirements prescription.

Domain Extension — Narrative.

The domain extension is that of the controlled access of vehicles to and depar-
ture from the toll road net: the entry to (and departure from) tollgates from
(respectively to) an "an external" net — which we do not describe; the new
entities of tollgates with all their machinery; the user/machine functions: upon
entry: driver pressing entry button, tollgate delivering ticket; upon exit: driver
presenting ticket, tollgate requesting payment, driver providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to
cruise the entire net payment is a function of the totality of links traversed,
possibly multiple times. This requires, in our case, that tickets be made such
as to be sensed somewhat remotely, and that intersections be equipped with
sensors which can record and transmit information about vehicle intersection
crossings. (When exiting the tollgate machine can then access the exiting
vehicles sequence of intersection crossings — based on which a payment fee
calculation can be done.)

All this to be described in detail — including all the thinks that can go
wrong (in the domain) and how drivers and tollgates are expected to react.

Domain Extension — Formalisation.

We suggest only some signatures:

1 From Domain to Requirements 21

type

Mach, Ticket, Cash, Payment, Map TN
value

obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)

calculate Payment: (HI×HI) → Map TN → Payment

press Entry: M → M × Ticket [gate up]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [gate up]

Domain Extension — Formalisation of Support Technology.

This example provides a classical requirements engineering setting for embed-
ded, safety critical, real-time systems, requiring, ultimately, the techniques
and tools of such things as Petri nets, statecharts, message sequence charts
or live sequence charts and temporal logics (DC, TLA+).

Requirements Fitting

The issue of requirements fitting arises when two or more software develop-
ment projects are based on what appears to be the same domain. The problem
then is to harmonise the two or more software development projects by har-
monising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
,

dr2
, . . . , drn

, being considered, and that these pertain to the same domain —
and can hence be assumed covered by a same domain description.

By requirements fitting we mean a harmonisation of n > 1 domain re-
quirements that have overlapping (common) not always consistent parts and
which results in n ‘modified and partial domain requirements’, and m ‘com-
mon domain requirements’ that “fit into” two or more of the ‘modified and
partial domain requirements’.

Requirements Fitting — Narrative.

We postulate two domain requirements: We have outlined a domain require-
ments development for software support for a toll road system. We have earlier
hinted at domain operations related to insertion of new and removal of ex-
isting links and hubs. We can therefore postulate that there are two domain
requirements developments, both based on the transport domain: one, drtoll

,

for a toll road computing system monitoring and controlling vehicle flow in

22 Dines Bjørner

and out of toll plazas, and another, drmaint.
, for a toll link and intersection

(i.e., hub) building and maintenance system monitoring and controlling link
and hub quality and for development.

The fitting procedure now identifies the shared of awareness of the net by
both drtoll

and drmaint.
of nets (N), hubs (H) and links (L). We conclude

from this that we can single out a common requirements for software that
manages net, hubs and links. Such software requirements basically amounts
to requirements for a database system. A suitable such system, say a rela-
tional database management system, DBrel, may already be available with
the customer.

In any case, where there before were two requirements (drtoll
, drmaint.

)

there are now four: (i) d′rtoll
, a modification of drtoll

which omits the de-

scription parts pertaining to the net; (ii) d′rmaint.
, a modification of drmaint.

which likewise omits the description parts pertaining to the net; (iii) drnet
,

which contains what was basically omitted in d′rtoll
and d′rmaint.

; and (iv)

dr
db:i/f

(for database interface) which prescribes a mapping between type

names of drnet
and relation and attribute names of DBrel.

Much more can and should be said, but this suffices as an example in a
software engineering methodology paper.

Requirements Fitting — Formalisation.

We omit lengthy formalisation.

Domain Requirements Consolidation

After projection, instantiation, determination, extension and fitting, it is time
to review, consolidate and possibly restructure (including re-specify) the do-
main requirements prescription before the next stage of requirements devel-
opment.

1.5 Discussion

1.5.1 An ‘Odyssey’

Our ‘Odyssey’ has ended. A long example has been given.
We have shown that requirements engineering can have an abstraction

basis in domain engineering; and we have shown that we do not have to start
software development with requirements engineering, but that we can start
software development with domain engineering and then proceed to a more
orderly requirements engineering phase than witnessed today.

1 From Domain to Requirements 23

1.5.2 Claims of Contribution

What is essentially new here is the claim and its partial validation that one
can and probably should put far more emphasis on domain modelling, the
domain modelling concepts, principles and techniques of business process do-
main intrinsics, domain support technologies, domain management and or-
ganisation, domain rules and regulations, domain scripts and domain human
behaviour; the identification of, and the decomposition of the requirements
development process into, domain requirements, interface requirements and
machine requirements; the domain requirements “derivation” concepts, prin-
ciples and techniques of projection, instantiation, determination, extension
and fitting and the identification of structuring of the interface ground re-
quirements shared entities, shared operations, shared events and shared be-
haviours.

1.5.3 Comparison to Other Work

Jackson’s Problem Frame approach [4] cleverly alternates between domain
analysis, requirements development and software design. For more satisfactory
comparisons between our domain engineering approach and past practices and
writings on domain analysis we refer to [3].

1.5.4 A Critique

A major presentation of domain and of requirements engineering is given in
[1, Chaps. 8–16 and 17–24]. [3] provides a summary, more complete presenta-
tion of domain engineering than the present paper allows, while [2] discusses
a set of research issues for domain engineering. Papers, like [3, 2], but for
requirements engineering, with more a complete presentation, respectively a
discussion of research issues for this new kind of requirements engineering
might be desirable. The current paper’s Sect. 1.4 provided a slightly revised
structuring of the interface requirements engineering.

Some of the development steps within the domain modelling and likewise
within the requirements modelling are refinements, and some are extensions.
If we ensure that the extensions are what is known as Conservative extensions
then all theorems of the source of the extension go through and are also valid in
the extension. Although such things are here rather clear much more should
be said here about ensuring Conservative extensions. We do not since the
current paper is is not aimed at the finer issues of the development but at the
domain to requirements “derivation” issues.

1.5.5 Programming Methodology versus Software Engineering

The following question has been formulated: How to make a programming
methodological approach like this become everyday software engineering prac-
tice ? For example, a small company willing to launch on the market a new

24 Dines Bjørner

idea in a specific domain, needs under this approach to build up a full domain
formalization. I fear that this could be felt as a too large burden. On the other
hand, using pre-cooked, public, standardized or third-party formalizations of
specific domains could end in constraining the imagination of innovators ?

The programming methodological answer is: Yes, one must build a domain
description, informal and, ideally speaking also formal.

The software engineering answer is: how “full” it should be: at least “big”
enough to encompass the requirements.

The science and engineering answer is: public universities must experimen-
tally develop and research sufficiently broad (scope) domain theories, while
private software houses adapt these to their narrower (span) application do-
mains, thus establishing proprietary, corporate assets.

The research answer is: We must study a programming methodology like
the one put forward in this paper. We must do so because the programming
methodology appears logical, sound. We cannot abstain from studying this
programming methodology just because (even a majority of) software engi-
neers “feels” that it is too large a burden to follow this approach “slavishly”.

1.6 Acknowledgments

I gratefully acknowledge support from Université Henri Poincaré (UHP),
Nancy, and from INRIA (l’Institut National de Recherche en Informatique
et en Automatique) both of France, for my two month stay at LORIA (Lab-
oratoire Lorrain de Recherche en Informatique et ses Applications), Nancy,
in the fall of 2007. I especially and warmly thank Dominique Méry for host-
ing me. And I thank the organisers of Ugo Montanari’s Festschrift, Pierpaolo
Degano, Jose Meseguer and Rocco De Nicola, for inviting me — thus forcing
me to willingly write this paper.

References

1. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Soft-
ware Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

2. Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer
Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

3. Dines Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in
Computer Science, the BCS FAC Series (eds. Paul Boca and Jonathan Bowen),
pages 1–42, London, UK, 2008. Springer. To appear.

4. Michael A. Jackson. Problem Frames — Analyzing and Structuring Software
Development Problems. ACM Press, Pearson Education. Addison–Wesley, Edin-
burgh Gate, Harlow CM20 2JE, England, 2001.

