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Multigroup Anisotropic Problem: I

µ
∂I

∂x
(x , µ) + ΣI (x , µ) =

1

2

∫ 1

−1
C (µ, µ′)I (x , µ′) dµ′ + q(x , µ).

Here, 0 < x < L = 30 and µ ∈ [−1, 0) ∪ (0, 1].
Σ is a given 6× 6 diagonal matrix, the source term q(x , µ) and
6× 6 scattrering cross section matrix C have epansions

q(x , µ) =
3∑

i=0

Pi (µ)qi (x),C (µ, µ′) =
3∑

i=0

Pi (µ)Pi (µ
′)Ti

The unknown I is a R6 valued function.
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Legendre Polynomials

Pi is the ith degree Legendre polynomial.∫ 1

−1
Pj(µ)Pi (µ) dµ = δij

2

2i + 1

P0(µ) = 1; P1(µ) = µ;

P2(µ) = 1
2(3µ2 − 1); P3(µ) = 1

2(5µ3 − 3µ)
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Multigroup Anisotropic Problem: II

In this example L = 30. Boundary Conditions:

Fl(µ) = (1, 0, 0, 0, 0, 0)T ,Fr (µ) = (0, 0, 0, 0, 0, 0)T .

Data: Σ and Ti are in transport data.m.

1

2

∫ 1

−1
C (µ, µ′)I (x , µ′) dµ′ + q(x , µ).

in Legendre Polynomials and we’ll find them.
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Fluxes: I

Define, for 0 ≤ k ≤ 3,

fk(x) =

∫ 1

−1
Pk(µ)I (x , µ) dµ

This is an R6-valued function of x .
Use the expansion for C

C (µ, µ′) =
3∑

i=0

Pi (µ)Pi (µ
′)Ti ,

and get . . .
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Fluxes: II

1

2

∫ 1

−1
C (µ, µ′)I (x , µ′) dµ′ =

∑3
i=0

∫ 1

−1
TiPi (µ)

∫ 1
−1 Pi (µ

′)I (x , µ′) dµ′

=
∑3

k=0 TkTk fk(x)

This transforms the Transport equation into
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Discretization: I

µ
∂I

∂x
(x , µ) + ΣI (x , µ) = S(x , u) ≡

3∑
k=0

TkPk(µ)fk(x) + q(x , µ).

So, if I know the 24 fluxes {fk} I can compute I as I did in the
scalar case.
We will do this with the same discretization as before. Let

φk
i ≈ fk(xi ) and ψj

i ≈ I (xi , µj)

then . . .
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Discretization: II

µj

ψj
i+1 − ψ

j
i

h
+ Σ

ψj
i+1 + ψj

i

2
=

S j
i+1 + S j

i

2
,

where

S j
i =

3∑
k=0

Pk(µj)Tkφ
k
i + q(xi , µj).

q ≡ 0 in this example.
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Forward Sweep

So, if µj > 0 you can do a forward sweep

ψj
i+1 =

(
µj I +

h

2
Σ

)−1
(

h
S j

i+1 + S j
i

2
+

(
µj I −

h

2
Σ

)
ψj

i

)

for i = 1, . . . ,N − 1.
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Backward Sweep

The backward sweep for µj < 0 is

ψj
i =

(
−µj I +

h

2
Σ

)−1
(

h
S j

i+1 + S j
i

2
+

(
−µj I −

h

2
Σ

)
ψj

i+1

)

for i = N − 1, . . . , 1.
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Source Iteration Map

So, given φ you can compute ψ. You have solved the transport
equation when

φk = S(φ)k ≡
NA∑
j=1

ψj
i Pk(µj)wj

This is the source iteration map for this problem.
This is tricky. Each ψk

i and ψj
i is is a vector in R6. So there are a

total of 6× 4× N unknowns in this problem.
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The Project

Your job is to

I Solve the problem with source iteration and match the fluxes
on the next page.

I Solve the problem with GMRES/BiCGSTAB/TFQMR. This
will require that you figure out a way to map the 24× N
unkowns into a single vector and back.

I Solve the problem with the multilevel method.
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The Answers: Table 3 from Siewert

PN method for multi-group or non-gray radiation transport 105 

Table 3. The group fluxes PO(r). 

Group T/Q = 0.0 T/Q = 0.25 T/To = 0.5 r/70 = 0.75 T/TO = 1.0 

1 1.09 1.6205(-4) 4.8524(-8) 1.4567(-11) 4(-15) 
2 2.30(-l) 3.7447(-2) 1.9639(-3) 1.0277(-4) 1.79(-6) 
3 2.92(-l) 1.8547(-l) 9.7989(-3) 5.1278(-4) 4.37(-6) 

4 3.06(-2) 2.0281(-2) 1.3884(-3) 7.2654(-5) 4.39(-7) 

5 6.00(4) 6.1078(4) 3.2260(-5) 1.6882(-6) 7.91(-9) 

6 7.31(-6) 7.2593(-6) 3.8325(-7) 2.0056(-S) 7.94(-11) 

Table 4. The group currents @P, (7). 

I Group T/To = 0.0 T/To = 0.25 r/nl = 0.5 T/TO = 0.75 

1 4.7192(-l) 1.0441(4) 3.1293(-8) 9.3942(-12) 3(-15) 

2 -9.9291(-2) 5.9818(-3) 3.1144(-4) 1.6359(-5) 1.0985(-6) 

3 -1.6297(-l) 8.7772(3) 4.6933(4) 2.4656(-5) 2.5198(-6) 

4 -1.7026(-2) 5.9229(A) 3.1693(-5) 1.6650(-6) 2.4654(-7) 

5 -3.2783(-4) 6.7184(-6) 3.5924(-7) 1.8873(-S) 4.3167(-g) 

6 -3.8625(-s) 2.8826(-S) 1.5337(-9) 8.0572(-11) 4.1041(-11) 

In addition to the data given in Tables 1 and 2, we note that here we use, as was suggested by 
GarciaI for a health-physics application, z,, = 30 cm which is equivalent to r0 = 45.156. For the 
boundary conditions, we use 

F,(P) = [i] and F2(p)= [i] (62a, b) 

for p E [0, 11. Finally, for this problem, there is no inhomogeneous source term in Eq. (3), 
i.e. Q(r, CL) = 0. 

In Tables 3 and 4 we report our results for the group fluxes and currents, as computed from 
Eqs. (50). To obtain the results shown in Tables 3 and 4, we have used both the Mark and Marshak 
boundary conditions. We have used both the straightforward formulation and, what we call, the 
Chandrasekhar formulation, and we have increased the order of the approximation until we have 
established some confidence that the reported results are accurate to f 1 unit in the last digits given. 
For the considered test problem, we found the results given in Tables 3 and 4 to be stable as the 
order of the approximation varied from, say, N = 199 to 499. In conclusion, we note that we found, 
for the considered test problem, no appreciable difference (especially as the order of the 
approximation was increased) in the results obtained from the two standard approximations, the 
Marshak and the Mark, to the true boundary conditions. 

In conclusion it should be noted that the results given in Tables 3 and 4 have not been 
confirmed, as we would have liked, by comparison with results from independent calculations. 
Though some effort has been made to find an existing computer code that can solve the considered 
multi-group problem, no success can be claimed. It appears (at least to the author) that several 
of the existing multi-group codes are not able to yield correct results for problems that have 
significant components of up-scattering. Needless to say, it is possible that errors have been made 
in the programs (written by the non-expert author) that yielded the results in Tables 3 and 4, and 
so the author would be grateful for communications that either confirm or dispute the reported 
results. 
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for providing the data for the six-group problem that was used as a test case. This work was supported in part by the North 
Carolina Supercomputing Center and the U.S. National Science Foundation. 
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Rules and Reality

I Projects due by Friday, July 8, 17:00 European time.
I You are pretty much on your own after Friday. So you should

formulate a plan of attack before the end of the week.
I Allan will be on a two week vacation. He will not be in room

12.
I Tim will be working on other things before leaving for Canada

and China. He will not be in room 10.

I I can answer short questions via email, but not the kind of
questions many of you have been asking me this week.
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