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What's in Friday's directory?

» This lecture.
» Corrections to the project lecture (typos)

» Matlab files, including knl.m + revised kl.m
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Newton’s Method

Notation

Objective: find a solution of
F(x)=0

where F: RN — RN,
We write F = (fi,...,fy)". The Jacobian matrix F' is

(F)ij = 01/ 0¢;

C. T. Kelley Transport |



Newton’s Method

Newton's Method

Transition from current point x. to new one x;..
! -1
Xt =xc — F'(x¢) " F(xe).

Interpretation: x4 is the root of the local linear model at x.

Mj(x) = F(>) + F'(3)(x — xj)
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Newton’s Method

0.6

0.4F

()

atan(x)
o

-0.2r y=m1(><) )

-0.6F (x‘,y1) 4

C. T. Kelley Transport |



Newton’s Method

Implementation of a Newton lteration

Evaluate F(x.); terminate?
Solve F'(xc)s = —F(xc)
Xy =Xc+S
Formulations of Newton differ in the way they solve for s.
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Newton’s Method

Convergence Theory for Exact Linear Solves

Standard Assumptions (SA):
» F(x*)=0

» F'(x*) is nonsingular.

» F'(x) is Lipschitz continuous with Lipschitz constant -y

IF'(x) = F'()Il < vllx = vl
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Newton’s Method

Convergence Theory: |

Theorem: SA implies that if

F'(x* -1
Jecl = e — x°) < 2

then F’(xc) is nonsingular and ||F’(xc)~Y| < 2||F'(x*)~ Y|
Proof: Lipschitz continuity implies that

F/(x* -1
1) — P < Al < IEGET

and so ...
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Newton’s Method

Convergence Theory: Il

1= F' ()T () < IFO)HIF (xe) = F/(x)I| < 1/2
so F'(x*)~! is an approximate inverse of F’(x.), and

IFee)

1P/ xe) 4 < 5
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Newton’s Method

Local Convergence Theory: Il

Recall the fundamental theorem of calculus:

1
F(x) — F(x*) = /OF/(X* + t(x — x*))(x — x*) dt.
F'(x*) =0, so let x = x. and ...
F(xe) = fo F/(xc + tec)ec dt

= F'(xc)ec + [y (F'(xc + tec) — F'(xc))ec dt
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Newton’s Method

Local Convergence Theory: Il

We are done since

er = ec— F(xe) M(F(xc)ec + [y (F'(xe + tec) — F'(xc))ec dt)

= —F'(x)~ fo (F'(xc + tec) — F'(xc))ec dt)

So,

x* -1
I 2 < e 2.

IF(
<
eyl < 15
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Newton’s Method

Bottom Line

SA and good data (||ep|| small) imply that
> x, — x*
» Convergence is g-quadratic

Things change if initial iterate is not close to x* or you use an
iterative method to compute s.
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Newton-Iterative Methods

Newton-lterative Methods

Replace exact (or direct) solution of
F'(xc)s = —F(xc)

with an iterative method.

Terminate the linear (inner) iteration when the inexact Newton
condition

IF(xc)s + F(xe) | < mell F(xc)
holds.
7 is called the forcing term.
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Newton-Iterative Methods

Options

Examples: Newton-GMRES, Newton-MG, Newton-Krylov-Schwarz
Jacobian-vector product:
F(x+ hv) — F(x)

h

F'(x)v ~
where h is scaled to capture the low-order bits.

h = [Ix|lv/émacn/ v
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Newton-Iterative Methods

Convergence Theory

Theorem: Assume that 1, < 77 < 1, SA, and good data. Then the
Newton iteration converges to x* and

lent1ll = O(llenll* + mallenll)

Proof: The idea is to compare the inexact Newton iteration to a
Newton iteration. The inexact iteration is

up = e+ = ue — F'(xe) THF(xe) + (F'(xc) T F(xe) + )
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Newton-Iterative Methods

Convergence Theory: I

The difference between the Newton iteration uﬂ and the inexact
iteration can be bounded

I(F' () HF(xe) + 9) 1 = [1F"(xe) "M (xe)s + F ()
< IF(xc)~HimellF (xc)
< 27| F' (<) THIIF ()

if xc is sufficiently near x*.
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Newton-Iterative Methods

Convergence Theory: Il

The final step is to estimate ||F(xc)||. Calculus says

1 1
IFeI = | / F(xe + tec)ec dt]| < / |F/(x + tec) | dtec]
0 0
Since, by SA,
IF/(x + tee) — F/(x)] < ytllec]
we see that

IF(x* + tee) | < IF' () + vtllec]
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Newton-Iterative Methods

Convergence Theory: IV

Bottom line:

IF () < (IF' () vtllecl) lecll
and so

I(F' (xe) " F(xe) + ) < 21 F/ () I O+ vt llec]D e

= O(nellecll + llec/®)-
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Newton-Iterative Methods

Convergence Theory: V

So
e |l = O(lled[| + nellecll + llecl”) = O(nellecll + llec?).

which proves the result.
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Newton-Iterative Methods

Remarks

» If n, = O(]|F(x»n)||) the convergence is quadratic.

» If n, — 0 the convergence is g-superlinear,

lentall/ll€nll — 0.

» |t is usually a poor idea to over solve in the inner iteration.
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Newton-Iterative Methods

Poor Data

Suppose you try to solve ‘arctan(x) = 0 with Newton and xp = 10.
The iterations are

10, —138,2.9 x 10*, —1.5 x 10°,9.9 x 10'7.

What happened?
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Newton-Iterative Methods

Line searches and the Armijo rule

Now we make a distinction between the Newton direction
d= —F'(XC)_lF(XC)

and the Newton step
X = Xy — Xc

Simply put, we find the least A =27 for m=0,1,... so that
[[F(xe + Ad)[| < [[F(xc)l

and use s = Ad. This process, a line search almost works.
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Newton-Iterative Methods

Saving the ArcTan iteration

Log Absolute Nonlinear Residual

Nonlinear iterations
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Newton-Iterative Methods

Sufficient Decrease and Termination

You need a little more to prove something. The sufficient decrease
condition is

IF(xe +27"d)|| < (1 = a27")[[F(x)ll;

Typical o = 1074,
We will terminate when the nonlinear residual ||F|| is small, i. e.
when

IF (xa) | < 72 + 7| F(x0)-
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Newton-Iterative Methods

Newton-Iterative Algorithm

nsolg(x, F, 7., 7/)
evaluate F(x); 7 < 7/ |F(x)| + Ta.
while ||F(x)|| > 7 do
Find d such that ||F'(x)d + F(x)|| < n||F(x)]|
If no such d can be found, terminate with failure.
A=1
while ||F(x + Ad)|| > (1 — a))||F(x)| do
A < o\ where o € [1/10,1/2] is computed by minimizing a
polynomial model of ||F(x, + Ad)||?.
end while
X — X+ Ad
end while
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Newton-Iterative Methods

Polynomial Models for Line Search

Most codes do not use a constant reduction factor for d. Theyh
approximate

$(A) = [IF(xc + Ad)|I?

» After one failed iteration, you have enough data to model (x.
and xc + d) with a linear model.

» After two or more iterations you have x, xc + 2Ad, and
Xc + Ad so can build a parabolic model.

» Minimize the model for A € [.1,.5] to get the new A.
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Newton-Iterative Methods

Theorem: Suppose F is Lipschitz continuously differentiable, {x,}
is the inexact Newton-Armijo sequence, 0 < n, < 71 < 1. The
there are only three possibilities:

> {x,} converges to a root x* of F at which the standard
assumptions hold, full steps (A = 1) are taken for n
sufficiently large, and the local convergence theory holds.

» The sequence {x,} is unbounded.

» The sequence {F’(x,)~!} is unbounded.
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Newton-Iterative Methods

A few examples

> f(x) = €; the Newton-Armijo sequence takes full steps and

e*e
Xy = Xe — =x.—1
+ c exe c

So x, — —inf.

» f(x) = x?>+1; You dont get full steps and x, — 0. What
happened?

Bottom line: you can'’t solve a problem with no solution.
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Newton-Iterative Methods

Chosing the forcing term 7

» Constants are often ok: 7 = .1,.01 (but not 1078)

» Eisenstat-Walker version 1

R = I F (xa)l1?/I1F (xa-1) I

v

Tries to get faster nonlinear convergence at the end.

v € (0,1] is a parameter you have to make up. v = .9 is
generally ok.

Trades work in the linear solver for fewer nonlinear iterations.
Can result is very volatile changes in n

v

v

v
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Newton-Iterative Methods

Eisenstat-Walker v2

ngafe = min(nmax, max(n,"fes, .5Tt/HF(Xn)H))'

Keeps the forcing term from getting to large and limits decreases.
Typical choices: Nmax = .9.
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Newton-Iterative Methods

Choosing a Solver

The most important issues in selecting a solver are
» the size of the problem,
» the cost of evaluating F and F’, and
» the way linear systems of equations will be solved.

The items in the list above are not independent.
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Newton-Iterative Methods

Rough guidelines

» Small N and cheap F; try direct methods and a forward
difference Jacobian (but see the example at the end of this
lecture for a different view).

» Large N or expensive F’; try matrix-free Newton-Krylov
solvers.

» Large N, very sparse F, only bad preconditioners; try sparse
differencing for the Jacobian and use a direct method.
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KNL: v0.05

function [sol, it_hist, ierr, x_hist] =
knl (x,f, nloptions,static_data)

Input:
> initial iterate = x

» function = f
Calling sequence is either fout = f(x) or
fout=f(x, static_data)
Precomputed data is the optional argument.

» nloptions = options structure. See knl_optset for documentation.

» optional input: static_data = precomputed data for function
evaluation, jacobian/preconditioner-vector product
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KNL: v0.05

» sol = solution

» it_hist(maxit,3) = |2 norms of nonlinear residuals for the
iteration, number of function evaluations, and number of
steplength reductions

» ierr = 0 upon successful termination
ierr = 1 failure after maxit iterations
ierr = 2 failure in the line search.

» optional output: x_hist = matrix of the entire iteration
history. The columns are the nonlinear iterates.
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KNL: v0.05

What it can do

» Choice of PCG, BiCGStab, TFQMR, GMRES Krylov solvers
directly from KL.

» Use KL options for the linear solver.

» Based on 15 year old solvers from red book, but better
organized and easier to learn and use.

» Can pass data to function, preconditioner, Jacobian-vector
product with optional last arguemtn static_data.

» Ability to use an analytic Jacobian-vector product if you have
one.

» Exciting opportunity to test new software and find bugs.
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KNL: v0.05

Setting Options

Use the knl _optset.m function to set

>

>

>

Relative rtol and absolute atol termination tolerances.
Limits on linear and nonlinear iterations.

Forcing term limit etamax or allow for fancy forcing term
control.

Flags to inform KNL if you can give it information for matvecs
or preconditioners.

Flag for preconditioners that depend on the nonlinear
iteration.

Options for KL (except for forcing term)
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KNL: v0.05

Defaults

» atol: 10712 rtol: 10~
» Linear solver: GMRES; mgs + orth test
» Maximum iterations: linear (40), nonlinear (40)

» Forcing term: Eisenstadt-Walker v2 + limit of .9 (but see
comments in code)
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Examples

Chandrasekhar H-Equation

) = - (1§ [ RO T

»0<pu<1;0<c<1
» Unknown H € CJ[0,1]
» Two solutions for 0 < ¢ < 1. Unique for ¢ =0, 1.
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Examples

Discretization

We will approximate the integrals by the composite midpoint rule.

N

! 1
/Of(u) dum 5 > ()

j=1
where p; = (i —1/2)/N for 1 < i < N.
Discrete equation in RV:

-1

c N
FOi =0 — [1- 55 Z

Nl"‘ﬂj
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Examples

Compact Form

Let
CHi

Aj=——>ri
T 2N (i + )
Once A is stored, F(x) can be rapidly evaluated as
Fx)i = ()i — (1 - (Ax);)
The Jacobian-vector product is given by

(Av);

(F'(x)v)i=vi— A= (A0

So, after you compute F(x), F'(x)v takes very little work.
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Examples

Matlab Demonstration
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Exercises

Exercises

Use KNL to solve
—u" 4 cos(u)u' = f(x), 0 < x < 1;u(0)=u(l)=0

with f(x) build so that the solution is e* sin(mx)
» Discretize with the standard centered difference formulae.

» Compare the performance of three preconditioners which only
use the high-order term.
» An exact solver for —u” = g (ie tridiagonal solve)
» An single V-cycle for —uv"’" =g
» Two-level additive Schwarz for —v”" = g
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