Introductory Programming
Exceptions and I/O: sections 8.0 — 8.3

Anne Haxthausen?®
IMM, DTU
1. Exceptions (section 8.0)
2. Input and output (I/O) (sections 8.1-8.3)

a. Parts of this material are inspired by/originate from a course at ITU developed by Niels Hallenberg and Peter Sestoft
on the basis of a course at KVL developed by Morten Larsen and Peter Sestoft. Translated into English by Philip

Heede.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-1

Exceptions

Programs must be able to signal and handle error situations — by throwing and handling
exceptions.

e What is an ‘exception’?

e How do you throw (Danish: kaster) an exception (using a throw statement)?

e How do you handle(Danish: handterer) an exception (usning try-catch clauses)?
o When do you declare an exception (using throws) in the method header?

e User-defined exception classes.

Errors in programs

Three types of errors:
1. Syntax errors: detected by the j avac compiler

2. Runtime errors (e.g. divide by zero): detected by the j ava interpreter and gives rise to
exceptions

3. Logical errors (the program does something else than planned): possibly discovered by testing

An exception is an event that occurs, when an error is detected during the execution of a

program. It causes execution to be halted, unless you perform exception handling.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-3

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-2

What is an exception?

An exception is an instance of a subclass of the class Thr owabl e.

It is used to signal and describe an error condition, or another exceptional situation, that occurs
at runtime.

The object includes:
e what exception class it is an instance of
e a description of the cause of the exception
e information about where the exception occurred

This information is printed by a call to the object's pri nt St ackTr ace method. The
object's get Message method returns the message as a string.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-4

Here is part of the class hierarchy for Thr owabl e, Err or, and Except i on:

Thr owabl e
Error (need not be decl ared)
Vi rt ual Machi neEr ror
Qut O Menor yEr r or
St ackOver fl owError
Excepti on (rmust be decl ared)
| OExcepti on
Fi | eNot FoundExcepti on
Runt i meExcepti on
Arithneti cException
I ndexQut OF BoundsExcepti on
111 egal Argunment Excepti on
Nurber For mat Excepti on

(need not be decl ared)

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-5

Example of an automatic (pre-defined) exception

When running
public class Arrayl ndex ({

public static void main (String[] args) {
int[] a ={1,2,3,4,5};
Systemout.printin(a[5]); // indexing error
Systemout.printin("WIIl not print");

the program is aborted with an error message:

Exception in thread "nain" java.l ang. Arrayl ndexQut Of BoundsExcepti on
at Arrayl ndex. mai n(Arrayl ndex. j ava: 4)

Throwing of exceptions

An exception is thrown when a runtime error occurs during the execution of a program.
Two types of runtime exceptions:

e pre-defined: a runtime exception is thrown automatically by the Java interpreter when an

error is detected

e user-defined: an exception is explicitly thrown by the programmer using the throw
statement

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-7

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-6

Example of explicitly thrown exception

The Date constructor below allows the construction of 'illegal’ dates, e.g. 1999-13-30 is
constructed with Dat e(1999, 13, 30)
Date(int year, int nmonth, int day) {

this.year = year; this.month = nmonth; this.day = day; }

A better solution: the constructor throws an exception, if it is asked to construct an illegal date:
class Date {

Date(int year, int nonth, int day) throws Exception {
if (ok(year, nonth, day))
{ this.year = year; this.nonth = nonth; this.day = day; }
el se
throw new Exception("Illegal date: "
+ year +" " + ponth + " " + day);

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-8

When running
public class Date-exn01 {

public static void main(String[] args) throws Exception {
Date d1 = new Date(1999, 13, 30); //illegal date
System out . println(dl);

the program is interrupted with an error message:

Exception in thread "nmain" java.lang. Exception: Illegal date: 1999 13 30
at Date. <init>(Date.java:8)
at Dat e-exnOl. mai n(Dat e- exn01. j ava: 3)

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-9

Ad 1: unhandled exceptions

When an exception is ignored in the program, the following happens:
1. the program stops

2. a message is printed with information about
(a) what exception occurred
(b) where in the program it occurred
e the first line contains the name of the method in which the exception was thrown and

any message that may be attached
e the remaining lines show which methods were called to reach the point of the failure

Exception handling

Ways to handle an exception:
1. ignore them as in the previous example
2. catch them (with try-catch)
(a) where it is created
(b) somewhere else in the program

Solution 1 can give excellent error descriptions but will cause the program to exit in the middle
of operations, which can be unfortunate.

Solution 2 gives the possibility that the program won'’t crash on an error, but can be ‘saved’ by

taking special action.

If solution 2b is used, you can collect errors from multiple parts of your program in one location
— good, if you are interested in catching errors for part of the program but you don'’t care about

exactly where the error occurred.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-11

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-10

Ad 2: catching exceptions with try-catch clauses

try
{

statenmentsl

}

catch (Exception exn)

{

st atement s2

e The statements in statementsl are executed.

e If an exception €1 is thrown during the execution of statements1, the statements in

statements2 are executed. Otherwise the statements in statements2 are ignored.

e During execution of statements2, the variable €Xn is bound to the exception object thrown
during the execution of statements1.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-12

Ad 2: example of catching an exception

public class Date-exnl {
public static void main(String[] args) {
try {
Date d1 = new Date(1999, 13, 30);
System out. println(dl);

Declaring exceptions
The exceptions Er r or and Runt i meExcept i on and their sub-classes are ‘unchecked’.
All other exceptions are ‘checked'.
For ‘checked’ exceptions the following rules apply:

If for a method M there is a risk that an exception E is thrown when it is called with (. . .)
and that this exception is not caught in the body of the method, then it must be declared in the
header of the method with throws E.

Example: see Dat e- exn01

‘Unchecked’ exceptions are never declared.

}
catch (Exception e)
{ Systemout.printin("Illegal date!"); }
Systemout.printin("We'll go to herel");
}
}
gives the following output:
11l egal datel
We'll go to here!
(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-13
Ad 2b: exception propagation
mai n level 1 level 2 level 3

try

{ level 2(); }

: catch (Exception ex) :

level 1(); { level 3();
: handle exception ex .

}

an exception is thrown

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-15

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-14

User-defined exception classes

It is possible to create your own exception classes.

For an example: see listing 8.6 in the book.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-16

Reading from the keyboard and writing to the screen

We already know how to:
e read from the keyboard using the methods in the Keyboar d class

e write to the screen using the methods Syst em out . pri nt and

/0 in Java .
Systemout. println
® Streams Example:
public static void main(String[] args) {
e Input from the keyboard and output to the screen int x:
e Input from and output to text files Systemout. print("Enter a nunber: ");
X = Keyboard. readlnt();
Systemout. println("The nunber is: " + x);
}

Enter a nunber: 13
The nunber is: 13

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-17 (©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-19

Streams .)]
Text files vs. binary files

In Java you use input and output streams to communicate with the surroundings: files, the o)))
A file is a named collection of data stored on a secondary storage device (e.g. hard disk, floppy

keyboard, etc.
disk or cd).

Java has a family of classes to create stream objects. See figure 8.3 in the book.
All files consist of bytes. 1 byte = 8 bits. A bit is either O or 1.

Streams can be divided into:
It is, however, different how bits are interpreted in different situations.

e input streams that have methods to read data from the surroundings

e output streams that have methods to write data to the surroundings Example:
and into Afile with four bytes:| 01001010 | 01100001 | 01110110 | 01100001
e character (text) streams that interpret the individual bytes as text characters If it is a text file, where each byte is to be interpreted as an ASCII character, the four bytes
)) represent the following characters: Eﬂ!ﬂ
e byte (binary) streams, where bytes are not interpreted but used ‘raw’

But if it is a binary file, the four bytes can be interpreted as something completely different, e.g.

If thi h f ing | | i on, which i -cl f .
anything goes wrong when performing I/O an | CExcept i on, which is a sub-class o a single integer (of type i Nt).

Except i on, is thrown.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-18 (©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-20

Text files

A text file is a sequence of characters.
Typical filenames: scor e. t xt, nunbers.txt, Tinme.java,

Example: The text file Scor el. t Xt that looks like this
Joe 3 4

John 4 5 6

consists of the following characters:

(3fofef Ja] [afrn]afofn|n] [a][s] [6]tn]

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-21

Reading of text files, step by step

1. Opening the file Scor el. t Xt and conversion to a buffered reader:
Fil eReader r = new Fil eReader ("scorel.txt");

Buf f eredReader in = new BufferedReader(r);

2. You can now read one line at a time from "scorel.txt” using i n. r eadl i ne() that

returnsa St ri ng:
String line = in.readline();

3. Reading a single line token by token:
StringTokeni zer tokenizer = new StringTokeni zer(line);

String token = tokenizer. next Token();

4. Convertt oken to an appropriate type: e.g. toani Nt using
I nt eger. parsel nt (token);

The whole process is wrapped in a try-catch clause to catch any exceptions that may occur.

Idea when reading text files
When reading text files, it is often more interesting to read whole words and numbers rather
than the single characters.

Often we don'’t care about a specific group of characters jointly called ‘whitespace’: blank, new

line and tabulator.

The individual numbers and words are called tokens.
Whitespace often separates the individual tokens.
The firstline in scor el. t Xt has 3 tokens:

yoe [3]4]

The second line in scor el. t Xt has 4 tokens:

| John [4]5]6 |

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-23

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-22

Example of reading a text file

Assignment:

Each line in the file Scor el. t Xt consists of the name of a golf-player and the number of

strokes used for each of the holes.

These data are to be read; and for each player the name of the player, the number of holes

played, and the total number of strokes used, is to be output on the screen:

Joe has played 2 holes and used 7 strokes
John has played 3 hol es and used 15 strokes

Solution: see Readi ng. j ava which can be downloaded from the homepage with the

overheads.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-24

Writing to a text file
public static void main(String[] args) throws | OException {

/] setup output streamw th name "nn" (e.g. "res.txt")
FileWiter wi = new FileWiter("nn"
PrintWiter out = new PrintWiter(wi);

/loutput to the file "nn" using the nethods

//*out.print’ and ‘out.println’

out.close(); // close the file after use

out above works the same way as our old friend Syst em out — i.e. we can, among other
things, write out . printI n("Eric"); orout.print(42);.

try-catch could also have been used here — then throws ... could have been avoided.

(©Haxthausen and Sestoft, IMM/DTU, 8th November 2002 02100+02115+02199+02312 Introductory Programming Page 8-25

