Introductory Programming
Inheritance, sections 7.0-7.4

Anne Haxthausen, IMM, DTU

1. Class hierarchies: superclasses and subclasses (sections 7.0, 7.2)
2. The Obj ect class: is automatically superclass for all classes (self study: section 7.2)
3. Abstract classes: serves as placeholders in class hierarchies (self study: section 7.2)
4. Inheritance: a subclass inherits fields and methods from its superclass (section 7.0)
5. Constructors are not inherited (section 7.0)
6. Visibility modifiers (section 7.0)
7. Type conversion and check (section 7.4)
8. Overriding of methods: redefining an inherited method (section 7.1)
9. Polymorphism: the class of an object decides which method is invoked (section 7.4)
10. Single versus multiple inheritance (section 7.0)

a. Parts of this material are inspired by/originate from a course at ITU developed by Niels Hallenberg and Peter Sestoft

on the basis of a course at KVL developed by Morten Larsen and Peter Sestoft.

Modelling concept hierarchies as class hierarchies

In Java and many other object-oriented programming languages concept hierarchies are
modelled by class hierarchies. (Classes represent concepts, as you know.)

superconcept=<------ - superclass

subconcept =------- subclass

A superclass models a general concept (e.g. a vessel), a subclass models a more special
concept (e.g. a tank).

Inheritance:
A subconcept has all the properties of its superconcept.

Therefore, a subclass has all fields and methods of its superclass. Often the subclass is made
more specific than the superclass by defining more fields and methods.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-1

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-3

Concept hierarchies

Examples of concepts are: animal, person, vessel, ...

Related concepts can be arranged in a hierarchy (according to how general they are).
Example 1: ‘animals’ can be divided into ‘mammals’ ('pattedyr’), ‘birds’, ‘fish’

Example 2: ‘vessels’ (‘beholdere’) can be divided into ‘barrels’ (‘tender’), ‘tanks’, ...

Vessel

fwm:m_ 7 7._.m:x 7

The concept ‘vessel’ is more general than ‘tank’, as one can say ‘a tank is a vessel'.

As every concept has some properties, one can also explain the hierarchy by saying that a
concept B is a subconcept of another concept A, if the subconcept B has (inherited/arvet) all
the properties of A and probably has some more properties.

Concept hierarchies are often used to describe the world around us.

Creation of class hierarchies in Java

Java has a language construct for making class hierarchies:

A class B can be defined as an extension of an existing class A so that A becomes a
superclass of B, and B a subclass of A.

class B extends A {
new fields and met hods
redefi ned nmet hods
constructors

A

(supercl ass)

(subclass)

Example:
cl ass Tank extends Vessel ({

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-2

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-4

Inheritance

A subclass inherits (arver) methods and fields, but not constructors, from its superclass.

They can be used in the subclass as if they were defined in the subclass.

methods that would otherwise have been inherited.

A subtlety of private fields and methods will be explained later.

In addition to that, a subclass can define new fields and methods, and/or override (overskrive)

Implementation of vessel hierarchy in Java
class Vessel {
doubl e contents; //in litre (= cubic decinetre, dni3)

cl ass Tank extends Vessel {
doubl e I ength, width, height; //in decinmetre, 1 dm= 10 cm

Tank(doubl e |1 ength, double wi dth, double height)

class Barrel extends Vessel {
doubl e radius, height; //in decinetre, 1 dm= 10 cm

Barrel (doubl e radi us, doubl e height)
{ this.radius = radius; this.height = height; }

{ this.length = length; this.width = width; this.height = height;

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-5
Example: class hierarchy for vessels
Class hierarchy
m class Vessel |
m contents ”
| classBarré class Tank m
m radi us I'ength |
' | height wi dth i
i hei ght i
Class Vessel should represent what is common for all kinds of vessels.
Class Bar r el should represent barrel formed vessels and Tank tank formed vessels.
Bar r el and Tank should inherit properties from Vessel .
Bar r el and Tank should each define properties that are special for barrels and tanks,
respectively.
(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-6

}
(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-7
Example: use of objects from the vessel hierarchy
public class Vessell {
public static void main(String[] args) {
Tank tank = new Tank(15, 9, 12);
Barrel barrel = new Barrel (2.5, 8);
tank.contents = 0; barrel.contents = 1.5;
Systemout. println("Contents of tank =" + tank.contents);
Systemout.println("Wdth of tank =" + tank.w dth);
}
}
All Tank- and Bar r el -objects have a cont ent s field, inherited from class Vessel .
(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-8

Objects in Vessel 1.] ava

; hei ght
hei ght

Memory
T
| |
| t ank barrel !
| |
i i
| : Tank : Barrel '
m contents contents i
' I'ength radi us |
! wi dth !
i i
| |
' I
| |
|

Exercise: Is it legal to write Syst em out . pri ntl n(barrel . wi dt h) »
System out . println(barrel.height) ?
System out. println(tank. height) ?

Example: invocation of super class constructors
cl ass Vessel {
doubl e contents;

Vessel () { contents = 0.0; }

Vessel (doubl e contents) { this.contents = contents; }
cl ass Tank extends Vessel {

doubl e I ength, width, height;

Tank(doubl e | ength, double wi dth, double height)

{ this.length = length; this.width = width; this.height = height; }
class Barrel extends Vessel {

doubl e radius, height;

Barrel (doubl e contents, double radius, double height)
{ super(contents); this.radius = radius; this.height = height; }

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-9

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-11

Constructors are not inherited

However, the first a subclass constructor does, is to invoke a constructor for its superclass.

This can be done explicitly with an invocation of the form super(...) .

If this is not done explicitly, then Java automatically makes an invocation of super() , i.e. of a
constructor with no parameters of the superclass. (Such a constructor exists automatically if

you have not defined one.)

public class Vessel 2 {
public static void main(String[] args) {
Tank tank = new Tank(15, 9, 12);

Barrel barrel = new Barrel (1.5, 2.5, 8);
Systemout.println("Contents of tank = " + tank.contents);
Systemout.println("Contents of barrel =" + barrel.contents);

Execution of this program gives the following output:

Contents of tank = 0.0
Contents of barrel = 1.5

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-10

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-12

Subtlety of private methods and fields

If a field (or a method) is private in a superclass A, then you cannot explicity refer to it in
subclasses of A.

However, the field exists in subclass objects.

Default visibility

The visibility properties for a field or a method that has no visibility modifier are like public in
classes (and subclasses) in the same package, and like private for classes (and subclasses)
in other packages.

Protected methods and fields

The visibility properties for a field or a method declared as protected are like public in classes
(and subclasses) in the same package and in all subclasses in other packages, but like private
for non subclasses in other packages.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-13

Type conversions
Implicit widening conversion from subclass to superclass

A variable of type T can refer to objects belonging to class T and its subclasses.

A variable that can refer to objects of different classes is named a polymorphic reference.

Example: (assume given the declarations on page 7 11)
Vessel v1 = new Vessel ();

Vessel v2 = new Tank(15, 9, 12);
Vessel v3 = new Barrel (1.5, 2.5, 8);

A variable (like v1, v2, v3)oftype Vessel can refer to an object of class Vessel ,
Tank orBarrel .

Example: private methods and fields

class Vessel {
private double contents; //in litre (= cubic decinetre, dnf3)
Vessel () { contents = 0.0; }
doubl e getcontents() { return contents; }

}

cl ass Tank extends Vessel { } /1 contents unknown nane in Tank
public class Vessel 6 {
public static void main(String[] args) {
Tank tank = new Tank(15, 9, 12);
Systemout.println("Contents of tank = " + tank.getcontents());

/1 Systemout.println("Contents of tank = + tank.contents); is illegd

b}

contents

length

width

hei ght

get _contents

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-15

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-14

Memory for the example

Memory
! !
| vl v2 v3 !
i]
! !
' 1l
(e) [cTew) [ceand) |
B G R R T
' I'ength radi us !
” wi dth hei ght !
! !
,]

hei ght

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-16

Check of access to the fields and methods of an object

Type conversions Rule:
Explicit narrowing conversion with cast from superclass to subclass Field access 0. f and method invocation 0. I(. . .) are checked wrt the declared type T of
the variable O:
Example:
Vessel v2 = new Tank(15, 9, 12); 0. f islegal, if T has a field f with appropriate visibility properties (behaves like public and
Vessel v3 = new Barrel (1.5, 2.5, 8); not like private at the given place). Similarly foro. m(...).
Tank tankl = v2; /lillegal (gives conpilation error)
Tank tank2 = (Tank) v2; :.m: explici ﬁ cast i m. needed Example: Vessel v2 = new Tank(15, 9, 12);
Tank tank3 = (Tank) v3; /lillegal (gives runtime error) . .
The variable V2 has type Vessel , and Vessel has afield cont ent s.
The type conversion (Tank) v 3 will give rise to a runtime error when the program is So the expression V2. cont ent s is accepted by the Java compiler.

executed as V3 does not refer to a Tank object.))
But Vessel does not have a field named Wi dt h, so the expression V2. Wi dt h is rejected

by the Java compiler, although Vv 2 actually refers to a Tank object that has a wi dt h field.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-17 (©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-19

Overriding of methods

Overloading

A variable has atype, an object has a class When a class defines several methods with the same name, but distinct parameter types, it is

o called overloading, cf. overhead collection 4.
Important distinction:
: . Overriding
e Avariable has a declared type, e.g. the variable V2 of the example above has type
Vessel . When a subclass (re-)defines a method with the same name M result type and parameter
types as the superclass does, it is called overriding (Danish: overskrivning). Then the subclass

® An object has (i.e. belongs to) a specific class. Which one, is determined by the
d (gsto) asp Y does not inherit the superclass method m but has its own version of M However, the version of

constructor that was used to create the object. .
the superclass can be accessed via super. (. . .).

E.g. an object created with new Tank(15, 9, 12) hasclass Tank.

This flexibility is good, because related classes can use the same name conventions for

methods that do “the same”.

If you declare a method to be final then you cannot override it.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-18 (©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-20

Example of overriding of a VOl UM method in the vessel hierarchy

cl ass Vessel {
doubl e contents;

doubl e volune() { return O; }
cl ass Tank extends Vessel {

doubl e I ength, width, height;

doubl e volune() { return length * width * height; }
class Barrel extends Vessel {

doubl e radius, height;

doubl e volune() { return height * Math.Pl * radius * radius; }

The subclasses override (overskriver, omdefinerer) the VOl unme method from the superclass.

Class hierarchy and memory for Vessel 4. j ava

Class hierarchy Memory

mm e) e e L L R E LT PP T R)
I ! | I
! class Vessel ! | vl v2 v3 va |
i I ! I
! contents | ! !
! vol ume i | |
| m i : Tank 7 7 : Tank 7 7 : Barrel 7 7 : Vessel 7 m
! 1 i contents contents contents contents |
! classBarrel classTank | | I ength length radi us vol ume !
! radi us length ' | wi dth wi dth hei ght !
I hei ght wi dth ! 1 hei ght hei ght vol ume !
I | vol ume hei ght ! ! vol une vol ume !
| vol ume ! | 1
! 1

Exercise: Which of the three VOl UMe methods are invoked by V1. vol unme(),
v2.vol ume(),v3. vol ume() andv4. vol unme() 2

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-21

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-23

public class Vessel 4 {
public static void main(String[] args) {
Vessel v1 = new Tank(15, 9, 12);
Vessel v2 = new Tank(0.7, 0.7, 2.05);
Vessel v3 = new Barrel (1.5, 2.5, 8);
Vessel v4 = new Vessel ();

Overriding and polymorphism

v1 is a polymorphic reference that can refer to Vessel , Tank and Bar r el objects. As
each of these have a Vol une method, there are potentially 3 possibilities for, which method
is invoked by V1. vol une() .

Which one, is determined by the class of that object V1 is referring to.

Hence, the declared type for v1 — which is Vessel — does not determine which method is
invoked. However, in Vessel there must be a method with the given name, otherwise the
Java compiler rejects the program (cf. the rule on page 19).

Rule:

Which version of an overridden method m that is invoked with 0. (. . .), depends on the

class of the object that O refers to, not the type of O.

Systemout. println("Volune of vl = + vl.volune());
Systemout. println("Volune of v2 =" + v2.volune());
Systemout. println("Volune of v3 =" + v3.volune());
Systemout. println("Volune of v4 =" + v4.volune());
}

}

Output when executing Vessel4:

Vol une of vl = 1620.0

Vol une of v2 = 1.0044999999999997

Vol une of v3 = 157.07963267948966

Vol une of v4 = 0.0

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-22

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-24

Example of use of super to invoke an overridden method

class Vessel {

Summary about the super reference

super is a reference like this.
1. Constructors from a superclass can be invoked from a subclass with super(...).
2. Methods m from a superclass can be invoked from a subclass with super. m(...).
3. Fields f from a superclass can be accessed with super. f.

2 and 3 do not hold, when m and f are private.

public String toString() { return "contents: " + contents + " [|I"; }
}
cl ass Tank extends Vessel {
public String toString() {
return "Tank with volune: " + volume() + " | and " + super.toString();
}
}
public class Vessel5 {
public static void main(String[] args) {
Vessel v1 = new Tank(15, 9, 12);
Systemout.println("vl: " + vl.toString());
}
Output: v1: Tank with volune: 1620.0 | and contents: 0.0 |
(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-25

Shadowing fields

If you in a subclass (re-)declare a field with the same name f as a field in its superclass, then
you get two fields.

The name of the field of the subclass is just f .

The field from the superclass can be accessed in the subclass as super. f (but not if it is
private).

Redeclaring fields usually results in errors and confusion. Only override methods, not fields!

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-27

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-26

Single and multiple inheritance

In some object-oriented languages, a class can have several superclasses.
Multiple inheritance is useful when you have two different concept hierarchies at the same time.
E.g. vessels (Vessel, Tank, Barrel) and colors (Plain, Colored).

e A colored barrel is colored (Colored) as well as a vessel (Vessel).
So an object should could be an instance of Colored and Vessel at the same time.

® A barrel is a Vessel, but not a Colored.

So Vessel can not be a subclass of Colored.

e A colored piece of paper is Colored, but not a Vessel.

So Colored can not be a subclass of Vessel.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-28

Single and multiple inheritance, continued

Java only supports single inheritance: a class can only have one immediate superclass. Advantages of using inheritance
This is because multiple inheritance leads to theoretical and practical problems.
e class hierarchies can explicitly reflect concept hierarchies of the problem domain

Example: In which order should the constructors of the superclasses be invoked?))) o
e code can be re-used (code is faster to write and easier to maintain)

Example: If two methods with same signature are inherited from two different superclasses,
which one should then be used?

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-29 (©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-31

Inheritance in Java: summary

e Classes can be ordered in hierarchies that reflect concept hierarchies.

e A subclass inherits fields and methods from its superclass, i.e. they can be used as if they
were defined in the subclass. Exceptions:
— Constructors are not inherited. However, they can be used in a subclass as super(...).
— Private fields and methods are not inherited, but exist and can be accessed indirectly.

e A subclass can define new fields and methods.

e A subclass can redefine (overskrive, ‘override’) existing methods Mm(that are not final). In
this case the subclass can access Mof the superclass using the name super.m.

e Which version of mthat is invoked with 0. 1{(...) , depends on the class of the object to
which O refers, not on the type T of the variable (0) .

® The subclass can redeclare a field, but it is not recommended.

e Avariable 0 of type T can refer to objects of class T and all its subclasses.

e Field access 0. f and method invocation 0. N ...) are checked with respect to the
declared type T of the variable 0, not with respect to the class of the referenced object.

e You can explicitly type convert (‘cast’) an expression of type T to a subclass of T.

(©Haxthausen and Sestoft, IMM/DTU, 28. oktober 2002 02100+02115+02199+02312 Introductory Programming Page 7-30

