Introductory Programming
Recursion

IMM, DTU

a. Parts of this material are inspired by/originate from a course at ITU developed by Niels Hallenberg and Peter Sestoft
on the basis of a course at KVL developed by Morten Larsen and Peter Sestoft. Translated into English and edited by

Anne Haxthausen.

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-1

Example: factorial function

The function n!, pronounced n factorial, gives the number of permutations of 7 items.

E.g. 3 persons can sit on a bench in 3! = 3 - 2 - 1 = 6 different permutations.

The factorial function 1! can be defined as follows
nl=n-(n—-1)-...-1

However, the factorial function can also be defined recursively:

1 if n =0
n-(n—-1)"! ifn>0

n! =

The first definition is most easily implemented as a loop (i.e. as an iterative method).

The second definition is most easily implemented as a method that calls itself (i.e. as a
recursive method).

Recursion: methods that call themselves

A method can invoke another method.

A method can also invoke itself. Such a method is said to be recursive.

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-2

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-3
Iterative and recursive calculations of n/!
public class Factorial {

public static void main(String args[]) {
int n = Integer.parselnt(args[0]);
Systemout.println(n + "l is " + ifac(n));
Systemout.println(n + "! is " + rfac(n));

}

static int ifac(int n) { /1 lterative factorial function
int result = 1;
for (int i=n; i >=1; i=i-1)

result =result * i;

return result;

}

static int rfac(int n) { /1 Recursive factorial function
if (n==20) return 1;
el se

return n * rfac(n - 1);
}
}

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming

Page 11-4

How r f ac(3) is evaluated in the machine

rfac(3)

* rfac(2)

* (2 * rfac(1))

* (2 * (1 * rfac(0)))
(2*(1* 1))

(2 1)

* 2

A

During the evaluation, the recursive method invocations require allocation of memory for not

completed expressions.

Recursive method invocations are a little slower than repetitions in a loop.

Example: the towers of Hanoi, algorithm

Move 7 disks from tower A to tower B via an extra tower C:
1. Move the n — 1 topmost disks from tower A to tower C.
2. Move a disk from tower A to tower B.

3. Move the . — 1 topmost disks from tower C to tower B.

To make step 1 use the recipe replacing ‘n’ with ‘n — 1°, ‘B’ with ‘C’ and ‘C’ with ‘B’

Move 1 — 1 disks from tower A to tower C via an extra tower B:
1. Move the n. — 2 topmost disks from tower A to tower B.

2. Move a disk from tower A to tower C.

3. Move the n — 2 topmost disks from tower B to tower C.

Similarly, to make step 3 replace ‘n’ with ‘n. — 17, ‘A’ with ‘C’ and ‘C’ with ‘A’:

Move n — 1 disks from tower C to tower B via an extra tower A:
1. Move the n — 2 topmost disks from tower C to tower A.

2. Move a disk from tower C to tower B.

3. Move the . — 2 topmost disks from tower A to tower B.

In order to move zero disks you do not need to do anything.

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-5

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-7

Some problems are more elegantly solved using recursive methods
Example: the towers of Hanoi
All disks should be moved from tower A to tower B.
Only move one disk at a time.

Never place a larger disk on the top of a smaller disk.

1

A B C

Hanoi — example with 3 disks

1. Move disk 1, 2 from A to C via B ¥// _
(a) Move disk 1 from Ato B 1 T
A B C
(b) Move disk 2 from Ato C b
(c) Move disk 1 fromBto C _\Hn|/ |_|
2. Move disk 3 fromAto B —I— O = 2 ===
3. Move disk 1, 2 from C to B via A \\\\wm/v
(a) Move disk 1 from Cto A I_l _
) N e mmp o el mm— —
(b) Move disk 2 from C to B \%JK
c) Move disk 1 from Ato B
i Mln _“a/ _r
T A c

A B

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-6

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-8

Example: ‘the towers of Hanoi’ in Java (Hanoi . j ava)

public class Hanoi {
public static void nmove(int n, String from String to, String vig) {
if (n>0 {
nmove(n-1, from via, to);
Systemout.println("Mve disk " + n +
" from" + from+ " to " + to);

nmove(n-1, via, to, from;

public static void main(String args[]) {
int n = Integer.parselnt(args[0]);

Systemout.println("Mving " + n + " disks fromAto Bvia C");

Systemout.println();

nmove(n, "A", "B", "C');

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002 02100+02115+02199+02312 Introductory Programming Page 11-9

Main idea in recursion

Some problems can be solved by solving one or more subproblems of the same kind.

E.g. the towers of Hanoi: move a stack of 1 disks by

e moving a stack of n — 1 disks,
e moving 1 disk, and
e moving a stack of n — 1 disks

Such a strategy for problem solving is called ‘divide-and-conquer’ (Danish: ‘Del og hersk’).

It is well-suited for implementation with recursive methods.

The strategy only works if:

e each subproblem is simpler than the original one, and

e it terminates with a trivial subproblem (e.g. move a stack of 0 disks)

02100+02115+02199+02312 Introductory Programming Page 11-10

(©Haxthausen and Sestoft, IMM/DTU, 19th November 2002

