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Abstract. This document provides internal technical notes on our proof
of a theorem about stutter trace inclusion stated in our manuscript en-
titled Compositional verification of railway interlocking systems. These
notes are not standalone and rely on definitions given in that manuscript.

1 Introduction

Thoughout these notes, assume given a network N and two subnetworks N1 and
N2 that have been created by a single cut through N according to our composi-
tional method. Let m, m1 and m2 be models generated for these networks using
the RobustRails tools for interlocking systems with the option without overlaps
and without flank and front protection. Let m|i be the reduced projection of m
on network Ni and let mi be the reduced model of mi, for i = 1, 2.

In these notes we explain how we have proved the following theorem that is
used for proving that our compositional verification method is sound.

1.1 The theorem

Theorem 1 (Reduced subnetwork model stutter trace includes reduced
projection). m|i E mi, for i = 1, 2.
(which means ∀ π|i ∈ Paths(m|i) ∃ πi ∈ Paths(mi) such that π|i and πi are
stutter equivalent).

1.2 Proof overview

We can prove Theorem 1 by proving that for an arbitrary path π in Paths(m),
it is possible to find a path πi in Paths(mi), such that π|i1 and πi are stutter
equivalent wrt. the labeling functions of m|i and mi, respectively. This approach
is valid as by definition of the model projection and reduction operators, we have
Paths(m|i) = Paths(m|i) = {π|i | π ∈ Paths(m)} and Paths(mi) = {πi | πi ∈
Paths(mi)}.
1 Here the projection operator on states has been lifted to paths in the obvious way.



In Sec. 2 we will describe how to construct πi from an arbitrary path π in
Paths(m) step by step by applying transition rules for mi. At the same time
we argue why the the applied transition rules are enabled. In order to argue
for that some lemmas concerning properties of projected network elements and
some theorems about relations between states in π and πi are needed. These
lemmas and theorems are defined in Sec. 3 and Sec. 4.

In Sec. 5 and Sec. 6 the path construction and state correspondence theorems
are generalised to the case where several through routes are allowed through a
cut.

In Sec. 7 we prove that π|i and πi are stutter equivalent wrt. the labeling
functions of m|i and mi, respectively.

2 Construction of πi

Given an arbitrary path π in Paths(m), πi is constructed as follows:

– The first state of πi is chosen to be the initial state qi0 of mi.
– Then πi is obtained by adding more and more states to its path by con-

sidering the transitions in π, one by one, in the order they appear. Each
transition from a state q to a state q′ in π, leads to the addition of 0, 1 or
more states to πi. What exactly should be added depends on the transition
rule r that caused the state change from q to q′ in π. Below we will explain
this by case over various classes of rules.

We have the following classes of transition rules:

1. Some transition rules in m have no counterpart in mi as they concern net-
work elements in N for which the projection to Ni is undefined. A transition
from a state q to a state q′ in π caused by such a rule should not lead to any
state change in πi (so no state is added to πi in our construction process).
These rules include:
(a) Rules for switching points p (i.e. changing p.POS) that are outside Ni.
(b) Rules for switching signals s (i.e. changing s.ACT ) that are outside Ni,

except if s is an entry signal for a through route and thereby
is projected to the added entry signal in Ni. For the exceptional case,
see item 3a. Note that there is no exception, if s is an exit signal for a
through route, even that it is mapped to the added exit signal in Ni,
as that added exit signal is a border exit signal for which there are no
transition rules.

(c) Rules for train movements that only involve sections t outside Ni.
(d) Rules for controllers of routes that are completely outside Ni.

2. Some transition rules in m also exist in mi (with the same guards and same
variable updates) as they only concern network elements in N for which the
projection to Ni is the identity. A transition from a state q to a state q′

in π caused by such a rule should lead to a state change in πi obtained by
applying the same rule to the last added state qi. As the guard of such rule



was true for state q in π, it is also true for state qi in πi due to the fact that
the guard only refers to variables for which there is a state correspondence
according to Theorems 2, 3 and 4 (shown further below). These rules include:

(a) Rules for switching points p (i.e. changing p.POS) that are inside Ni

(i.e. p ∈ points(Ni))
(b) Rules for switching signals s (i.e. changing s.ACT ) that are inside N−i

(i.e. s ∈ signals(N−i)2)
(c) Rules describing the train movement of the head or tail of a train from a

section t to a neighbouring section t′, both insideNi (t, t′ ∈ sections(Ni)).
(d) Rules describing how the head or tail of a train enters/leaves the network

at a border which is also in Ni.
(e) Rules for changing the mode of routes r completely inside Ni, except

the allocate rule for the case where the route r is in conflict with one
or several through routes cr. (This is an exeption, as the guard of the
allocate rule for r will in that case have conditions on the states of
conflicting through routes cr, but proji is not the identity for such routes
cr. Instead there is a corresponding rule, see item 3d.)

3. Some rules in m have a corresponding rule for mi. A transition from a
state q to a state q′ in π caused by such a rule usually leads to a state change
in πi obtained by applying the corresponding rule to the last added state
in πi, however, in a few cases the application of the corresponding rule is
deferred to a later step (where that rule is applied right after another rule
in πi).
The rules having a corresponding rule include:

(a) Rules for switching an entry signal s (changing s.ACT ) of a through
route for which s is outside Ni and therefore is mapped by the projection
to an added entry signal sentryi

in Ni: The corresponding rule is the one
switching the added entry signal sentryi

. If s.ACT is changed to OPEN in
π then the corresponding rule for opening the added entry signal sentryi

should be applied in πi (below we will explain that this is possible as the
truth of its guard follows from the truth of the guard of the rule applied
in π), but if the signal s is changed to CLOSED in π, the corresponding
rule for closing the added entry signal sentryi

should not be applied now
(but later, see item 3i) in πi. So when s is OPEN in the last considered
state q of π, the added entry signal in Ni is also OPEN in last added
state qi of πi.
– Guards comparison: In the first case, we had that CLOSED =
s.ACT 6= s.CMD = OPEN in q (as the guard for opening the
signal s was true in q). Let r be the route for which the lock(r) rule
had previously set s.CMD = OPEN and r.MODE = LOCKED.
r.MODE must still be LOCKED as s.ACT needs to be changed to
OPEN by the signal switching rule for s, before r.MODE can be
changed to OCCUPIED by the allocate(r) rule (otherwise a train
can’t enter the route and enable the allocate(r) rule). The guard

2 Note that signals(N−i) does not include any added border signal present in Ni.



sentryi
.ACT 6= sentryi

.CMD of the corresponding rule applied in
πi is also true for state qi in πi as sentryi

.CMD = s.CMD and
sentryi .ACT = s.ACT when r.MODE = LOCKED, cf. Theorem 6
formulas (3.0) and (4.0) for the case where there is only one through
route and Theorem 10 formulas (3.0) and (4.0) for the case where
there is several through routes.

(b) Any rule for rule for m describing the movement of the head or tail
of a train passing a cut from t to t′, where t ∈ sections(Ni) and
t′ ∈ sections(N) \ sections(Ni) is similar to the train movement rule for
mi describing the head or tail leaving the network Ni via t:

i. The guards are the same, except for the movement of the head in the
case where there is already a signal s in N protecting the entrance
of t′. In this case there is an extra guard condition in m requiring
this signal to be OPEN. (There is no such condition on the projected
signal proji(s) in mi as this is an exit signal in Ni and its state is
hence ignored by the exit rule for mi.) When the guard of such rule
is true for state q in π, the corresponding guard is also true for state
qi in πi due to the fact that the corresponding guard is weaker and
the common guard condition only refers to variable t for which there
is a state correspondence according to Theorem 2.

ii. Their updates are the same, except that in mi there is no update of
the occupancy status of t′. This also holds for m|i as t′ is removed
by the projection proji.

(c) Any rule for m describing the movement of the head or tail of a train
passing a cut from t′ to t, where t ∈ sections(Ni) and t′ ∈ sections(N)\
sections(Ni) is similar to the train movement rule for mi describing the
head or tail entering the network Ni via t:

i. Comparison of guards: (1) Such a rule for m has a guard condition
on the occupancy status of the section t′ that the train is leaving.
That is not present in the guard of the corresponding rule for mi

and t′ is removed by the projection. (2a) For head movements, if
there is a signal s in N protecting the entrance of t, then there is an
additional a guard condition in both rules requiring s to be OPEN.
(2b) For head movements, if there is no signal in N protecting the
entrance of t (so the train is using a through route r), then there is
an extra guard condition in the corresponding rule for mi requiring
the added entry signal in Ni to be OPEN. Note that this added
entry signal was opened when the entry signal of the through route
was opened, cf. item 3a, and will first be closed in mi when the
element in use(r, first(proji(r))) rule is applied in m, cf. item 3i,
and that happens after the current step we are considering. So this
extra guard condition in the corresponding rule requiring the added
entry signal in Ni to be OPEN will be true. (3) For tail movements,
in the corresponding rule for mi there is extra guard condition on
the occupancy status of t. The truth of that follows from the truth
of the extra guard condition on the occupancy status of t′ of the



rule for m, and train integrity (expressing reachable combinations of
occupancy status of neighbouring sections).
Hence, when the guard of any rule for passing the cut in N is true
for state q in π, the corresponding guard is also true for state qi in
πi.

ii. Their updates are the same, except that in mi there is no update of
the occupancy status of t′. This also holds for m|i as t′ is removed
by the projection proji.

(d) The allocate rule for any route r which is totally inside Ni and which is
in conflict with one or several through routes cr is similar to the allocate
rule for r in mi. When the former is applied in π, the latter should be ap-
plied in πi. The guards of these rules are the same (r.MODE = MARKED
and some conditions on the track sections of the route), except that con-
ditions (cr.MODE 6= ALLOCATING) ∧ (cr.MODE 6= LOCKED)
for conflicting through routes cr of r in the former rule are replaced
in the latter rule with conditions (cr′.MODE 6= ALLOCATING) ∧
(cr′.MODE 6= LOCKED), where cr′ = proji(cr) is the projection of
cr in Ni, as the set of conflicting rules of proj(r) = r is exactly the set
of projections of the conflicting routes cr of r, cf. Lemma 4. When the
guard of the former rule is true in q, the guard of the latter rule is true
in qi due to the state correspondence stated in Theorems 2, 3 and 5. The
variable updates of the two rules are exactly the same.

In the following, it is assumed that two through routes are not pro-
jected to the same route. This assumption will be removed in Sec. 5.
Without loss of generality, assume that the through route r has di-
rection UP, starts at a signal s1 in N−1 and ends at a signal s2 in
N−2, and let the first track section of the route path be t1, as shown
in Fig. 1.

Fig. 1. A cut through a through route r in a network N .

(e) When the dispatch rule for a through route r is applied in π, the dispatch
rule for proji(r) should be applied in πi. The guards of the two rules are
the same modulo route renaming (they both require the route mode to
be FREE). When the guard of the former rule is true in q, the guard



Fig. 2. Projected route r2 of route r in Fig. 1.

of the latter rule is true in qi due to the state correspondence stated in
Theorem 5. Update of route modes are the same, modulo route renaming
by proji.

(f) When the allocate rule for a through route r is applied in π, the allocate
rule for proji(r) should be applied in πi. The conditions (on e ∈ sections(r))
in the guard of the former rule constitute a superset of the conditions
in the guard of the latter rule and the conditions on the route modes
are the same modulo renaming of routes (they both require the route
mode to be MARKED). When the guard of the former rule is true in
q, the guard of the latter rule is true in qi due to the state correspon-
dence stated in Theorem 2 (for sections and points) and Theorem 5 (for
through routes). Update of route modes are the same, modulo renaming
by proji. The updates of states of sections and points of the path in
the rule for proji(r) is a subset of the updates in the rule for r due to
Lemmas 1 and 3. The additional updates in the rule for r are of sections
and points that are removed by the projection.

(g) When the lock rule for a through route r is applied in π, the lock rule for
proji(r) should be applied in πi. The conditions (on e ∈ sections(r) and
p ∈ points(r)) in the guard of the former rule constitute a superset of
the conditions in the guard of the latter rule due to Lemmas 1 and 3, and
the condition that the route mode is ALLOCATING is the same modulo
route renaming. When the guard of the former rule is true in q, the guard
of the latter rule is true in qi due to the state correspondence stated
in Theorems 2 (for sections and points), and 5 (for through routes).
Updates of route mode and commanded setting (OPEN) of entry signals
are the same, modulo route and signal renaming by proji.

(h) When the route in use rule for a through route r is applied in π, then,
the route in use rule for r1 = proj1(r) should be applied in π1 (this rule
is exactly the same modulo route and signal renaming by proj1), while
no state should be added to π2. In the first case when the guard of the
former rule is true in q, the guard of the latter rule is true in q1 due to
the state correspondence stated in Theorems 2 (for sections) and 5 (for
through routes), and the updates of the route MODE (to OCCUPIED)
and the route entry signals CMD variable s1.CMD (to CLOSED) are
the same. t1.MODE is updated to the same (USED).

(i) When the element in use(r, e) rule for a through route r and a section
e in the path of r (which is not the first section in the path) is applied
in π, then, (1) if e is inside N1 (and is not the first section t1), then



the element in use(r1, e) rule for r1 = proj1(r) and e should be ap-
plied in π1, but no state should be added to π2; (2) else, if e is inside
N2 and is the first section t2 in the path of r2 = proj2(r), then first the
route in use(r2) rule for r2 = proj2(r) and e should be applied and then
the signal rule closing the (added) entry signal sentry2

of r2 should be
applied in π2, and (3) otherwise (i.e. e is inside N2 and is not the first
section t2 of r2) then the element in use(r2, e) rule for r2 = proj2(r)
and e should be applied in π2, but no state should be added to π1.

Guard comparisons: The guard of the element in use(r, e) has condi-
tions on e (incl. e.MODE = EXCLK and ¬vacant(e)) and its neigh-
bour sections and requires r.MODE = OCCUPIED.
Case (1): The element in use(r1, e) rule has the same conditions on e
and requires r1.MODE = OCCUPIED. When the guard of the former
rule is true in q, the guard of the latter rule is true in q1 due to the state
correspondence stated in Theorems 2 (for sections) and 5 formula (1.1)
(for through routes) as q(last(r1)) 6= FREE as e.MODE = EXCLK
is true in q as the guard is true (which means that all sections after e,
including last(r1) have MODE EXCLK).
Case (2): The guard of the route in use(r2) rule has conditions: ¬vacant(e)
and r2.MODE = LOCKED. When the conditions of the guard of the
rule applied in π are true in q, the former conditions are true in q2 due to
the state correspondence stated in Theorems 2 (for sections) and Theo-
rem 5 formula (2.1) for through routes. After that rule has been applied
the next rule can be applied because the commanded signal state now
differs from the actual signal state.
Case (3): The guard of the element in use(r2, e) rule has the same condi-
tions on e and requires r2.MODE = OCCUPIED. When the guard of
the element in use(r, e) is true in q, the guard of element in use(r2, e) is
true in q2 due to the state correspondence stated in Theorems 2 (for sec-
tions) and Theorem 5 formula (2.2) for through routes as q(first(r2)) 6=
EXCLK as the train has passed first(r2).

In all cases e.MODE is updated to USED. In Case (2) the route in use(r2)
rule additionally updates r2.MODE to OCCUPIED and commands
the source signal sentry2

to be CLOSED. The second rule application
then changes the actual signal sentry2

.ACT to CLOSED.
(j) When the sequential release e rule for a through route r and section e

(which is not the last section in the path of r) is applied in π, then (1)
if e is not in Ni then no rule should be applied in πi, (2) else if e is in
Ni and is not the last element in the projected route ri = proji(r), then
the sequential release e rule for ri and section e should be applied in
πi, and (3) otherwise (e is in N1 and is the last element in the projected
route r1 = proj1(r)), then the release rule for r1 should be applied in
π1. In cases (2) and (3), the guards of the two rules are identical modulo
naming of routes, and when the guard of the former is true in q, it is



also true in qi due to the state correspondence rules. Both rules update
e.MODE to FREE. In case (3) the second rule additionally updates
r1.MODE to FREE in π1, while r.MODE stays OCCUPIED in π.

(k) When the release rule for a through route r is applied in π, then,
no rule should be applied in π1 (as the last section of r is not in r1
- the release rule for r1 was already applied at the time where the
sequential release e rule was applied in π for r and the last section
in r1, cf. the item above), while the release rule for r2 = proj2(r) should
be applied in π2. In the latter case, the guards of the two rules are iden-
tical modulo naming of routes, and when the guard of the former is true
in q, it is also true in q2 due to the state correspondence rules.

The constructed state sequence πi is a path of mi as any path in Paths(mi)
should start with qi0 which is the case for πi, and each time we added a new
state q′i to πi as explained above we obtained that by applying a state transition
rule of mi to the latest added state qi in πi, and therefore (qi, q

′
i) ∈ Ri, where

Ri is the transition relation of mi.

3 Lemmas about projection of network elements

In the following, let r be a route, sections(r) be the set of sections in the path of
r, points(r) be the set of points in the path of r, first(r)/last(r) be the first/last
section in the path of r, src(r)/dst(r) be the entry/exit signal of r, req(r, p) be
the required position of a point p in points(r), and conflicts(r) be the set of
conflicting routes of r.

Lemma 1 (projection gives subsets of network elements). sections(proji(r)) ⊆
sections(r) and points(proji(r)) ⊆ points(r)when proji(r) is defined.

Lemma 2 (projection of entry/exit signals of a route). scr(proji(r)) =
proji(src(r)) and dst(proji(r)) = proji(dst(r)) when proji(r) is defined.

Lemma 3 (projection preserves required point settings). Assume proji(r)
is defined. The required point setting for any point p ∈ points(proji(r)) in the
path of proji(r) in Ni is the same as for p in the path of r in N : req(proji(r), p)
= req(r, p).

Lemma 4 (projection preserves and reflects conflicts).
proji(cr) ∈ conflicts(projj(r)) in Ni if and only if cr ∈ conflicts(r) in N , when
proji(r), proji(cr) are defined and proji(cr) 6= proji(r).

The lemmas follow from the definition of the projection function on network
elements.



4 State correspondence theorems

Theorem 2 (State correspondence for track sections). At any point in
the construction process of πi, it holds that Li(qi) = L|i(q|i), where q is that
last considered state in π and qi is the last state added to πi. Note that this also
means that qi(t) = q(t) for sections t ∈ sections(Ni).

Proof by induction:
Base case: Li(qi0) = L|i(q0|i), as the initial states of mi and m|i are the same,
i.e. qi0 = q0|i.
Induction step:
Assume that in the construction process of πi we have considered state changes
up to state q in π, and let the last state added to πi be qi. The induction
hypothesis is that Li(qi) = L|i(q|i). Now consider the next state transition in π
from state q to a state q′. For that either no state is added to πi or a state q′i
is added. In the first case it should be shown that Li(qi) = L|i(q′|i), and in the
second case it should be proved that Li(q

′
i) = L|i(q′|i).

For the three classes of transition rules we have.

1. The rule makes no changes to variables v for which proji(v) is defined, so
q|i = q′|i and therefore L|i(q|i) = L|i(q′|i). By the induction hypothesis we
have Li(qi) = L|i(q|i), so Li(qi) = L|i(q′|i). Hence, this represents a stutter
step and this case is proved.

2. The rule makes changes to variables v for which proji(v) is defined, i.e.
q|i 6= q′|i. The rule applied to πi make the same changes to variables. As
Li(qi) = L|i(q|i) according to the induction hypothesis and the same changes
are made to the same variables, it must also hold that Li(q

′
i) = L|i(q′|i).

3. (a) As Li(qi) = L|i(q|i) according to the induction hypothesis, it must also
hold that Li(q

′
i) = L|i(q′|i) as the two rules are only changing signals

and these are removed by the reduction operation.
(b) As Li(qi) = L|i(q|i) according to the induction hypothesis and the same

variable changes are made from qi to q′i as from q|i to q′|i, (the variable t is
changed in the same way and the variable t′ that was changed from q to q′

is removed by the projection |i), it must also hold that Li(q
′
i) = L|i(q′|i).

(c) As Li(qi) = L|i(q|i) according to the induction hypothesis and the same
variable changes are made from qi to q′i as from q|i to q′|i, (the variable t is
changed in the same way and the variale t′ that was changed from q to q′

is removed by the projection |i), it must also hold that Li(q
′
i) = L|i(q′|i).

(d) allocate for non through route: ok, as same changes of same section
variables.

(e) dispatch for through route: ok as there are no changes in section vari-
ables.

(f) allocate for through route: ok as the section state updates are the same
modulo sections removed by the projection.

(g) lock for through route: ok as there are no changes in section variables
(h) route in use for through route: For i = 1: Same argument as for item 2.

For i = 2: : Same argument as for item 1.



(i) element in use for through route: Ok in all cases: either the changes of
section variables are the same or the section variable changed in m is
removed by the projection and there is no corresponding rule applied in
mi.

(j) sequential release e for through route: ok, same argument as above.
(k) release for through route: ok.

ut

Theorem 3 (State correspondence for routes totally inside Ni). At
any point in the construction process of πi, qi(r) = q(r) for those routes r ∈
routes(N) that are completely inside Ni, where q is the last considered state in
π and qi is the last state added to πi.

Proof by induction: Consider a route r ∈ routes(N) that is completely inside
Ni.
Base case: The desired property holds for the intial states as in these all routes
are in the same mode (FREE): qi0(r) = q0(r).
Induction step:
Assume that in the construction process of πi we have considered state changes
up to state q in π, and let the last state added to πi be qi. The induction
hypothesis is that qi(r) = q(r). Now consider the next state transition in π from
state q to a state q′. That will give rise to the addition of zero, one or more states
in πi. Let q′i be the last added state by that. We want to prove that q′i(r) = q′(r).
We only need to consider cases where the state transition in π is caused by a rule
that changes the state (MODE) of r, (otherwise, the result is obvious). Such a
rule belongs to one of the rule classes 2e and 3d. As qi(r) = q(r) according to
the induction hypothesis and the same variable changes are made by these rules
from qi to q′i as from q to q′, it must also hold that q′i(r) = q′(r). ut

Theorem 4 (State correspondence for signals that are not entry sig-
nals of through routes). At any point in the construction process of πi,
qi(s) = q(s) for those signals s ∈ signals(N) that are completely inside Ni

and are not an entry signal of a through route, where q is the last considered
state in π and qi is the last state added to πi.

Proof by induction: Consider a signal s that is completely inside Ni and is not
an entry signal of a through route.
Base case: The desired property holds for the intial states as in these all signals’
commanded and actual settings are CLOSED: qi0(s) = q0(s).
Induction step:
Assume that in the construction process of πi we have considered state changes
up to state q in π, and let the last state added to πi be qi. The induction
hypothesis is that qi(s) = q(s). Now consider the next state transition in π from
state q to a state q′. We want to prove that q′i(s) = q′(s). We only need to
consider cases where the state transition in π is caused by a rule that changes
the state of s.ACT or s.CMD, (otherwise, the result is obvious). The only rule
that can change the state of s.ACT in π belongs to class 2b. When that rule is



applied in π, the same rule is applied in πi, so the changes to s.ACT are the
same in π and πi. The only rules that can change s.CMD in π are the lock and
the route in use rules for routes r having s as entry signal (they will set s.CMD
to OPEN and CLOSED, respectively). For the two rules, r can’t be a through
route according to the assumption about s and is therefore totally inside Ni.
Hence, these two rules will belong to class 2e and when these rules are applied
in π, the same rules are applied in πi, so the changes to s.CMD are the same
in π and πi. ut

Hence, the only variables v for which qi(proji(v)) and q(v) can differ, are
variables for through routes and added entry signals. For these, we have the
following state correspondence theorems.

Theorem 5 (State correspondence for through routes). Let r ∈ routes(N)
be a through route and ri = proji(r) be its projection in Ni for i = 1, 2, where
N1/N2 is the network that is on the same side of the cut as the first/last part
of the route. It is assumed that r1 and r2 are not also equal to the projection of
any other (through) route. (In later theorems, we drop these conditions.)

At any point in the construction process of πi, the following holds, where q
is that last considered state in π and qi is the last state added to πi.

(1.0) q1(r1.MODE) = q(r.MODE) when q(r.MODE) 6= OCCUPIED

(1.1) q1(r1.MODE) = OCCUPIED when q(r.MODE) = OCCUPIED
and q(last(r1).MODE) 6= FREE (the condition expresses that r is occupied
(partly of fully) by a train in N1.)

(1.2) q1(r1.MODE) = FREE when q(r.MODE) = OCCUPIED and
q(last(r1).MODE) = FREE (the condition expresses that r is occupied by a
train which is not in N1).

(2.0) q2(r2.MODE) = q(r.MODE) when q(r.MODE) 6= OCCUPIED

(2.1) q2(r2.MODE) = LOCKED when q(r.MODE) = OCCUPIED and
q(first(r2).MODE) = EXLCK (the condition expresses that r is occupied by
a train which is not yet in N2).

(2.2) q2(r2.MODE) = OCCUPIED when q(r.MODE) = OCCUPIED
and q(first(r2).MODE) 6= EXLCK (the condition expresses that r is occupied
by a train which is (partly or fully) in N2).

Proof by induction:
Base case: The desired property holds for the intial states as in these all routes
are in the same mode (FREE): qi0(ri) = q0(ri) = FREE. Actually, it is state
relations (1.0) and (2.0) that hold.



Induction step:
Assume that in the construction process of πi we have considered state changes
up to state q in π, and let the last state added to πi be qi. The induction hypoth-
esis is that the stated property holds between q and qi. Now consider the next
state transition in π from state q to a state q′, and let q′i be the resulting last
added state to πi due to that step. We want to prove that the stated property
holds between q′ and q′i. We only need to consider cases where the state tran-
sition in π is caused by a transition rule that changes the values of r.MODE,
last(r1).MODE or first(r2).MODE, or the associated state transition in πi
is caused by a transition rule that changes ri.MODE, (otherwise, the result is
obvious).

As the application of any of the dispatch(r), allocate(r), and lock(r) rules
in π leads to the application of dispatch(ri), allocate(ri), and lock(ri), respec-
tively, in πi, and these rules are applied in states for which qi(ri.MODE) =
q(r.MODE) 6= OCCUPIED (i.e. state relations (1.0) and (2.0) hold) and they
make the same state changes of route modes in π and πi, modulo route re-
naming by the projection functions, and the new route modes are still different
from OCCUPIED, the state relations (1.0) and (2.0) are preserved for these
applications.

Now we should consider cases where the application of the route in use(r, e),
element in use(r, e), sequential release e(r, e) and release(r, e) rules in π to-
gether with associated changes in πi make changes to the state relations.

π1: When the route in use(r, first(r)) rule is applied in π, the route in use(r1, first(r))
is applied in π1 and both routes change mode to OCCUPIED, while q(last(r1).MODE)
is still EXCLK - so now state relation (1.1) holds. In the step where the last sec-
tion last(r1) of r1 is released (i.e. last(r1).MODE becomes FREE) by sequential release e(r, last(r1))
in π and by release(r1, last(r1)) in π1, r1.MODE becomes FREE in π1, but
r.MODE is still OCCUPIED in π (so the state relation becomes (1.2)). r.MODE
will first become FREE later when release(r, last(r)) is applied in π and nothing
in π1 (so the state relation becomes (1.0)).

π2: When the route in use(r, first(r)) rule is applied in π (because a train
had entered the first section first(r) of r) r.MODE will be changed from
LOCKED to OCCUPIED and first(r).MODE from EXLCK to USED in
π, but no rule is applied in π2, so r2.MODE stays LOCKED - so now re-
lation (2.1) holds. First when element in use(r, first(r2)) is applied in π and
route in use(r2, first(r2)) followed by the closing of the entry signal is applied
in the same step in π2 (because a train had entered the first section first(r2) of
r2 in both paths), r2.MODE will be changed from LOCKED to OCCUPIED
in π2 and first(r2).MODE will be changed to USED both in π and π2 - so
now relation (2.2) holds. When release(r) is applied in π and release(r) in π2,
the state relation will change back to (2.0).

ut



The following theorem states that the state of signals in N and their projec-
tion in N1 are the same thoughout the construction process, while this is not
always the case for their projection in N2, as the closing of the added entry
signal is delayed.

Theorem 6 (State correspondence for entry signals of through routes).
Let s1 be the entry signal of a through route r (as in Fig. 1), and let s1 =
proj1(s1) and sentry2 = proj2(s) be its projections in N1 and N2, respectively,
where N1/N2 is the network that is on the same side of the cut as the first/last
part of the route. Also assume that sentry2 is not the projection of any other
signal. (In a later theorem, we drop that assumption.) Let r2 = proj2(r) and t2
be the first section in r2 (as in Fig. 1).

At any point in the construction process of πi, the following holds, where q
is that last considered state in π and qi is the last state added to πi.

(1.0) q1(s1.CMD) = q(s1.CMD)

(2.0) q1(s1.ACT ) = q(s1.ACT )

(3.0) q2(sentry2.CMD) = q(s1.CMD) when q(r.MODE) 6= OCCUPIED

(3.1) q2(sentry2.CMD) = OPEN
when q(r.MODE) = OCCUPIED and q(first(r2).MODE) = EXLCK
(the condition expresses that r is occupied by a train which is not yet in N2)
(note that for this combination one can derive q(s1.CMD) = CLOSED)

(3.2) q2(sentry2.CMD) = q(s1.CMD)(= CLOSED)
when q(r.MODE) = OCCUPIED and q(first(r2).MODE) 6= EXLCK
(the condition expresses that r is occupied by a train which is (partly or fully) in
N2)

(4.0) q2(sentry2.ACT ) = q(s1.ACT ) when q(r.MODE) 6= OCCUPIED

(4.1a) q2(sentry2.ACT ) = q(s1.ACT )(= OPEN) when q(r.MODE) = OCCUPIED
and q(first(r2).MODE) = EXLCK, and q(s1.ACT ) = OPEN

(4.1b) q2(sentry2.ACT ) = OPEN
when q(r.MODE) = OCCUPIED, q(first(r2).MODE) = EXLCK, and
q(s1.ACT ) = CLOSED
(the condition expresses that r is occupied by a train which is not yet in N2 and
the entry signal s1 of r has been closed)

(4.2) q2(sentry2.ACT ) = q(s1.ACT )(= CLOSED)
when q(r.MODE) = OCCUPIED ∧ q(first(r2).MODE) 6= EXLCK
(the condition expresses that r is occupied by a train which is (partly or fully) in
N2)

Proof by induction:



Base case: The desired property holds for the initial states. That follows from
the following facts: In q0: s1.CMD = s1.ACT = CLOSED and r.MODE =
FREE 6= OCCUPIED. In q10 : s1.CMD = s1.ACT = CLOSED. In q20 :
sentry2

.CMD = sentry2
.ACT = CLOSED.

Induction step:
Assume that in the construction process of πi we have considered state changes
up to state q in π, and let the last state added to πi be qi. The induction
hypothesis is that the stated relation holds between q and qi. Now consider the
next state transition in π from state q to a state q′, and let q′i be the resulting
last added state to πi due to that step. We want to prove that the stated relation
holds between q′ and q′i.

The proof of the preservation of two first sub-relations (relating q1 with
q) is similar to the proof of the state correspondende for signals that are not
entry signals of through routes. The only difference is that the lock and the
route in use rules belong to classes 3g and 3h, respectively, and not to class 2e,
but the conclusion for these rules is the same.

The proof for the remaining sub-relations (relating q2 with q) is explained
by considering the concurrent state transitions in π and π2 that make changes
to variables in subrelations (3.0-4.2). These will come in the order of the route
life cycle for r:

1. Initially the conditions in (3.0) and (4.0) hold.
2. After concurrent dispatching/allocation of r and r2, still the conditions in

(3.0) and (4.0) hold.
3. When lock(r) is applied in π and the concurrent lock(r2) is applied in π2,
r.MODE is changed to LOCKED( 6= OCCUPIED) , first(r2).MODE to
EXCLK and s1.CMD to OPEN in q, and sentry2.CMD is also changed
to OPEN in q2. So still the conditions in (3.0) and (4.0) hold.

4. When s1.ACT is switched to OPEN in q, sentry2.ACT is also switched to
OPEN in q2. So still the conditions in (3.0) and (4.0) hold.

5. When the route in use(r) is applied in π and nothing in π2, r.MODE is
changed to OCCUPIED and s1.CMD to CLOSED in q. So now the condi-
tions for (3.1) and (4.1a) hold.

6. When s1.ACT is switched to CLOSED in q, sentry2.ACT is not changed.
Now conditions in (3.1) and (4.1b) hold.

7. When element in use(r, first(r2)) is applied in π and the concurrent route in use(r2)
followed by switching rule for sentry2.ACT are applied in π2, first(r2).MODE
is changed to USED( 6= EXCLK) in q and in q2, and first sentry2.CMD
and then sentry2.ACT are both changed to CLOSED in q2. Now conditions
in (3.2) and (4.2) hold.

8. When the train has left first(r2) and the section is concurrently relased in
π and π2, first(r2).MODE is changed to FREE. The conditions in (3.2)
and (4.2) still hold.

9. When release(r) is applied in π and the concurrent release(r2) is applied in
π2, r.MODE is changed to FREE( 6= OCCUPIED) and the conditions in
(3.0) and (4.0) hold again.



Consequences of the theorem are:
q2(sentry2.CMD) = OPEN when q(s1.CMD) = OPEN
q2(sentry2.ACT ) = OPEN when q(s1.ACT ) = OPEN .

In section 6, the state correpondence theorems for through routes and their
entry signals will be generalised to cases where there are more than one through
route.

5 Generalisation of the construction of πi

We now generalise the rules for constructing πi to cases where several (n > 1)
through routes r1, . . . , rn are mapped to the same route by a projection.

Case 1 First we consider the case where several routes, r1, . . . , rn, are mapped
to the same route r1 in N1 by proj1 (r1 = proj1(rj) for j = 1, ..., n) as shown in
Fig. 3 for n = 2. .

Fig. 3. Two up routes, r1 and r2, having the same projection r1 in the down (left)
subnetwork N1.

For this case item 3e for dispatching of through routes must be adapted:
When the dispatch(rj) rule for a through route rj is applied in π, the dispatch(r1)
rule for r1 = proj1(rj) should only be applied in π1, if there is no other through
route rk that is in mode MARKED, ALLOCATED, LOCKED, or OCCUPIED
with a train inside N1 (i.e. rk must be FREE or OCCUPIED with a train outside
N1), otherwise the application of the dispatch(r1) rule should be deferred: it is
added to a queue of deferred route dispatchings.

Item 3j for sequential release of sections in through routes must be adapted
for case (3):
When sequential release e(rj , e) is applied in π for some through route rj and
the last element e in the projected route r1 = proj1(r), then first the release(r1)
rule should be applied in π1 and then, if there is any deferred route dispatching
rule in the queue then that should be removed from the queue and applied as
well in π1 (which is possible as its guard requires the route mode to be FREE
and the route mode was set to FREE by the previous step).



Fig. 4. Two up routes, r1 and r2, having the same projection r2 in the up (right)
subnetwork N2.

Case 2 Then consider the case where several routes, r1, . . . , rn, are mapped to
the same route r2 in N2 by proj2 (r2 = proj2(rj) for j = 1, ..., n) as shown in
Fig. 4 for n = 2.

For this case item 3e for dispatching of through routes must be adapted:
When the dispatch(rj) rule for a through route rj is applied in π, the dispatch(r2)
rule for r2 = proj2(rj) should only be applied in π2, if all other through route
rk are in mode FREE, otherwise the application of the dispatch(r2) rule should
be deferred: it is added to a queue of deferred route dispatchings.

Item 3k for sequential release of the last section in through routes must be
adapted: When release(rk) is applied in π for some through route rk, then first
the release(r2) rule should be applied in π2 and then, if there is any deferred
route dispatching rule in the queue then that should be removed from the queue
and applied as well in π2 (which is possible as its guard requires the route mode
to be FREE and the route mode was set to FREE by the previous step).

6 Generalised state correspondence

We now generalise the state correspondence theorems to cases where several
(n > 1) through routes r1, . . . , rn are mapped to the same route by a projection.

6.1 Case 1

First we consider case 1 where several routes, r1, . . . , rn, are mapped to the
same route r1 in N1 by proj1 as shown in Fig. 3 for n = 2: r1 = proj1(rj) for
j = 1, ..., n. Let rj2 = proj2(rj) and sentry2 = proj2(s1). Let t2 = first(rj2) for
j = 1, ..., n (they all share the same first section.). Let qs = {q(rj .MODE)|rj ∈
{r1, . . . , rn}∧q(rj .MODE) 6= OCCUPIED} be the set of states of those routes
that are not OCCUPIED.

Theorem 7 (State correspondence for multiple through routes, case
1). At any point in the construction process of πi, the following holds, where q
is that last considered state in π and qi is the last state added to πi.

q1 is generalised:



(1.0) q1(r1.MODE) = max{q(rk.MODE)|rk ∈ {r1, . . . , rn}}, when q(rj .MODE) 6=
OCCUPIED for all rj ∈ {r1, . . . , rn} (the condition expresses that no routes
are OCCUPIED).

(1.1) q1(r1.MODE) = OCCUPIED, when there exists a route rj ∈ {r1, . . . , rn}
for which q(rj .MODE) = OCCUPIED and q(last(r1).MODE) 6= FREE (the
condition expresses that one3 of the routes r1, . . . , rn is occupied (partly of fully)
by a train in N1.)

(1.2) q1(r1.MODE) = FREE, when qs is empty and q(last(r1).MODE) =
FREE (the condition expresses that all the routes r1, . . . , rn are OCCUPIED
and no train is (anymore) in N1).

(1.3) q1(r1.MODE) = max(qs), when some routes, but not all routes are
in mode OCCUPIED and q(last(r1).MODE) = FREE (the last condition ex-
presses that no train is in N1).

q2 is defined as before, now for each of the through routes rj ∈ {r1, . . . , rn}.
(2.0) q2(rj2.MODE) = q(rj .MODE) when q(rj .MODE) 6= OCCUPIED.

(2.1) q2(rj2.MODE) = LOCKED when q(rj .MODE) = OCCUPIED
and q(first(rj2).MODE) = EXLCK.

(2.2) q2(rj2.MODE) = OCCUPIED when q(rj .MODE) = OCCUPIED
and q(first(rj2).MODE) 6= EXLCK.

The new case (1.3) expresses that in the case where trains on all occupied routes
have left N1, and there are some remaining routes that are not in mode OCCU-
PIED, r1.MODE is the maximum mode of these unoccupied routes.

Proof: The proof is made by induction just as for Theorem 5, i.e. it is checked
that the initial state satisfies the property and that the property is preserved by
those transitions that change the variables used in the property.

Theorem 8 (State correspondence for the common entry signal of
multiple through routes in case 1). At any point in the construction process
of πi, the following holds, where q is that last considered state in π and qi is the
last state added to πi.

q1 is unchanged:
(1.0) q1(s1.CMD) = q(s1.CMD)

(2.0) q1(s1.ACT ) = q(s1.ACT )

3 The formula just says that at least one route is occupied, but since there is a train
in N1 (on the common path of all the routes), only one route can be OCCUPIED).



q2 is generalised:
(3.0) q2(sentry2.CMD) = q(s1.CMD) when ∀j ∈ {1, . . . , n} : q(rj .MODE) 6=

OCCUPIED (i.e. no routes are occupied)

(3.1) q2(sentry2.CMD) = OPEN when ∃j ∈ {1, . . . , n} : q(rj .MODE) =
OCCUPIED and q(t2.MODE) = EXLCK (the condition expresses that some
route rk (note this need not to be the same as rj) which is occupied by a train
which has not yet entered N2).

(3.2) q2(sentry2.CMD) = q(s1.CMD)(= CLOSED) when ∃j ∈ {1, . . . , n}
: q(rj .MODE) = OCCUPIED and q(t2.MODE) 6= EXLCK (the condition
expresses that at least one route is occupied by a train and all trains have (partly
or fully) entered N2).

(4.0) q2(sentry2.ACT ) = q(s1.ACT ) when ∀j ∈ {1, . . . , n} : q(rj .MODE) 6=
OCCUPIED

(4.1a) q2(sentry2.ACT ) = q(s1.ACT )(= OPEN) when ∃j ∈ {1, . . . , n} :
q(rj .MODE) = OCCUPIED and q(t2.MODE) = EXLCK, and q(s1.ACT ) =
OPEN

(4.1b) q2(sentry2.ACT ) = OPEN when ∃j ∈ {1, . . . , n} : q(rj .MODE) =
OCCUPIED and q(t2.MODE) = EXLCK and q(s1.ACT ) = CLOSED (the
conditions express that some route is occupied by a train which has not yet en-
tered N2 and the entry signal s1 of that route has been closed)

(4.2) q2(sentry2.ACT ) = q(s1.ACT )(= CLOSED) when ∃j ∈ {1, . . . , n}
: q(rj .MODE) = OCCUPIED ∧ q(t2.MODE) 6= EXLCK (the condition
expresses that at least one route is occupied by a train and all trains have (partly
or fully) entered N2)

Proof: The proof is made by induction just as for Theorem 6, i.e. it is checked
that the initial state satisfies the property and that the property is preserved by
those transitions that change the variables used in the property.

6.2 Case 2

Then consider case 2 where several routes, r1, . . . , rn, are mapped to the same
route r2 in N2 by proj2 as shown in Fig. 4 for n = 2: r2 = proj2(rj) for
j = 1, ..., n. Let rj1 = proj1(rj). For this case we have proj1(sj1) = sj1.

Note that at most one of the routes r1, . . . , rn can go through the states
ALLOCATING, LOCKED and OCCUPIED at the same time.

Theorem 9 (State correspondence for multiple through routes, case
2). At any point in the construction process of πi, the following holds, where q
is that last considered state in π and qi is the last state added to πi.



q1 is defined as before for each through route rj ∈ {r1, . . . , rn}:
(1.0) q1(rj1.MODE) = q(rj .MODE) when q(rj .MODE) 6= OCCUPIED

(1.1) q1(rj1.MODE) = OCCUPIED when q(rj .MODE) = OCCUPIED
and q(last(rj1).MODE) 6= FREE (the condition expresses that rj is occupied
(partly of fully) by a train in N1.)

(1.2) q1(rj1.MODE) = FREE when q(rj .MODE) = OCCUPIED and
q(last(rj1).MODE) = FREE (the condition expresses that rj is occupied by a
train which is not in N1).

q2 is generalised:

(2.0) q2(r2.MODE) = max({q(rj .MODE)|rj ∈ {r1, . . . , rn}}) when ∀j ∈
{1, . . . , n} : q(rj .MODE) 6= OCCUPIED (i.e. no routes are occupied)

(2.1) q2(r2.MODE) = LOCKED when ∃j ∈ {1, . . . , n} : q(rj .MODE) =
OCCUPIED and q(first(r2).MODE) = EXLCK
(the condition expresses that rj is occupied by a train which has not yet entered
N2).

(2.2) q2(r2.MODE) = OCCUPIED when ∃j ∈ {1, . . . , n} : q(rj .MODE) =
OCCUPIED and q(first(r2).MODE) 6= EXLCK
(the condition expresses that rj is occupied by a train which has (partly or fully)
entered N2).

Proof: The proof is made by induction just as for Theorem 5, i.e. it is checked
that the initial state satisfies the property and that the property is preserved by
those transitions that change the variables used in the property.

In the case where several signals are projected to the same added entry signal,
the theorem for state correspondence of signals must be updated:

Theorem 10 (Generalised state correspondence for entry signals of
through routes in case 2).

Let s11, . . . , sn1 be the entry signals in N1 of the through routes r1, . . . , rn

and sentry2 = proj2(sj1) for j = 1, . . . , n be their common projection in N2. By

definition we have proj1(sj1) = sj1 for j = 1, . . . , n.

At any point in the construction process of πi, the following holds, where q
is that last considered state in π and qi is the last state added to πi.

q1 is defined as before for each signal s1 ∈ {s11, . . . , sn1}:
(1.0) q1(s1.CMD) = q(s1.CMD)



(2.0) q1(s1.ACT ) = q(s1.ACT )

q2 is generalised:
(3.0) q2(sentry2.CMD) = max({q(sj1.CMD)|sj1 ∈ {s11, . . . , sn1}}) when ∀j ∈

{1, . . . , n} : q(rj .MODE) 6= OCCUPIED (i.e. no routes are occupied)

(3.1) q2(sentry2.CMD) = OPEN when ∃j ∈ {1, . . . , n} : q(rj .MODE) =
OCCUPIED and q(first(r2).MODE) = EXLCK (the condition expresses
that rj is occupied by a train which has not yet entered N2).

(3.2) q2(sentry2.CMD) = q(sj1.CMD)(= CLOSED) when q(rj .MODE) =
OCCUPIED and q(first(r2).MODE) 6= EXLCK (the condition expresses
that rj is occupied by a train which has (partly or fully) entered N2).

(4.0) q2(sentry2.ACT ) = max({q(sj1.ACT )|sj1 ∈ {s11, . . . , sn1}}) when ∀j ∈
{1, . . . , n} : q(rj .MODE) 6= OCCUPIED (i.e. no routes are occupied)

(4.1a) q2(sentry2.ACT ) = q(sj1.ACT )(= OPEN) when q(rj .MODE) =

OCCUPIED and q(first(r2).MODE) = EXLCK, and q(sj1.ACT ) = OPEN

(4.1b) q2(sentry2.ACT ) = OPEN when ∃j ∈ {1, . . . , n} : q(rj .MODE) =

OCCUPIED and q(first(r2).MODE) = EXLCK and q(sj1.ACT ) = CLOSED
(the conditions express that rj is occupied by a train which has not yet entered
N2 and the entry signal sj1 of that route has been closed)

(4.2) q2(sentry2.ACT ) = q(sj1.ACT )(= CLOSED)
when q(rj .MODE) = OCCUPIED ∧ q(first(r2).MODE) 6= EXLCK
(the condition expresses that rj is occupied by a train which is (partly or fully)
in N2)

Proof: The proof is made by induction just as for Theorem 6, i.e. it is checked that
the initial state satisfies the property and that the property is preserved by those
transitions that change the variables used in the property. The proof utilises the
fact that at most one of the signals s1, . . . , sn can have their CMD/ACT vari-
able to be OPEN at the same time, as at most one of the routes r1, . . . , rn can
go through the states ALLOCATING, LOCKED and OCCUPIED at the same
time.

Note that a consequence of this theorem is:
q2(sentry2.CMD) = OPEN when ∃s ∈ {s11, ..., s1n} : q(s.CMD) = OPEN
q2(sentry2.ACT ) = OPEN when ∃s ∈ {s11, ..., s1n} : q(s.ACT ) = OPEN

7 Proof of stutter equivalence

We have now proved that for an arbitrary path π ∈ Path(m), we can construct
paths πi ∈ Path(mi) for i = 1, 2 such that they satisfy Theorem 2, i.e. Li(qi) =



L|i(q|i), in any step of the construction process. Note that usually q has one
corresponding state, but in a few cases (when deferred transitions are applied –
for examples, see Sec. 6) two consecutive corresponding states. Similarly, several
states q can have the same corresponding state.

Hence, the reduced (section) labels of states q in π are maintained by their
corresponding states qi in πi and therefore the paths are stutter equivalent.
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