|
Ph.D. Course: A Statistical Physics Approach to Bayesian Inference14., 21., 29. August and 2. September 200210.00 am DTU/IMM, Richard-Petersens-Plads, Building 321, Room 133 (not room 119) The 2. September will be in building 322, room 133. The course will be given by Dörthe Malzahn at Wednesdays, 10.00 am, as a series of lectures. It starts Wednesday, 14.8.2002. The course will be given in English. There will be 2 additional lectures on Thursday, 12.9.02 and 19.9.02. Time: 9-11 am Room: 133, Building 321, DTU/IMM AimThis course outlines a new statistical physics based approach to the theory of learning with kernel machines. Examples are Gaussian process models and Support Vector machines which can be obtained as posterior mean or maximum-a-posteriori (MAP) of a suitably defined Bayesian inference model. The course teaches central ideas of statistical physics - such as the concept of self-averaging quantities, order parameters and the variational principle. The latter enables us to develop a theory which contains the data density as a free parameter. I give two examples how the new theory can be used to derive tools for the evaluation of learning in practically relevant situations where the data density is either unknown or replaced by the empirical density (resampling methods).Program
For further information you can download two recent papers: Paper1 (accepted for publication in Physical Review Letters) Paper2 (appeared in Advances in Neural Information Processing Systems 14, MIT Press, 2002) Contact Dörthe Malzahn Informatics and Mathematical Modelling, Technical University of Denmark (DTU) Tel: 4525 3922 mail: dm@imm.dtu.dk Room: 124, Richard-Petersens-Plads, Building 321 |