Computational models of the blood flow in the heart are a useful tool for studying the functioning of the heart. The purpose of this thesis is to achieve a better understanding of hemodynamics of the normal and diseased hearts through the use of a computational model and magnetic resonance (MR) data.
We present a 2D computational model of the blood flow in the left side of the heart. The work is based on Peskin and McQueen's 2D model dimensioned to data on the dog heart, which we improve and adjust using physiological knowledge and MR velocity data to achieve a model of the human heart. The improvements require changing the geometry, the timing, the mechanical activation of the heart musculature, and the afterload. Furthermore, we introduce a tethering of the otherwise freely floating heart. We evaluate the model from a computational and modelling point of view and find a set of reasonable parameter values. This is our reference model, which gives representative simulation results.
We compare a simulation using our reference model with an MR velocity data set obtained from a healthy human. The comparison is carried out for the intraventricular velocity field and the velocity time curves over the mitral ring and across the aortic outflow tract. The comparison between velocity fields shows a reasonably fair agreement in the general flow pattern: a wide inflow jet, the formation of an anterior vortex during filling, and an outflow jet through the outflow tract. There are some disagreements in the detailed flow pattern, in particular with regard to the vortex patterns. The velocity time curves from the simulation show good agreement with MR data. The timing in the simulation is practically the same as in the MR data, while there are some differences between the shapes and maximum values of the velocity curves.
We use our 2D model to perform investigations of certain mechanisms involved in heart diseases affecting the diastolic functioning of the heart. To be able to simulate pathological conditions we improve the model for the mechanical activation of the heart muscle. We find that it is not possible to successfully simulate an ischemic apical region by letting the relaxation be slower in the apical region. However, we are able to successfully model a global ischemic left ventricle through a slower relaxation of the entire ventricle and to model a myocardial infarction affecting the apex by letting the apical region be inactive. In both of these cases the simulation results compare well with clinically observed data on dogs and humans.
We present Peskin and McQueen's 3D model of the entire human heart and the nearby great vessels. We perform a simulation with the model, where we adjust the timing to be the same as in our reference 2D model. Unfortunately, the results do not compare very well with MR data. In particular, the flow and velocity over the mitral ring are not in good agreement, and the pressure in the ventricles is far too high. Furthermore, the 3D model is computationally very demanding. This, together with the disagreement with MR data, makes it unfeasible to use the 3D model as a tool for investigating the hemodynamics of the heart. However, the 3D model gives insight into the vortex pattern in the left ventricle. A clear vortex ring is formed below the mitral valve during filling, and in a cut-away view this ring is seen as two distinct vortices, similar to the vortices formed in our 2D model.
Resume på dansk:
Computermodeller af blodstrømningen i hjertet er et nyttigt værktøj til at studere hjertets funktion. Formålet med denne afhandling er at opnå en bedre forståelse for det raske og det syge hjertes hæmodynamik ved at anvende en computermodel og magnetisk resonans (MR) data.
Vi præsenterer en 2D computermodel af blodstrømningen i den venstre side af hjertet. Arbejdet er baseret på Peskin og McQueen's 2D model dimensioneret til data for hundehjertet. Denne model forbedrer og ændrer vi ved brug af fysiologisk viden og MR hastighedsdata for derved at opnå en model af det menneskelige hjerte. Forbedringerne kræver at geometrien, tidsforløbet, den mekaniske aktivering af hjertemuskulaturen og udløbsbetingelserne ændres. Ydermere introducerer vi en fastgørelse af det ellers frit flydende hjerte. Vi evaluerer modellen ud fra et beregnings- og modelleringsmæssigt synspunkt og finder herved et sæt af parameterværdier. Dette er vores referencemodel, der giver repræsentative simuleringsresultater.
Vi sammenligner en simulering med referencemodellen med et MR hastighedsdatasæt fra et rask menneske. Sammenligningen udføres for det intraventrikulære hastighedsfelt og for hastighedskurver over mitralringen og på tværs af udløbstragten ved aorta. Sammenligningen mellem hastighedsfelterne viser en fornuftig overensstemmelse i det generelle flowmønster: en bred indløbsjet, dannelsen af en anterior hvirvel ved fyldning og en udløbsjet gennem udløbstragten ved aorta. Der er dog visse uoverensstemmelser i det detaljerede flowmønster, specielt med hensyn til hvirvelmønstret. Hastighedskurverne fra simuleringen viser god overensstemmelse med MR data. Tidsforløbet i simuleringen er stort set det samme som i MR data, mens der er afvigelser mellem formen på og maximumværdierne af hastighedskurverne.
Vi benytter vores 2D model til at udføre en undersøgelse af bestemte mekanismer, der optræder ved hjertesygdomme, der påvirker den diastoliske funktion af hjertet. For at kunne simulere disse patologiske tilstande forbedrer vi modellen af den mekaniske aktivering af hjertemuskulaturen. Vi finder, at det ikke er muligt succesfuldt at simulere en iskæmisk apikal region ved at lade den apikale region relaksere langsommere. Til gengæld kan vi med succes simulere en global iskæmisk venstre ventrikel ved at lade hele ventriklen relaksere langsommere, og vi kan simulere et myokardieinfarkt, der rammer apex, ved at lade den apikale region være inaktiv. I begge disse tilfælde er der god overensstemmelse mellem simuleringsresultater og klinisk observerede data fra både hunde og mennesker.
Vi præsenterer Peskin og McQueen's 3D model af hele det menneskelige hjerte og de nærmeste store kar. Vi udfører en simulering med modellen, hvor tidsforløbet er det samme som i vores 2D referencemodel. Desværre er der ikke en god overensstemmelse mellem simuleringsresultater og MR data. Specielt flowet og hastigheden over mitralringen passer ikke godt, og trykket i ventriklerne er alt for højt. Ydermere er 3D modellen meget beregningskrævende. Dette, sammenholdt med den dårlige sammenligning med MR data, gør det umuligt at anvende 3D modellen som et værktøj til undersøgelse af hjertets hæmodynamik. Til gengæld kan 3D modellen give indsigt i hvirvelmønstret i den venstre ventrikel. Der dannes en tydelig hvirvelring under mitralklappen ved fyldning, og i et snit gennem hjertet ses denne ring som to distinkte hvirvler, svarende til de to hvirvler, der dannes i 2D modellen.
Keywords: heart simulation, MR data, left ventricular blood flow, diastolic functioning of the heart