
Melanoma Detection and
Classification of Birthmarks Using

Neural Networks and Genetic
Programing

Henrik Mygind

Kongens Lyngby 2011
IMM-M.Sc.-2011-53

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

This is the master project of Henrik Mygind developed in collaboration with
Rigshospitalet, Pallas Informatik and the DTU Informatics at The Technical
University of Denmark. In this thesis a prototype software is developed which
is able to classify digital color images of birthmarks determining if a birthmark
is melanoma or harmless.

A feature extraction algorithm is developed in Matlab and two classification
algorithms are developed in C#. One classification algorithm is build on genetic
programing while the other use neural networks trained by backpropagation and
a genetic algorithm.

The software is tested using a dataset received from Rigshospitalet containg
164 images of melanoma and 172 images of harmless birthmarks. The tests
have shown that the feature extraction is able to find the birthmarks in 64% of
the images while the classification algorithms works as intended when tested on
a general dataset.

Using the feature extraction developed for this project and the best classification
algorithm, a classification rate of 78% is received. The classification rate is
found when the false positive rate and the false negative rate are equal. When
using images on which the feature extraction works perfectly a slightly higher
classification rate of 82% is reached.

Even at this early stage in the development the software looks promising and
when a better feature extraction algorithm is developed the software can be a
huge help in the early detection of melanoma around the world.

ii

Resumé

Dette er Henrik Myginds kandidat speciale udviklet i samarbejde med Rigshospi-
talet, Pallas Informatik og DTU Informatik p̊a Danmarks Tekniske Universitet.
I dette projekt er der blevet udviklet en prototype p̊a et stykke software der er
i stand til at klassificere digitale farvebilleder af modermærke og inddele dem i
kategorierne ufarlig og modermærke med kræft.

I forløbet er der blevet udviklet et billedanalyseværktøj i Matlab som kan finde
forskellige features i modermærkerne. Desuden er udviklet to klassifikationsal-
goritmer i C# baseret p̊a genetisk programmering og neurale netværk trænet
ved hjælp af backpropagation og en genetisk algoritme.

Softwaren er testet ved hjælp af et fra Rigshospitalet modtaget datasæt inde-
holdende 164 billeder af modermærke med modermærkekræft og 172 billeder af
ufarlige modermærker. Testene har vist at billedanalyseværktøjet er i stand til
at finde modermærkerne korrekt i 64% af billederne mens klassifikationsalgorit-
merne fungerer fejlfrit n̊ar de bliver testet p̊a et standarddatasæt.

Ved at bruge billedanalyseværktøjet udviklet i dette projekt og ved at bruge
den bedste klassifikationsalgoritme opn̊as en klassifikationsrate p̊a 78%. Klassi-
fikationsraten er fundet hvor andelen af falsk positive og falsk negative er lige
stor. N̊ar man kun bruger de billeder hvor billedanalyseværktøjet virker fejlfrit
opn̊as en lidt højere klassifikationsrate p̊a 82%.

Selv p̊a dette tidlige stadie i udviklingen har softwaren vist kæmpe potentiale.
N̊ar der bliver udviklet et bedre billedanalyseværktøj har softwaren mulighed
for at blive en stor hjælp i arbejdet med at opdage modermærkekræft tidligt i
hele verden.

iv

Acknowledgements

I would like to thank my supervisor at DTU, Carsten Witt, for his inputs and
guidance through a half year of intenssive and interesting work.

I would also like to thank Rune Saaby, my supervisor at Pallas Informatik, for
his guidance and his ideas on solving the problem.

Linda Jakobsen, Doctor at the Department of Plastic Surgery and Burns Treat-
ment at Rigshospitalet, should have a special thanks for presenting the idea to
me and for giving me access to the image database.

I would like to thank the people at Visionday 2011 for the many useful inputs
on the half-done work presented here and Svend Vitting Andersen at Pallas
Informatik should have a thanks for introducing me to this event in the first
place.

To all my colleagues at Pallas Informatik I owe a thanks. Without your support
it would have been a much harder job to do. Especially my colleagues at the
student isle I owe a thanks.

Lastly I would like to thank my girlfriend, Marie Top Hartmann, for being
supporting and understanding while I was working full time on this project.
Your support has meant a lot to me.

vi

Contents

Summary i

Resumé iii

Acknowledgements v

1 Introduction 1
1.1 The process . 1
1.2 Background knowledge . 3
1.3 Work done in the report . 5
1.4 Structure . 5

2 Feature Extraction 7
2.1 The feature extraction process 8

3 Neural Network 17
3.1 The simplified mathematical model 17

4 Genetic Programing 23

5 The genetic algorithm 25
5.1 The algorithm . 25
5.2 Encoding the problem . 26
5.3 Initialization . 29
5.4 Evaluation . 29
5.5 Selection . 30
5.6 Reproduction . 31
5.7 Mutation . 34
5.8 Stopping criteria . 35

viii CONTENTS

6 Design and implementation 37
6.1 Cloud solution . 39
6.2 Debugging . 40

7 Testing 41
7.1 Initial testing . 41
7.2 The dataset . 45
7.3 Feature Extraction . 47
7.4 Neural Networks . 50
7.5 Genetic Programming . 61
7.6 The best classification algorithms 64
7.7 Influence of features . 66

8 Conclusion 71
8.1 Future work . 72

A Glossary 75

B Classification rates 79

Chapter 1

Introduction

This is the master thesis of Henrik Mygind, DTU Informatics 2011. In this
project a software is developed which is able to classify birthmarks in groups of
harmfull and harmless birthmarks using only information found in an ordinary
color image.

1.1 The process

The software developed in this thesis is meant to be a prototype and therefore
not a full bug-free application with a nice user interface etc. However to find
out what the software should be capable of the software is put into a process as
it would look if it was an application which was to be used in the industry.

The software is thought to be part of the normal diagnosis system where it
should supprt the house doctor in his decision. It is not meant to be used
as a stand-alone software. The house doctor should receive feedback from the
system describing what has been analysed, what features have been found in
the image, what classification the software believes the birthmark should have
and a percentage telling how certain it is that this answer is correct.

2 Introduction

The process, which can be found in figure 1.1, is divided into two parts: a
training process and an evaluation process.

Image Processing
Unit

Network structure
found using EA

The training process

Hospital

Images received
from hospital

Features extracted
on external server

EA Backpropagation

Optimal weights
found using BP

Best net is stored
on hdd

Evaluation process

Image received from
camera or phone

Features extracted
on external server Network fetched

from hdd
Decision made
using network

Figure 1.1: The training process and the evaluation process

1.1.1 Training process

The purpose of the training process is to train the classification algorithm such
that the neural network or genetic program used for classification, has the best
classification rate and has a minimum of false negatives.

In this project a positive sample is when the birthmark is classified as melanoma.

1.2 Background knowledge 3

A false negative is therefore when the classification algorithm classifies are birth-
mark as harmless even though the correct classification would be melanoma.

The training is done using images from a database containing images of birt-
marks, for example from a dermatological clinic, which have already been clas-
sified. Each image is sent to a feature extraction server (the Image Processing
Unit) which returns a list of inputs and their real output. These inputs are
given to the classification software which trains a neural network or a genetic
program. The best network/program is stored to the harddrive and is used to
classify new images.

1.1.2 The evaluation process

In the evaluation process the actual use of the software is found. It is in the
evaluation process that an unclassified birthmark is classified.

The process starts with a user capturing an image of a birthmark. This could
be done using the camera found in the mobile phone or by a camera handled by
the doctor. The image is sent to the Image Processing Unit which extracts the
features of the given birthmark. The features are then given to classification
software which uses these features as inputs for the best network/program stored
on the harddrive. The network/program will then come up with a classification
of the birthmark; it will give a likelyhood of the pressence of melanoma. Based
on the output of the classification software appropriate action will be taken. If
a melanoma is present the software could automatically warn the doctor or the
user could be noticed.

The software developed in this thesis includes a basic Image Processing Unit and
the classification software. The interfaces between the individual parts, the web
services used to upload images etc. has not been implemented and is therefore
not functional.

1.2 Background knowledge

Melanoma is one of the rarest types of skin cancer, but the deadliest. 4% of skin
cancer diagnoses are melanoma, but melanoma accounts for 77% of skin cancer
related deaths.[Cal] Early detection is important, when melanoma is detected
in its early state the 5-year survival rate is > 90% while at the later stages it
drops to less than 10%. [al.01]

4 Introduction

Melanoma evolves in pigment producing cells such as birthmarks. It will quickly
start to change the outside appearance of the birthmark and is therefore easier
to spot than other types of cancer. To spot its pressence a checklist developed
in 1985 and revised in 2004, is often be used.[al.04] This check list, called the
ABCDE criteria, is used as inspiration for the feature extraction algorithm in
this project.

1.2.1 The ABCDE criteria

The ABCDE criteria is a checklist which can be used to categorize birthmarks
into a group of harmless and a group of harmfull marks. A birthmark having
one or more of these features will by the doctor be considered possible harmful.
One disadvantage of the ABCDE criteria is that some types of skin lesions (for
example seborrheic keratoses) might show some or all of the same features as
described in the list. But as a few false positives is better than a lot of false
negatives it is still widely used in the dermatoscopic world. The list is as follows:

Assymetry. One side of the birthmark is of a different shape than the other
side.

Border irregularity. The edge is notched, blurred or ragged.

Color variegation. The birhtmark contains multiple colors: red, brown, white,
black and blue.

Diameter. The diameter is greater than 6mm. Most melanoma are greater
than 6mm in size, but a great part is still smaller, so this measure cannot
be used on its own.

Evolution or enlargement. The birthmark changes color or shape.

Another widely used approach is the ugly duckling sign. If a birthmark varies
greatly from any other birthmark on the patient this could be a sign of melanoma.

In this project the ABCDE criteria are used for the feature extraction process.
This is due to the fact that the method need only one image of the birthmark
and because no information about the patient and his/her other birthmarks is
needed. The feature extraction will focus on the A, B, C and to some extend the
D part of the criteria as only one image is used and it therefore is not possible
to see any evolution or enlargement in the birthmark. The diameter will only
partly be used because the size of the birthmark is only measured in pixels and
this size is relative to the cameras position and resolution.

1.3 Work done in the report 5

1.3 Work done in the report

In this masters project a framework for genetic algorithms has been imple-
mented. Along with the framework two implementations have been made, a
neural network and a genetic program, which both use the framework to evolve.
These parts have been implemented in C# on the Windows platform.

Further more a feature extraction has been created for Matlab with the Image
Processing Toolbox. This software can run on both Windows and Unix and has
in this project been running on the Unix platform.

All parts of the software has been tested.

1.4 Structure

The thesis starts out with this chapter in which an introduction to the project is
found. The introduction contains describtions of the problem, the background
knowledge and the method used in this thesis.

In chapter 2 it is described how the feature extraction works and the theory
behind is explained. Chapter 3 contains the description of the neural networks
and the theory on which it is based, and in chapter 4 the theory of the genetic
programming is found.

The theory used for the genetic algorithm used by both the neural network and
the genetic programing can be found in chapter 5. In chapter 6 a description of
the design of the genetic algorithm and some special implementations used in
this project can be found.

The description of the tests performed and the test results can be found in
chapter 7. This chapter is followed by the conclusion, chapter 8, in which the
results of the work is discussed and a discussion of further work can be found.

6 Introduction

Chapter 2

Feature Extraction

To classify the birthmarks some input parameters has to be found, this is done
using image analysis or feature extraction as it will be called in this project.
The feature extraction is done using the ABCDE criteria described in section
1.2.1. Limited to the possibilities of a computerised extraction process it is the
hypothesis that the following features (also used by [HM98]) extracted from the
image will be sufficient for the classification process. The actual implementation
is described more thoroughly in the following sections.

Assymetry (A) which is found by mirroring the birthmark along one of the
principal axes, and measuring how much of one side of the birthmark is
“outside” the area of the other side of the birthmark.

EdgeAbruptness (B) , the steepness of the edge gradient. The edge abrupt-
ness is measure on how sharp the edge between the birthmark and the
skin is.

Size (B+D) of birthmark as well as the length of the edge compared to the
size of the birthmark.

Number of colors (C) found by putting the pixels of the image into one of
six color classes and counting how many of the classes are present in the
image.

Size of black, blue and white (C) areas in the birthmark.

8 Feature Extraction

The parentheses indicate what part of the ABCDE criteria each of the features
fit into. In figure 2.1 the image extractions being performed on an image of a
birtmark can be found.

Figure 2.1: Image of a birthmark and the types of feature extractions that has
to be done on it. The big image is the original image. On the top right the
border of the birthmark is found, below the asymmetry is measured and in the
bottom row 3 different color classes are highlighted.

As the focus of this thesis is not mainly on image analysis only the high level
ideas of the transformations are described. For a more thorough understanding
of the individual feature extraction steps please see the source reffered to in each
section.

2.1 The feature extraction process

The feature extraction process starts with an image being received by the algo-
rithm. A lot of computation and manipulation is done to the image and finally
9 features are extracted.

The input of the feature extraction is an ordinary color image. The quality of
the image should be as high as possible, but the actual quality needed will be
tested in section 7.3.2. The sharper the image and the less glare from a camera
flash, the better.

The feature extraction is done in a number of steps, each described in the

2.1 The feature extraction process 9

following sections. The process can be described as follows:

• First the image is read from the disk.

• A copy of the image is made and this copy is filtered using a median filter.

• The filtered image is transformed using the Karhunen-Loève transforma-
tion.

• A mask is generated by thresholding the first principal component.

• The asymmetry is measured on the mask

• The edgeabruptness is extracted using the mask and the original image

• The size of the edge and the size of the birthmark are measured using the
mask.

• The number of color classes and the ratio of the critical colors are measured
in the area of the original image lying inside the mask.

• The results are added to the output file.

2.1.1 MedianFilter

To minimize the bad effects of noise such as jpeg artifacts, highligted areas (due
to a strong light source) and hairs a median filter is applied to the image before
the location of the birthmark is determined.

A 7 × 7-matrix is used as filter and it is applied to each pixel in each image
layer (R,G and B). The filtering works by taking all the pixel values inside the
matrix and finding the median value. This value is then used as the new pixel
value. In figure 2.2 an example of the effect of the median filter is shown.

2.1.2 Karhunen-Loève Transformation

Some birthmarks are very similar to the skin while others stand out more clearly.
Using the grayscaled image the colors can therefore easily be mixed with each
other and it can be hard to locate the edge of the bithmark. To improve the
edge detection the Karhunen-Lève transformation (also known as the principle
components analysis [Jol02]) can be used.[HM98]

10 Feature Extraction

Figure 2.2: Median filter. The effect of using the filter on an image of a birth-
mark.

The KL transformation is a linear transformation widely used in statistics to
convert possibly correlated values into sets of uncorrelated varibles where most
variance is found in the first set, second most in the second set etc. The trans-
formation is done by finding the eigenvectors of the sample covariance matrix
which describes the characterisitcs of the covariance in the different dimensions.
(In this thesis they describe the covariance in the three color bands.) Combined
with the deviation each value has from the mean, these eigenvectors are used
to transform the distribution into a new coordinate space with possibly lower
dimensions.[HM98]

In this thesis the KL is applied to the 3D color space and the effect of the KL
will be that regions which varies a lot from the rest of the image will be placed
in the first principal component due to the high variance while other regions
will be placed in the second and third region.

The effect of the principle components analysis can be seen in figure 2.3.

2.1.3 Masking

Once the median filtering and the Karhunen-Loève transformation has been
performed it is time to do the actual thresholding in order to create a mask
which describes the area of the birthmark.

The thresholding is done using the iterative selection thresholding method [HM98]
in which the optimal thresholds are found by moving the thresholds until the
luminance region means are stable.

2.1 The feature extraction process 11

Figure 2.3: Karhunen-Loève transformation. On the left normal grayscale im-
age is shown and found on the right is the image found using the principle
components analysis.

In figure 2.4 an example of the thresholding is shown.

Figure 2.4: Thresholding. The left image shows the three areas found using the
thresholding. The right shows the masked image. Due to the fact that the green
and the blue areas take up more than 40% of the space in the image only the
blue area is chosen as mask.

2.1.4 Assymetry

Asymmetry in a birthmark might indicate that the mark is growing. A healthy
birthmark does not normally grow why a growing birthmark is a strong indicator

12 Feature Extraction

of the pressence of melanoma.

The asymmemetry is measured by finding the two principal axes of the birth-
mark. This is done by calculating 2-D moments: the inertia and the center of
mass. The major axis is the axis going through the center of mass giving the
smallest amount of inertia and minor axis is the one giving the largest amount
of inertia.[HM98]

The image is then mirrored on axis at a time, measuring how much of the image
is not overlapping compared to the amount which is overlapping. This way two
features are extracted, the asymmetry in the major axis and the asymmetry in
the minor axis.

In figure 2.5 an example of the asymmetry measurement is shown.

Figure 2.5: Asymmetry measurements. Mirroring is done in the minor axis.

2.1.5 EdgeAbruptness

If a birthmark has a very sharp edge from skin to birtmark it can be a sign of
melanoma, where as a more gradual transision can be a sign of an unharmful
birthmark.[HM98]

In order to find the edge abruptness the image is first grayscaled and then
filtered using the sobel operators which are applied to every pixel in the image.
The sobel operators are as follows:

H1 =

 −1 0 1
−2 0 2
−1 0 1

 , H2 =

 1 2 1
0 0 0
−1 −2 −1

These operators will when applied to the individual pixels of the image describe
the magnitude (and the direction) of the transition between the neighbour pixels.

2.1 The feature extraction process 13

And as only the magnitude is used in this thesis they can be said to describe
how smooth the transition is from the pixels lying above the current pixel to
the pixels found below.

Filtering the image results in two images, g1 and g2 which are combined in to
an image showing the abruptness of the entire image:

z =
√
g21 + g22

This image is shown in figure 2.6 on the left. To find only the edge abruptness
the filtered image is masked to contain only the edge of the birthmark. The
parameter used by the classification algorithm is then the mean abruptness of
the pixels found in the edge.

In figure 2.6 an example of the result of running the edge abruptness algorithm
is shown. Due to the fact that the image is in jpeg-format the edge abruptness
algorithm might be malfunctioning and might therefore be useless. The influence
of it will be tested later in section 7.7.

Figure 2.6: Edge abruptness. On the left the abruptness of the entire images
is shown, on the right only the abruptness of the edge is shown. The total
abruptness in the edge is used as a feature in the classification algorithm.

2.1.6 Edge2area and area size

The shape of the edge can be used to determine whether a birthmark is harmful.
For example could a rough edge a sign of melanoma and therefore a measure on

14 Feature Extraction

how big the edge is compared to the size of the birhtmark, is used as a feature.
This measure combined with the actual pixel size of the birthmark can give a
hint to what state the birthmark is in.

The edge-to-area ratio is measured as

ratio =
|maskedge|
|maskarea|

where maskedge is the pixels being inside the area of the bithmark but having
at least one neighbour outside the area, and maskarea is all the pixels inside the
area of the birthmark. The masks are shown in figure 2.7.

Figure 2.7: Edge to area ratio. On the right the edge is shown and on the left
the total area of the birthmark is shown. The ratio between these areas is used
to indicate how rough the edge is.

2.1.7 Colors

The final features which are extracted from the images are the color related
features. The colors of the birthmark can be very informative when it comes to
birthmarks. To limit the number of features the pixels in the image is assigned
one out of six color classes. The color classes have been chosen by hand from
an image in the test dataset and have the following RGB-values:

2.1 The feature extraction process 15

Color class R G B
Dark brown 29 18 14
Light brown 111 39 24
Red 138 64 65
Black 54 31 39
White 68 67 67
Blue 69 66 73

Once every pixel is assigned a color class, which is done by calculating the
distance to each color class and choosing the color class with smallest distance,
four features are extracted: the number of colors and the share of pixels which
are black, blue and white respectively.

The distance is measured as follows:

distp,cc = |pr − ccr|+ |pg − ccg|+ |pb − ccb|

where p is the pixel value (red,green,blue) and cc is the rgb-values of the color
class.

Black, blue and white areas can be a sign of melanoma and the ratio of these are
therefore extracted as well as the number of colors. If many colors are present
in the image there is a bigger chance of melanoma.

In figure 2.8 a bithmark with its pixels assigned a color class is shown.

2.1.8 The final outcome

The output of the extraction process is a file containing a line for each image
processed. Each line contains the name of the image and the extracted features
shown as 9 decimal numbers in the following order:

• the asymmetry of the birthmark measured in the major axis

• the asymmetry of the birthmark measured in the minor axis

• the mean edge abruptness of the birthmark

• the area of the border of the birthmark (1px border) compared to the total
birthmark area

• the size of the area

• the number of color classes present in the birthmark

16 Feature Extraction

Figure 2.8: Color classification. The individual pixels of the birthmark are
assigned to a certain color class. On the left the original image is shown, on the
right every pixel is converted into the nearest color class.

• the ratio of the black color class

• the ratio of the blue color class

• the ratio of the white color class

The input for the classification algorithm should be decimals in the range
[0.0; 1.0] and some of the numbers therefore have to be converted into this range.
The following numbers are transformed using the transformation new = 1

old .

• mean edge abruptness

• size of the area

• the number of color classes

In section 7.7.1 on page 66 the distribution of the values of the individual pa-
rameters are found.

Chapter 3

Neural Network

The brain consists of nerve cells also known as neurons. Each neuron collects,
procceses and distributes electrical signals in the brain. The neurons are con-
nected in networks via synnapses. Depending on the processing of the collected
inputs a neuron might distribute an electrical output through the synnapses.
The brains capability of processing information is thought to primarily come
from these networks.[RN03]

Due to the fact that the human brain consist of such networks the early AI work
tried to create such artificial neural networks (ANN). It is however not possible
to fully replicate the networks in the brain as the complexity of the brain is
huge: the brain consists of about 100 billion (100 ·109) neurons and each neuron
communicates with 1000-10000 neurons).[Col01]

3.1 The simplified mathematical model

It is possible to make make a simplified mathematical model of such networks.
A widely used mathematical model of a neuron is shown in 3.1.

A neural network consists of a number of input and output neurons (the number
is decided by the data which the network is to evaluate) and of a number of

18 Neural Network

hidden neurons put between the input and output nodes. Different types of

outputs

Figure 3.1: A mathematical model for a neuron.[Chr05]

networks can be made: There are feed forward nets where the net does not
contain any cycles and recurrent networks containing cycles. Recurrent networks
is cabable of having a sort of short term memory as the outcome is depending
on the input state of the network; and this input state can be dependent of the
outcome of the last interation. This also increases the complexity of model why
the feed forward network is used in this project.

The neuron (shown in figure 3.1) computes its output using the inputs as well
as an activation function. First all the input values are linearly combined, for
example through sumation or averaging. Then the activation function is applied
to the combined inputs forming the output. The algorithm is also shown in figure
3.2.

The activation function can be a simple threshold function:

threshold(x) =

{
1 if x > 0
0 if x ≤ 0

or a more gradual transistion such as the sigmoid function:

sigmoid(x) =
1

1 + e−x

where x is the weighted sum of inputs.

inputSum = 0
for (i = 0 ; i < inputs . count ; i++)

inputSum += weight [i] ∗ inputs [i]
output = actFunc (inputSum)

Figure 3.2: Pseudocode showing what processing a neuron does.

To give the inputs different influence on the result a weight is added to each
input. The weights can be any decimal number but have most power in the

3.1 The simplified mathematical model 19

interval [−5.0 : 5.0] as the sigmoid values of these boundaries are very close to
0 and 1 respectively. Due to this an initial network should not have weights
outside this interval.

The sigmoid function and other threshold functions often trigger around x = 0
where x is the weighted sum of inputs. To move this trigger midpoint a constant
(a threshold or a bias) can be added to the equation.[Bis97]

output = sigmoid(
∑
i

wi · inputi + wb) (3.1)

In this way the threshold of the function will shift as shown in figure 3.3. In
the implementation of the neural network this functionality is added by adding
a bias node to all hidden and output nodes in the network. The bias nodes all
have the output value −1 and their strength is then based on the weight of the
synapsis going from the bias node to the neuron.

Figure 3.3: The logistic sigmoid function. When the bias is added to the equa-
tion it is possible to move the entire function along the x-axis.

3.1.1 Feed forward networks

The simplest neural network is a variant of the feed forward network called a
perceptron. The perceptron is a neural network with no hidden nodes. All
input nodes are connected to all output nodes and only weights can differ. This
network is only able to replicate a linear function, why it usually is not good
enough.

An easy improvement of the perceptron is the multilayer network where the
neural network contains a number of layers containing hidden nodes. Each

20 Neural Network

layer is fully connected to the previous and the following layer. This type of
network is able to find any type of function as long as the number of hidden
nodes - and layers - is high enough.

Finally an almost unstructured neural network, called unsorted network in the
following, is used. In this network the connections between the nodes are ran-
domly chosen. The unsorted network consists of a number of hidden nodes.
These nodes along with the input and output nodes are enumerated from 1 to n
where n is the total number of nodes. The input nodes have the lowest numbers
and the outputnodes have the higest.

Each node is connected to every following node with probability p. So the
probability that an outgoing edge is found in node 1 is (n − 1) · p and the
probability that there is an outgoing edge of node n is 0.

Using this network it is ensured that all nodes have the same expected number
of synnapses connected to them. Further more it ensures that no cycles can
exist in the network as all synnapsis go out of node with a number i and into a
node with a number j > i.

There is no known solution for finding the best structure of a neural net-
work.[RN03] Therefore experiments will have to lead to what kind of structure
is better for a given problem. This experimenting can be automated by the use
of genetic algorithms, see section 3.1.3.

The feedforward network calculates the outputs by feeding the inputs forward
through the network. This is done by updating each of the neurons in the
network by taking the weighted sum of the input neurons. A pseudo code for
calculating the outputs is shown in figure 3.4.

3.1.2 Backpropagation

To train the weights of the neural network backpropagation is used. Backprop-
agation is an algorithm which minimizes the overall error gradient by correcting
the weights in the network using the error found on the output nodes. [RN03]

When training, the network calculates an output on each output neuron and
an error between the calculated output and the real output. This is error is
propagated back through the network updating the weights along the way. By
doing this a new smaller error will occur and this error wil be backpropagated
until the error is as small as possible.

3.1 The simplified mathematical model 21

foreach e in trainingdata do

foreach node i ∈ input layer do

output[i] = e.input[i]

queue.enqueue(i)

while |queue| > 0 do

n = queue.dequeue()

if ∃j∈n.inputsoutput[j] == null then

queue.enqueue(n)

else

output[n] =
∑

j∈n.inputs
g(weightj,n · output[j])

foreach j ∈ n.outputs then

queue.enqueue(j)

Figure 3.4: The feedforward neural network algorithm used to calculate the
ouputs of each node in the network.

In figure 3.5 pseudo code showing the backpropagation algorithm can be found.

3.1.3 Training the structure of network

To find the structure of the network a genetic algoirthm is used. An automated
approach ensures that many structure combinations are tested which most likely
would not be tested if started manually.

By using a genetic algorithm it is possible to maintain a sparse structure where
the backpropagation algorithm will not have to crunch for a long time, which is
the case for huge dense networks.

Furthermore it is possible to use the same framework for both the genetic al-
gorithm and the genetic programming. The description of the general genetic
algotithm is found in section 5 along with examples on how the different parts
of it works with the neural networks and the genetic programs.

22 Neural Network

foreach e in trainingdata do

foreach node o ∈ output layer do

delta[o] = e.outputs[o]− output[o]
queue.enqueue(o)

while |queue| > 0 do

n = queue.dequeue()

if ∃j∈n.outputsdelta[j] == null then

queue.enqueue(n)

else

delta[n] =
∑

j∈n.outgoing
weightn,j · delta[j]

foreach j ∈ n.ingoing do

queue.enqueue(j)

foreach node n in network\input layer do

foreach node j in n.ingoing do

weightj,n = weightj, n+ α · g′(output(j)) · delta[n]

Figure 3.5: The backpropagation algorithm used for updating the weights. A
queue implementation is used to support other types of networks than the stan-
dard multi layered network.

Chapter 4

Genetic Programing

Genetic programming is an extension of genetic algorithms. It works exactly as
a genetic algorithm with the exception that the individuals is actual programs
instead of a list of numbers or input parameters for a function. An individual
in a genetic program can be visualized as a tree in a LISP-like structure.[Koz93]
In figure 4.1 an individual is shown as a tree. The function it evaluates is

I(1) + (3 · I(2))

where I(1) and I(2) are input values.

The individual programs consist of functions and terminals. A function can be
anything from small code bits adding or subtracting two numbers, moving an
agent etc. or bigger code chunks calculating the distance between two agents,
finding the shortest path between some points or the like. The functions take
a number of inputs being either other functions or terminals. A terminal is a
leaf in the program tree. Typically it is a value, for example the boolean true
or a random number between 13 and 42. But it can also be a command to an
agent (move forward, move to nearest box) or something else, depending on
the situation in which the programs is to be used.

In this classification software simple functions and terminals are used. The
functions used are addition, subtraction and multiplication all working with 2

24 Genetic Programing

I(1)

3 I(2)

*

+

Figure 4.1: An example of a genetic program consisting of the the two functions
“+” and “*” and the three terminals “input 1”, “input 2” and the constant 3.

input functions/terminals. The terminals used in this software are either a
random decimal number in the interval [−10; 10] or an input which takes the
input from the problem.

A gentic program individual is usually visualized as a tree, as shown in figure
4.1. As with trees a program has a depth which is equal to the number of
layers or the number of nodes on the longest route from the root to a leaf. The
program shown in figure 4.1 has depth of 3.

The genetic programming is just an extension of the genetic algorithm, therefore
the genetic programming will be more thoroughly described in chapter 5 where
the genetic algorith and how it evolves is described. This chapter also describes
how the genetic programming extends the GA.

Chapter 5

The genetic algorithm

As both the neural networks and the genetic programs is based on the genetic
algorithm this chapter will work with bith the theoretical genetic algorthm as
well as two instantiations of it: a neural network instantiation and a genetic
program instantiation.

5.1 The algorithm

The genetic algorithm (GA) usually optimizes a list of numbers (called an indi-
vidual in the rest of the thesis), e.g. bits, decimal parameters for a function or
the like. It works as a black box optimization where a fitness function evaluates
the current individual. Black box optimization means that the GA does not
know how the fitness functions evaluates the fitness. The fitness is blindly used
as a measure of how good the individual is.

The GA works by initially having a population of individuals. These individuals
are evaluated using the fitness function and based on their fitness they are picked
as parents for the new generation. The parents are then combined with each
other in what is called crossover or reproduction to create offspring. These
offspring contain some parts of both of their parents and will together with

26 The genetic algorithm

pop = I n i t i a l i z eP opu l a t i o n ()
stopped = fa l se ;
while (! stopped) {

EvaluatePopulat ion (pop) ;
stopped = CheckForStopCriter ia () ;
i f (! stopped) {

parents = Se l e c t i o n (pop) ;
nextGenerat ion = Reproduction (parents) ;
pop = Mutation (nextGenerat ion) ;

}
}

Figure 5.1: Algorithm used for the genetic algorithm

their parents form the population of the next generation. Before evaluating
and selecting parents again, some of the individuals are copied and the copy
is mutated. Both offspring and parents are in the pool of individuals which
might be mutated. This mutation is done to broaden the search and prevent
the evolution from getting stuck in a local optimum.[Siv08]

The process of evolving continues until some stopping criteria is reached. This
algorithm is shown in figure 5.1.

In the following sections each part of the genetic algorithm is described along
with a description of how it is implemented to support the neural networks
as well as the genetic programing. Each section is followed by a subsection for
describing the implementation in the neural network and a subsection describing
the implementation in the genetic programing.

5.2 Encoding the problem

The simple GA uses individuals encoded as bit strings, but in general the en-
coding only needs to be strings containing characters from a finite alphabet.
[RN03]

5.2.1 Neural networks

There exists many ways to encode a neural network. Some allows the network to
have cycles while others do not and some encodings also include the edge weights.
In this thesis only the encodings without weights are taken into consideration.
This is due to the fact that backpropagation is used to optimize the weights.

5.2 Encoding the problem 27

1

2

3

4

5 6

7

Figure 5.2: A simple neural network which must be encoded in order for the
GA to work on it.

5.2.1.1 Direct matrix encoding

A simple way of encoding a network is to use a direct matrix encoding. In a
DME the connections between the nodes are stored as 1’s in a matrix otherwise
containing 0’s. As an example the neural network shown in figure 5.2 would be
encoded as 000110000001000000011000011000001000000000000000 which is the
string representation of the matrix shown below.

1 2 3 4 5 6 7

1 0 0 0 1 1 0 0
2 0 0 0 0 1 0 0
3 0 0 0 0 0 1 1
4 0 0 0 0 1 1 0
5 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

The DME is easy to implement and is easy to manipulate through the GA. The
encoding is a bitstring why the simple GA will work out of the box and any
manipulation of the individual will result in a meaningful solution even though
many of the solutions might be illegal.

One big problem with this encoding is that it allows illegal states to appear. The
illegal states could be nodes without neighbors and worst of all loops occuring
in the network. Loops are not allowed as they would cause the backpropagation
algorithm to get stuck in an infinite loop.

28 The genetic algorithm

Using this encoding the size of the string encoding would also get too big com-
pared to the number of connections in sparse network structures.

5.2.1.2 Adjacency list encoding

Another direct encoding is the adjacency list encoding which is used in this
project. It works by listing all the incoming connections for each node in the
network. That is, if there are connections from node 2 and 3 into node 5 this
would be encoded as 2 : 3 : 5 :.[Sch00]

As neural networks distinguish between input, hidden and output nodes a header
describing the number of input and output nodes is attached on the front of the
encoding.

The neural network shown in figure 5.2 would be encoded as 030212314145345637.
The first four digits is the header saying that the net has 3 input nodes and 2
output nodes. Then the following digits is the actual net structure. The decod-
ing of the string is done such that everytime an old node (a node which has been
seen earlier in the string) is spotted in the encoding string (when reading from
left to right) it is added to a queue of incoming conections. Then whenever a
new node is found, this node is added to the network and a connection is made
from each node in the “incoming connections”-queue to the new node. Finally
the “incomming connections” queue is cleared.

This encoding ensures that no loops can be found in the encoding as only con-
nections going from a node which has been seen before to a node which has not
been seen before is allowed. Further more the encoding length is not as big as
the matrix encoding.

A major drawback of this encoding is that the ga can only perform crossover at
a few crossover points and therefore a special mutation and reproduction has to
be created.

5.2.2 Genetic programming

The genetic program is not encoded into a string. Instead the reproduction is
created specifically for genetic programs as seen in section 5.6.2.

5.3 Initialization 29

5.3 Initialization

Initially a random population is generated. This is usually done by either picking
a number of individuals randomly from the uniform set of all possible individuals
or by a human selecting what individuals to start with.

In this project there are an unlimited number of individuals as the neural net-
works can have an unlimited number of nodes and the genetic programs can
be of infinite depth. Therefore tests are used to find good starting popula-
tions, see section 7.4 and section 7.5. In these tests the amount of hidden nodes
and the depth of the gp’s are found, but also the population size, the number
of generations, the number of epochs along with various other parameters are
found.

When the neural networks are created random weights are put on the synnapses.
These weights are chosen randomly in the interval [−10; 10].

5.4 Evaluation

The evolution of a good network structure/genetic program is done in iterations
or generations. Each iteration starts with the population being evaluated. This
is done by evaluating the classification rate and/or the size of the backpropaga-
tion error of each individual. For the neural networks this is a very computation
heavy process as the network has to perform backpropagation on the problem
in order to find the classification rate and backpropagation error.

The fitness of the individuals is then chosen as the classification rate, the size
of the backpropagation error or a combination of these.

fitness = 0.7 · classifiaction rate+ 0.3 · 1

1 + bp error

fitness = classification rate

If the number of false negatives should be minimized this could also be included
in the fitness evaluation.

fitness = 0.5 · 1

10 · FN
+ 0.5 · classification rate

In this project a high fitness means a good individual and vice versa.

30 The genetic algorithm

5.5 Selection

When choosing what individuals are to included in the next generation selection
has to be performed. If only the best individuals are chosen it is quite likely
that even better individuals which could be found as a combination of a good
and a bad scoring individual will never be found. At the same there it does not
make much sense to spend too much time on combinations of bad individuals as
their children are more likely to be bad as well. Therefore different approaches
to the selection exists.

Uniform selection is the selection method which does not take the fitness into
consideration. The individuals are chosen completely at random. The problem
with this type of selection is of course that an evolution in the overall fitness
will not occur. It works somewhat like a random search.

The roulette selection is the upgraded version of the uniform selection. Instead
of picking the individuals at random they are chosen with a weighted probability
where the weight is equal to their fitness. Do note that an individual can be
chosen as parent multiple times.

As an example imagine that in a population with 5 individuals, 4 must be
chosen as parents in the next generation. Their fitness scores, the propability
with which they are chosen as parent and the roulette value are shown in the
table below. The roulette value is the sum of probalities so far. Four times
a number between 0 and 1 is chosen: 0.6429, 0.3240, 0.2630 and 0.4098. The
parent population is then build using the first individuald with a roulette value
higher or equal to the random number. This results in the parent population
being: { 4, 2, 2, 3}.

Individual Fitness Propability Roulette Value
1 0.5 0.1613 0.1613
2 0.7 0.2258 0.3871
3 0.2 0.0645 0.4516
4 0.9 0.2903 0.7419
5 0.8 0.2581 1.0000
Total 3.1 1.0000

The problem with both uniform and roulette selction is that the best individuals
can be lost. Of course the overall best individual should be stored and used as
the result, but often one would also want it to be used as parents for the next
generations as well. To ensure this elitism can be used in combination with

5.6 Reproduction 31

another selection. Elitism works by selecting the x individuals with highest
fitness. These along with the parents chosen by the other selection is used as
parents for the following generation.[Siv08]

In this project roulette selection and elitism are used.

5.6 Reproduction

The way the genetic algorithm differs from a randomized search is the way it
uses reproduction to find new solutions. The idea behind reproduction is that
a good indvidual might be good due to some parts of it being good. So in the
same way the as in the nature offspring is created using different parts of the
parents. Hopefully these parts are the parts that make the individual parents
have a good fitness.

5.6.1 Neural networks

The reproduction in neural networks is a little difficult due to the special en-
coding.

First the possible crossover points are located. Crossover points are not allowed
in input nodes and in the last output node. Furthermore crossover points are
only allowed on synnapses between nodes. In the encoded string the synnapses
are found where a number i is followed by a number j < i.

When the possible crossover points locations are found, a crossover point is
selected in each of the parent networks. (This is done randomly) A crossover is
then performed between the two. The crossover is done by taking the encoded
string from start to the crossover point and combine it with the end of the other
string and vice versa. Two new networks are created and is ready to be used in
the evolution.

Before using them in the following generations the netwroks are pruned so that
all nodes not used are removed. An example of a reproduction between two
neural nets are shown in figure 5.3.

32 The genetic algorithm

1

2

3

5

4

1

2

3

5

4

0201 121324345 0201 12123124345

0201 1213345 0201 1212312424345
1

2

3

54

0201 121334

1

2

3

4

PRUNE

CROSSOVER

1

2

3

4

5

0201 121231242345

1

2

3

4

5

Figure 5.3: Crossover between two neural networks. The circles in the encoded
strings indicate where the allowed crossover points are, the red circle show which
crossover point is chosen. The pruning is done to remove all nodes which might
interfere with the result: it is not allowed to have a hidden/output node without
inputs, but any node is allowed to have no output.

5.6 Reproduction 33

5.6.2 Genetic programming

For the GP the reproduction works by finding 1 node in each parent which is
to be the crossover point. The tree having this node as root in one parent is
then switched with the tree found in the other parent. In this way two children
are created having a part from each of the two parents. An example is shown
in figure 5.4.

Figure 5.4: Crossover performed on two genetic programs resulting in one big
and one small program. The red circles mark the location of the crossover point.
As the root is chosen in the left tree and a leaf is chosen in the right tree, one
of the children will only contain one node.

34 The genetic algorithm

5.7 Mutation

If the genetic algorithm was only evolving using reproduction the population
might eventually end up consisting of one type of individual. It might further
more be liable to getting stuck in a local optimum.

To prevent this from happening mutation can be used. It makes a small change
in some individuals and this mutation might be what was needed in order to
kickstart/restart the evolution.

In the standard ga mutation is done by making a small change in the encoded
string, for example by flipping a couple of bits or by setting one of the genes in
an individuals to a new number.[Siv08]

5.7.1 Neural networks

In the neural network implementation of the mutation, the mutation is adding
or removing a node from the network instead of working directly on the encoded
string.

Only a subset of the population is chosen for mutation. Once chosen a coin is
flipped to see if a node is to be added to the network or a node is to be removed
from the network.

Choosing which node to remove is done by assigning a score value to each node.
This score is calculated as:

scoren =
1

1 + |con inn|+ |con outn|

where |con inn| and |con outn| are the number of connections in and out of
node n. Using the roulette principle also used in roulette selection (section 5.5)
a node is randomly picked for removal. This weighting ensures that nodes with
many connections are less likely to be removed.

If a node is to be added to the network it is given an id randomly chosen between
0 and the number of nodes in the network. Every node with higher id is then
having its id increased by 1. Due to the encoding the order of the node id’s are
important, see section 5.2.1.2.

Ingoing and outgoing connections are then randomly added to the the node
by making a connection from each node in the set of nodes with lower ids

5.8 Stopping criteria 35

(nodes inn) to the new node (n) with chance:

chance inn =
2

|nodes inn|

Likewise a connection is made from the new node to each node in the set of
nodes with higher ids with the chance:

chance outn =
2

|nodes outn|

In this way the expected number of ingoing and outgoing synnapses are 2.

5.7.2 Genetic programming

Mutation in genetic programming could be switching the type of function in
a randomly chosen node or switching two nodes in the tree, but currently no
mutation is used in the genetic programming.

5.8 Stopping criteria

The genetic algorithm keeps running until some stopping criteria is reached.
This criteria is usually when the algorithm has run for a fixed number of itera-
tions or when the fitness of the best individual or of the entire population starts
to converge.[Siv08]

In this project the genetic algorithm stops after a certain number of iterations.

36 The genetic algorithm

Chapter 6

Design and implementation

To make it easier to test different neural network implementations, different
genetic programs, different mutations etc. the software is build in a modular
manner where every part is easily replaced.This is done by having the main
functionality created using interfaces and abstract classes. A UML diagram
giving an overview of the classification software can be found in figure 6.1.

Evolution is the backbone of the genetic algorithm. It knows in what order the
evaluation, reproduction and mutation is to be called and it knows when to stop
the algorithm.

What happens when reproduction and mutation is called is determined in the
class GABase or in the classes implementing it. As both the genetic program-
ming and the neural networks use genetic algorithms they both implement the
interface. The class for the genetic programing (NormalGPB) knows exactly
how to evaluate, reproduce and mutate itself while the neural networks mutates
and reproduces differently depending on the encoding used (AEncoding). Fur-
ther more the neural networks evaluate depending on the learning algorithm
used (ILearningAlgorithm).

38 Design and implementation

Evolution

NeuralNetBase GeneticProgramBase

1

-population

*

SchiffmannNNB

AEncoding

SchiffmannEncodingDirectMatrixEncoding

1

-encoding

1

Note that the SchiffmannNNB
ensures that SchiffmanEncoding
is used

NormalGPB

+Evaluate(in trainingSamples : List<Data>, in evaluationSamples : List<Data>) : double
+Mutate() : GABase
+Reproduce(in mate : GABase) : GABase[]

«interface»
GABase

Data

NNConfig GPConfigConfiguration

1

1

1

1

1

1

«interface»
ILearningAlgorithm

BackPropagationLearning

1

1

Figure 6.1: An overview of the design of the classification software.

6.1 Cloud solution 39

6.1 Cloud solution

To get more computation power the software is furtermore developed to do its
computations on multiple cores. To prevent having to struggle unnecessarily
with the parallellization only the evaluation is done in parallel. Furthermore
it is only the evaluation (the backpropagation for the neural network), which
takes a lot of time, that is run in parallel.

To speed up the evaluation process even further only individuals that has not
been evaluated will be evaluated. The evaluation is shown in figure 6.2. The
process begins with finding the individuals in the population which has not yet
been evaluated. This list is shuffled such that the distribution of small/large
individuals is uniform. Then every individual is evaluated. This is done in
parallel using the build in function Parallel.ForEach. All results are stored in
the individuals themselves to prevent race conditions. Once all nets have ben
evaluated they are marked evaluated. Once again the marking is not done in
parallel as this could infer race conditions.

/∗ Evaluate in p a r a l l e l ∗/
/∗∗ Prepare for eva luat ion ∗∗/
List<GABase> toEvaluate = new List<GABase>() ;

f o r each (GABase nnb in m Pop)
i f (! e va l ua t ed Ind i v i dua l s . Contains (nnb))

toEvaluate .Add(nnb) ;

/∗ Shu f f l e l i s t to encourage even d i s t r i b u t i on of i nd i v i dua l s ∗/
/∗ between cores ∗/
toEvaluate = toEvaluate . OrderBy (a => Guid . NewGuid ()) . ToList () ;
int noEvaluated = toEvaluate . Count ;

/∗∗ Do the actua l eva luat ion ∗∗/
Pa r a l l e l . ForEach (toEvaluate , nnb =>
{

nnb . Evaluate (m Problem . TrainingData , m Problem . Val idat ionData) ;
}) ;

f o r each (var nnb in toEvaluate)
eva lua t ed Ind i v i dua l s .Add(nnb) ;

Figure 6.2: The evaluation of the individuals of the genetic algorithm. First the
individuals which are to be evaluated is found, and the list is shuffled. Then the
individuals are evaluated in parallel and finally they are marked as evaluated.

40 Design and implementation

6.2 Debugging

In order to ensure that the software is working correctly a lot of debugging and
analysis of the different parts of the software has to be done. This analysis and
debugging takes a great amount of calcualtions why most of the debugging is
done only when a debugger is attached. An example of this can be found in
the class BackPropagationLearning where the classification rate is stored in the
debugger if it is present.

i f (debugger != null)
{

var c l a s s i f i c a t i o nRa t e = network . Ge tC la s s i f i c a t i onRat e (
debugger . EvaluationData , this . actFunc , this . f ina lActFunc

) ;
debugger . C la s s i f i c a t i onRateH i s tog ram .Add(c l a s s i f i c a t i o nRa t e) ;

}

Chapter 7

Testing

In order to proove the correctness of the software and validate the effectiveness
of it, a number of tests have been performed. In the following sections these
tests are described and the test results are presented and discussed.

First the correctness of the individual parts of the software is tested to see if
they are functioning. This is done in section 7.1 and 7.3. Then the parameters
for the classification algorithms is tested in order to find a good set of parameter
settings. This is done in section 7.4 and 7.5.

In section 7.6 and 7.7 the best classification algorithm and its performance and
capabilities are measured.

7.1 Initial testing

In order to ensure that the classification algorithms are working correctly tests
have been run on a number of benchmark problems [Prechelt94]. These bench-
mark problems have been used by others to test the classification rate of their
algorithms and can therefore be used to evaluate the performance of the classi-
fication algorithms even without a fully functional feature extraction algorithm.

42 Testing

The classification algorithms are not fine tuned to get an optimal score on these
benchmark problems. The benchmark problems are only used to see that the
classification algorithms is able to perform decently.

The neural network used in the classification is an unsorted network with 6
hidden nodes and has the following parameter settings:

Learning rate Falling from 0.7 to 0.03
Population 50
Mutation rate 0.6
Epochs 500
Generations 100
Elitecount 5

The genetic programing algorithm has an initial population consisting of 50
programs with depth 8. It has been running for 5000 generations, else the
parameters are as above.

In the following section the datasets used for benchmarking is described and the
test results are shown

7.1.1 Glass

The Glass training set has 9 decimal inputs and 6 boolean outputs. Only one
of the outputs can be true and it is therefore similar to the melanoma problem
(described in section 2.1.8) with the exception that there are 6 ouput classes
instead of 2. As the genetic program is only able to result in 2 different classes
this test set is only be used to validate the neural networks.

In table 7.1 the test results of other classification algorithms can be found and
in figure 7.1 the results are visualized. The neural networks developed in this
project is in the lower end when it comes to classifying these data, but as
it is not developed to maximize the classification rate for these problems the
classification rate is good enough.

7.1.2 Diabetes

The Diabetes training set consists of 768 samples of 8 inputs and 2 boolean
outputs. This problem is therefore very similar to the melanoma problem which

7.1 Initial testing 43

Litterature Method CR

Fredriksson, 1997 [Fre97] ANKKA 65.00
Cascade Correlation 79.00

Dorsey, 2000 [Dor00] BP 51.19
GA 66.79

Grönroos, 1998 [Grö98] Miller et. al 61.82
Kitano 67.92
Parisi 50.31
Cangelosi 37.54

Prechelt, 1994 [Pre94] PROBEN1 67.92
PedersenJensen, 2004 [PJ04] GANN - RPROP / Schiffmann 79.25
Mygind, 2011 GANN / Schiffmann 62.26

Table 7.1: Proben glass test results. The column CR shows the classification
rate.

Fredriksson, 1997 Grönroos, 1998 PedersenJensen, 2004

C
la

ss
ifi

ca
tio

n
er

ro
r

/%

0
5

10
15

20
25

30
35

Classification error − glass

Fredriksson, 1997
Dorsey, 2000
Grönroos, 1998
Prechelt, 1994
PedersenJensen, 2004
Mygind, 2011

Figure 7.1: Results of other work using the proben/glass benchmark set.

44 Testing

has 9 inputs and 2 outputs. This data set can also be used to validate the genetic
programming why this is an important data set for verifying the capabilities of
both classification algorithms.

In table 7.2 the results of classification algoirthms used by others are shown and
in figure 7.2 the results are visualized. It is seen that both the neural networks
and the genetic programs have a classification rate comparable to those of other
litterature. They do not score highest, but this was expected as the parameters
are not fine tuned to these problems.

Litterature Method CR

Banzhaf, 1998 [BB98] Genetic programing 76.92
Dorsey, 2000 [Dor00] BP 72.39

GA 73.76
Fredriksson, 1997 [Fre97] ANKKA 77.10

Cascade Correlation 76.60
Ma, 1997 [JM97] Combined Weak Classifiers 77.30

K Nearest Neighbour 74.20
Neural Networks 76.48
Combination of GA og ANN 77.21

Sikander, 2001 [SS01] BP 72.39
GA 76.56

Prechelt, 1994 [Pre94] PROBEN1 75.00
PedersenJensen, 2004 [PJ04] GANN - RPROP / Schiffmann 82.29
Mygind, 2011 GANN / Schiffmann 78.13

Genetic Programing 73.44

Table 7.2: Proben diabetes test results. The column CR shows the classification
rate.

7.1.3 Horse

The samples in the Horse data set consisist of 58 inputs, most of them are 0, and
has 3 boolean outputs. This dataset is used to see how the neural network will
perform with a lot of missing input data, which will most likely not be relevant
as the feature extraction most likely will always be able to find a number for
each of the 9 features. Due to the fact that there are 3 output classes the dataset
can only be used to validate the neural networks.

In table 7.3 the test results of earlier work can be found and in figure 7.3 the
results are visualized. It is seen that the classification rate of the neural network

7.2 The dataset 45

Banzhaf, 1998 Ma, 1997 Prechelt, 1994 Mygind, 2011 − GP

C
la

ss
ifi

ca
tio

n
er

ro
r

/%

0
5

10
15

20
25

Classification error − diabetes

Banzhaf, 1998
Dorsey, 2000
Fredriksson, 1997
Ma, 1997
Sikander, 2001
Prechelt, 1994
PedersenJensen, 2004
Mygind, 2011 − NN
Mygind, 2011 − GP

Figure 7.2: Results of other work using the proben/diabetes benchmark set.

is comparable to the classification rate of other litterature.

7.2 The dataset

The initial testing was done using the datasets described by Prechelt [Pre94],
but the following tests will be performed using a dataset obtained from the
dermatologic lab at Rigshospitalet.

The dataset contains images of 336 birthmarks of which 164 have been classified
melanoma by the dermatologists and the rest has proven to be harmless. So
51% of the images are harmless and 49% are harmful. As the distribution is
50-50 ot will be harder to get a high classification rate compared to a dataset
with a more uneven distribution.

The images have been taken using a standard camera operated by one photog-
rapher. The quality is varying and especially the luminance of the images vary.
All images are sharp and the entire birthmark is always found inside the image.
The test data set is therefore a little more controlled and the image quality is
a little more stable compared to what could be expected in a real world im-
plementation. Here different users would use different cameras and might have

46 Testing

Litterature Method CR

Banzhaf, 1998 [BB98] Genetic programing 78.65
Bay, 1998 [Bay98] Nearest neighbour 76.80

K nearest neighbour 79.80
Nearest neighbour forward selection 83.90
Nearest neighbour backward selection 76.50

Dorsey, 2000 [Dor00] BP 71.28
GA 76.00

Prechelt, 1994 [Pre94] PROBEN1 73.63
Sikander, 2001 [SS01] BP 74.72

GA 80.22
PedersenJensen, 2004 [PJ04] GANN - RPROP / Schiffmann 85.71
Mygind, 2011 Neural Networks 79.12

Table 7.3: Proben horse test results

Banzhaf, 1998 Dorsey, 2000 Sikander, 2001 Mygind, 2011

C
la

ss
ifi

ca
tio

n
er

ro
r

/%

0
5

10
15

20
25

Classification error − horse

Banzhaf, 1998
Bay, 1998
Dorsey, 2000
Prechelt, 1994
Sikander, 2001
PedersenJensen, 2004
Mygind, 2011

Figure 7.3: Results of other work using the proben/horse benchmark set.

7.3 Feature Extraction 47

even more differing luminance on the subjects.

The birthmarks vary in both color and size and only a few does not fit inside the
image. No image has been removed from the dataset even though it could be
argued that birthmarks placed on rough areas, like the ear, should be removed.
Due to this some birthmarks will inevitably have bad influence on the features
extracted from these images.

All images are of images of birthmarks found in the dermatological laboratory
at Rigshospitalet. The birthmarks are therefore all in the category where the
house doctor has not been able to say that the birthmark with certainty is
harmless. The dataset therefore does not contain any, or only very few, images
of the standard harmless birthmark.

The training of the classification algorithms has been done using data found
by the feature extraction. The performance of the classification algorithms is
therefore only comparable to each other and not to classifications of other work.
Also this has the effect that a classification rate of 100% is not necessarily
reachable as the classification algorithm cannot perform better than the feature
extraction allows.

The dataset is split into three: a training dataset, a validation dataset and a test
dataset. These dataset are chosen at random and has the sizes 167, 84 and 85
respectively. The training dataset is larger as this is the main source of training
and will ensure that the training is done a broader set of images making it more
tolerant to different images.

For the neural network the training dataset is used to train the backpropagation
and based on the score dound using the evaluation dataset the best network is
chosen by the genetic algorithm. For the genetic programming the only training
set is used to train the genetic program structure. When comparing results the
test dataset is used for both the genetic program and the neural network.

7.3 Feature Extraction

In this section the feature extraction is tested. Initially random checks is used
to find out if the algorithm is capable of extracting the areas of the birthmarks.
Once a fitting algorithm has been found the robustness of it regarding the quality
of the input images is tested.

48 Testing

7.3.1 Random sampling

The most basic way of testing the feature extraction is by seeing what informa-
tion the feature extraction works with. To do this prints of the regions in which
the algorithm is working has been analysed by hand. Examples of such prints
is found in figure 7.4.

These initial tests showed that the feature extraction is not robust enough why
the test dataset was cropped to be more consistent (the birthmark is centered in
the image). A small group of birthmarks was found by both implementations,
one of these is shown in figure 7.4 on the right. A big group was found only by
the new implementation where one of these birthmark is shown in the middle.

Even after the cropping some birthmarks is not found correctly by any of the
implementations, but the number of birthmarks which are not correctly found
is lowered. On the top right an ear confuses the algorithm and in the bottom
right the bright birthmark and the freckled skin confuses the feature extraction.

Figure 7.4: Testing the feature extraction using random samples. Upper row
shows three examples of samples in the initial implementation. Second row
shows for the final implementation. Both implementations have trouble finding
some of the birthmarks, but the final is improved a lot.

During the random sampling all extracted images are classified by hand and
given one of three categories. These categories, also visualized in figure 7.5, are

7.3 Feature Extraction 49

as follows:

good where the imageextraction has found the exact birthmark in the image

mediocre where most or the birthmark is found or only a part of the surround-
ing skin has been included

bad where nothing is found in the image, half the image is marked as the
birhtmark or the feature extraction has found the birthmark to have a
shape completely different from the orignal shape of the birthmark.

Figure 7.5: Images extracted by the image extraction algorithm. On the left a
bad performance is shown, in the middle a mediocre performance where only a
part of the birthmark is missing and on the right a good performance is shown
where the entire image is correctly located by the feature extraction.

Using this categorization the feature extraction is able to find a birthmark in
214 of the 336 images. In 77 images the feature extraction performs really bad
and in 45 images its performance is mediocre. Using only the good images, the
performance of the feature extraction is therefore only 63.69%.

In the following all of the images with the bad feature extraction are used for
testing. This is done because a lot of testing was done prior to this test and in
order to compare these results to the following, all tests have been performed
using the faulty dataset. In section 7.6.1 a test using the best network structure
is performed in order to see the effect of these faulty images being removed.

7.3.2 Influence of image resolution

At least one of the business ideas for this software is that the hardware (the
camera and the computer) should be more or less irrelevant for the effectiveness
of the software. It is therefore important that the quality of the image is not

50 Testing

very crucial for the outcome. In this section the influence of the image quality
is measured.

The resolution of the image is very dependent on the camera. First of all the
resolution of a standard cameras range from 1MP and up to more than 15MP
(1000× 1000px - 3900× 3900px). Further more some cameras cannot put focus
on objects close to the lense why the birthmark might not fill the entire image.

In order to find a lower bound of the birthmark size measured in pixels an image
of a birthmark has been captured using the camera of a decent phone using its
auto focus feature. The image is then cropped to fit the size of the birthmark
and this size is used as the lower bound. The minimum size is found to be
200px× 200px.

All images are then resized to size 200px×200px and to size 400px×400px and
classified using a good neural network from a training performed on the original
sized images. An example of an image being resized is shown in figure 7.7. It
can be seen that lowering the resolution results in an image of a birthmark with
much lower border sharpness.

The classification rate and the rate of false/true positives/negatives are shown
in figure 7.6.

From the figures it is seen that the resolution does have an impact on the
classification rate and it can therefore be concluded that the resolution has an
impact on the feature values extracted from the image. The tests show that the
classification rate drops from 80% down to 70% when the image resolution is set
to 200px× 200px why a high resolution should be preffered in a final product.
The classification is however still decent when the images are in a low resolution.

What is also interesting to see is that when the image resolution drops, the
classification algorithm is more likely to classify the images as harmful. The
false negative rate drops to 0% and the classification rate stays at 70%. This
classification rate is not reachable with the high resolution images when the
false negative rate has to be 0%.

7.4 Neural Networks

After having done the initial testing where it is seen that the classification soft-
ware is working correctly, tests have been performed to find a set of parameters
which results in a good classification network for melanoma data.

7.4 Neural Networks 51

TN FN FP TP

0
10

20
30

40
50

60

200x200
400x400
original size

Classification rate
200x200: 0.690265
400x400: 0.794643
Original size: 0.803571

Figure 7.6: Testing the influence of the resolution of the image. The best neural
network from a training using the original images are used to validate.

52 Testing

Figure 7.7: The same birthmark in different resolution. The bottom row shows
a part of the image in low, medium and original resolution.

7.4 Neural Networks 53

First the optimal number of epochs used in the backpropagation is found. Next
the best network structure is found and finally the threshold for when to classify
a birthmark as harmfull is determined.

7.4.1 Optimal number of epochs

In order to train the weights of the network, backpropagation is used. The
network should be trained long enough for it to classify the training set cor-
rectly. At the same time it should not be trained for so long that it is overfitted
to only classify the training set correctly. To find out how many epochs the
backpropagation algorithm should run through, tests has been made where the
classification rate of the network is evaluated every epoch.

In figure 7.8 graphs are found which shows the test results (the classification
rate of a neural network every epoch). The test has been run with 4 diferrent
learning rates, 3 times each.

It is seen that a learning rate between 0.03 and 0.4 gives the best result, but a
variable learning rate is almost as good as the best as well. Further more there
is no clear indication of overfitting as the graphs does not have a negative slope.
Furthermore it is seen that the classification rate is not increased noteworthily
when the algorithm has run for more than 500 epochs.

7.4.2 Finding a good structure

To find a good network structure different types of multi layer networks have
been tested against the perceptron network and the unstructured network. Ini-
tially the unevolved network is testet to sort out the types which is not worth
spending too much testing time on. The best of the tested networks will be
used as start population for an evolution and hopefully a combination of the
networks will result in even better networks.

7.4.2.1 The unevolved network

In this section the unevolved network, a network only trained using backprop-
agation, is used to classify the birthmarks. The edges of the networks are
initialized using random weights in the interval I = [−10; 10] and the networks
are trained using backpropagation. A variable learning rate is used as this has

54 Testing

0 100 200 300 400 500 600

0.
4

0.
5

0.
6

0.
7

0.
8

spanx

c(
m

in
to

t,
m

ax
to

t)

mean classification rate

Max
Med
Min
Var

Figure 7.8: Graphs showing the classification rate as a function of the number
of epochs. Three runs with each parameter setting is made. The first three
graphs show runs with a fixed learning rate of 0.7, 0.4 and 0.03 respectively;
And the fourth graph shows a run with a learning rate decreasing linearly from
0.7 to 0.03 over time. The last graph shows the mean classification rate of the
three runs for each parameter setting. A larger version of the four first graphs
can be found in appendix B.

7.4 Neural Networks 55

proven to be effective in other tests (see section 7.4.3.). The learning rate is
α(it) = 0.7− it

ittotal·(0.7−0.03) . That is the learning rate falls linearly from 0.7 to

0.03 which are the extremes of the learning rates mostly used in the litterature.
[FreemanSkapura1991][KB94]

Finding the optimal number of hidden layers Three types of networks
are tested: the perceptron, the unstructured network and the multi layer net-
work. To find out what types of multi layered networks are to be compared
to the other networks an initial test is made using 10 hidden nodes, but with
varying structure: a varying number of hidden layers and a varying number of
hidden nodes in each layer.

The results of the test can be seen table 7.4 and is visualized in figure 7.9. It
is clearly seen that when the backpropagation algorithm runs for at most 500
epochs the multi layer network should not have too many hidden layers.

The tables are read using the following legend:

ML x means a single layer network containg x nodes.

ML x− y is a multi layer network with 2 layers containing x and y nodes
respectively.

US x is an unsorted network with x hidden nodes.

Type Run 1 Run 2 Run 3
US10 0.80723 0.722892 0.746988
ML10 0.710843 0.626506 0.626506
ML5-5 0.638554 0.638554 0.722892
ML4-3-3 0.626506 0.614458 0.493976
ML3-3-4 0.626506 0.493976 0.493976
ML2-3-3-2 0.506024 0.493976 0.493976
ML2-2-2-2-2 0.674699 0.493976 0.493976
ML1-ˆ10 0.493976 0.493976 0.493976

Table 7.4: Test results from running the classification algorithm on different
network structures.

From the test results it is seen that the best classification rate is bad in networks
containing more than 2 layers. Therefore only the unsorted network and the
multilayer network with 1 or 2 hidden layers are tested.

56 Testing
0.

50
0.

55
0.

60
0.

65
0.

70
0.

75
0.

80

C
la

ss
ifi

ca
tio

n
R

at
e

US10
M

L1
0

M
L5

−5

M
L4

−3
−3

M
L3

−3
−4

M
L2

−3
−3

−2

M
L2

−2
−2

−2
−2

M
L1

−^
10

Classification Rate of Structures with 10 Nodes

Figure 7.9: Classification rate of different network structures with 10 nodes.
Three runs has be made for each structure.

7.4 Neural Networks 57

Finding the best number of hidden nodes As we found out that the multi
layer network with 1 or 2 hidden layers performs best a new test using these
two types of networks and the unsorted network is performed. The aim of the
test is to find the best number of hidden nodes in a network.

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Number of Nodes

C
la

ss
ifi

ca
tio

n
R

at
e

0 3 5 9 10 12

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0 3 5 9 10 12

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0 3 5 9 10 12

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Classification Rate of networks without evolution

Single Layer Network
Multi Layer Network
Unsorted Network

Figure 7.10: Classification rate of neural networks initialized as unsorted (US),
single layered (SL) and dual layered (ML) networks having varying number of
hidden nodes. The multilayer networks have one hidden layer.

Once again the network structure is not evolved, only the weights. The param-
eters mentioned above is still used.

From the results, shown in figure 7.10, it is seen that when the structure is not
evolved the perceptron results in a very high classification rate. Further more it

58 Testing

is seen that extending the perceptron, as it is done in the unsorted network, can
result in an even better classification rate. This might indicate that evolving the
perceptron or the unsorted network will result in the best classification rate.

7.4.3 Finding a good threshold

If and when this software is to be included in a real world application a low
amount of false negative (FN) results would be prefered. If there is a a slight
chance a person is having melanoma the application should tell the user so.
Therefore a threshold has to be found which ensures that most melanomas are
found without ending up saying all birthmarks are harmfull.

A test has been run to see what the values of the output nodes in the neural
network is for harmless and harmful nodes respectively. The results, shown in
figure 7.11, 7.12 and 7.13, can then be used to find a threshold for when to say a
birthmark is harmfull or harmless. If the classification is based on the difference
(the result is shown in figure 7.11 on the right) between the two output nodes
the equation would look like this:

Classification =

Melanoma if outputnegative node + threshold

> outputnegative node

Harmless if outputnegative node + threshold
≤ outputnegative node

On the left of figre 7.11 the distribution of the output values of each node
is shown. On the right the percentage of wrong classifications (PoWC) of
harmful/harmless birthmarks is shown. Ideally 0%of the melanoma is wrongly
classified while the PoWC of the harmless birthmarks is kept very low.

From the graph it is seen that the PoWC for harmless birthmarks increases
much faster than the PoWC for melanoma decrease. Therefore the classifica-
tion rate will decrease too much if the false negative rate should be lowered
noticeably. A threshold value of t = 0.365 looks like it would give a nice re-
sult where only few melanomas are not spotted and most harmless birthmarks
(≈ 53%) are classified as harmless. This point is marked with blue on the right
in figure 7.11.

The test results are also used to see if a better classification rate and false-
negative rate can be found if only one of the output nodes are used. These
results are shown as “Positive node” and “Negative node” in figure 7.12. If only

7.4 Neural Networks 59

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

c(0.5, 4.5)

c(
0,

 1
.3

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Values of ouput nodes

Positive node − Harmless
Positive node − Melanoma
Negative node − Harmless
Negative node − Melanoma

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

Difference between nodes

Harmless
Melanoma
(0.365,0.53)

Figure 7.11: Graphs showing the test results used to determine a good threshold
for the best neural network

one output node is used the equation with the threshold would be one of these:

Classification =

{
Melanoma if outputpositive node < threshold
Harmless if outputpositive node ≥ threshold

Classification =

{
Melanoma if outputnegative node > threshold
Harmless if outputnegative node ≤ threshold

From figure 7.13 it is seen that there is no big difference between using both
output nodes (which is done during training) and using only one of the out-
putnodes. The slope of the individual curves are almost identical and the point
where the lines cross is almost at the same threshold and has almost the same
classification rate.

There could be a small advantage in using only the positive node because the
number of false negatives could be lowered without sacrificing too much of the
classification rate. The advantage is however only very small and might not be
present in a different dataset.

7.4.3.1 Punishing the pressence of false negatives

The test results show that the classification rate drops very quickly when the
number of false negatives are lowered by moving the threshold. Therefore a test

60 Testing

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

Positive output node

Harmless
Melanoma

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

Negative output node

Harmless
Melanoma

Figure 7.12: Graphs showing the test results used to determine a good threshold
for the best neural network

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

All in one plot

Positive node − Harmless
Positive node − Melanoma
Negative node − Harmless
Negative node − Melanoma
Difference − Harmless
Differenct − Melanoma

Figure 7.13: Graphs showing the test results used to determine a good threshold
for the best neural network

7.5 Genetic Programming 61

has been run where the fitness are calculated using the number of false negatives
as well.

fitness = 102/(102 + FN2) · ClassificationRate;

where FN is the number of false negatives found in the test.

The test however did not show any great improvements. The classification rate
was much lower and the number of false positives where lowered a little.

7.5 Genetic Programming

As a simple genetic programming implementation has been chosen there is not
many parameters to test, but in the following sections tests to find the depth of
the program tree and an optimal threshold will be performed.

7.5.1 Finding a good depth

One parameter to test is the depth of the individuals in the initial population.
As the initialization is done using complete binary trees, the depth has a direct
influence on the number of leaves on the program tree.

leaves = 2depth−1

where a tree containing only one node has depth = 1.

If the number of leaves gets too low it will be hard for the program to find
a solution using all the inputs from the feature extraction as well as getting
enough constants to add to these inputs. On the other hand a tree which is too
deep will also result in the algorithm being unable to find a good result as the
amount of possible solution will explode and finding a good will be like finding
a needle in a haystack.

To find out what depth is best, a test has been made in which different com-
binations of depths and number of generations has been tried out. The test
results are shown in figure 7.14. The tests with 250 − 1000 generations have
not been run with depth 14 due to the time span these tests would require.
It is seen that a depth 8 resulting in 128 leaves/terminals and 64 functions in
the individuals of the initial population gives the best result. Especially if the
number of generations are not too high. That a high number of iterations has a
negative effect on the outcome is a sign of overfitting where the genetic program

62 Testing

4 6 8 10 12 14

0.
60

0.
65

0.
70

0.
75

0.
80

Depth

C
la

ss
ifi

ac
tio

n
R

at
e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

Classification Rate of Genetic Programming

it.50
it.100
it.250
it.500
it.1000

Figure 7.14: Classification rate of genetic programs with varying depths and
running different number of iterations. Each line corresponds to a different
number of iterations.

7.5 Genetic Programming 63

is too specialized to the training dataset and therefore has bad performance on
the evaluation dataset.

7.5.2 Finding a good threshold

For the genetic program it is also possible to move the threshold for when the
birthmark should be classified as melanoma or not. In figure 7.15 two graphs
showing the test results are found. On the left it seen that if the threshold

−200 −100 0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

Number of wrong classifications

Harmless
Melanoma
No False Negative

−100 −50 0 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold value

P
er

ce
nt

ag
e

of
 w

ro
ng

 c
la

ss
ifi

ca
tio

ns

Number of wrong classifications

Harmless
Melanoma
(11,0.2)

Figure 7.15: Threshold test for genetic programing. Number of false posi-
tives/negatives at different threshold levels. The black lines in the left graph
shows the location where no false negatives are found. In the right graph it
shows the location where both the false negatives and the false positives are
minimized.

is around 115 no false positives will be found. At the same time 80% of the
harmless birthmark will be classified as melanoma. On the right graph, view is
zoomed in around threshold 0 it is seen that the lines cross at (11, 20) which
means that the best classification rate will be with a threshold of 11. The
classification rate will then be around 80%.

Increasing the threshold value a little to approximately 20 will result it what
looks as a good compromise between a good classification rate and a low false
negative rate.

64 Testing

50 Generations
Type Classification rate

on training data set
Perceptron 76.51
ML 9 83.73
ML 5-4 50.12
ML 10 78.31
ML 5-5 54.22
US 10 85.52
US 9 67.47
US 3 84.94

Table 7.5: The best neural networks - 50 generations

7.6 The best classification algorithms

Having found a good set of parameters for the neural networks a longer test is
made with fewer variations in the parameter settings. Only the perceptron, the
single layer, the dual layer and the unsorted neural network is tested.

In this test the networks are evolved such that small mutations made in the
network might open up for new structures being even better at classifying the
birthmarks.

A test run with the following parameter settings is made for the different net-
works.

Learning rate A linearly falling learning rate from 0.7 to 0.03.

Population A fixed population size of 50.

Mutation rate A fixed mutation rate of 0.6.

Epochs A fixed number of epochs. 500.

Elite count A fixed elite count. 5.

The test are evaluated using the score on the test data set (on which they are
trained). Based on the score of the best network/genetic program a final clas-
sification rate is chosen based on both the test dataset and on the classification
rate on the entire set. The results are shown in table 7.5 and 7.6.

These results are compared to the results of the test of the genetic programing
done in section 7.5 where the best programs are shown in table 7.7.

7.6 The best classification algorithms 65

400 Generations
Type Classification rate

on training data set
Perceptron 86.75
ML 9 82.53
ML 5-4 58.43
ML 10 N/A
ML 5-5 63.25
US 10 N/A
US 9 69.88
US 3 59.64

Table 7.6: The best neural networks - 400 generations. Due to the long running
time some tests were not performed - therefore N/A is shown.

Genetic programing
Depth Iterations Classification Rate
8 100 79.92
10 100 75.10
8 250 75.10
6 50 73.49

Table 7.7: The best genetic programs found in section 7.5.

Using these results it is seen that the best classification rate is received using
the perceptron as basis for the initial populations and by evolving the structure
of the neural network for 400 generations. By doing so a classification rate of
86.75 on the test dataset is found.

Using the best network to evaluate the entire set and on the test data only,
the classification rates shown in table 7.8 are found. It is seen that the neural
networks are better at classifying the birthmarks when all images are used, and
it is seen that is able to classify 78% of the images correctly.

All images

Classification rate Classification rate
Type on test data set on entire set
NN 78.82% 77.98%
GP 70.69% 75%

Table 7.8: The results of the best classification algorithm.

66 Testing

Good images only

Classification rate Classification rate
Type on test data set on entire set
NN 91.84% 80.57%
GP 89.80% 82.46%

Table 7.9: The results of the best classification algorithm.

7.6.1 Performance on good images only

As shown in section 7.3.1 the feature extraction is only able to locate the birth-
mark exactly in some of the images. Therefore a single test has been run to
find the classification rate of the network and the genetic program on only these
images.

The results, shown in table 7.9, show that both the neural network and the
genetic program is able to reach a classification rate of more than 80% when
only the good images are used for classification.

It is seen that the genetic program is better than the neural network, but as the
tesing on this dataset has not been very thorough not conclusions on which is
better will be made.

7.7 Influence of features

One thing is to have a functioning classification algorithm another is to have
good inputs for the algorithm. In order to improve the feature extraction in the
future one of the best neural network has been used to find the most important
features in the current classification.

7.7.1 The values of the features

Initially the output values of the feature extraction has been analyzed. In figure
7.16 a boxplot of the values of the features found by the feature extraction is
shown.

From the figure it is seen that some values does not vary much while others do.
The neural networks are easilier trained when the values use the entire range

7.7 Influence of features 67

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Feature

V
al

ue

●● ●

●
●●
●
●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●
●
●

●

major minor ea edgerat area nocol black blue white

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●●●●●●●
●

●
●●

●

●

●●●●●●●●●●●●
●
●●●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●

●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Values of features

Melanoma
Safe

Figure 7.16: Feature values in harmfull/harmless birthmarks. The boxplots
show the ranges in which the values are located depending on their diagnosis.
The whiskers can at most have the length of 1.5 times the length of the box.

68 Testing

from 0 to 1 so the feature extraction should eventually be improved such that
edge abruptness, edge-area ratio and area size take better use of the interval.

Most imprtantly however the graph shows that none of the values can be used
to unambiguously determine if the birthmark is harmful or not. All features do
overlap and can at most give a hint to the final result. This result was expected
as a non-overlapping feature outcome would result in the intelligent algorithm
being irrelevant.

7.7.2 Influence of individual features

To see the individual effect of each of features a test has been run where one
feature has not been included. In figure 7.17 the results of the test is shown.

The barplot shows that the area does not contribute to the classification at all
and the asymmetry in the minor axis, the edge abruptness and the blue color
ratio has only a limited effect. The asymmetry in the major axis and the number
of colors as well as the black color ratio has quite an impact on the classification
rate, but the most important feature is the edge-area ratio. When this feature
is removed the classification rate drops to 50% (the same classification rate as
random classification).

It is also worth noting that when the white color ratio is removed, the classifi-
cation rate is improved a little. Why the classification rate is improved is hard
to tell as the backpropagation should have neglected the white input note if it
found it to be confusing. The color information in general is probably not that
useful as the colors have been picked manually and the images are not color
corrected in any way.

From the graph it is seen that all features, except a few which is by-product of
other features, do contribute to the classification rate. If the color extraction is
improved the classification rate might improve as only litle of the current color
information is used to classify the birthmarks.

7.7.2.1 Limited features test

A test where the classification algorithm is trained using only the good features
or at least without the white color information could be run. This however has
not been done and will therefore be a thing to do in a future development of
the software.

7.7 Influence of features 69

maj min ea erat area nocol black blue white w/all

C
la

ss
ifi

ca
tio

n
ra

te

0.
0

0.
2

0.
4

0.
6

0.
8

Impact of missing features

Major asymmetry
Minor asymmetry
Edge abruptness
Edge−area ratio
Area size
Number of colors
Black ratio
Blue ratio
White ratio
With all features

Figure 7.17: Impact of missing features. The plot shows the classification rate
of the neural network when a single feature is missing. The black line shows the
classification rate of the network with all features present. And each bar shows
the classification rate of the network when the feature shown in the legend is
missing.

70 Testing

Chapter 8

Conclusion

In this work I have succesfully created a piece of software which given an image
of a birthmark is capable of extracting 9 features from the birthmark and clas-
sifying the birthmark based on the extracted features. The features, inspired
by the ABCDE criteria, describe the asymmetry of the birthmark, the size and
abruptness of the edge and the colors in the birthmark.

The software has been designed with modularity in mind such that both clas-
sification algorithms use the same genetic algorithm to evolve and such that a
new classification algorithm can easily be included. The software has furtermore
been designed to work on a multicore computer and has succesfully been used
in Microsoft Azure, the cloud service developed by Microsoft.

The individual parts of the software has been tested and the results show that
the feature extraction algorithm is working on most images. The current feature
extraction is able to find the birthmark correctly in 64% of the images in the
dataset and in only 23% of the images the algorithm is completely wrong.

Both the implementations of the neural networks as well as the genetic pro-
graming are functioning and their capabilities in form of classification rate is at
the same level as classification algorithms developed by others when tested on
a benchmark dataset.

72 Conclusion

The best classification algorithm is the neural network evolved from a start-
ing population of perceptrons and has a classification rate of 77.98% when all
images, including those where the feature extraction was not able to find the
birthmark, are used.

When only good images are used tests show that a higher classification rate can
be reached and an initial test has resulted in a classification rate of 82.46%.
This classification rate is reached with a genetic program trained on the good
images.

The high classification rates are based on classification algorithms that pro-
duces as many false negatives as false positives, and tests show that moving the
threshold for when a birthmark is harmfull in order to lower the false negative
rate, will result in a much lower classification rate.

The resolution of the images does have a significant influence on the results of the
feature extraction and it can be concluded that a resolution if 400px × 400px
on an image cropped to fit the birthmark is to be preffered. The effect of
lowering the resolution was however that more images was classified as positive
why the false negative rate actually dropped. Therefore a low resolution image
would more like be classified melanoma and would more likely be checked more
thoroughly by the doctor.

Finally tests show that the most important feature is the edge-to-area ratio
which, when removed, makes the classification rate drop to approximately 50%.
A classification rate of 50% is as bad as pure guessing. The same test also shows
that the color information only has very little contribution to the classification
as they only move the classification rate a few percentage points.

8.1 Future work

Despite the initial very good results the system can be improved and especially
the feature extraction has some potential for improvement. In a future work
the thresholding algorithm should be improved such that the birthmark would
be found in a bigger part of the images.

The color information in the current feature extraction algorithm has a minor
influence on the classification rate. This could be a sign that either the color
information is not relevant or that the extraction of color information could be
improved. In the dermatoscopic world the colors are very important and can
often be used solely to determine the classification of a birthmark. It is therefore

8.1 Future work 73

most likely the case that the feature extraction has room for improvement why
this should be in focus in a future work as well.

In a future work the classification algorithm should be trained to punish the
presence of false negatives harder than it does at present. Currently only minor
tests with an evaluation function punishing the presence of false negatives has
been tried out with little success.

For the project to be able to be used in the industry a framework automating
the process of uploading of the image to the feature extraction, sending the
features to the classification algorithm and returning a classification to the user
should be developed.

Finally when all these improvements have been implemented the feature ex-
traction should be trained and tested against a larger population with more
images and a greater share of harmles birthmarks. The current training data
contains only birthmarks which the house doctor has classified as harmful or
maybe harmful. It therefore does not give us much information on how the
classification algorithm will behave on clearly harmless birhtmarks.

The prototype has shown promising results and with just a little more effort a
great software helping in the melanoma diagnosis process, can come out of this.
The potential of the software is huge as only minor modification will make it
work on other types of visual diagnosis such as wound healing.

74 Conclusion

Appendix A

Glossary

Backpropagation Backpropagation is the algorithm used to update the weights.
It uses the error gradient on the output nodes to update the weights in
the network. It is more thoroughly described in section 3.1.2.

Bias (node) The bias node is a node which added to all hidden and output
nodes in the neural network. Its output values is -1 and is used to moved
the threshold function.

Boxplot A boxplot is a plot used to show the values of a number of samples.
It consists of a box inside which 50% of the values are found. Inside the
box a line showing the median is found and outside the box two whiskers
showing the highest/lowest data within the 1.5 IQR (inter quartile range)
of the lower/higher quartile (1.5 · the size of the box). Any data outside
the whiskers are called outliers and is visualized with a small circle.

Crossover Crossover or reproduction is the way the genetic algorithm evolves.
Crossover is performed by splitting two individuals (called the aprents)
into two pieces each and combining these pieces such that two new indiv-
duals (called the offspring) are found.

Epoch When training the neural network backpropagation is used to update
the weights. The backpropagation runs for a number of iterations and each
of these iterations is called an epoch. It is said that the backpropagation
runs for a number of epochs.

76 Glossary

False positives/negatives The rate of true positives(TP), true negatives(TN),
false positives(FP) and false negatives(FN) are numbers indicating how
many samples have been correctly classified and how many have not. In
this project a positive sample is a melanoma. A sample said to be TP is
therefore a sample which using the classification software is correctly clas-
sified as melanoma. A FN is a sample with melanoma which is classified
as harmless.

Function A function is a part of the genetic program which take a number of
inputs, in this project 2, and does a calculation based on these inputs.
In this project the addition, subtraction and multiplication functions are
used.

Generation A genetic algorithm is running for a number of iterations. Each
of these iterations are called a generation. Sometimes the population in a
given generation is reffered to as the generation.

Individual An individual of a genetic algorithm is one solution to the problem.
The population contains a number of individuals and the reproduction is
done between individuals.

Multi layer network The multi layer network is a neural network consisting
of layers which are fully connected with one another. Each layer can have
a different amount of nodes and many layers can exist.

Mutation Mutation is used by the genetic algorithm to make i minor change
in an individual. It could be a single bit being flipped or the like. In this
project a mutation is performed by either removing or adding a node in
the neural network.

Neuron The neuron is the node in the neural network. It does the calculation
of summing all the ouputs found in the input synnapses, passing this sum
through the activiation function and enabling this output value for the
outgoing synnapses.

Perceptron The perceptron is a neural network without any hidden nodes.
All input nodes are connected to all output nodes.

Population A population is the individuals found in a given generation. The
population size differs from implementation, but in this project a popula-
tion size of 50 is used.

Synnapsis The synnapses are the edges between the nodes in network. Each
synnapsis has a weight which is set by the backpropagation algorithm.

Terminal A terminal is part of the genetic program which does not take any
inputs. In this project two terminals are used: a constant value and an
input from the problem.

77

True positives/negatives see false positives/negatives.

Unstructured network The unstructured network is a network containing a
number of hidden nodes which are randomly connected to any other node
in the network. The network is ordered such that any edge can only have a
direction from a node with a low number to a node with a higher number
to prevent cycles from existing in the network.

78 Glossary

Appendix B

Classification rates

In the following four graphs are shown. They show the classification rate as a
function of the number of epochs it has run. The learning rate, alpha, is new
in each graph. In the first the learning rate i 0.7, in the second it is 0.4, in the
third it is 0.03 and in the fourth graph the learning rate drops linearly from 0.7
to 0.03.

The graphs are used in section 7.4.1.

80 Classification rates

0 100 200 300 400 500 600

0.
4

0.
5

0.
6

0.
7

spanx

c(
m

in
m

ax
, m

ax
m

ax
)

alpha=0.7

81

0 100 200 300 400 500 600

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

spanx

c(
m

in
m

ed
, m

ax
m

ed
)

alpha=0.4

82 Classification rates

0 100 200 300 400 500 600

0.
5

0.
6

0.
7

0.
8

spanx

c(
m

in
m

in
, m

ax
m

in
)

alpha=0.03

83

0 100 200 300 400 500 600

0.
5

0.
6

0.
7

0.
8

spanx

c(
m

in
va

r,
m

ax
va

r)

Variable alpha

84 Classification rates

Bibliography

[al.01] Charles M. Balch et. al. Final Version of the American Joint Com-
mitee on Cancer Stafing System for Cutaneous Melanoma. Tech. rep.
2001.

[al.04] Naheed T. Abbasi et. al. Early Diagnosis of Cutaneous Melanoma.
Tech. rep. 2004.

[Bay98] Stephen D. Bay. Combining Nearest Neighbor Classifiers Through Mul-
tiple Feature Subsets. Tech. rep. University of California, California,
USA, 1998.

[BB98] Markus Brameier and Wolfgang Banzhaf. A Comparison of Genetic
Programming and Neurla Networks in Medical Data Analysis. Tech.
rep. Universität Dortmund, Germany, 1998.

[Bis97] Christopher M Bishop. Neural Networks for Pattern Recognition. 1st.
Oxford University Press, 1997. isbn: 0198538642.

[Cal] University of California. Types of Skin Cancer. Accessed: 2011-05-12.
url: http://www.dermatology.ucsf.edu/skincancer/profession
als/types.aspx.

[Chr05] Chrislb. Diagram of an artificial neuron. Accessed: 2011-04-25. July
2005. url: http://en.labs.wikimedia.org/wiki/File:Artificia
lNeuronModel_english.png.

[Col01] Jeananda Col. The Brain, Brain Cells. Accessed: 2011-04-13. 2001.
url: http://www.enchantedlearning.com/subjects/anatomy/bra
in/Neuron.shtml.

[Dor00] Robert E. Dorsey. Reliable classification using neural networks: a ge-
netic algorithm and backpropagation comparison. Tech. rep. May 2000.

http://www.dermatology.ucsf.edu/skincancer/professionals/types.aspx
http://www.dermatology.ucsf.edu/skincancer/professionals/types.aspx
http://en.labs.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
http://en.labs.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml
http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml

86 BIBLIOGRAPHY

[Fre97] Kimmo Fredriksson. Genetic algorithms and generative encoding of
neural networks for some benchmark classification problems. Tech. rep.
Helsinki, Finland, Aug. 1997.

[Grö98] Marko Grönroos. Evolutionary Design of Neural Networks. Tech. rep.
University of Turku, Finland, 1998.

[HM98] Mads Hintz-Madsen. “A probabilistic framework for classification of
dermatoscopic images”. PhD thesis. IMM - DTU Informatics, 1998.

[JM97] Chuanyi Ji and Sheng Ma. Combinations of weak classifiers. Tech. rep.
Rensselaer Polytechnic Institute, New York, USA, Jan. 1997.

[Jol02] I. T. Jolliffe. Principal Component Analysis. 2nd. Springer, 2002. isbn:
9780387954424.

[KB94] Iebeling Kaastra and Milton Boyd. Designing a neural network for
forecasting financial and economic time series. Tech. rep. Aug. 1994.

[Koz93] John R. Koza. Genetic Programming. 3rd edt. A Bradford Book, The
MIT Press, 1993. isbn: 0262111705.

[PJ04] Rune Saaby Damgaard Pedersen and Thomas Brigsted Jensen. In-
dlæringsstrategi og indkodning i et evolutionært neuralt netværksmiljø.
2004.

[Pre94] Lutz Prechelt. PROBEN1 - A Set of Neural Network Benchmark Prob-
lems and Benchmarking Rules. Tech. rep. Fakulatät für Informatik -
Universität Karlsruhe, Sept. 1994.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. 2nd international edition. Prentice Hall, 2003. isbn:
9788129700414. url: http://aima.cs.berkeley.edu.

[Sch00] Wolfram Schiffmann. Encoding feedforward networks for topology opti-
mization by simulated evolution. Tech. rep. University of Hagen (Ger-
many), 2000.

[Siv08] S. N. Sivanandam. Introduction to Genetic Algorithms. Springer, 2008.
isbn: 9783540731894.

[SS01] Randall S. Sexton and Naheel A. Sikander. Data mining using a ge-
netic algorithm-trained neural network. Tech. rep. Dec. 2001.

http://aima.cs.berkeley.edu

	Summary
	Resumé
	Acknowledgements
	1 Introduction
	1.1 The process
	1.2 Background knowledge
	1.3 Work done in the report
	1.4 Structure

	2 Feature Extraction
	2.1 The feature extraction process

	3 Neural Network
	3.1 The simplified mathematical model

	4 Genetic Programing
	5 The genetic algorithm
	5.1 The algorithm
	5.2 Encoding the problem
	5.3 Initialization
	5.4 Evaluation
	5.5 Selection
	5.6 Reproduction
	5.7 Mutation
	5.8 Stopping criteria

	6 Design and implementation
	6.1 Cloud solution
	6.2 Debugging

	7 Testing
	7.1 Initial testing
	7.2 The dataset
	7.3 Feature Extraction
	7.4 Neural Networks
	7.5 Genetic Programming
	7.6 The best classification algorithms
	7.7 Influence of features

	8 Conclusion
	8.1 Future work

	A Glossary
	B Classification rates

