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Gas Burner example: Requirements

State variables modelling Gas and Flame:
G,F : Time — {0,1}

State expression modelling that gas is Leaking
L=GA-F

Requirement

Gas must at most be leaking 1/20 of the elapsed time
(e —b) >60s = 20/, L(t)dt < (e —b)
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Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:
Ve,d:b<c<d<e(lLlc,d = (d—c)<15s)
where
= ["P(t) ) >0
which reads “P holds throughout e, d]”
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Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:
Ve,d:b<c<d<e(lLlc,d = (d—c)<15s)
where
= ["P(t) ) >0
which reads “P holds throughout e, d]”

At least 30s between leaks:

Ve,d,r,s:b<c<r<s<d<e.
(Llc,r] A =Llr,s| ALls,d]) = (s—171)>30s
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|60,+06,| ... Temporal Variable

Formulas: ¢ = 6, =0, |-¢|oVY|d™yY| (Fx)p| ... chop
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|60,+06,| ... Temporal Variable
v:lIntv — R
Formulas: ¢ = 6, =0, |-¢|oVY|od Y| (Fx)p| ... chop

¢ : Intv — {tt,ff}
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|60,+06,| ... Temporal Variable
v:lIntv — R
Formulas: ¢ = 6, =0, |-¢|oVY|od Y| (Fx)p| ... chop

¢ : Intv — {tt,ff}

Chop:
5~y
b e
L _ AN _ p forsome m :b<m <e
¢ (0
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Interval Logic [Halpern Moszkowski Manna 83]

Terms: 0 = z|v|60,+06,| ... Temporal Variable
v:lIntv — R
Formulas: ¢ = 6, =0, |-¢|oVY|od Y| (Fx)p| ... chop

¢ : Intv — {tt,ff}

Chop:

b

~
€
J

/N ~— forsomem:b<m<e

-9
<

In DC: Intv=1{ |a,b] | a,b € RAa < b}
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Duration Calculus [Zhou Hoare Ravn 91]

State variables P : Time — {0,1} Finite Variablilty

State expressions S = 0|1 |P|=S| SV .S,
S : Time — {0, 1} pointwise defined
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Duration Calculus [Zhou Hoare Ravn 91]

* State variables P : Time — {0,1} Finite Variablilty

e State expressions S = 0|1 |P|=S|S; V.S,
S : Time — {0, 1} pointwise defined

* Durations [S : Intv — R defined on [b, ] by

/b S(t)dt

— Temporal variables with a structure
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Example: Gas Burner

Requirement
(>60 = 20fL </
Design decisions

Dy = O(|L] = £<L1)
Dy = O((TL]~[-L]~[L]) = ¢> 30)
where ¢ denotes the length of the interval, and
Op = true T ¢ “true “for some sub-interval: ¢”
(o = =00 “for all sub-intervals: ¢”
[P] = [P=¢ A ¢>0 “P holds throughout a non-point intel
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Example: Gas Burner

Requirement
(>60 = 20fL </
Design decisions

Dh
D,

11D

O(L] = ¢<1)
OCCTL] ~ =L ~[L]) = €= 30)

where ¢ denotes the length of the interval, and

O¢
Lo

[P

true —¢ “true “for some sub-interval: ¢”
-0 “for all sub-intervals: ¢”
[P=¢ A ¢>0 “P holds throughout a non-point intel

D 1D 1D

succinct formulation — no interval endpoints
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Correctness — informal interval reasoning

We must establish: (D; A Dy) = ¢>60 = 20 L </
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Correctness — informal interval reasoning

Sal

Note that (D1 A Dy) = 0O(¢ <30 = [L <1):
JL<1  JL<1 JL<1 JL<1
é | | e o o 1 | | Jé

fLSVnJrl

N\

We must establish: (D; A Dy) = ¢>60 = 20|L </
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Correctness — informal interval reasoning

Sal

Note that (D1 A Dy) = 0O(¢ <30 = [L <1):
fL<i fL<i fL<i fL<1
[IZ i co. 1 i é
JL<n+1

Sincen>2=20-(n+1) <30 -n we have

N\

(D1 A Dg)= £>60 = 20[L </
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Decidability [Zhou Hansen Sestoft 93]

[S]
0, OV Y, ¢ Y

Satisfiability is reduced to emptiness of regular languages

Restricted Duration Calculus :

Both for discrete and continuous time
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Decidability [Zhou Hansen Sestoft 93]

[S]
0, OV Y, ¢ Y

Satisfiability is reduced to emptiness of regular languages

Restricted Duration Calculus :

Both for discrete and continuous time
Skakkebaek Sestoft 94, Pandya 01, Franzle 02, Gomez Bowman 03

Even small extensions give undecidable subsets

RDC; (Cont. time) RDC, RD(Cs
(=, [9] f31 — fSQ {=x, [9]
2, PN, ¢ Y ), OV, ¢ Y =@, VY, ¢ T, (31)
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Discrete-Time Duration Calculus

For an interpretation
T : SVar — (Time — {0,1})
the discontinuity points of each P must belong to N.
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Discrete-Time Duration Calculus

For an interpretation
T : SVar — (Time — {0,1})
the discontinuity points of each P must belong to N.

We consider only discrete intervals
b, e] € Intv
where b, e € N.
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Discrete-Time Duration Calculus

For an interpretation
T : SVar — (Time — {0,1})
the discontinuity points of each P must belong to N.

We consider only discrete intervals
b, e] € Intv
where b, e € N.

The semantics of chop Is

for some m € [b, ¢| where m € N

Tlhel o i {mbam] = sand 7. m,d] |- o }
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Discrete- vs Continuous-Time DC

The formula

(=1 — []A-(]" M)

IS valid for discrete time; but not for continuous time
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Discrete- vs Continuous-Time DC

The formula

(=1 — []A-(]" M)

IS valid for discrete time; but not for continuous time

The formula

ST = (ST1ST)

IS valid for continuous time; but not for discrete time
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Restricted Duration Calculus (RDC)

1. if S'is a state expression, then [ S| € RDC, and
2. Ifp,v € RDC, then =¢, 0oV 1,0 "y € RDC.
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Restricted Duration Calculus (RDC)

1. if S'is a state expression, then [ S| € RDC, and

2. Ifp,v € RDC,then —¢, 0oV, ¢ "y € RDC.

Expressiveness of RDC for Discrete Time:

(=0

A A

=17

[-STVve=0

[T A= =)
(JS=0)~([STAL=1)
(J5 = k) ~(JS = 1)
(JS = k) "true

(JS = k) A—(fS = k)
~(fS > k)

(JS <E)A=([S=k)

02240 Computability and Semant

~(J§5=0)

ics, Spring 05, (©)Michael R. Hansen
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages

ldea: a € X describes a piece of an interpretation, e.g. P4, AP, A P
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
ldea: a € X describes a piece of an interpretation, e.g. P4, AP, A P

Discrete time — one letter corresponds to one time unit
L([S]) = (DNF(S))"
LeVy) = Lp)ULW)
() = X\ L(p)
(e7v) = Lp) L)

o O
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Decidability of RDC for Discrete Time

Satisfiablility is reduced to emptiness of regular languages
ldea: a € X describes a piece of an interpretation, e.g. P4, AP, A P

Discrete time — one letter corresponds to one time unit

L(IST) = (DNF(S))T
LeVy) = Llp)ULWY)
L(~p) = T"\L(p)
Lle7y) = Lp) L)

L([[¢]) is regular
¢ is satisfiable iff L([¢] # 0
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Example

Is the formula ([[P| ~[[P]) = || P| valid for discrete time?
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Example
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Example

Is the formula ([[P| ~[[P]) = || P| valid for discrete time?

X ={{P}{}}
We have
(1P ~P]) = [P] is valid

iff =(([P] ~[P])= [P]) is not satisfiable
iff ([P] [ P])A—[P] is not satisfiable

it Lo([P] PN L= PT) =}

iff {({P}[i=2pn(E\{{P}[i=1})={}

The last equality holds.



Example

Is the formula ([[P| ~[[P]) = || P| valid for discrete time?

Y= Ul

We have
(1P ~P]) = [P] is valid
iff =(([P] ~[P])= [P]) is not satisfiable
iff ([P ~[P]) A= P] is not satisfiable
ifft Lo([P] 1P NL(=[P]) =15
iff {{P}|iz2yn(E\{{P}'|i=1})={}

The last equality holds.

Therefore, the formula is valid for discrete time.
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Undecidability [Zhou Hansen Sestoft 93]

[S]
0, OV Y, ¢ Y

Satisfiablility is reduced to emptiness of regular languages

Restricted Duration Calculus :

Both for discrete and continuous time

Appearrently small extensions give undecidable subsets

RDC; (Cont. time) RDC) RDCj5
(=r, [S] 81 =[S ¢=z, [S]
—¢, PV, ¢ "1 Q, GVY, Y =9, oVY, ¢ Y, (Fr)¢
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Two-Counter Machines

A two-counter machine has an initial label ¢y, two counters ¢,
and ¢, which can hold arbitrary natural numbers from
N =140,1,2,...}, and a finite set of labeled instructions m;.
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Two-Counter Machines

A two-counter machine has an initial label ¢y, two counters ¢,
and ¢, which can hold arbitrary natural numbers from
N =140,1,2,...}, and a finite set of labeled instructions m;.

A configuration s has the form: (¢, ny,ns), where ¢ is the current
label, and n; and n, are the values of ¢; and ¢y, respectively.
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Two-Counter Machines

A two-counter machine has an initial label ¢y, two counters ¢,
and ¢, which can hold arbitrary natural numbers from
N =140,1,2,...}, and a finite set of labeled instructions m;.

A configuration s has the form: (¢, ny,ns), where ¢ is the current
label, and n; and n, are the values of ¢; and ¢y, respectively.

Instructions for ¢; (and similarly for cs):

Instruction S — 5’

q:cf — q; (g,11,n2) — (g;,n1 + 1,n9)
q:c1 = g5, qx | (4,0,n2) = (g;,0,n2)
q:c, — q,qk | (g1 +1,n2) = (qk, N1, N2)
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Two-Counter Machines

A two-counter machine has an initial label ¢y, two counters ¢,
and ¢, which can hold arbitrary natural numbers from
N =140,1,2,...}, and a finite set of labeled instructions m;.

A configuration s has the form: (¢, ny,ns), where ¢ is the current
label, and n; and n, are the values of ¢; and ¢y, respectively.

Instructions for ¢; (and similarly for cs):

Instruction S — 5’

q:cf — q; (g,11,n2) — (g;,n1 + 1,n9)
q:c1 = g5, qx | (4,0,n2) = (g;,0,n2)
q:c, — q,qk | (g1 +1,n2) = (qk, N1, N2)

Halting problem is undecidable
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Two-Counter Machines

A two-counter machine has an initial label ¢y, two counters ¢,
and ¢, which can hold arbitrary natural numbers from
N =140,1,2,...}, and a finite set of labeled instructions m;.

A configuration s has the form: (¢, ny,ns), where ¢ is the current
label, and n; and n, are the values of ¢; and ¢y, respectively.

Instructions for ¢; (and similarly for cs):

Instruction s — s’

q:cf — g (q,n1,m2) —> (q;,m1 + 1,n9)
q:c = Gk | (4,0,n2) —> (¢;,0,n2)
q:ci — ¢, | (g, n1 + 1,n2) = (qk, N1, N2)

Halting problem is undecidable

Assume deterministic machine with one halting state ¢z,

02240 Computability and Semantics, Spring 05, (¢)Michael R. Hansen — p.17/26



Undecidability 1: Continuous time only

1. the formula ¢ = r belongs to RDC(r),

2. if S is a state expression, then [ S]] belongs to RDC'(r), and
3. if ¢ and ¢ belong to RDC(r), then so do —¢, ¢ V i, and ¢ .
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Undecidability 1: Continuous time only

1. the formula ¢ = r belongs to RDC(r),

2. if S is a state expression, then [ S]] belongs to RDC'(r), and
3. if ¢ and ¢ belong to RDC(r), then so do —¢, ¢ V i, and ¢ .

Encoding of two-counter machine M:
one state variable ); for each label ¢;. Let Q ={Qo, ..., Qfn}
two state variables C; and C5 to represent the counter values
two auxiliary state variables B and L, used as delimiters
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Undecidability 1: Continuous time only

1. the formula ¢ = r belongs to RDC'(r),
2. if S is a state expression, then [ S]] belongs to RDC'(r), and
3. if ¢ and ¢ belong to RDC(r), then so do —¢, ¢ V i, and ¢ .

Encoding of two-counter machine M:
one state variable ); for each label ¢;. Let Q ={Qo, ..., Qfn}
two state variables C; and C5 to represent the counter values
two auxiliary state variables B and L, used as delimiters

A configuration (¢, n1,n2) is encoded on an interval of length 4r:

‘ Q) ‘ Vall’\[’/’ Valz‘

where Val; represents the value of counter c;.
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Undecidability 1 — Abbreviations

[ = 1]

true = [1VvIit]

(<r = =({l=r)"true)
(=4 = (U=2r)"(=2r)
[S1™ = [shAae=r)
g~ = (07 ([ V)

|S]" reads “S has value one for a duration of r”

¢ ~~ 1) reads “if the interval starts with ¢, it must end
immediately with || || or with )" — ¢ leads to ¢
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Undecidability 1 — Continued

The interval describing Val; has the following form:
B|Ci|B| - -+ |B|Cs| B
with n; sections of C; separated by B.

02240 Computability and Semantics, Spring 05, (¢)Michael R. Hansen — p.20/26



Undecidability 1 — Continued

The interval describing Val; has the following form:
B|Ci|B| - -+ |B|Cs| B
with n; sections of C; separated by B.

The computation of M is simulated by a formula F' (M)

For example, the following formula copies the C'; sections to the
same place in the next configuration.

[Cy] ~ true
[Q:]" (€ <r)”[CL] ™ A ~ ([ C1] ~true)
¢ =A4r
exploits precision of length
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Undecidability 1 — Continued

The interval describing Val; has the following form:
B|Ci|B| - -+ |B|Cs| B
with n; sections of C); separated by B.

The computation of M is simulated by a formula F' (M)

For example, the following formula copies the C'; sections to the
same place in the next configuration.

[Cy] ~ true
[Q:]" (€ <r)”[CL] ™ A ~ ([ C1] ~true)
¢ =A4r
exploits precision of length

M halts iff F'(M) is satisfiable
satisfiability is undecidable for the subset under consideration
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Remarks

¢ = 1 I1s not expressible in RDC' for continuous time.

“Relaxing punctuality”, replacing ¢ = r with £ < r does not give
decidability.

“Relaxing punctuality”, replacing ¢ = r with £ > r ?
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Undecidability 2: Discrete and Cont. Time

1. if 57 and S, are state expressions, then f& — fSQ belongs to
RD(C,, and

2. If ¢ and ¢ belong to RDC',, then so do —¢, ¢ V¢ and ) .
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Undecidability 2: Discrete and Cont. Time

1. if 57 and S, are state expressions, then f51 — fSQ belongs to
RD(C,, and

2. If ¢ and ¢ belong to RDC',, then so do —¢, ¢ V¢ and ) .

Encoding
1. two state variables C;" and C;~ for each counter ¢;
2. state variables Q = {Q,, ..., @z, } corresponding to the labels
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Undecidability 2: Discrete and Cont. Time

1. if 57 and S, are state expressions, then f51 — fSQ belongs to
RD(C,, and

2. If ¢ and ¢ belong to RDC',, then so do —¢, ¢ V¢ and ) .

Encoding
1. two state variables C;" and C;~ for each counter ¢;
2. state variables Q = {Q,, ..., @z, } corresponding to the labels

Idea
the value of ¢; is represented by the value of [C)" — [C

a computation sy s s9 - -
Is represented by a sequence |QE,|Cy| QE,|C1|QE,|Csl - - -
QL Is a state expression of O

C,, is a state expression of {C", C, C;, Cy}
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Undecidability 2: Abbreviations

CY = CfvCrveHvey

1S = ([S=[1)A=(fo=[1)

Incry = [CFf A-(CrVCFVEN]

[S>0 = Of9]

I = 1]

true = T7VvI[1]

o~ = =@ ([ V)

Op¢ = ¢ true reads: “for some prefix interval: ¢”

[,¢ —(0p(—0)) reads: “for all prefix intervals: ¢”".
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Undecidability 2: Encoding Instructions

The instruction ¢; : ¢; — g is encoded as follows

1

( M (TQ;1~Tev ) \
\V; - A\
(true ~[C¥T) JQ; = JcV
(”Qkﬂ \
V
~ (1Qx ~ Incr;)
V
\ \ (TQx] ™ Incr; ~[QV] ~true) | )

remaining instructions follows similar pattern
mutual exclusive sections and sections of equal size
undecidability of RDC',
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Undecidability 3

1. if S'is a state expression, then [ S] belongs to RDC',
2. If z I1s a global variable, then ¢ = x belongs to RD('5, and

3. if p and ¢ belong to RD(C's, then so do —¢, ¢ V1), ¢ ¢ and
(dx)¢, where x is any global variable.

A configuration of the machine is represented by a sequence of
sections (), L and C, all of the same length:

QIC| -+ |C L] €|+ |C |Ls|

The initial configuration, (¢, 0, 0), is represented by |Qo|L1|Ls|:

3. ([Qo | A6 =2)) (L] Al =2)) " ([L2]| A (€= 2z)) true
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Undecidability 3: Encoding Instructions

An abbreviation:

[S1% = T TV IS A=)

An instruction ¢; : ¢; — ¢ transforms configurations as follows:
Qi1 C|++|C |L1| C| -+ |C|Lo] = |Qu| CIC] -+ |C | Ly | C| - |C | Ly

ni n2 ni1+1 na

Encoding
Vo, vy, 2.
(M@ I* =N =1 Lo * [ C1* ~ 1 L2fl* ~ (6 = 4z 4+ y + 2))
=—
(E=3z+y+2)"[Qc]"~[CI*~[CNY [ LLI1* ~[C* [ L2 ]*

undecidability of RDC's
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