Duration Calculus Introduction

Michael R. Hansen

mrh@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark

Overview

- Background
- Short introduction
- Decidability results
- Undecidability results

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Intervals properties

 Sørensen Ravn Rischel

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, ..., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, ...

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner

Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, . . ., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, . . .

Duration of states

Duration Calculus

Zhou Hoare Ravn 91

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner

Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, . . ., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, . . .

Duration of states

Duration Calculus

Zhou Hoare Ravn 91

— an Interval Temporal Logic

Halpern Moszkowski Manna

- Provable Correct Systems (ProCoS, ESPRIT BRA 3104)
 Bjørner Langmaack Hoare Olderog
- Project case study: Gas Burner
 Sørensen Ravn Rischel

Intervals properties

Timed Automata, Real-time Logic, Metric Temporal Logic, Explicit Clock Temporal, . . ., Alur, Dill, Jahanian, Mok, Koymans, Harel, Lichtenstein, Pnueli, . . .

Duration of states

Duration Calculus

Zhou Hoare Ravn 91

- an Interval Temporal Logic Halpern Moszkowski Manna
- Logical Calculi, Applications, Mechanical Support
- Duration Calculus: A formal approach to real-time systems Zhou Chaochen and Michael R. Hansen Springer 2004

Gas Burner example: Requirements

State variables modelling Gas and Flame:

$$G, F : \mathbb{T}ime \rightarrow \{0, 1\}$$

State expression modelling that gas is Leaking

$$L \stackrel{\frown}{=} G \wedge \neg F$$

Requirement

Gas must at most be leaking 1/20 of the elapsed time

$$(e-b) \ge 60 \,\mathrm{s} \implies 20 \int_{b}^{e} \mathrm{L}(t) dt \le (e-b)$$

Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \le c < d \le e.(\mathbf{L}[c, d] \implies (d - c) \le 1 s)$$

where

$$P[c,d] = \int_{c}^{d} P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

Gas Burner example: Design decisions

Leaks are detectable and stoppable within 1s:

$$\forall c, d : b \le c < d \le e.(\mathbf{L}[c, d] \Rightarrow (d - c) \le 1 s)$$

where

$$P[c,d] = \int_{c}^{d} P(t) = (d-c) > 0$$

which reads "P holds throughout [c, d]"

At least 30s between leaks:

$$\forall c, d, r, s : b \le c < r < s < d \le e.$$

$$(L[c, r] \land \neg L[r, s] \land L[s, d]) \implies (s - r) \ge 30 \,\mathrm{s}$$

Interval Logic

[Halpern Moszkowski Manna 83]

Terms: $\theta ::= x \mid v \mid \theta_1 + \theta_n \mid \dots$

Temporal Variable

Formulas: $\phi ::= \theta_1 = \theta_n \mid \neg \phi \mid \phi \lor \psi \mid \phi \frown \psi \mid (\exists x) \phi \mid \dots$ chop

Terms: $\theta ::= x \mid v \mid \theta_1 + \theta_n \mid \dots$

Temporal Variable

 $v: \mathbb{I}\mathsf{ntv} o \mathbb{R}$

Formulas: $\phi ::= \theta_1 = \theta_n \mid \neg \phi \mid \phi \lor \psi \mid \phi \frown \psi \mid (\exists x) \phi \mid \dots$ chop

 $\phi: \mathbb{I}\mathsf{ntv} \to \{\mathsf{tt},\mathsf{ff}\}$

Terms: $\theta ::= x \mid v \mid \theta_1 + \theta_n \mid \dots$

Temporal Variable

 $v: \mathbb{I}\mathsf{ntv} o \mathbb{R}$

Formulas: $\phi ::= \theta_1 = \theta_n \mid \neg \phi \mid \phi \lor \psi \mid \phi \frown \psi \mid (\exists x) \phi \mid \dots$ chop

 $\phi: \mathbb{I}\mathsf{ntv} \to \{\mathsf{tt},\mathsf{ff}\}$

Chop:

for some $m:b\leq m\leq e$

Terms: $\theta ::= x \mid v \mid \theta_1 + \theta_n \mid \dots$

Temporal Variable

 $v: \mathbb{I}\mathsf{ntv} o \mathbb{R}$

Formulas: $\phi ::= \theta_1 = \theta_n \mid \neg \phi \mid \phi \lor \psi \mid \phi \frown \psi \mid (\exists x) \phi \mid \dots$ chop

 $\phi: \mathbb{I}\mathsf{ntv} \to \{\mathsf{tt},\mathsf{ff}\}$

Chop:

for some $m:b\leq m\leq e$

In DC: Intv = $\{ [a, b] \mid a, b \in \mathbb{R} \land a \leq b \}$

• State variables $P: \mathbb{T}ime \rightarrow \{0, 1\}$

Finite Variablilty

• State expressions $S ::= 0 \mid 1 \mid P \mid \neg S \mid S_1 \vee S_2$

 $S: \mathbb{T}\mathsf{ime} \to \{0,1\}$

pointwise defined

• State variables $P: \mathbb{T}ime \rightarrow \{0, 1\}$

- Finite Variablilty
- State expressions S:=0 | 1 | P | $\neg S$ | $S_1 \lor S_2$ $S:\mathbb{T}ime \to \{0,1\}$ pointwise defined
- Durations $\int\!\! S: \mathbb{I}\mathsf{ntv} \to \mathbb{R} \mathsf{ defined on } [b,e] \mathsf{ by }$

$$\int_{b}^{e} S(t)dt$$

- Temporal variables with a structure

Example: Gas Burner

Requirement

$$\ell \ge 60 \implies 20 \int L \le \ell$$

Design decisions

$$D_1 \stackrel{\widehat{=}}{=} \square(\llbracket L \rrbracket \Rightarrow \ell \leq 1)$$

$$D_2 \stackrel{\widehat{=}}{=} \square((\llbracket L \rrbracket \cap \llbracket \neg L \rrbracket \cap \llbracket L \rrbracket) \Rightarrow \ell \geq 30)$$

where ℓ denotes the *length* of the interval, and

$$\Diamond \phi \quad \widehat{=} \quad \text{true } \neg \phi \cap \text{true} \qquad \text{"for some sub-interval: } \phi \text{"}$$

$$\Box \phi \quad \widehat{=} \quad \neg \Diamond \neg \phi \qquad \text{"for all sub-intervals: } \phi \text{"}$$

 $\llbracket P \rrbracket \ \widehat{=} \ \int P = \ell \wedge \ell > 0$ "P holds throughout a non-point interest."

Example: Gas Burner

Requirement

$$\ell \ge 60 \implies 20 \int L \le \ell$$

Design decisions

$$D_1 \stackrel{\widehat{=}}{=} \square(\llbracket L \rrbracket \Rightarrow \ell \leq 1)$$

$$D_2 \stackrel{\widehat{=}}{=} \square((\llbracket L \rrbracket \cap \llbracket \neg L \rrbracket \cap \llbracket L \rrbracket) \Rightarrow \ell \geq 30)$$

where ℓ denotes the *length* of the interval, and

succinct formulation — no interval endpoints

We must establish: $(D_1 \wedge D_2) \Rightarrow \ell \geq 60 \Rightarrow 20 \text{ } \text{L} \leq \ell$

We must establish: $(D_1 \land D_2) \Rightarrow \ell \geq 60 \Rightarrow 20 \text{ L} \leq \ell$

We must establish: $(D_1 \wedge D_2) \Rightarrow \ell \geq 60 \Rightarrow 20 \text{ } \text{L} \leq \ell$

$$\ell = 30 \qquad \ell = 30 \qquad \ell \leq 30$$

$$b \qquad \qquad \ell = 30 \qquad \ell \leq 30$$

Note that $(D_1 \wedge D_2) \Rightarrow \Box (\ell \leq 30 \Rightarrow \int L \leq 1)$:

$$\underbrace{\int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1}_{b} \dots \underbrace{\int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1}_{e}$$

$$\underbrace{\int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1 \qquad \int \mathbf{L} \leq 1}_{e}$$

Since $n \ge 2 \Rightarrow 20 \cdot (n+1) \le 30 \cdot n$ we have

$$(D_1 \wedge D_2) \Rightarrow \ell \geq 60 \Rightarrow 20 \int L \leq \ell$$

Restricted Duration Calculus:

$$\bullet$$
 $\llbracket S \rrbracket$

$$\bullet \quad \neg \phi, \ \phi \lor \psi, \ \phi \ \neg \psi$$

Satisfiability is reduced to emptiness of regular languages

Both for discrete and continuous time

Restricted Duration Calculus:

$$\bullet$$
 $\llbracket S \rrbracket$

$$\bullet$$
 $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$

Satisfiability is reduced to emptiness of regular languages

Both for discrete and continuous time

Skakkebæk Sestoft 94, Pandya 01, Fränzle 02, Gomez Bowman 03

Restricted Duration Calculus:

$$\bullet$$
 $\llbracket S \rrbracket$

•
$$\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$$

Satisfiability is reduced to emptiness of regular languages

Both for discrete and continuous time

Skakkebæk Sestoft 94, Pandya 01, Fränzle 02, Gomez Bowman 03

Even small extensions give undecidable subsets

RDC_1 (Cont. time)	RDC_2	RDC_3
• $\ell = r$, $\llbracket S rbracket$	• $\int S_1 = \int S_2$	• $\ell = x$, $\llbracket S \rrbracket$
• $\neg \phi, \ \phi \lor \psi, \ \phi \ \ \psi$	$ullet$ $\neg \phi, \ \phi \lor \psi, \ \phi \ \psi$	• $\neg \phi$, $\phi \lor \psi$, $\phi \lnot \psi$, $(\exists x)\phi$

Discrete-Time Duration Calculus

For an interpretation

$$\mathcal{I}: SVar \rightarrow (\mathbb{T}ime \rightarrow \{0,1\})$$

the discontinuity points of each $P_{\mathcal{I}}$ must belong to \mathbb{N} .

Discrete-Time Duration Calculus

For an interpretation

$$\mathcal{I}: SVar \rightarrow (\mathbb{T}ime \rightarrow \{0,1\})$$

the discontinuity points of each $P_{\mathcal{I}}$ must belong to \mathbb{N} .

We consider only discrete intervals

$$[b,e]\in\mathbb{I}$$
ntv

where $b, e \in \mathbb{N}$.

Discrete-Time Duration Calculus

For an interpretation

$$\mathcal{I}: SVar \rightarrow (\mathbb{T}ime \rightarrow \{0,1\})$$

the discontinuity points of each $P_{\mathcal{I}}$ must belong to \mathbb{N} .

We consider only discrete intervals

$$[b,e]\in\mathbb{I}$$
ntv

where $b, e \in \mathbb{N}$.

The semantics of chop is

$$\mathcal{I}, [b,e] \models \phi \, \widehat{} \, \psi \; \text{ iff } \; \left\{ \begin{array}{l} \mathcal{I}, [b,m] \models \phi \text{ and } \mathcal{I}, [m,e] \models \psi, \\ \text{ for some } m \in [b,e] \text{ where } m \in \mathbb{N} \end{array} \right\}$$

Discrete- vs Continuous-Time DC

The formula

$$\ell = 1 \iff \lceil 1 \rceil \land \neg (\lceil 1 \rceil \cap \lceil 1 \rceil)$$

is valid for discrete time; but not for continuous time

Discrete- vs Continuous-Time DC

The formula

$$\ell = 1 \iff \lceil 1 \rceil \land \neg (\lceil 1 \rceil \cap \lceil 1 \rceil)$$

is valid for discrete time; but not for continuous time

The formula

$$\llbracket S \rrbracket \Rightarrow (\llbracket S \rrbracket \cap \llbracket S \rrbracket)$$

is valid for continuous time; but not for discrete time

Restricted Duration Calculus (RDC)

- 1. if S is a state expression, then $[S] \in RDC$, and
- **2.** if $\phi, \psi \in RDC$, then $\neg \phi, \phi \lor \psi, \phi \cap \psi \in RDC$.

Restricted Duration Calculus (RDC)

- 1. if S is a state expression, then $||S|| \in RDC$, and
- **2.** if $\phi, \psi \in RDC$, then $\neg \phi, \phi \lor \psi, \phi \cap \psi \in RDC$.

Expressiveness of *RDC* for Discrete Time:

$$\ell = 0 \qquad \iff \neg \lceil 1 \rceil$$

$$\int S = 0 \qquad \iff \lceil \neg S \rceil \lor \ell = 0$$

$$\ell = 1 \qquad \iff \lceil 1 \rceil \land \neg (\lceil 1 \rceil \rceil \cap \lceil 1 \rceil)$$

$$\int S = 1 \qquad \iff (\int S = 0) \cap (\lceil S \rceil \land \ell = 1) \cap (\int S = 0)$$

$$\int S = k + 1 \qquad \iff (\int S = k) \cap (\int S = 1)$$

$$\int S \ge k \qquad \iff (\int S \ge k) \land \neg (\int S = k)$$

$$\int S \ge k \qquad \iff (\int S \ge k) \land \neg (\int S = k)$$

$$\int S \le k \qquad \iff \neg (\int S > k)$$

$$\int S \le k \qquad \iff (\int S \le k) \land \neg (\int S = k)$$

Satisfiability is reduced to emptiness of regular languages

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit

$$\mathcal{L}(\llbracket S \rrbracket) = (DNF(S))^{+}$$

$$\mathcal{L}(\varphi \lor \psi) = \mathcal{L}(\varphi) \cup \mathcal{L}(\psi)$$

$$\mathcal{L}(\neg \varphi) = \Sigma^{*} \setminus \mathcal{L}(\varphi)$$

$$\mathcal{L}(\varphi \cap \psi) = \mathcal{L}(\varphi) \mathcal{L}(\psi)$$

Satisfiability is reduced to emptiness of regular languages

Idea: $a \in \Sigma$ describes a piece of an interpretation, e.g. $P_1 \wedge \neg P_2 \wedge P_3$

Discrete time — one letter corresponds to one time unit

$$\mathcal{L}(\llbracket S \rrbracket) = (DNF(S))^{+}$$

$$\mathcal{L}(\varphi \lor \psi) = \mathcal{L}(\varphi) \cup \mathcal{L}(\psi)$$

$$\mathcal{L}(\neg \varphi) = \Sigma^{*} \setminus \mathcal{L}(\varphi)$$

$$\mathcal{L}(\varphi \cap \psi) = \mathcal{L}(\varphi) \mathcal{L}(\psi)$$

- $\mathcal{L}(\llbracket \phi \rrbracket)$ is regular
- ϕ is satisfiable iff $\mathcal{L}(\llbracket \phi \rrbracket \neq \emptyset)$

• Is the formula $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?

- Is the formula $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{ \{P\}, \{\} \}$.

- Is the formula $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{ \{P\}, \{\} \}.$
- We have

$$(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket \text{ is valid}$$

$$\text{iff} \quad \neg((\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket) \text{ is not satisfiable}$$

$$\text{iff} \quad (\llbracket P \rrbracket \cap \llbracket P \rrbracket) \wedge \neg \llbracket P \rrbracket \text{ is not satisfiable}$$

$$\text{iff} \quad \mathcal{L}_1(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \cap \mathcal{L}_1(\neg \llbracket P \rrbracket) = \{\}$$

$$\text{iff} \quad \{\{P\}^i \mid i \geq 2\} \cap (\Sigma^* \setminus \{\{P\}^i \mid i \geq 1\}) = \{\}$$

The last equality holds.

- Is the formula $(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket$ valid for discrete time?
- $\Sigma = \{\{P\}, \{\}\}.$
- We have

$$(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \Rightarrow \llbracket P \rrbracket \text{ is valid}$$
 iff
$$\neg ((\llbracket P \rrbracket \cap \llbracket P \rrbracket)) \Rightarrow \llbracket P \rrbracket) \text{ is not satisfiable}$$
 iff
$$(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \wedge \neg \llbracket P \rrbracket \text{ is not satisfiable}$$
 iff
$$\mathcal{L}_1(\llbracket P \rrbracket \cap \llbracket P \rrbracket) \cap \mathcal{L}_1(\neg \llbracket P \rrbracket) = \{\}$$
 iff
$$\{\{P\}^i \mid i \geq 2\} \cap (\Sigma^* \setminus \{\{P\}^i \mid i \geq 1\}) = \{\}$$

The last equality holds.

Therefore, the formula is valid for discrete time.

Restricted Duration Calculus:

$$\bullet$$
 $\llbracket S \rrbracket$

•
$$\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$$

Satisfiability is reduced to emptiness of regular languages Both for discrete and continuous time

Appearrently small extensions give undecidable subsets

RDC_1 (Cont. time)	RDC_2	RDC_3
• $\ell = r$, $\llbracket S rbracket$	• $\int S_1 = \int S_2$	• $\ell = x$, $\lceil S \rceil$
• $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$	• $\neg \phi, \ \phi \lor \psi, \ \phi \frown \psi$	• $\neg \phi$, $\phi \lor \psi$, $\phi \frown \psi$, $(\exists x)\phi$

• A two-counter machine has an initial label q_0 , two counters c_1 and c_2 which can hold arbitrary natural numbers from $\mathbb{N} = \{0, 1, 2, \ldots\}$, and a finite set of labeled instructions m_i .

- A two-counter machine has an initial label q_0 , two counters c_1 and c_2 which can hold arbitrary natural numbers from $\mathbb{N} = \{0, 1, 2, \ldots\}$, and a finite set of labeled instructions m_i .
- A *configuration* s has the form: (q, n_1, n_2) , where q is the current label, and n_1 and n_2 are the values of c_1 and c_2 , respectively.

- A two-counter machine has an initial label q_0 , two counters c_1 and c_2 which can hold arbitrary natural numbers from $\mathbb{N} = \{0, 1, 2, \ldots\}$, and a finite set of labeled instructions m_i .
- A *configuration* s has the form: (q, n_1, n_2) , where q is the current label, and n_1 and n_2 are the values of c_1 and c_2 , respectively.
- Instructions for c_1 (and similarly for c_2):

Instruction	S	$\Longrightarrow s'$
$q:c_1^+\to q_j$	(q, n_1, n_2)	$\Longrightarrow (q_j, n_1 + 1, n_2)$
$q:c_1^-\to q_j,q_k$	$(q,0,n_2)$	$\Longrightarrow (q_j, 0, n_2)$
$q:c_1^-\to q_j,q_k$	$(q, n_1 + 1, n_2)$	$) \Longrightarrow (q_k, n_1, n_2)$

- A two-counter machine has an initial label q_0 , two counters c_1 and c_2 which can hold arbitrary natural numbers from $\mathbb{N} = \{0, 1, 2, \ldots\}$, and a finite set of labeled instructions m_i .
- A *configuration* s has the form: (q, n_1, n_2) , where q is the current label, and n_1 and n_2 are the values of c_1 and c_2 , respectively.
- Instructions for c_1 (and similarly for c_2):

Instruction	S	$\Longrightarrow s'$
$q:c_1^+\to q_j$	(q, n_1, n_2)	$\Longrightarrow (q_j, n_1 + 1, n_2)$
$q:c_1^-\to q_j,q_k$	$(q,0,n_2)$	$\Longrightarrow (q_j, 0, n_2)$
$q:c_1^-\to q_j,q_k$	(q, n_1+1, n_2)	$) \Longrightarrow (q_k, n_1, n_2)$

Halting problem is undecidable

- A two-counter machine has an initial label q_0 , two counters c_1 and c_2 which can hold arbitrary natural numbers from $\mathbb{N} = \{0, 1, 2, \ldots\}$, and a finite set of labeled instructions m_i .
- A *configuration* s has the form: (q, n_1, n_2) , where q is the current label, and n_1 and n_2 are the values of c_1 and c_2 , respectively.
- Instructions for c_1 (and similarly for c_2):

Instruction	S	$\Longrightarrow s'$
$q:c_1^+\to q_j$	(q, n_1, n_2)	$\Longrightarrow (q_j, n_1 + 1, n_2)$
$q:c_1^-\to q_j,q_k$	$(q,0,n_2)$	$\Longrightarrow (q_j, 0, n_2)$
$q:c_1^-\to q_j,q_k$	(q, n_1+1, n_2)	$) \Longrightarrow (q_k, n_1, n_2)$

Halting problem is undecidable

Assume deterministic machine with one halting state q_{fin}

Undecidability 1: Continuous time only

- 1. the formula $\ell = r$ belongs to $RDC_1(r)$,
- 2. if S is a state expression, then ||S|| belongs to $RDC_1(r)$, and
- 3. if ϕ and ψ belong to $RDC_1(r)$, then so do $\neg \phi$, $\phi \lor \psi$, and $\phi \cap \psi$.

Undecidability 1: Continuous time only

- 1. the formula $\ell = r$ belongs to $RDC_1(r)$,
- 2. if S is a state expression, then ||S|| belongs to $RDC_1(r)$, and
- 3. if ϕ and ψ belong to $RDC_1(r)$, then so do $\neg \phi$, $\phi \lor \psi$, and $\phi \cap \psi$.

Encoding of two-counter machine M:

- one state variable Q_i for each label q_i . Let $Q = \{Q_0, \ldots, Q_{fin}\}$
- two state variables C_1 and C_2 to represent the counter values
- two auxiliary state variables B and L, used as delimiters

Undecidability 1: Continuous time only

- 1. the formula $\ell = r$ belongs to $RDC_1(r)$,
- 2. if S is a state expression, then ||S|| belongs to $RDC_1(r)$, and
- 3. if ϕ and ψ belong to $RDC_1(r)$, then so do $\neg \phi$, $\phi \lor \psi$, and $\phi \cap \psi$.

Encoding of two-counter machine M:

- one state variable Q_i for each label q_i . Let $Q = \{Q_0, \ldots, Q_{fin}\}$
- two state variables C_1 and C_2 to represent the counter values
- two auxiliary state variables B and L, used as delimiters

A configuration (q, n_1, n_2) is encoded on an interval of length 4r:

$$|\underbrace{Q}_r|\underbrace{Val_1}_r|\underbrace{L}_r|\underbrace{Val_2}_r|$$

where Val_j represents the value of counter c_j .

Undecidability 1 – Abbreviations

- S^r reads "S has value one for a duration of r"
- $\phi \leadsto \psi$ reads "if the interval starts with ϕ , it must end immediately with $\llbracket \ \rrbracket$ or with ψ " ϕ leads to ψ

Undecidability 1 – Continued

The interval describing Val_i has the following form:

$$|B|C_i|B|\cdots |B|C_i|B|$$

with n_i sections of C_i separated by B.

Undecidability 1 – Continued

The interval describing Val_i has the following form:

$$|B|C_i|B|\cdots|B|C_i|B|$$

with n_i sections of C_i separated by B.

The computation of M is simulated by a formula F(M)

For example, the following formula copies the C_1 sections to the same place in the next configuration.

$$\left(\begin{bmatrix} Q_i \end{bmatrix}^r \cap (\ell < r) \cap \llbracket C_1 \rrbracket \cap \left(\begin{bmatrix} \llbracket C_1 \rrbracket \cap \mathsf{true} \\ \land \\ \ell = 4r \end{pmatrix} \right) \right) \rightsquigarrow (\llbracket C_1 \rrbracket \cap \mathsf{true})$$

exploits precision of length

Undecidability 1 – Continued

The interval describing Val_i has the following form:

$$|B|C_i|B|\cdots|B|C_i|B|$$

with n_i sections of C_i separated by B.

The computation of M is simulated by a formula F(M)

For example, the following formula copies the C_1 sections to the same place in the next configuration.

$$\begin{pmatrix} \llbracket Q_i \rrbracket^r \cap (\ell < r) \cap \llbracket C_1 \rrbracket \cap \begin{pmatrix} \llbracket C_1 \rrbracket \cap \mathsf{true} \\ \land \\ \ell = 4r \end{pmatrix} \end{pmatrix} \rightsquigarrow (\llbracket C_1 \rrbracket \cap \mathsf{true})$$

exploits precision of length

- M halts iff F(M) is satisfiable
- satisfiability is undecidable for the subset under consideration

Remarks

- $\ell=1$ is not expressible in RDC for continuous time.
- "Relaxing punctuality", replacing $\ell = r$ with $\ell < r$ does not give decidability.
- "Relaxing punctuality", replacing $\ell = r$ with $\ell > r$?

Undecidability 2: Discrete and Cont. Time

- 1. if S_1 and S_2 are state expressions, then $\int S_1 = \int S_2$ belongs to RDC_2 , and
- 2. if ϕ and ψ belong to RDC_2 , then so do $\neg \phi$, $\phi \lor \psi$ and $\psi \cap \psi$.

Undecidability 2: Discrete and Cont. Time

- 1. if S_1 and S_2 are state expressions, then $\int S_1 = \int S_2$ belongs to RDC_2 , and
- 2. if ϕ and ψ belong to RDC_2 , then so do $\neg \phi$, $\phi \lor \psi$ and $\psi \cap \psi$.

Encoding

- 1. two state variables C_i^+ and C_i^- for each counter c_i
- 2. state variables $Q = \{Q_0, \dots, Q_{fin}\}$ corresponding to the labels

Undecidability 2: Discrete and Cont. Time

- 1. if S_1 and S_2 are state expressions, then $\int S_1 = \int S_2$ belongs to RDC_2 , and
- 2. if ϕ and ψ belong to RDC_2 , then so do $\neg \phi$, $\phi \lor \psi$ and $\psi \cap \psi$.

Encoding

- 1. two state variables C_i^+ and C_i^- for each counter c_i
- 2. state variables $Q = \{Q_0, \dots, Q_{fin}\}$ corresponding to the labels

Idea

- the value of c_i is represented by the value of $\int C_i^+ \int C_i^-$
- a computation s_0 s_1 s_2 \cdots is represented by a sequence $|QE_0|C_0|QE_1|C_1|QE_2|C_2|\cdots$
 - QE_k is a state expression of Q
 - C_k is a state expression of $\{C_1^+, C_2^+, C_1, C_2\}$

Undecidability 2: Abbreviations

Undecidability 2: Encoding Instructions

The instruction $q_i: c_i^+ \to q_k$ is encoded as follows

$$\left(\left(\left(\begin{array}{c} \mathbb{T} \mathbb{T} \\ \vee \\ (\mathsf{true} \cap \mathbb{T} C^{\vee} \mathbb{T}) \end{array} \right) \cap \left(\begin{array}{c} (\mathbb{T} Q_{j} \mathbb{T} \cap \mathbb{T} C^{\vee} \mathbb{T}) \\ \wedge \\ \int Q_{j} = \int C^{\vee} \end{array} \right) \right)$$

$$\overset{\sim}{} \left(\begin{array}{c} \mathbb{T} Q_{k} \mathbb{T} \\ \vee \\ (\mathbb{T} Q_{k} \mathbb{T} \cap Incr_{i}) \\ \vee \\ (\mathbb{T} Q_{k} \mathbb{T} \cap Incr_{i} \cap \mathbb{T} Q^{\vee} \mathbb{T} \cap \mathsf{true}) \end{array} \right)$$

- remaining instructions follows similar pattern
- mutual exclusive sections and sections of equal size
- undecidability of RDC₂

Undecidability 3

- 1. if S is a state expression, then [S] belongs to RDC_3 ,
- 2. if x is a global variable, then $\ell = x$ belongs to RDC_3 , and
- 3. if ϕ and ψ belong to RDC_3 , then so do $\neg \phi$, $\phi \lor \psi$, $\phi \cap \psi$ and $(\exists x)\phi$, where x is any global variable.

A configuration of the machine is represented by a sequence of sections Q, L and C, all of the same length:

$$|Q|\underbrace{C|\cdots|C}_{n_1}|L_1|\underbrace{C|\cdots|C}_{n_2}|L_2|$$

The initial configuration, $(q_0, 0, 0)$, is represented by $|Q_0|L_1|L_2|$:

$$\exists x. (\lceil Q_0 \rceil \land (\ell = x)) \cap (\lceil L_1 \rceil \land (\ell = x)) \cap (\lceil L_2 \rceil \land (\ell = x)) \cap \text{true}$$

Undecidability 3: Encoding Instructions

An abbreviation:

$$[\![S]\!]^x \ \widehat{=} \ ([\![]\!] \lor [\![S]\!]) \land (\ell = x)$$

An instruction $q_j: c_1^+ \to q_k$ transforms configurations as follows:

$$|Q_j|\underbrace{C|\cdots|C}_{n_1}|L_1|\underbrace{C|\cdots|C}_{n_2}|L_2| \Longrightarrow |Q_k|\underbrace{C|C|\cdots|C}_{n_1+1}|L_1|\underbrace{C|\cdots|C}_{n_2}|L_2|$$

Encoding

$$\begin{cases}
(\llbracket Q_j \rrbracket^x \cap \llbracket C \rrbracket^y \cap \llbracket L_1 \rrbracket^x \cap \llbracket C \rrbracket^z \cap \llbracket L_2 \rrbracket^x \cap (\ell = 4x + y + z)) \\
\Rightarrow \\
(\ell = 3x + y + z) \cap \llbracket Q_k \rrbracket^x \cap \llbracket C \rrbracket^x \cap \llbracket C \rrbracket^y \cap \llbracket L_1 \rrbracket^x \cap \llbracket C \rrbracket^z \cap \llbracket L_2 \rrbracket^x
\end{cases}$$

undecidability of RDC₃