
Vertical Protocol Composition

Thomas Groß
IBM Research

Email: tgr@zurich.ibm.com

Sebastian Mödersheim
DTU Informatics

Email: samo@imm.dtu.dk

Abstract—The security of key exchange and secure channel
protocols, such as TLS, has been studied intensively. However,
only few works have considered what happens when the
established keys are actually used—to run some protocol
securely over the established “channel”. We call this a vertical
protocol composition, and it is truly commonplace in today’s
communication with the diversity of VPNs and secure browser
sessions. In fact, it is normal that we have several layers of
secure channels: For instance, on top of a VPN-connection, a
browser may establish another secure channel (possibly with a
different end point). Even using the same protocol several times
in such a stack of channels is not unusual: An application may
very well establish another TLS channel over an established
one. We call this self-composition. In fact, there is nothing
that tells us that all these compositions are sound, i.e., that
the combination cannot introduce attacks that the individual
protocols in isolation do not have.

In this work, we prove a composability result in the symbolic
model that allows for arbitrary vertical composition (including
self-composition). It holds for protocols from any suite of
channel and application protocols that fulfills a number of
sufficient preconditions. These preconditions are satisfied for
many practically relevant protocols such as TLS.

I. INTRODUCTION

Security protocols, such as key establishment, secure
channels and VPNs, are a cornerstone of security on the In-
ternet. Establishing the security of a protocol is challenging,
not only because of its intrinsic complexity, but also because
of its interactions with arbitrary, sometimes adversarial, envi-
ronments. Even though composition of security protocols to
higher-level protocols is common for most environments, its
rigorous security analysis is still a major research problem.

Formal methods and automated deduction helped security
protocol analysis. Both automated detection of flaws [1], [2]
and proofs of security [3] were achieved. Automated analysis
of security protocols is a hard problem in terms of unde-
cidability of general insecurity [4] and NP-completeness of
secrecy and authentication property checking for a bounded
number of sessions [5]. Because of the computational com-
plexity of the problems, researchers were often restricted
to studying small problems. Still, several tools have been
developed for security analysis [6], [2], [7] and successfully
applied to the analysis of a plethora of security protocols.

However, in most cases the formal analyses only consider
the protocol in isolation, while the actual deployment is
within an environment of other protocols that might interfere
with it. Directly analyzing such a system that is composed of

many protocols is hardly feasible for several reasons. First,
the verification methods often do not scale to the complexity
of such a composed system. Second, there may be a large
or even infinite number of ways to compose them, and this
variety cannot directly be checked by automated verification.
Third, if just one protocol of the composition is slightly
changed, it is not sufficient to verify only this changed
protocol again, but one has to verify the entire composition
from scratch. For these reasons, it is desirable to have a
modular compositionality result (also called composability)
of the following form: given a suite of protocols that satisfy
a certain sufficient condition and that are secure in isolation,
then any way to compose them is a secure system, as well.
Given that the sufficient conditions on the protocols are
easy to check (statically), it is sufficient to verify protocols
individually with formal methods.

Several works have considered the parallel composition
of security protocols, i.e., when different protocols are de-
ployed over the same communication medium (and possibly
using the same key-infrastructures) [8], [9]. The potential
problem here is that, although the protocols may be secure
in isolation, their use in parallel may allow for attacks. This
may happen in particular when they have similar message
formats, so that an intruder can re-use a message (or message
part) from one protocol in another protocol. To achieve
compositionality along these ideas, protocols must have
disjoint message format, even on (non-atomic) subterms.
This condition can be checked statically.

In sequential composition, an output of one protocol is
used as input for another, such as the session key output
of a key exchange protocol being used as input for a
secure channel protocol. Datta et. al. [8] have analyzed
the sequential and parallel composition of protocols by com-
posing processes, yet without considering keys. Ciobâcă and
Cortier [10] analyze such compositions under consideration
of shared data and employ disjointness principles introduced
by Guttman and Thayer [11] to obtain a generic theorem for
parallel and sequential composition.

Our focus here is vertical composition, which is a com-
mon phenomenon on the layered Internet. In this case, a
client executes a protocol on top of another protocol, e.g.,
an application protocol over a secure channel established
by TLS [12]. As in previous cases, such a composition can
lead to attacks in general, even if the individual protocols
are all secure in isolation. Mödersheim and Viganò [13] give

a first vertical composition result; however, it is limited to
one transmitted message of the application protocol over the
established channel and the sufficient condition is semantical
(i.e., cannot be checked statically). Moreover, it does not
allow for several compositions, e.g., establishing a secure
channel on top of another channel.

The stacking of several protocols on top of each other
is for instance introduced by the vast deployment of VPNs
and secure channels established by browsers. It is common
in such protocol stacks that several layers are established
by same protocols, e.g., a TLS channel on top of another
TLS channel. In fact, the interest of the authors in vertical
(self-)composition was raised by a practical attack on a de-
ployment of two TLS channels on top of another [14], [15].
An intruder establishes an unauthenticated channel with the
server and forwards an honest client’s channel establishment
through his channel. When the client engages in a TLS
Key Renegotiation to establish client authentication, the
client’s credentials are attributed to the intruder’s channel.
Therefore, the attack turned out to be a mis-association of
the commands transmitted over the channels during the TLS
Key Renegotiation (and would thus work with other channel
protocols analogously). Even though the attack was not a
fault of TLS itself or its stacking in this case, it raised the
question whether vertical composition is secure, in general.

In fact, vertical composition is a composition class widely
used in practice, for which we do not have sufficient
compositionality results. To put it another way: we have
a large system that is composed of many small parts, each
of which has been analyzed extremely well with greatest
possible rigor, but so far nothing allows us to conclude that
a major way to put these parts together is actually secure.
Our work supplies such a compositionality result for a large
class of protocols.

A. The Ideas of the Paper

It is easy to craft an example of a secure channel protocol
P that is secure in isolation, but will break when it is self-
composed, i.e., when we run P on top of P itself. Along
those lines, we will demonstrate in §II that vertical protocol
composition can introduce attacks into a secure system.

This paper establishes reasonable compositionality pre-
conditions on protocols (that P does not fulfill but, for
instance, TLS does); under these preconditions it is indeed
possible to safely compose arbitrary stacks of channels from
compliant protocols. In contrast to previous compositional-
ity results, we allow that several layers in such a stack may
be established by the same protocol (e.g., several layers of
TLS-channels) as well as an arbitrary depth of the stacking.
Previous compositionality approaches usable for vertical
composition, such as [10], [13], require disjointness between
the protocols of the different layers and, thus, cannot allow
the same channel protocol to be used more than once in a

Channel protocol dh :

A→ B : crypt(invpkA , [dh,B, exp(g,X)])

B → A : crypt(invpkB , [dh,A, exp(g, Y)])

A→ B : scrypt(h(exp(exp(g,X), Y), 0), keyack)

KA := h([exp(exp(g,X), Y), 0])

KB := h([exp(exp(g,X), Y), 1])

Concrete application ca :

A→ B : crypt(pkB , [ca,M])

Embed composition ca〈dh〉E :

A→ B : crypt(invpkA , [dh,B, exp(g,X)])

B → A : crypt(invpkB , [dh,A, exp(g, Y)])

KA := . . . ,KB := . . .

A→ B : scrypt(KA, keyack)

A→ B : scrypt(KA, crypt(pkB , [ca,M]))

Abstract application aa :

A •→• B : [aa,M]

Realize composition aa[dh]R :

A→ B : crypt(invpkA , [dh,B, exp(g,X)])

B → A : crypt(invpkB , [dh,A, exp(g, Y)])

KA := . . . ,KB := . . .

A→ B : scrypt(KA, keyack)

A→ B : scrypt(KA, [aa,M])

Figure 1. A collection of example protocols for composition. The notion
of abstract application protocols and the corresponding realize composition
type is discussed in the extended version of this paper [16]; here we focus
only on concrete applications, channels, and embed composition.

vertical protocol stack. Therefore, also the size of the stack is
also bounded by the number of available channel protocols.

It may seem surprising at first that our result builds upon
existing compositionality results that require disjointness.
We start from a set of atomic protocols P (containing for
instance TLS) and will assume that the protocols in P are
indeed pairwise disjoint, so they can be safely deployed in
parallel. The ideas to achieve compositionality results for
the vertical composition, i.e., running possibly non-disjoint
protocols on top of another, are laid out subsequently. First,
we distinguish three kinds of atomic protocols: the channel
protocols, the concrete application protocols, and the ab-
stract application protocols. In this paper, we focus on the
first two kinds and only mentions the third one; the extended
version of this paper [16] contains a detailed treatment of
abstract application protocols and their compositions, as
well.

A channel protocol is a key exchange protocol between
two parties A and B that establishes two symmetric keys,

2

one for protecting messages from A to B and one for
messages from B to A.

Example 1. An example is protocol dh in Fig. 1. Here,
crypt represents asymmetric encryption or signing (when
the key used to prepare it is a private key, denoted by inv).
scrypt denotes a symmetric encryption primitive that should
provide not only confidentiality, but also integrity (e.g., by
MAC-ing). Further, h is a cryptographic hash function and
exp the modular exponentiation, for which we assume the
algebraic property exp(exp(g,X), Y) ≈ exp(exp(g, Y), X).
The variables X and Y are nonces freshly created by A
and B, respectively. (We describe the details of the message
model in §III) Both agents derive two symmetric keys: KA
for messages from A to B and KB for the opposite direction.

In general, we require that the channel protocol is de-
signed such that both parties contribute some fresh nonce to
each of the keys and these nonces are not used anywhere
else. This is a common method in robust key exchange
design.

An application protocol is basically any protocol that
may be run over a channel—including the channel protocols
themselves. We distinguish two kinds of application proto-
cols: abstract and concrete ones. The abstract ones focus
on some high-level task and rely on the assumption that
their messages are exchanged over a secure channel, but
leave it abstract how that channel is implemented; SMTP
is an example. This gives rise to the so-called realize-
composition where the assumed channel of the abstract
application is implemented by a concrete protocol. In con-
trast, a concrete application protocol already incorporates
all the needed security mechanisms—i.e., we require that
these protocols alone are already secure. For instance the
protocol ca in Fig. 1 only insures confidentiality of message
M but not integrity/authentication. The embed composition
means running a concrete application protocol over a secure
channel. This is what any form of VPN or secure layer
protocol does: embedding the application protocols into a
secure shell that the application is not aware of. In our
concrete application ca this could be either to additionally
ensure integrity of messages, or simply as a redundant layer
of security that—hopefully—does not hurt the application.
We focus here on this latter kind of embed composition
and concrete application protocols, and leave the variant of
the abstract application protocols and corresponding realize
composition to the extended version of the paper [16]. We
summarize embed and realize composition under the term
vertical composition.

Given the set P of pairwise disjoint atomic protocols,
C denotes the set of all their syntactically possible vertical
and parallel compositions, including the parallel composition
of applications over an arbitrary deep stack of channel
protocols. The main result is that every composition in
C is secure. The key is a requirement on the protocols

of P , introduced in Def. 5 in §VI-B similar to existing
notions of disjointness. It is so central to our paper that we
describe it precisely at this point already. For every protocol
P we consider the set of message patterns that describe
the sending and receiving of messages by honest agents,
MP(P). We then consider the set EST (P) that contains for
every message M also scrypt(K,M) for a new variable K
(and everything modulo α-renaming); this represents the set
of all message patterns with symmetric encryptions, when
messages of P can be sent over an arbitrary deep stack of
channels (i.e., one symmetric encryption layer per channel
layer). Our disjointness notion of Def. 5 now requires (a)
that every protocol P ∈ P is “disjoint from its own
encryptions”, i.e., messages of different encryption/channel
layers cannot be confused, and (b) the message patterns
with encryption EST (P1) and EST (P2) of two distinct
protocols P1, P2 ∈ P are also disjoint. Roughly, this means
for a given message M that can be sent or received by
an honest agent in any composition C ∈ C, we can tell
a unique application protocol P ∈ P to which the message
belongs, and derive the depth of the stack of channels, over
which it was transmitted. By the fact that channel keys are
composed in a certain way that is disjoint for distinct channel
protocols (again by Def. 5), we can uniquely determine the
channel protocols used. Thanks to this construction, we can
then show the soundness of arbitrary stacks of protocols,
including self-compositions like “TLS over TLS”.

B. Contributions

The main result of this paper is a generic vertical composi-
tion theorem: for every pairwise disjoint protocol suite P of
protocols that satisfies a number of conditions, if arbitrarily
deep encryption produces no collisions, every vertical and
parallel composition that can be formed with protocols of
P is secure. This result includes arbitrary deep stacking
of channels, even with the same protocol. Moreover, all
these vertical compositions can be deployed in parallel.
This provides both new theoretical insights and has many
practical applications. On the theoretical side, we show that
we can use existing results on parallel composition as a basis
for the vertical compositionality result. While we exploit
existing results that are based on disjointness of protocols,
we can still allow for vertical self-composition, such as
TLS over TLS. The reason that this is possible lies in the
requirements on protocols suite P—notably the disjointness
of a protocol from its encryption and pairwise disjointness
of P as well as a classification into channel, concrete and
abstract application protocols—that allow us to attribute
each message and message part to a unique context (i.e.,
atomic protocol and encryption layers).

On the practical side, the result can immediately be
applied to the widely used protocols for establishing secure
channels and VPNs such as TLS and IKE/IPSec, as well as
the common (non-cryptographic) application protocols like

3

SMTP. Indeed, it is common practice to run applications over
several layers of channels (and in fact the point of a virtual
network is that such layering is indeed possible). We provide
a soundness result given that the set of protocols considered
satisfies a number of preconditions. These preconditions are
realistic and good practice: Indeed, this work was carried
out with the main examples TLS and IPSec/IKE in mind
and we have entirely avoided any precondition that would
not be satisfied by these protocols.1

Our composition theorem is also generic in the sense
that it allows for arbitrary state-based safety properties over
auxiliary predicates and positive intruder knowledge. The
theorem therefore covers a large class of trace properties,
where authentication is only one example.

C. Outline

§II gives an example of failing self-composition and
motivates the restrictions and conditions we make in the
following sections. §III introduces our protocol and intruder
model, based on the Intermediate Format IF. §IV defines
the classes of protocols that we work with in this paper.
§V introduces the different kinds of compositions that we
consider and the notion of protocol types. §VI contains key
concepts for typing and disjointness; the preconditions in
this section allow us to derive an important intermediate
result, namely that in our compositions all messages can
be attributed to a unique protocol type. §VII contains the
main result that all compositions of the protocol suites we
consider are secure, and how this can be derived from several
theorems that are proved in the extended version of this
paper [16].

II. EXAMPLE PROTOCOL FAILING UNDER
SELF-COMPOSITION

Before we proceed with the formal details of protocol
model and composition, we illustrate in this section why
vertical composition, and in particular self-composition, is
tricky. To that end, we introduce an artificial toy protocol
that is secure in isolation, but breaks under self-composition.
This protocol violates several guidelines of good protocol
design, and we can use it to motivate several of the precon-
ditions of our compositionality result that rule out such bad
protocols.

The protocol U (for “uncomposable”) is a channel proto-
col that performs a two step handshake between parties A
and B. It relies on pre-existing shared keys sk(A,B) and
sk(B,A) (for the two directions) and in fact it does not
establish new keys, but just acknowledges that these keys
will be used and introduces a fresh nonce that is used as a

1Kerberos is the only major example that does not satisfy the precondi-
tions (because each new session key is generated by the respective server
alone without user interaction).

session/channel identifier:

A→ B : crypt(pkB , [A,B, sk(A,B)])

B → A : scrypt(sk(B,A), crypt(pkA, [B,A,N]))

After this handshake, every transmission of a message M
from A to B has the form

A→ B : [N, scrypt(sk(A,B),M)]

where the fresh nonce N is used to identify the ses-
sion/channel before decryption (transmissions from B to
A are analogous). As goals, we assume the secrecy of the
shared keys sk(A,B) and sk(B,A).

The handshake alone is a secure protocol, and even
transmitting several “harmless” payloads in place of message
M such as freshly generated nonces is fine. However, if
we allow to run U itself as payload messages over the es-
tablished channel, i.e., self-composition, then the following
attack can happen:

a→ b : crypt(pkb, [a, b, sk(a,b)])

Step 1 of plain U

b→ a : scrypt(sk(b,a), crypt(pka, [b, a, n]))

Step 2 of plain U , n some fresh new constant

a→ b(i) : scrypt(sk(a,b), [n, crypt(pkb, [a, b, sk(a,b)])])

Step 1 of U over the established channel; intercepted by
intruder, session dies.

b→ a(i) : crypt(pka, b, a, sk(b,a))

Step 1 of plain U , initiated by b; intercepted by intruder

a(i)→ b : scrypt(sk(a,b), crypt(pkb, [a, b, sk(a,b)]))

replay of intercepted message from a, received by b as
Step 2 of plain U , mistaking sk(a,b) as session ID

b→ a(i) : [sk(a,b), scrypt(sk(a,b), . . .)]

b sends some payload, intruder learns the shared key.

Note that one can think of many other application protocols
(besides U itself) that can break the security of U—basically
any payload message that uses triples could be harmful
here. In fact, this example shows that it is not trivial to
give conditions that prevent interferences with an arbitrary
payload protocol.

Here are some conditions that we require for channel
protocols and that are violated by U . First, we require that a
channel protocol must freshly generate keys, and both parties
must contribute to these keys. The freshly established keys
must only be used for a single channel and not be transmitted
as payload part of a message (but only be used to encrypt
messages).

Second, messages that have different meaning must have
different format, so they cannot be confused. This is actu-
ally satisfied for the handshake alone. When we consider
however the transmission over the channel, we see that

4

transmitting the first message of U over the channel produces
a message that can be unified with the second message of
U . This motivates our extension of the standard disjointness
conditions: message formats should be additionally disjoint
from their symmetric encryptions (consider Def. 5 for the
details). In the given example, this could be achieved by
inserting a tag into the body of the symmetric encryption of
Step 2, which rules out the above attack already:

A→ B : crypt(pkB , [A,B, sk(A,B)])

B → A : scrypt(sk(B,A), [tag, crypt(pkA, [B,A,N])])

We conclude this discussion with the remark that we cannot
show that any of the requirements we make are necessary,
but they are sufficient and, in our opinion, part of good
protocol design.

III. THE PROTOCOL MODEL

We introduce our model of protocols, messages, and the
intruder behavior; this is the basis for a precise definition
(a) of the classes of protocols that we reason about and
(b) of the particular forms of protocol composition that
we consider. We formalize protocols and their goals in the
AVISPA Intermediate Format IF which we introduce along
the way; for a detailed definition see [17].

A. Message Terms

As usual in the black-box cryptography models of security
protocols, protocol messages (or terms) are represented in a
term algebra over a signature Σ and variables V . Both Σ
and V are alphanumeric identifiers in IF, where symbols
of Σ must begin with a lower-case letter, and those of V
with an upper-case letter (so Σ and V are disjoint, and both
are countable). We will set all IF identifiers in sans-serif,
in particular to distinguish IF-variables from meta-variables
of our argumentation (such as m or M). Σ consists of
a denumerable set of constant symbols representing agent
names (where i is the intruder), numbers, atomic keys etc.

Σ contains only a fixed set of function symbols represent-
ing operations on messages. In this paper, we work with the
following symbols:
• scrypt(k,m) denotes the symmetric encryption of mes-

sage m with symmetric key k. As it is standard in
abstract term models, scrypt(·, ·) does not denote a pure
symmetric cipher (that only ensures confidentiality) but
also includes mechanisms for ensuring integrity (such
as a message authentication code). It is also possible to
include other aspects of message transmission as part of
this primitive, such as timestamps or sequence numbers
(that our model abstracts from).

• crypt(pk,m) denotes the asymmetric encryption of
message m with public key pk. crypt(invpk ,m) denotes
the signature of message m with secret key invpk .

• a cryptographic hash function h,

• exp(B,E) as the modular exponentiation (omitting the
modulus) for Diffie-Hellman, and

• the concatenation [m1, . . . ,mn] of messages mi.2

Σ also contains a fixed set of function symbols that do
not represent operations on messages, but denote mappings
of the model. For instance pk(a) may denote the public
key of agent a, and invpka the corresponding private key.
These mappings of the model are indicated by writing
their arguments as indices and we call terms built using
these function symbols dependent terms. We consider all
constants, variables, and dependent terms as atomic terms.

We assume a congruence relation ≈ over terms to model
algebraic properties defined by a set of equations, such as
exp(exp(B,X),Y) ≈ exp(exp(B,Y),X) for Diffie-Hellman.
We interpret terms in the quotient algebra TΣ/≈ (i.e., two
terms are interpreted as being different iff this is a con-
sequence of the algebraic properties). We use the standard
notions of terms such as ground, substitution, unifier etc.
(see [18]).

B. Message types

We will use a particular way of typing terms; note that the
original IF allows also for untyped specifications. We discuss
the exclusion of type-flaw attacks below. All constants in IF
have a type from the set of basic types:

{agent, nonce, symkey, pubkey, privkey, tag}

We write t : τ to denote that term t has type τ . Functions
induce composed types, namely if (t1 : τ1), . . . , (tn : τn),
then f(t1, . . . , tn) : f(τ1, . . . , τn). For instance, a Diffie-
Hellman key has the type exp(exp(nonce, nonce), nonce).
We also require that all algebraic properties that we have are
type-correct, i.e., left-hand side and right-hand side of every
algebraic equation must have the same type. For instance
we can have exp(exp(B,X),Y) = exp(exp(B,Y),X) but not
exp(B, 1) = B.

Variables can for now be either untyped, or have a basic
or composed type. Variables of basic type can only be
instantiated with constants or with dependent terms of the
respective type. When variables have a type, then in any
matching and unification, we only allow instantiations of
variables with terms of the correct type as expected.

While thus all operations are injective functions on the
type system, we consider the modeling functions as mapping
into constants (e.g., pk : agent → pubkey and inv :
pubkey → privkey) so that ground dependent terms can
be treated as constants (of a suitable type) and non-ground
dependent terms can be treated as variables (of a suitable
type).

2We use concatenation thus with different arity without further notice.
Observe that with this notion of concatenation, we exclude a number of
low-level type-flaw attacks where messages of different length are confused
due to poor structuring of concatenated messages.

5

C. Facts, States and Rules

We use a fixed number of fact symbols (disjoint from
Σ and V) that each have an arity. A fact has the form
f(t1, . . . , tn) where f is a fact symbol of arity n and the ti
are (message) terms. The most important facts that we will
use are ik(m) to express that the intruder knows message m,
statePID.TIDA:RID.PC [M1, . . . ,Mn] to represent the local state of
an honest agent, and net(A,B)(M) to denote that a message
M has been sent on the insecure network; A is here the
name of the (claimed) sender and B the intended recipient.
Here PID represents the protocol name, RID the role of
that protocol, PC is the “program counter”, TID a thread
identifier (to distinguish several parallel sessions that an
agent takes place in), A is the name of the agent, and
M1, . . . ,Mn are messages to represent the knowledge of
the agent in that thread; note that the order of the messages
does matter as this should be thought of being the fields of a
record that is filled and modified during protocol execution.
A further fact symbol is the nullary symbol attack that
represents that we have an attack. We introduce further fact
symbols below when we need them.

A state is a set of ground facts. An IF specification
consists of an initial state and a finite set of transition rules,
defining a transition relation on states. Transition rules have
the form

PF.NF.C =[V]⇒ RF

where
• PF and RF are sets of facts, NF is a set of negated

facts of the form not(f) where f is a fact,
• C is a set of conditions, that is, inequalities on terms,
• V is a set of variables.

It must hold that vars(RF) ⊆ vars(PF) ∪ V . For such
a transition rule, we distinguish the left-hand side (LHS)
defining the preceding state and the right-hand side (RHS)
defining the result state. For the LHS, PF and NF define
the preceding state with positive and negative facts that are
matched against. The conditions C restrict the matching with
inequalities over terms. The variables V are existentially
quantified in the rule. For the RHS, RF defines the resulting
facts, where the variables of RF must be a subset of the
variables of the positive facts of the LHS PF (excluding
the variables only occurring in negative facts and conditions)
and the existentially quantified variables V .

The transition relation→R induced by the transition rules
R is defined as follows: S →R S′ holds iff there is a rule
(PF.NF.C =[V]⇒ RF) ∈ R and a grounding substitution
σ with domain vars(PF) ∪ V , such that
• PFσ ⊆ S.
• For all substitutions χ that substitute the remaining

variables of the rule it holds that
– for every not(f) ∈ NF , fσχ /∈ S.
– for every s 6= t ∈ C, sσχ 6≈ tσχ.

• For each v ∈ V , vσ is a fresh constant (that does not
occur in S).

• S′ = (S \ PFσ) ∪RFσ.

Example 2. As an example, let us consider the first tran-
sition rule of role bob (played by some agent B) in the
example dh of Fig. 1, p. 2; the full IF specification of the
protocol is found in Fig. 2.

statedh.TID
B:bob.1 [A].net(A,B)(crypt(invpkA , [dh,B,GX]))

=[Y]⇒ statedh.TID
B:bob.2 [h(exp(GX,Y), 0), h(exp(GX,Y), 1), A].

net(A,B)(crypt(invpkB , [dh,A, exp(g, Y)])).

This rule is read as follows. It can be applied to any state
where an agent B playing bob is in the initial state of its
protocol execution (expecting a message from agent A) and
we have a message of the appropriate form on the network,
apparently from A. This is done by pattern matching, i.e.,
all occurrences of the left-hand side variables must agree. In
particular, the message must be signed with A’s private key
invpkA . Observe that B cannot check that the last component
of that message indeed has the format exp(g,X) for some
X . Thus, we have here a variable GX that can be matched
with any message. On the transition, B will create a fresh
value Y (as indicated by the Y on the arrow) and send out
an appropriate answer message. B will also store the newly
derived keys KA and KB in his state, i.e., h(exp(GX,Y), 0)
and h(exp(GX,Y), 1). We will later add some additional
facts to the right-hand side, which will help us formulate
attack states in a convenient way.

The following aspect is crucial: on the transition, the state-
fact that had been matched on the LHS is being removed
from the current state and the new state fact is introduced.
In contrast, we define the net fact as being persistent, i.e.,
it remains on the state during all further transitions (so that
messages can be received any number of times).

D. Intruder Deduction

We describe the intruder deduction by a protocol-
independent set of rules that we assume to be present in all
protocol descriptions (and will not list anymore later). These
rules deal with intruder knowledge of messages, formalized
by the persistent predicate ik. First, as it is standard, we
model that the intruder controls the entire network:

ik(A).ik(B).ik(M)⇒ net(A,B)(M)

net(A,B)(M)⇒ ik(A).ik(B).ik(M)

6

The intruder deduction on messages is expressed by the
following rules:

ik(K).ik(M)→ ik(scrypt(K,M))

ik(scrypt(K,M)).ik(K)→ ik(M)

ik(K).ik(M)→ ik(crypt(K,M))

ik(B).ik(X)→ ik(exp(B,X))

ik(crypt(K,M)).ik(invK)→ ik(M)

ik(M1).ik(Mn)→ ik([M1, . . . ,Mn]) for n ∈ N
ik([M1, . . . ,Mn])→ ik(M1).ik(Mn) for n ∈ N
=[N]⇒ ik(N)

which formalize that the intruder can encrypt and decrypt
messages whenever he has the appropriate keys; he can
build exponents for Diffie-Hellman; he can construct and
deconstruct tuples and he can freshly create nonces. Note
that we have here an infinite set of rules, but this can be
restricted to those n-tuples that are used in the concrete
protocol.

We forbid that ik facts can occur negatively in a rule; this
ensures that attacks grow monotonically with the intruder
knowledge (if the intruder learns something, this cannot
decrease the number of attacks). For simplicity, we assume
in this work that all agents besides the intruder are honest
(but IF can express of course other intruder models). Further,
we assume that the initial state will contain the persistent fact
agent(a) and ik(a) for every constant a of type agent.

E. Attacks and Security

State-based safety properties can be formalized by tran-
sition rules that by their left-hand side describe states that
qualify as an attack and the right-hand side being simply
attack.

For example, secrecy properties will be specified by using
a new fact secret(m, a) that expresses m is supposed to be a
secret with agent a; this fact will be appropriately generated
on the right-hand side of a transition rule of an honest agent.
We then specify–independent of the details of the protocol–
the rule

secret(M,A).ik(M).(A 6= i)⇒ attack (1)

to express that it is considered as an attack if the intruder
finds out a secret that is not meant for him.

An attack state is any state that contains the attack
symbol. We say that an IF protocol is secure iff no attack
state is reachable from the initial state using the transition
relation.

IV. PROTOCOL CLASSES

Based on the protocol model of the preceding section,
we define now two classes of protocols, namely channel
protocols and (concrete) application protocols. The extended
version [16] introduces the additional class of abstract ap-
plication protocols. We write app(A) if A belongs to the

class of concrete application protocols and channel(C) if C
belongs to the class of channel protocols. Our composition
results are based on these classes, i.e., we allow A〈C〉E—
running A over C—only for protocols with app(A) and
channel(C).

A. Concrete Application Protocols

IF allows for the specification of a huge class of protocols,
and for many of them, our results may not hold. We thus
define appropriate subclasses of protocols that have proper-
ties suitable for composition. The first class are concrete
application protocols that may either be running directly
over the insecure network or over the secure channels that
we establish. These protocols shall already be protected
sufficiently against the insecure network. The point is just
that running them over a secure channel anyway should not
hurt. An example would be a TLS-secured web-application
that we may run directly over the network or over some
VPN (that adds for this application a redundant layer of
protection). Intuitively, we make the following restrictions
on concrete application protocols:
• The initialization depends only on a number of agents

that play the various other roles.
• Each thread of an honest agent is described by exactly

one state fact and has an incoming and outgoing mes-
sage in the intruder knowledge on each transition. This
excludes multi-threaded applications and synchronous
communication between agents.

• Except for the concrete message format sent or re-
ceived, we ensure that the protocol description, includ-
ing the formulation of its goals, is oblivious to whether
it is running directly on an insecure channel or rather
routed over some secure channel. In particular, we must
prevent that goals are formulated using state facts,
because they will be slightly changed in composed
protocols.

• As said before, we have restricted ourselves to two
party protocols and we want to assume that the names
of the roles are alice and bob (i.e., the role IDs in
transitions) and that A and B are the variables that hold
the respective agent names in the transition rules of
honest agents.3

An initialization rule has the form

agent(A1).agent(A2) =[TID]⇒ statepid.TIDA1:rid.pc[A2]

where either
• A1 = A, rid = alice, A2 = B, or
• A1 = B, rid = bob, A2 = A.

Recall that identifiers in italics are meta-variables and iden-
tifiers in sans-serif are IF variables. This rule creates a
new thread for agent A1 playing in role rid of protocol

3This does not a priori exclude that there can be confusions between
agents about their communication partners.

7

pid (beginning at step pc), who would like to communicate
with agent A2 (to play role bob). This creates a fresh thread
identifier TID and thereby induces an unbounded number
of sessions between all combinations of agents. In particular,
the intruder can be a normal participant of every role.

A concrete application protocol transition rule has the
form

statePID.TIDA:RID.PC [Msgs].net(B,A)(inMsg)

=[V]⇒ statePID.TIDA:RID.PC′ [Msgs′].

net(A,B′)(outMsg).gfacts

where we have either

• A = A, B = B, RID = alice or
• A = B, B = A, RID = bob.

Moreover, B must be a variable of both lists Msgs and
Msgs′. Finally, we have the goal facts gfacts such as the
above introduced secret. In the extended version [16], we
additionally allow that the rules can contain set conditions
to model participants that maintain a database of items.

An concrete application protocol is now defined by a set
of initialization rules, a set of protocol transition rules and
a set of attack rules, for which we forbid the inclusion of
state facts.

Example 3. As an example, the concrete application proto-
col ca from Fig. 1, p. 2, looks as follows in IF.

agent(A).agent(B) =[TID]⇒ stateca.TIDA:alice.1[B]

agent(A).agent(B) =[TID]⇒ stateca.TIDB:bob.1[A]

stateca.TIDA:alice.1[B] =[M]⇒
stateca.TIDA:alice.2[B,M].net(A,B)(crypt(pkB, [ca,M])).secret(B,M)

stateca.TIDB:bob.1[A].net(A,B)(crypt(pkB, [ca,M]))

⇒ stateca.TIDB:bob.2[A,M].secret(A,M)

Here, we declare the transmitted nonce M as a secret, using
the Rule (1) in §III-E.

B. Abstract Application Protocols

As already mentioned, in the extended version of this
paper [16] we also consider another type of protocol that
generalizes the concrete application protocols by allow-
ing message transmissions over abstract secure channels—
namely abstracting from the concrete implementation of
these channels. The corresponding realize composition type
A[C]R means that this channel assumed by the abstract ap-
plication A is realized by channel protocol C. This is similar
to our embed composition, and, for simplicity, we focus in
this paper on the embed-composition and concrete applica-
tion protocols. We refer to [16] for a detailed treatment of
abstract application protocols and realize composition.

C. Channel Protocols

We now define a third class that is a special case of
concrete application protocols, namely channel protocols
(or also called key-exchange protocols). The task of such
a protocol is to establish two secure shared keys between
two parties alice and bob, one for encrypting messages from
alice to bob and the other for messages from bob to alice.
Given that the keys are indeed authenticated, confidential,
and fresh, this establishes a secure channel between the two
parties over which other concrete application protocols can
be run, namely encrypting messages with the appropriate
symmetric key. Examples of such protocols are TLS or the
various versions of IPSec/IKE. Informally, the restrictions
we make are as follows:
• The protocols establish a pair of shared keys between

two parties (one key for each communication direction).
Honest parties must contribute something fresh to each
of them (the intruder does of course whatever he likes,
when playing any of the roles).

• This key is secure (i.e., authenticated and confidential).
• The key-exchange is isolated from other protocols,

i.e., it does not depend on shared knowledge with
other sessions (except for long-term keys, modeled
as dependent terms) and cannot “leak” information to
them (i.e., freshly created nonces here are not used
elsewhere).

Formally, a concrete application protocol is a key-exchange
protocol, iff the following additional conditions are met:
• The PC for each rule is increasing in each transition

rule, so there is a largest PC, or final state of the key-
exchange.

• In the final state of Alice, we require the following
conditions:
(1) The first two terms in the message list of the final
local state of alice represent the established symmetric
keys; let us call these terms KA and KB .
(2) In some transition rule, Alice creates a fresh value V
(and keeps it in one message field of her local state); V
occurs in both KA and KB . We require that V cannot
be deduced from KA or KB .
(3) In the rule where Alice creates V , we have the
secrecy fact secret(V,B) (for B being the name of the
agent playing role bob) and thereby require that V
cannot be known by the intruder unless B = i.
(4) In the first transition of alice where the value of the
keys KA and KB is determined, she issues the event
candidate(A,B,KA,KB)
(5) In the transition to the final state of alice, she issues
the event agreed(A,B,KA,KB)
All these requirements similarly must hold for role bob,
mutatis mutandis.

• The security goals are fixed to be the following secrecy
and authentication goals of the exchanged keys defined

8

using the agreed and candidate facts: (1) The authen-
tication of the keys is violated when there is an agreed
event without a matching candidate event.

agreed(A,B,KA,KB).

not(candidate(B,A,KB,KA)).A 6= i.B 6= i
⇒ attack

We do not require anything about freshness here, be-
cause this is implicit in the construction by the re-
quirement that both agent must contribute fresh random
numbers to the key. (2) The secrecy of a key is violated
if an honest A thinks to share a key with an honest B
(or vice versa) and the intruder finds out the key:

agreed(A,B,KA,KB).ik(KA).A 6= i.B 6= i
⇒ attack

Honest users issue the events as follows: Whenever a
principal has determined the session keys in his view,
it issues a candidate event with the keys’ context (own
agent name, partner agent name, own session key, partner
session key). Once, a principal acknowledges session keys
as validated in his respective view, it issues an agreed
event with the same context. A (candidate, agreed)-pair with
matching context constitutes a successful key agreement in
the principal’s view. This mechanism allows us to check for
matching conversations in the analysis trace and is similar
to the matching conversations paradigm by Bellare and
Rogaway [19], [20] as well as the non-injective agreement
by Lowe [21].

Example 4. In Figure 2, we outline the IF formalization
of the Diffie-Hellman-based key exchange from Fig. 1, p. 2.
The first two rules are the initialization rules. Rule 3 models
alice’ view on sending the first message, in which alice
instantiates a fresh nonce X , computes exp(g,X) and sends
a signed message with that payload to B. Rule 4 models
bob’s view on receiving the first message and replying with
the second message. First note that bob cannot check the
structure of the received value (i.e., that it is of the form
exp(g,X) for some X). We thus have here a variable GX
that can match every term. bob generates the fresh Y and
can now derive the key terms KA and KB , where the Diffie-
Hellman part is exp(GX,Y). In fact, the KA := . . . and
KB := . . . here is an abbreviating notation for readability:
all further occurrences of these two variables in the rest
of this rule shall be replaced accordingly. In addition, bob
generates the goal facts candidate() and secret() for the
derived keys as required to formulate the authentication
and secrecy goals of the key exchange. In Rule 5, alice
similarly receives bob’s half-key as GY and derives the
keys analogously, issuing the candidate() and secret() facts
for the goals. Since this is alice’s last transition of the
handshake, she also issues the agreed() fact that indicates

agent(A).agent(B) =[TID]⇒ statedh.TIDA:alice.1[B]

agent(A).agent(B) =[TID]⇒ statedh.TIDB:bob.1[A]

statedh.TIDA:alice.1[B]

=[X]⇒ statedh.TIDA:alice.2[B,X].

net(A,B)(crypt(invpkA , [dh,B, exp(g,X)]))

statedh.TIDB:bob.1[A].net(A,B)(crypt(invpkA , [dh,B,GX]))

=[Y]⇒ KA := h(exp(GX,Y), 0),KB := h(exp(GX,Y), 1)

statedh.TIDB:bob.2[KB,KA,A].

net(A,B)(crypt(invpkB , [dh,A, exp(g,Y)])).

candidate(B,A,KB,KA).secret(A,KB).secret(A,KA)

statedh.TIDA:alice.2[B,X].net(B,A)(crypt(invpkB , [dh,A,GY])).

⇒ KA := h(exp(GY,X), 0),KB := h(exp(GY,X), 1)

statedh.TIDA:alice.3[KA,KB,B].net(A,B)(scrypt(KA, keyack)).

candidate(A,B,KA,KB).agreed(A,B,KA,KB).

secret(B,KA).secret(B,KB)

statedh.TIDB:bob.2[KA,KB,A].net(A,B)(scrypt(KA, keyack))

⇒ statedh.TIDB:bob.3[KA,KB,A].agreed(B,A,KB,KA)

Figure 2. IF formalization of the DH key exchange from Figure 1.

that she now accepts the keys as agreed and can start sending
and receiving messages encrypted with those keys. Finally
in the last rule, bob receives the acknowledgment from alice
and issues a corresponding agreed() fact as well.

V. PROTOCOL COMPOSITION

Based on the classes of protocols introduced in Sec-
tion IV, we now introduce the protocol composition oper-
ations that can be applied to these classes. Recall that we
denote with app(A) that A belongs to the class of (concrete)
application protocols, channel(C) that C belong to the
class of channel protocols, and sapp(A) that A belongs to
the class of abstract application protocols (which we only
discuss in [16]).

We use the following notation for the different kinds of
composition:
A. P1 ||P2 for the parallel composition of P1 and P2,

i.e., the two protocols are run independently over
an insecure network. (This is also called horizontal
composition as opposed to vertical composition.) The
classes of abstract application protocols and of concrete
application protocols are both closed under parallel
composition.

B. A〈C〉E, for app(A) and channel(C). We call this
vertical composition embed composition. It means that
we first establish shared keys using C and then run the
concrete application protocol A, but where now every
message is additionally encrypted with the symmetric

9

key for the respective direction. The result is again a
concrete application protocol, i.e., app(A〈C〉E).

C. A[C]R, for sapp(A) and channel(C). We call this
vertical composition realize composition; we treat it in
detail only in the extended version [16]. Here, one first
runs the protocol C to establish a pair of symmetric
keys for secure communication. Afterwards, one runs
A, but replaces the abstract secure channels by symmet-
ric encryption with the respective keys for the commu-
nication direction. The result of this composition is a
concrete application protocol, i.e., app(A[C]R).

The closure properties of the composition types (i.e., that
the results are concrete application protocols, or abstract
application protocols, respectively) are important for our
construction: together with the composability results for
each type of composition, we can build arbitrary complex
compositions of the protocols we start with (if they satisfy
the conditions of our composition theorems); so for instance
we may run an appropriate concrete application over any
number of TLS layers. In general, we cannot run an abstract
application protocol directly over a channel, i.e., A〈C〉E for
sapp(A), because A may contain abstract secure channels
that cannot be “routed” over a real channel; we always have
to first implement the abstract channel by some channel
protocol, i.e., A[C]R, which can then be routed over other
channels.

Precondition 1. From now on, we expect that we are given a
finite set P , consisting of channel, concrete application, and
abstract application protocols. We shall call protocols of P
atomic protocols, and we will consider only protocols of P
and their compositions for the rest of this of this paper. Also
we assume that every protocol P ∈ P is secure in isolation.

Example 5. Our running example is P = {dh, aa, ca}.

Definition 1. Let C be the set of all “syntactically correct”
compositions of P , i.e., the least set that contains P and
that is closed under the following rules:
• If P1, P2 ∈ C then also P1 ||P2 ∈ C.
• If A,C ∈ C and app(A) and channel(C) then also
A〈C〉E ∈ C.

• If A,C ∈ C and sapp(A) and channel(C) then also
A[C]R ∈ C.

We prove that if all protocols of P are secure in isolation
and satisfy several disjointness conditions introduced in the
following sections, then all their compositions in C are also
secure. This will be the main result of this paper. For our run-
ning example, we have for instance that (aa[dh]R || ca)〈dh〉E
is a syntactically correct composition, but ca[dh]R is not.

Since we focus on vertical and not on (pure) parallel
composition, we assume here that the parallel composition
of the atomic protocol is already secure:4

4Note that parallel self-composition is trivial: P ||P = P .

Precondition 2. We expect that all protocols of P are secure
under parallel composition, i.e., || P∈PP is secure.

Works like [9], [10] can be used to prove such a par-
allel compositionality result. The basic idea is that non-
atomic parts of the deployed protocols should be sufficiently
different so that messages cannot be confused. This will
ensure that the intruder cannot reuse messages or message
parts from one protocol in another protocol. We must,
however, also ensure that the intruder cannot learn long-term
constants from one protocol that are secrets in the other (e.g.,
private keys of honest agents). Moreover, we must ensure
that neither the goals nor the databases of the agents can
produce conflicts; a reasonable assumption here would be
to assume they are also disjoint for the different protocols
(i.e., the different atomic protocols do not communicate with
each other over a database). However we note that our
vertical composition works for every set P for which our
preconditions hold (no matter how to achieve the parallel
composition result).

A. Protocol Types

The preconditions that we introduce below will allow us
to associate every message that honest agents can send or
receive to a unique protocol C ∈ C where C does not contain
parallel composition. This justifies to speak of a message
being of “type τ” where τ identifies a protocol composition.

Recall that state facts have a field for a protocol name.
In the definition of the protocol classes, we did not require
that this field must hold the same constant in all rules of a
protocol, i.e., we allow for “heterogeneous” protocols. We
call a protocol homogeneous iff all state facts in its rule
carry the same protocol identifier. We take for granted that
each protocol of P is homogeneous, thus every P ∈ P has a
unique protocol identifier and we call this identifier its type.

Definition 2. Let TC be the set of channel types, i.e., the
protocol identifiers of those P ∈ P for which channel(P)
holds. T 0

A is the set of atomic concrete application types, i.e.,
the protocol identifiers of those P ∈ P for which app(P) but
not channel(P). Finally let TS be the set of atomic abstract
application types, i.e., the protocol identifiers of those P ∈ P
for which sapp(P) but not app(P). TA is the least set that
contains T 0

A and that is closed under the following two rules:
• If τA ∈ TA and τC ∈ TC , then also τA〈τC〉E ∈ TA.
• If τS ∈ TS and τC ∈ TC , then also τS [τC]R ∈ TA.

We define the set T = TC ∪ TS ∪ TA of all protocol types.
Moreover T0 = TS∪TC∪T 0

A is the set of all atomic protocol
types.

Let MP(P) denote the message patterns of a protocol P ,
that consist of all messages M that appear as net(A,B)(M)
or secCh(A,B)(M) in a rule of P ; we apply an α-renaming
such that different elements of MP(P) have disjoint vari-
ables; also, for vertically composed protocols P = A〈C〉E
and P = A[C]R, we exclude those messages from MP(P)

10

that appear only in the rules of C. With ST (P) we denote
all non-atomic subterms of MP(P), again α-renamed so
that elements have disjoint variables.

Let P ∈ C be any composed protocol that has a type τ ∈
T . We say that a message m has protocol type τ , and write
m : τ , iff there is a unifier between m and an element of
ST (P). (Theorem 2 shows that this protocol type is unique
under the preconditions on P .)

Example 6. For our running example from Fig. 1, p. 2,
we have TC = {dh}, T 0

A = {ca}, TS = {aa} and TA =
{ca, ca〈dh〉E, aa[dh]R, ca〈dh〉E〈dh〉E, aa[dh]R〈dh〉E, . . .}

In this definition we have introduced composed protocol
types using the “composition operators” ·〈·〉E and ·[·]R. We
do not have composed types for parallel composition: this
will always give heterogeneous protocols. This reflects that
in a parallel composition, every action (sending or receiving)
of an agent can be attributed to either protocol that had been
composed in parallel, while in all vertical compositions (i.e.,
running over a channel) both the concrete application and
the channel protocol are part of the message and are thus
represented in the type expression of the message. Consider
the example composition (P1 ||P2)〈C〉E for P1, P2, C ∈ P
of types τ1, τ2, τc; this composition is heterogeneous, con-
sisting of the two protocol types P1〈C〉E and P2〈C〉E.

We take for granted that our construction of composed
protocol types can be mapped in a collision-free way to IF
protocol identifiers, so that we can use the composed types
in state facts of the composition as protocol identifiers.

B. Parallel Composition
Definition 3. Given two protocols P1 and P2 described by
IF rules. Then their parallel composition P1 ||P2, is simply
the union of the two sets of rules.

It is immediate that if app(P1) and app(P2), then also
app(P1 ||P2); similarly, if sapp(P1) and sapp(P2) then also
sapp(P1 ||P2).

C. Embed: A〈C〉E Composition
Definition 4. Given protocols A,C ∈ P where app(A) and
channel(C), we define the composed protocol A〈C〉E as the
following set of rules:

1) All initialization and transition rules of C without
modification.

2) A modification (made precise below) of the transition
rules of A that additionally contains two shared keys
in the local states of roles alice and bob, and that are
used to encrypt all messages from alice to bob and
vice-versa.

3) A modification of the initialization rules of A that links
the initial states of A with final states of C.

4) All attack rules of A and C.
Ad 2. By our assumptions, both A and C have two protocol
roles alice and bob played by agents identified by variables

A and B in their state facts. In all transition rules of A, we
replace all facts of the form stateτA.T IDA:alice.PC [M1, . . . ,Mn] by
state

τA〈τC〉E.T ID
A:alice.PC [KA,KB,M1, . . . ,Mn] where τA and τC

are the respective protocol types/names, and KA and KB
are two new variables that do not occur in the specifica-
tions; analogously for bob. Every transmission of the form
net(A,B)(M) is replaced by net(A,B)(scrypt(KA,M)) and
net(B,A)(M) by net(A,B)(scrypt(KB,M)).5

Ad 3. By assumption, the channel protocols are linear,
and there is a highest PC for each role. We now consider
for the highest PC PCalice of alice, and every transition rule
of C that has on the RHS a local state fact of the form

stateτC .T IDA:alice.PCalice
[KA,KB,M1, . . . ,Mn]

where KA and KB will be composed terms. We consider
further all initialization rules of the protocol A for role alice,
i.e., of the form

agent(A).agent(B). =[TID]⇒ stateτA.T IDA:alice.pc[B]

We combine any such final state of C with any such initial
state of A by a rule, basically replacing the initialization of
the variables A and B by their instances in the state fact
of τC (where also B must occur within the messages by our
assumptions):

stateτC .T IDA:alice.PCalice
[KA,KB,M1 . . . ,Mn].

⇒ state
τA〈τC〉E.T ID
A:alice.pc [KA,KB,B]

Here we have replaced the term KA of C by a variable KA
(i.e., the new protocol is oblivious to the precise structure
of the key terms); also note that all temporary information
of the channel protocol (the Mi except B) is purged in this
transition.

Example 7. For our running example, the ca〈dh〉E com-
position would give the following rules for role alice (we
leave out role bob for brevity and the rules for dh which
are identical):

statedh.TIDA:alice.3[KA,KB,B] ⇒ state
ca〈dh〉E.TID
A:alice.1 [KA,KB,B]

state
ca〈dh〉E.TID
A:alice.1 [KA,KB,B] =[M]⇒

state
ca〈dh〉E.TID
A:alice.2 [KA,KB,B,M].

net(A,B)(scrypt(KA, crypt(pkB, [ca,M]))).secret(B,M)

D. Realize: A[C]R Composition

As mentioned above, the extended version of this pa-
per [16] also considers the notion of abstract application
protocols that run over abstract secure channels and a corre-
sponding notion of realize composition, in which a concrete
channel protocol is plugged in to realize the assumed secure
channel. We omit it here, because it is similar to the embed
composition.

5By construction, such net facts can only occur in the transition rules of
alice and bob, so that the variables are always bound by their occurrence
in state facts.

11

VI. TYPING AND DISJOINTNESS

In general, the kinds of composition of protocols we have
introduced is not sound: if we compose secure protocols
(that do not have an attack), we cannot be sure that their
compositions are secure. The reason is that two protocols
can have similar message formats (so that messages of one
protocol can be confused for the other) with a different
meaning. This is illustrated by the example in §II. There
has been a lot of work on finding sufficient conditions
for horizontal protocol composition, in particular the work
on disjoint encryption, such as [11]. We point out that a
different line of work is also very helpful here, namely on
preventing type-flaw attacks, such as [22]. The idea here
is that we could understand type-flaw attacks as something
similar to the attacks against composition, because also they
are basically a confusion of similar messages with a different
meaning—only here it is within the same protocol rather
than in different protocols. We sketch how to justify a typed
model (and elaborate further on these ideas in the extended
version [16]). We then consider in detail how to extend
existing notions of disjointness so that they are sufficient
for vertical composition.

A. Well-typed Messages

The basic idea of [22] is to require that all parts of a
protocol are tagged with type information so that wherever
the intruder cannot manipulate the value (e.g., inside an
encryption) he cannot manipulate the type-interpretation
either. As a consequence, whenever an attack exists, also
a well-typed attack exists and thus it is sufficient to analyze
protocols in a typed model. Still, we need to extend the result
of [22] to include protocols that do not follow its tagging
approach, but in which all non-atomic message parts are
sufficiently disjoint. Basically, we require only that every
two non-atomic parts of the message formats of a protocol
will be different unless they have the same (intended) type.
This extension is limited to free algebra. We leave the formal
treatment of this idea to the extended version [16] and only
state its theorem at this point:

Theorem 1 (Proof sketch in the extended version [16]). If a
format-type-safe protocol has an attack in the free algebra
with the described intruder deduction rules, then it also has
a well-typed attack, i.e., one where all sent and received
messages have the intended types.

Theorem 1 applies to a large class of protocols, namely
all IF protocols (including composed ones) where the all
variables can be consistently labeled with intended types.
Still, because of its limitation to the free algebra, it does not
apply to protocols based on algebraic properties, for instance
Diffie-Hellman. From here on, we simply use a typed model
as interface independent from its justification:

Precondition 3. We expect that in transition rules of honest
agents, all variables of incoming and outgoing messages are
typed (basic or composed).

In vertically composed protocols, the key terms of the
channel encryption will have composed types. For instance,
if a channel protocol establishes two keys KA = h(NA,NB)
and KB = h(NB,NA), then the keys in transmissions have
type h(nonce, nonce) (while so far in our composition
definition, these variables were simply untyped).

Note that variables of composed type can be replaced by
terms with basic variables, e.g., V : [agent, nonce] can be
replaced by [VA,VN] where VA and VN are new variables
of types agent and nonce, respectively. Thus we have
now a model where honest agents accept only type-correct
messages, even when they actually cannot check all parts.

B. Disjointness

Similar to our requirement that the different message
formats within a single protocol are sufficiently disjoint, we
now also require that for every pair of atomic protocols P
the message formats must be disjoint. Note that this does not
exclude the self-composition, such as App〈TLS〉E〈TLS〉E,
but only prevent that the different atomic protocols (App and
TLS in this example) have interferences with each other.
Here we follow [9] and require disjoint message formats
between the different messages of the protocols, quite sim-
ilar to our previous property of format-type-safe in that we
look at message formats of non-atomic subterms of message
patterns. Recall that MP(P) is specified in Def. 2 above to
hold all the message patterns of protocol P , appropriately
α-renamed. We now look at non-atomic sub-terms, in par-
ticular we will not require that dependent terms like pka (that
we consider as atomic) must be disjoint between protocols.
Additionally, because we later want to also look at vertical
composition and not just at horizontal (parallel and sequen-
tial) composition like [9], we also introduce the notion that a
protocol is disjoint for its encryptions meaning that adding
several layers of symmetric encryption around a message
pattern cannot lead to confusion with another message
pattern. For instance, if [A,N] : [agent, nonce] ∈ MP(P),
then scrypt(k, [A′,N′]) : scrypt(τ, [agent, nonce]) cannot be
allowed in MP(P) as well (for any key term k of type
τ), because that could lead to confusion with encryptions
introduced by running the protocol over one of the secure
channels; however simply an additional tag or just a change
of format, e.g., scrypt(k, [N′,A′]) : scrypt(τ, [nonce, agent])
(for some τ : k that does not conflict with the rest), would
be sufficient for our purposes.

Definition 5. Let P be a protocol and K1,K2, . . . be
variable symbols that do not occur in MP(P). Then the

12

message patterns with encryption of P is defined as

EMP(P) = α(
⋃
n∈N

EMPn(P))

EMP0(P) = MP(P)

EMPn+1(P) = α({scrypt(Kn+1,m) | m ∈ EMPn(P)})

where α(M) indicates that the elements of M shall be α-
renamed (without conflicts with the Ki) so that they have
pairwise disjoint sets of variables.
P is called disjoint from its encryptions iff there is no

unifier between a members of EMP i(P) and EMP j(P) for
i 6= j. Let EST (P) be the non-atomic subterms of EMP(P)
again with α-renaming of variables as above. We require
that all incoming and outgoing messages are non-atomic
(because otherwise we cannot associate in general a unique
protocol type to every message). We say that a set P0 of IF
protocols is pairwise disjoint, if every protocol P ∈ P0 is
disjoint from its encryptions and for every pair P, P ′ ∈ P0

with P 6= P ′, there is no unifier between any t ∈ EST (P)
and t′ ∈ EST (P ′).

Example 8. For the ca example from Fig. 1, p. 2, for
instance, we have (omitting the α renaming):

MP(ca) = {crypt(pkB , [ca,M])}
EMP1(ca) = {scrypt(K1, crypt(pkB , [ca,M]))}
EMP2(ca) = {scrypt(K2, scrypt(K1, crypt(pkB , [ca,M])))}
EST (ca) = EMP(ca) ∪ {[ca,M]}

ca is disjoint from its own encryptions, because there is
no unifier between members of different EMP i(P) and
EMP j(P). The derivation for dh is more complex (again
we avoid the α renaming):

MP(dh) = { crypt(invpkA , [dh,B, exp(g,X)]),

crypt(invpkA , [dh,B,GX]), . . . ,

scrypt(h(exp(GY,X), 0), keyack),

scrypt(h(exp(GX,Y), 0), keyack) }
EMP1(dh) = {scrypt(K1, scrypt(h(. . .), keyack)), . . .}
EST (dh) = EMP(dh)∪

{[dh,B, exp(g,X)], exp(g, Y), [dh,B,GX], . . .}

In addition, dh is disjoint from its own encryptions: here it is
actually the tag keyack and the fact that no other message of
dh has symmetric encryption that prevent unification of mes-
sages of different EMP -levels. Also EST (dh) and EST (ca)
do not have a unifier (even after proper α renaming) due to
tagging and the fact that exp occurs in only one protocol.

Note that we do not exclude concatenation from the
disjointness requirement as many other disjointness notions
do. The reason for this is subtle. Consider a protocol in
which the entire first message is a clear-text transmission,
say [A,B,N]. Of course, the intruder can manipulate this
message, and, consequently, the message can be left out of
the disjointness notions for parallel composition: adding tags

would be pointless since the intruder can change the tags
anyway. In the vertical composition, however, where said
protocol may be run over a channel, this message could
suddenly be encrypted, and then it is important whether this
term is disjoint from the formats of other protocols.

The inclusion of concatenation into the disjointness con-
dition bears some subtleties, as well. For instance, consider
two protocols where one contains the pair [A,N] (as a
subterm) and the other the pair [B,M] (for variables A,
B, N and M). These two protocols are then not disjoint.
However, this is less restrictive than it seems: we consider
concatenation of n-tuples as a family of operators (n ∈ N) so
that already concatenations of different length are considered
as disjoint (e.g., [A,N] is disjoint from [B,C,M]) and tags
can be used—it is indeed a good idea in general if on each
encryption layer there is a unique identifier of the protocol
as part of which this message is meant.

Our disjointness definition is crucial for proving our
compositionality results. Consider the following example:
two protocols transmit each just one message from A to
B, h(N1) and h(N2). These two are trivially not disjoint.
However the variant h([c1, NA]) and h([c2, NB]) are for
two constants c1 6≈ c2.

Precondition 4. From here on, we expect that the set of
atomic protocols P is pairwise disjoint.

This precondition is a key point of our paper: it allows us
to prove a very helpful property, namely that every message
that can be sent or received by an honest agent in any
composition of P-protocols has a unique protocol type as
defined in §V-A. In fact, we named this concept “protocol
types” because of its parallel with “message types”, i.e.,
partitioning the space of messages.

Theorem 2 (Proved in the extended version [16]). For
composition P ∈ C, every message pattern m ∈ ST (P)
has a unique protocol type τ ∈ T . This implies that also all
messages that an honest agent can send or receive as well as
their non-atomic subterms all have a unique protocol type.

The proof idea is that, if there were a message of two
different types, then we could derive a violation of the dis-
jointness condition. To carry over this result also to concrete
messages (in an actual trace), we need Precondition 1 (all
variables are well-typed), because otherwise agent variables
can be replaced by arbitrary values (of any type).

VII. THE MAIN RESULT

We are now able to put all the pieces together and give
the main result of this paper:

Theorem 3. Given a set P of atomic protocols that satisfies
the four denoted preconditions, and all their syntactically
correct compositions C. Then every composed protocol in C
is secure.

13

The full proof is found in [16] and we sketch here only
the key ideas. In fact, we first split the task into smaller
theorems, basically one for each composition type. Part of
the idea is the precise form of these theorems that does a
great deal of the proof work, in particular by organizing a
context where attack reductions can be given more easily.

To deal with this complicated form of the theorems more
easily, we have organized them as a calculus. Each rule in
the calculus has the form “if composition X is secure, then
also composition Y is secure”. The soundness of each rule is
proved individually by one theorem (or by a simpler lemma).
We then show that all compositions of C can be derived with
the calculus to conclude the main result.

The most interesting rule of the calculus is perhaps the
rule for embed composition:

A ||C ||φ
A〈C〉E ||A ||C ||φ

channel(C), app(A), A〈C〉E 6v φ

This rule assumes that we have already proved the security
of A ||C ||φ where A is a concrete application and C a
channel protocol. φ can be any element of C, however φ
must not already contain the type A〈C〉E that we want to
compose now. If all this is true, then, the theorem tells us,
adding A〈C〉E in parallel to what we already have is also
secure.

Before we give a sketch why this reasoning is sound,
let us first consider why this particular form to state the
compositional reasoning result is helpful. First, suppose we
had this theorem without the context A ||C ||φ as part of
the conclusion; then, we would need extra rules that the
composed protocol A〈C〉E can be used in parallel with
A, C and other protocols (which is not implied by the
security of A〈C〉E). Thus, having this context as part of
the conclusion is making this composition rule as general
as possible. Second, on the premise side of the rule, the
same context is also helpful (rather than requiring that A
and C alone are secure): this allows to apply the theorem
successively also to applications A that are themselves the
result of a composition.

The idea of the proof of this composition theorem is
indirect: if there is an attack against A〈C〉E ||A ||C ||φ, then
there is one against A ||C ||φ alone. Again, here the context
is very helpful in conducting the proof, because all the
components of the composition are “available” and we can
have them work similarly as in the composition. An essential
point in the proof is that every message of the given attack
can be uniquely attributed to a particular protocol type,
thanks to Theorem 2. That theorem in turn is based on
the fact that the atomic protocol of P are mutually disjoint
and disjoint to their own encryptions. In particular, for a
message of the form scrypt(K,M), either the entire message
belongs to an atomic protocol or K is a key established by
a unique channel protocol, and M ’s type can recursively
determined again in a unique way. We can thus recognize

all messages that belong to A〈C〉E, either they belong to
the key-exchange of the channel C or they are of the form
scrypt(K,M) where M belongs to A and K was established
with C. We show that the same attack works when replacing
all such scrypt(K,M) messages with M itself—reducing it
to an attack where only protocols A and C (and φ for other
messages) are involved.

To conclude the exposition of our main result, observe that
a great deal of the work lies in the setup and preparation we
have made in the preceding sections, in particular allowing
us to attribute every message to a unique application running
over a uniquely identified stack of channels.

VIII. RELATED WORK

Key exchange, secure channels and composition are both
fundamental problems in formal methods as well as cryp-
tography (KE [19], [20], [23], RSIM [24] and UC [25], UC
KE and channels [26], [27]). And, there have been efforts to
link both worlds with a relation to the protocol composition.

This work uses a symbolic representation of cryptographic
primitives and, thus, focuses on formal methods literature on
security analysis of key exchange and composition. Notably,
Paulson established the security of the TLS key exchange
by inductive analysis [3]. Composition problems have been
researched in the symbolic model [11], [8], [28], [29], [9],
[13], [10], [30], mostly analyzing parallel composition with
limited or unlimited number of sessions.

We highlight the results of Cortier and Delaune [9], who
show sufficient criteria for parallel composition. Their work
relates to the result of Guttman and Thayer [11] that disjoint
encryption can achieve protocol independence. Our work
builds on both their insights: We use disjoint encryption to
achieve secure protocol composition as well as adapt Cortier
and Delaune’s result on parallel composition to our setting.
In addition, we benefit from the typing methods established
by Heather et al. [22], which form a third ingredient to
establish our composition results.

For sequential composition, Datta et. al. [8] have consid-
ered the construction of protocols from smaller sub-protocols
and analyzed parallel and sequential composition of proto-
cols, yet without considering keys. Escobar et al. [30] extend
the Maude-NPA tool by sequential composition primitives,
thus allow for an automated composition analysis by Maude-
NPA’s unification and backwards search method. Ciobâcă
and Cortier [10] show that parallel and sequential composi-
tion of symbolic representations of protocols is secure if they
use primitives with disjoint signatures and if the individual
protocols are secure, even if they share data. Similarly to our
method, Ciobâcă and Cortier obtain a composition theorem
by reduction of attack traces against the composition to
attack traces against the composed protocols. This work is
in fact the closest to ours as they can consider handshake
protocols establishing a key and using this key in another
protocol. Note however that the use of this key (and thus the

14

channel) needs to be part of that application protocol (i.e.,
there is no vertical composition of an abstract application
with a channel). The disjointness assumptions here exclude
vertical self-composition: the composed protocols must be
distinguishable and thus Ciobâcă’s and Cortier’s result can-
not support several layers of the same protocol (like TLS)
without some modification (like disjoint tags).

For vertical composition, we see that Gao et al. [31]
considered the vertical stacking of protocols, yet did not es-
tablish a composition theorem. Mödersheim and Viganò [13]
provide criteria vertical protocol composition as part of
their research on secure pseudonymous channels. Even
though they provide sufficient criteria and proof for general
vertical composition, their theorems do not extend to self-
composition as analyzed in this paper.

Guttman [32] considers a general concept of protocol
transformations and argues that many kinds of protocol
composition can be seen as instances of this transformation
concept. As far as we can see, vertical protocol compo-
sition can indeed be seen as protocol transformation, as
well. Due to the generality of Guttman’s concept, however,
the soundness requirements are (hard-to-check) semantical
conditions. Guttman suggests that one may find easy-to-
check conditions based on disjoint encryption. This would
mean similar limitations as in the case of [10], i.e., self-
composition of exactly the same protocol is excluded, but
some distinction like different tags would be necessary.

Beyond these results, there have been research efforts
to link the formal and the cryptographic world, where one
reconciliatory impulse came from Abadi and Rogaway [33].
Cortier and Delaune [34] research formal methods for prov-
ing observational equivalence and conclude that observa-
tional equivalence implies computational indistinguishability
in face of an active adversary. Cortier and Warinschi [35]
pursue computationally sound automated proofs. Backes,
Pfitzmann and Waidner [36] established a set of composable
symbolic primitives that are computationally sound in the
RSIM framework [37], for which Sprenger et al. [38]
modelled a theorem proving theory in Isabelle/HOL.

IX. CONCLUSION

We showed for any suite of protocols satisfying our
sufficient criteria that every vertical composition of its
protocols is secure. This holds for vertical compositions
of arbitrary depth as well as for self-compositions. The
sufficient criteria that we employ are well-founded on earlier
works in this field: We require disjointness of message
formats as discussed by [11], [9], parallel composition of
atomic protocols as established by [9], and a strong type
model as introduced by [22]. From these foundations, we
derive a composition theorem that holds for arbitrary goals
on auxiliary predicates and positive intruder knowledge.
Our preconditions can be statically checked and are liberal

enough to cover a large class of protocols, such as the TLS
and IPsec.

ACKNOWLEDGMENT

The authors are grateful for the dedicated support and
guidance of Joshua Guttman. The authors thank Veronique
Cortier and him for the insightful comments and discussions.

REFERENCES

[1] G. Lowe, “Breaking and fixing the needham-schroeder public-
key protocol using fdr,” in TACAS, ser. Lecture Notes in
Computer Science, T. Margaria and B. Steffen, Eds., vol.
1055. Springer, 1996, pp. 147–166.

[2] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuéllar, P. H. Drielsma, P.-C. Héam,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and
L. Vigneron, “The avispa tool for the automated validation
of internet security protocols and applications,” in CAV, ser.
Lecture Notes in Computer Science, K. Etessami and S. K.
Rajamani, Eds., vol. 3576. Springer, 2005, pp. 281–285.

[3] L. C. Paulson, “Inductive analysis of the internet protocol
TLS,” ACM Transactions on Information and System Security,
vol. 2, no. 3, pp. 332–351, 1999.

[4] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov,
“Undecidability of bounded security protocols,” in Proc. of
the Workshop on Formal Methods and Security Protocols
(FMSP’99), Jul. 1999.

[5] M. Rusinowitch and M. Turuani, “Protocol insecurity with
a finite number of sessions, composed keys is np-complete,”
Theor. Comput. Sci., vol. 1-3, no. 299, pp. 451–475, 2003.

[6] B. Blanchet, “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules,” in 14th IEEE Computer Security
Foundations Workshop (CSFW-14). Cape Breton, Nova
Scotia, Canada: IEEE Computer Society, Jun. 2001, pp. 82–
96.

[7] S. Escobar, C. Meadows, and J. Meseguer, “Maude-npa:
Cryptographic protocol analysis modulo equational proper-
ties,” in FOSAD, ser. Lecture Notes in Computer Science,
A. Aldini, G. Barthe, and R. Gorrieri, Eds., vol. 5705.
Springer, 2007, pp. 1–50.

[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “Secure
protocol composition,” in FMSE, M. Backes and D. A. Basin,
Eds. ACM, 2003, pp. 11–23.

[9] V. Cortier and S. Delaune, “Safely composing security proto-
cols,” Formal Methods in System Design, vol. 34, no. 1, pp.
1–36, 2009.

[10] S. Ciobâca and V. Cortier, “Protocol composition for arbitrary
primitives,” in CSF. IEEE Computer Society, 2010, pp. 322–
336.

[11] J. D. Guttman and F. J. Thayer, “Protocol independence
through disjoint encryption,” in CSFW, 2000, pp. 24–34.

15

[12] T. Dierks and C. Allen, “RFC 2246: The TLS protocol,”
Jan. 1999, status: Standards Track. [Online]. Available:
ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt

[13] S. Mödersheim and L. Viganò, “Secure pseudonymous chan-
nels,” in ESORICS, ser. Lecture Notes in Computer Science,
M. Backes and P. Ning, Eds., vol. 5789. Springer, 2009, pp.
337–354.

[14] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “Trans-
port layer security (TLS) renegotiation indication extension,”
http://tools.ietf.org/html/rfc5746, Feb. 2010, http://tools.ietf.
org/html/rfc5746.

[15] M. Ray and S. Dispensa, “Renegotiating TLS,”
http://www.phonefactor.com/sslgapdocs/Renegotiating TLS.pdf,
Nov. 2009, http://www.phonefactor.com/sslgapdocs/
Renegotiating TLS.pdf.

[16] T. Groß and S. Mödersheim, “Vertical protocol composition
(extended version),” IBM Research, IBM Research Report
RZ3803, Apr. 2011, http://domino.research.ibm.com/library/
cyberdig.nsf/index.html.

[17] AVISPA, “The Intermediate Format,” Automated Validation
of Internet Security Protocols and Applications (AVISPA),
Deliverable D2.3, 2003, http://www.avispa-project.org/delivs/
2.3/d2-3.pdf.

[18] F. Baader and T. Nipkow, Term Rewriting and All That.
Cambridge University Press, 1998.

[19] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” in 93, D. R. Stinson, Ed., vol. 773, 1994, pp.
232–249.

[20] ——, “Provably secure session key distribution — the three
party case,” in Proceedings of the 27th Annual Symposium on
Theory of Computing (STOC). ACM Press, May 1995, pp.
57–66.

[21] G. Lowe, “A hierarchy of authentication specifications.”
IEEE Computer Society Press, 1997, pp. 31–43.

[22] J. Heather, G. Lowe, and S. Schneider, “How to prevent
type flaw attacks on security protocols,” Journal of Computer
Security, vol. 11, no. 2, pp. 217–244, 2003.

[23] V. Shoup, “On formal models for secure key exchange,” IBM
Research, Research Report RZ 3120 (#93166), Apr. 1999,
version 4, November 1999, available from http://www.shoup.
net/papers/.

[24] B. Pfitzmann and M. Waidner, “A model for asynchronous
reactive systems and its application to secure message trans-
mission,” Oakland, CA, May 2001, pp. 184–200.

[25] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” IACR Cryptology
ePrint Archive, ePrint Report 2000/067, 2000, http://eprint.
iacr.org/.

[26] R. Canetti and H. Krawczyk, “Universally composable no-
tions of key exchange and secure channels,” Report 2002/059,
May 2002.

[27] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and
J. Schwenk, “Universally composable security analysis of
TLS—secure sessions with handshake and record layer pro-
tocols,” IACR Cryptology ePrint Archive, ePrint Report
2008/251, 2008, http://eprint.iacr.org/.

[28] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol
composition logic (pcl),” Electr. Notes Theor. Comput. Sci.,
vol. 172, pp. 311–358, 2007.

[29] J. D. Guttman, “Cryptographic protocol composition via the
authentication tests,” in FOSSACS, ser. Lecture Notes in
Computer Science, L. de Alfaro, Ed., vol. 5504. Springer,
2009, pp. 303–317.

[30] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago, “Se-
quential protocol composition in maude-npa,” in ESORICS,
ser. Lecture Notes in Computer Science, D. Gritzalis, B. Pre-
neel, and M. Theoharidou, Eds., vol. 6345. Springer, 2010,
pp. 303–318.

[31] H. Gao, F. Nielson, and H. R. Nielson, “Protocol stacks
for services,” in Proc. of the Workshop on Foundations of
Computer Security (FCS), Jul. 2009.

[32] J. D. Guttman, “Security goals and protocol transformations,”
in Theory of Security and Applications (TOSCA’11), 2011, to
appear.

[33] M. Abadi and P. Rogaway, “Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion),” J. Cryptology, vol. 20, no. 3, p. 395, 2007.

[34] V. Cortier and S. Delaune, “A method for proving observa-
tional equivalence,” in CSF. IEEE Computer Society, 2009,
pp. 266–276.

[35] V. Cortier and B. Warinschi, “Computationally sound, au-
tomated proofs for security protocols,” in ESOP, ser. Lec-
ture Notes in Computer Science, S. Sagiv, Ed., vol. 3444.
Springer, 2005, pp. 157–171.

[36] M. Backes, B. Pfitzmann, and M. Waidner, “A universally
composable cryptographic library,” IACR, Cryptology ePrint
Archive Report 2003/015, Jan. 2003. [Online]. Available:
http://eprint.iacr.org/2003/015

[37] ——, “The reactive simulatability (RSIM) framework for
asynchronous systems,” IACR, Cryptology ePrint Archive
Report 2004/082, 2004, http://eprint.iacr.org/. [Online].
Available: http://eprint.iacr.org/2004/082

[38] C. Sprenger, M. Backes, D. A. Basin, B. Pfitzmann, and
M. Waidner, “Cryptographically sound theorem proving,” in
CSFW. IEEE Computer Society, 2006, pp. 153–166.

16

