Deciding Security for a Fragment of ASLan
(Extended Version)*

Sebastian Modersheim

DTU Informatics, Denmark, samo@imm.dtu.dk

IMM-Technical Report-2012-06
Second edition, 21st July 2012

Abstract. ASLan is the input language of the verification tools of the
AVANTSSAR platform, and an extension of the AVISPA Intermediate
Format IF. One of ASLan’s core features over IF is to integrate a tran-
sition system with Horn clauses that are evaluated at every state. This
allows for modeling many common situations in security such as the
interaction between the workflow of a system with its access control
policies.

While even the transition relation is undecidable for ASLan in general,
we show the security problem is decidable for a large and useful fragment
that we call TASLan, as long as we bound the number of steps of honest
participants. The restriction of TASLan is that all messages and pred-
icates must be in a certain sense unambiguous in their interpretation,
excluding “type-confusions” similar to some tagging results for security
protocols.

1 Introduction

It is well-understood how to automatically verify small security protocols that
consist of the exchange of a few messages. Less well understood is the automated
verification of complex distributed systems that we see today in practice, where
the logic of a component comprises more than a few message exchanges. An
example is a web server that maintains a database (e.g. of keys, of electronic
orders, or of electronic applications). This database may be accessed or modified
by different transactions the server can perform. These transactions themselves
may be embedded into a larger workflow of a company that runs the server, e.g.,
how employees of the company process requests posted by customers via the
server. Finally, there may be access control policies specifying who is allowed to
perform which actions or has access to certain information.

Modeling such complex systems requires an expressive specification language.
We consider in this paper the AVANTSSAR [2] Specification Language ASLan [4]

* The author thanks Luca Vigano, Alberto Calvi, Marco Rocchetto, and the anony-
mous reviewers (of the conference version) for many helpful comments. The research
presented in this paper has been partially supported by MT-LAB, a VKR Centre of
Excellence for the Modelling of Information Technology.

that was designed in exactly this spirit—to model complex systems like the ones
just sketched. At the core, an ASLan specification describes an infinite-state
transition system where every state is a set of (ground, first-order) predicates
that express, for instance, the local state of honest agents (or uncorrupted com-
ponents), what messages are known to the intruder, the state of databases shared
by agents, or facts related to the security goals such as which messages are sup-
posed to be secret. The transition relation is expressed by set rewriting rules
(similar to multi-set rewriting [9], only the repetition of predicates does not
make a difference). Additionally, ASLan allows for negative conditions in rules.

A powerful feature of ASLan on top of this transition system is the specifi-
cation of Horn clauses over state predicates. These Horn clauses are evaluated
locally in every state and give rise to a set of implicit consequences. These con-
sequences are used in matching the next transition rule. For instance, we may
express a Horn theory that models access control rules such as “If file F' belongs
to group G and A is a member of G then A has access to F.” or “If A is a deputy
of B, then A has all access rights that B has.” Membership in a group, or be-
ing a deputy are predicates that may change upon state transitions. The Horn
clauses thus allow us to formulate immediate consequences of a state, and after
each transition, they are automatically updated. Vice-versa, the Horn clauses
may themselves be used as conditions in a transition rule, e.g. A may perform a
certain action only in a state from which the necessary access rights can be de-
rived by the Horn clauses. More generally, the Horn theories allow for modeling
all kinds of internal computations, expressed as such immediate consequences.

Even though we have chosen here the particular language ASLan, we believe
that the concepts that we deal with are of general relevance for the modeling
of complex systems, in particular the immediate evaluation of consequences in
every state of a state transition system. (As an example, recall that the common
Dolev-Yao model of an intruder is represented as the least closure of the messages
that the intruder has seen under a set of deduction rules.)

The expressivity of ASLan however comes at a price for automated verifica-
tion: since first-order Horn clauses allow for logic programming, the transition
relation is in general undecidable. In fact it is common that specification lan-
guages give rise to undecidable problems, and the challenge is to find fragments
for which feasible decision procedures are possible.

Contributions We first review the syntax and semantics of ASLan and make some
conceptual simplifications. We exclude at this point some features of ASLan that
are in our opinion less essential, but difficult to handle; we briefly discuss how
to (partially) support them in section 5.

Next, we define the fragment TASLan forbidding certain kinds of ambiguities
in the formats of messages and predicates. TASLan requires, that all messages are
annotated with an intended type such that all messages, and their non-variable
subterms, that occur in the specification have no unifier unless they have the
same intended type. We also extend this restrictions to other predicates. We then
show that a TASLan specification has an attack iff it has a well-typed attack,
so restriction to a typed model is no restriction for TASLan.

This result is in the spirit of several tagging results [11,7, 1], and generalizes
them: we do not require a particular way to avoid ambiguities (such as tagging)
and do not limit ourselves to particular analysis technique (such as ProVerif);
and, most importantly, our result works for full TASLan, including non-atomic
keys, negative conditions (such as those needed for authentication), and the
additional Horn theories.

This result allows for a number of simplifications of the model, in particular
bounding the size of terms without restriction. We develop a decision procedure
for bounded-length TASLan: given a bound [, can we reach an attack state
in [steps or less? This procedure is generalizing the popular constraint-based
approach that we refer to as the lazy intruder [14, 15, 6]. In fact, this procedure
is part of our argument for the typing result on TASLan. For the theoretical
closure, we show that the problem whether an attack is reachable in at most [
steps for a TASLan specification is NEXPTIME complete.

Organization In section 2 we review the ASLan syntax and semantics. In sec-
tion 3 we introduce a symbolic transition system that is the basis for the later
decision procedure. In section 4 we introduce the fragment TASLan and give the
decision procedure for bounded length traces. From this procedure we also derive
our typing result and conclude with the result on the complexity. In section 5
we briefly discuss aspects of ASLan that we have excluded. We conclude with a
discussion of related work in section 6.

2 ASLan

Syntax Table 1 shows the syntax of ASLan (where we have left out some
features that are in our opinion less crucial, and support for which we discuss
in section 5). We use the following conventions: we introduce syntactic categories
by C' ::=, where the symbol C represents our notation of elements of that cat-
egory. Each following line represents one alternative for that category. Further,
we write v for a vector vy, ...,v, (where the lengths n of the vectors may be
0, and different vectors may have different lengths). Similarly, we write 6 for a
conjunction of the form ¢; A ... A ¢y,.

Example 1. To illustrate the concepts of ASLan, we give a toy example in Ta-
ble 2. Note that in this example we use a notational convention of ASLan that we
do not enforce in the treatment of this paper: constant, function and predicate
symbols are identifiers that start with a lower-case letter, while variable symbols
are all identifiers that start with an upper-case letter. In this example we specify
as Horn clauses the access control example from the introduction, together with
an initial state and two transition rules. The first transition rule is applicable
if A is a member of group G1 and A is not the deputy of anybody. Upon the
transition, we generate a fresh value of type gid—in the rule referred to by the
variable G2. Then A will be a member of G2 (actually the only member so far).
Also the left-hand side predicate mem(A, G1) will no longer hold. The second

D .= Declarations F = Facts

c:p Constant Symbol P Predicate
X:T Variable Symbol t1 =t2 Equality
f:T Function Symbol JX : F Existential quantification
p: pred 7 Predicate Symbol L= Literals
T = Types F Fact
B Basic type -F Negated Fact
flr) Composed type S = States
untyped Untyped p Conjunction of predicates
s, t = Terms R ::= Transition Rules
c Constant L X]= S
X Variable H ::= Horn Clauses
F(t) Composed Terms VX :S > P
P o= Predicates P o= ASLan Specification
p(t) (D,S,R,H)

Table 1. Syntax of ASLan

rule is an example how attack states can be defined. Here, we derive an attack
whenever in a state an agent A has access to files F'1 and F2 (note F1 = F2
is allowed) that belong to groups G1 and G2, respectively, where G1 # G2 is
required; thus when A has a the same time access to files of different groups,
the specification has an attack. Note that the specification is infinite state as the
first transition rule can be applied any number of times. a

Type Declarations The declarations section of an ASLan specification is by
default only an annotation of intentions of the modeler; we do not assume that
an intruder always sends well-typed messages, and our semantics will thus be
ignoring the type declarations by default. The declarations give a means to
statically type-check a specification (i.e., checking in the behavior of honest
agents the typing is consistent) and later are relevant for our typing result.

A particularity of our type system is that for functions we do not allow the
specification of a return type—the resulting type is always a composed type as
follows. If f is declared as a function symbol of type 71, ...,/ and t1 : 79, ..., &y :
T, are terms of the appropriate types, then f(¢1,...,t,) : f(71,...,7s). Thus the
type of a term reflects its composition, and only atomic terms can be of an basic
type. The only way to escape this tight typing system is using the “type” untyped.
Let I' be a mapping from all declared symbols to a type. We require that every
symbol that occurs in the specification has a unique type-definition. We define
a general type judgment relation ¢ : 7 (read: t is of type 7) as follows:

F(f):(7'1,...,7'n)

th:m1 ... tn:Th
s L) =T) f(r)

. t1:711 ... thiT
ST 1 1 n n
I'(p
s : untyped p(t1, . oytn) i p(T1y .oy Th) (p)

=(T1,...,7n)

Declarations:

mem : pred (agent, gid) own : pred (gid, fid)
deputy : pred (agent,agent) s : pred (agent, fid)
attack : pred () A, B,a,b: agent
G,G1,G2, 91,92 : gid F,F1,F2, 1, f2: fid

Initial State:

mem(a, g1) A mem(b, g2) A own(gl, f1) A own(g2, f2)
Transition Rules:

mem(A, G1) A =3B : deputy(A, B) 5§G2]= mem(A, G2)

zs(A, F1) A zs(A, F2) A own(A, G1) A own(A,G2) A G1 # G2 = attack()
Horn clauses:

mem(A, G) A own(G, F) — xzs(A, F)

deputy(A, B) Nzs(B,F) — zs(A, F)

Table 2. Toy example of an ASLan specification

We require that all terms and predicates in the specification have a type ac-
cording to this specifications, and for equation t; = t5, t; and t5 have a type in
common.

2.1 Further Context Sensitive Properties

We give further conditions about ASLan specifications that are not definable
by a context-free grammar. Let fu(t) denote the free variables of ¢ (for terms,

predicates, facts, states). Let Pos(L) denote the positive facts in a conjunction
L of literals.

— For a rule L =[X]= S we require that fo(L)w X D fu(S). Moreover,
fo(Pos(L)) = fo(L).

— For a Horn clause H = VX : S — P, we require fo(H) = () and fo(P) C
fu(S).

— The initial state is ground. Together with the previous two conditions, all
reachable states are ground (except in the symbolic approach we define later).

— There are two distinguished predicate symbols ik (for intruder knowledge)
and attack with I'(ik) = (untyped) and I'(attack) = (). Both symbols are
persistent: they never get deleted on transitions.

— We call a non-persistent predicate explicit if it occurs on the right-hand
side of a transition rule and implicit if it occurs on the right-hand side of
a Horn clause. All predicate symbols except ik and attack must be either

explicit or implicit. Denote with PosE (L) the positive explicit predicates of
a rule and with Posl (f/) both the positive implicit and the positive persistent
predicates.
— Horn clauses in which ik occurs can only have one of the following two forms:
e Generate: VX1,..., X, t ik(X1) AL ATK(X,) = ik(f(X1,..., Xn))
e Analyze: VX :ik(t) Aik(t1) A ... Aik(t,) — ik(s) where s and the ¢; are

proper subterms of .

— Implicit and persistent predicates (see Section 2.1) cannot occur negatively
in the specification.

2.2 Semantics

Model Relation An interpretation Z maps from all variables to ground terms.
¢, range over all logical constructions above. We define a relation Z, S E ¢
that says whether a pair of an interpretation Z and a state S is a model of the
formula ¢:

I,SEP iffZ(P)eZ(S)

I,SEt =t it Z(ty) = Z(ta)

I,SE oAy iffT,SEéand 7,8 =

LSk —6 T8¢

7,5 E3X.¢ iff exists ground ¢t : Z[X — ¢],S = ¢

We also say ¢ is satisfiable iff it has a model. Other constructs are defined as
syntactic sugar as standard, e.g. VX : ¢ as 31X : —¢. For a statement Z, S | ¢
we may omit Z if ¢ is closed (i.e. fu(¢) = 0), and we may omit S if ¢ does not
contain predicates.

As standard, define ¢ = ¢ if all models of ¢ are also models of v; and ¢ H ¢

if both ¢ =4 and ¢ | ¢.

Least Herbrand Models For the semantics of transition rules, we need to define
the least closure of a state under the Horn clauses. Let H be the conjunction
of the Horn clauses of a given ASLan specification. This induces the following
closure operation on states: for any ground state S, HC(S) is the least set
S’ D S such that: P € " if HAS" = P. Note that here and in the following,
we treat a conjunction S = P; A...A P, of predicates also as a set of predicates
S:{Pl,...7pn}.

With our definition of the |= relation and the least Horn closure we have
chosen one interpretation of first-order terms that are often referred to as free
models or least Herbrand models, which are the semantical basis for logic pro-
gramming languages like Prolog. In particular, all terms are interpreted in the
Herbrand universe (which is here the free algebra) and, in a given state S, all
predicate symbols are interpreted by the least relations that are consistent with
the Horn clauses and S. This relation is uniquely defined for Horn clauses.

Transition Relation Define S = S’ if there is a rule L =[X]= Sk and in-
terpretation Z such that Z, HC(S) | L and Z(X) are fresh constants and
S = S\ Z(PosE(L)) UZ(Sg).

Several notes are in order. The implicit consequences HC(S) \ S of a state S
are never “explicified”, i.e. they are not carried over to S’. Recall that PosE(+)
does not include the persistent predicates, so all persistent predicates of S are still
contained in S’. Further, this definition does not care about type specifications.
As a consequence of the ASLan conditions, all reachable states {S | Sy =* S}

(for initial state Sy of the specification) are ground.

Ezample 2. In the specification of Table 2, the Horn closure of the initial state
contains zs(a, f1) A zs(b, f2). If we take the first transition rule form the initial
state for A = a, this removes the predicate mem(a, f1) and thus the Horn closure
of that state no longer contains zs(a, f1). So in each state, the Horn closure is
computed anew; all consequences that are no longer derivable simply vanish. 0O

A state is called an attack state if S |= attack. A specification is called secure
if it has no reachable attack state.

Security in ASLan (and even just the transition relation S = S’) is unde-
cidable, since the Horn clauses (using untyped arguments) capture logical pro-
gramming. It is still semi-decidable, because we do not allow negated implicit
predicates in transition rules.

Definition 1 (Typed Model). We say T is a well-typed interpretation if
Z(X) : I'(X) for all variables X. We define a typed model of an ASLan spec-
ification as a variant of the above semantics where all notions are restricted to
well-typed interpretations.

In other words, our default semantics ignores all type information (because an
intruder in reality is always able to send ill-typed terms) but we can choose
to restrict the interpretation to well-typed terms. We show below that for all
TASLan specifications it holds that, if an attack exists, then also an attack in
the typed model exists. Thus in TASLan, the restriction to a typed model is
sound.

3 A Symbolic Representation

We now introduce a symbolic representation of the infinite transition system that
will pave the way for an effective decision procedure for the TASLan fragment
when bounding the length of traces.

Symbolic States A symbolic state is generalization of a normal state, which may
contain variables and constraints. We define its syntax as follows:

O = Symbolic state
P Predicate
SHP Deduction constraint
-3X :s1 =t A...Ns, =t, Negated substitution
X =t Substitution
ONY Conjunction

We conservatively extend the model relation w.r.t. the Horn theory H of the
specification (note this case does not depend on a state .S):

7,8 =Sy + Piff Z(So) A H = I(P)

Thus, the constraint So = P is true in all those interpretation in which the
predicate P can be derived from the predicates in Sy by the Horn theory H.

This is a generalization of the lazy intruder technique [14,15,6] where these
constraints are limited to messages in the intruder knowledge.

Thus, by the relation Z, S | ¢, symbolic states have a semantics as repre-
senting a set of ground states (and related interpretations). Usually, this set will
be infinite, but is may also be finite or even empty. We say that a symbolic state
is satisfiable if it has a model. For ASLan this satisfiability is not decidable in
general (because the Horn clauses allow for logic programming).

Symbolic Transition Relation To define a transition relation, let us first make
two simplifications to transition rules. Without changing the semantics of a rule,
we can remove all existential quantifiers in positive facts of a transition rule, if
we just ensure by renaming that it does not occur freely in the rule. Moreover
we can get rid of positive equations of the form s = ¢ as follows: compute the
most general unifier o of s and ¢ and apply o to the entire rule as expected.

We also use the following notations. For a rule R let a(R) denote a renaming
of all variable symbols in R with fresh variable symbols (that do not occur
previously). This is necessary in the symbolic model to keep variables of different
rule applications apart. Moreover for a substitution o = [X; — t1,..., X, = t5)
where the X; are disjoint from the variables in ¢;, let [o] be the logical formula
Xi=ti A...NX,, =t, describing o.

We define the symbolic transition relation (with a long arrow as compared
to the ground transition relation) as follows: ¢ = 1) iff there is a transition rule
R with a(R) = L =[X]= S, and a substitution ¢ such that all the following
conditions hold:

— 0 is a most general substitution such that o(PosE (L)) C o(PosE(¢)). (Note
that in contrast to term unification, for subset unification we get finitely
many most general unifiers that are pairwise incomparable.)

— Extend o such that the variables of X (that are freshly created in the tran-
sition) are replaced by fresh constants.

— For every implicit predicate P € PosI(L) let xp = Pos(o(¢)) - o(P); denote
with y their conjunction.

— Let @ be the least conjunction of negated substitutions such that

o for every negative fact ~3X : P of (L) and every positive fact P’ of
o(¢), if 7 is the most general unifier of P and P’, then (-3X.[7]) € D.
e every negative equation of o(¢) is also contained in &.
— Y =0(¢p)\ o(PosE(L)) Na(S) AP A XA [o].

Ezxample 3. Extending our toy example from Table 2, we model that our system
can process signed commands from an administrator (who would be modeled
using similar rules). In this simplistic example we omit replay and eavesdropping
protections:

admin(A, K) A ik(sign(K, [add, A, B, G];)) N A # B A—-mem(4, G)
= mem(B, G) (1)

Suppose here admin(A, K) expresses that A is an administrator who can issue
commands with private signature key K. The command in this example is to add
an agent B to group G and has the format [add, A, B, G4 where [-]4 represents a
4-tuple and add is a tag/command name. We discuss this way of modeling plain-
text structures in Section 4.1. The rule excludes both that A can add her/himself
to a group and that A can add somebody to a group he/she belongs to.

Consider now that the intruder is one of the system administrators; then
he can form any kind of commands himself and send them to the service—this
choice of commands is infinite. Rules with k() on the left-hand side often give
rise to an infinite ground state space, and even with typing restrictions to a very
large space. In contrast, the symbolic transition system has only one successor
state per rule application. Consider for instance the state:

¢ =admin(i, ki) A mem(a, g1) A mem(i,adm)A
ik(ki) A ik(a) A ik(b) Aik(i) Aik(gl) Aik(g2) Aik(adm)

We can apply the symbolic transition relation for rule (1) under the unifier
o =[A i, K — ki] to match the positive explicit fact admin(A, K) (in general
the rule variables have to be renamed in order to avoid collisions with variables
in the given state, but here we started with a ground state). From the ik(-) fact of
the rule, we obtain the constraint ¢ & ik(sign(ki, [add, a, B, G]4)). Note that the
rule variables B and G remain uninstantiated. From the negative conditions of
the rule we obtain the constraints a # BAG # adm. The symbolic successor state
consists of o(¢) together with the noted constraints and the (uninstantiated)
right-hand side fact mem(B,G). This single symbolic state comprises all the
infinitely many choices of the intruder (any messages for B and G that satisfy
the constraints). This includes choices where B is not an agent name and G
is not a group name, but as we later show, such ill-typed solutions are never
interesting for the intruder when the specification satisfies the type-unambiguity
rules of TASLan. ad

The following lemma shows that the symbolic transition system is a correct
representation of the ground transition system:

Lemma 1. Let [¢] ={S|3Z:Z,S |= ¢}. Then for all symbolic states ¢:
{1 p=yvAnS eY]}={5"|35:Se[¢p]nS=5"}.

As a consequence, a satisfiable symbolic state that contains the predicate attack
1s reachable using = from initial state Sy in 1 steps iff a ground attack state is
reachable using = from Sy in [steps.

Proof. We consider a symbolic state ¢ and a transition rule R = L =[X]=
Sk and show that the symbolic transition relation mirrors what the ground
transition relation does for the states [¢].

— First let us consider the positive explicit predicates of L. By definition, they
cannot be produced by the Horn clauses but only by transition rules. Thus,

for R to be applicable, it must be possible to match them with the positive
predicates PosE(S) of a ground state S € [¢]. On the symbolic level this cor-
responds to computing the most general subset unifiers o between PosE(¢)
and L. From here on, all further steps are under one such o, restricting the
interpretations of ¢ to those that are instances of o (w.r.t. fv(¢)).

Second let us consider the other positive predicates S; = PosI(L)—the im-
plicit predicates. In the ground case S € [¢] the transition relation requires
that the Z(Sy) are contained in HC(S). On the symbolic level that means
that we require Pos(o(¢)) b o(P) for any predicate of S;. So here we post-
pone the computation of the instances that satisfy the conditions by putting
constraints.

Third we have the negative predicates. Again by the definition of ASLan, the
negative predicates must be explicit predicates, i.e., they do not depend on
the Horn closure. In the ground case S € [¢] we thus have to check that no
negative predicate matches with a predicate in S. Correspondingly, on the
symbolic level we must exclude all interpretations Z under which a negative
predicate —3X : o(P) is interpreted the same as a positive predicate o(P’)
of o(¢) (for suitable X). Thus we compute the most general unifier 7 of o (P)
and o(P') and exclude all instances of 7 in ¢ (existentially quantifying the
variables of X).

Fourth, for the negative equations: we just state them in the v, so we exclude
all interpretations of o(¢) that do not satisfy these equations.

Under all interpretations that survived the restrictions, the transition is pos-
sible, removing the predicates o(PosE(L)) and introducing ¢(S); in both
symbolic and ground case, we have X of course replaced with fresh con-
stants. O

We now distinguish several kinds of constraints in a symbolic state and we

tackle each of them in isolation and before we look at their interaction:

Intruder deduction constraints S + P where P and all predicates in .S are of
the form ik(t) for some term t.

Other deduction constraints S - P where no predicate is of the form ik(¢).
Negated substitutions =3X : s; =t1 A ... A Sy =ty

Substitutions X = ¢t. Our constructions will ensure that the variable X does
not occur elsewhere, and this kind of (always satisfiable constraint) is just to
remember partial solutions, i.e. all models of the containing symbolic state
must satisfy Z(X) = Z(t).

The satisfiability of negative equalities is straightforward to check: for L =

-3X : 81 = t1A. .. AS, = t, check the unification problem 7((s1,t1),. .., (Sn,tn))

for

a substitution 7 that replaces all free variables L (i.e. those that are not

quantified in X) with fresh constants (of the appropriate type). There is a unifier
iff L is unsatisfiable.

We show below that satisfiability of intruder deduction constraints is also

decidable, slightly extending known results. However, satisfiability of other con-
straints is not decidable for ASLan in general, since we can use Horn clauses for
logic programming.

4 Type Ambiguity-Free Specifications

We now introduce a fragment of ASLan, called TASLan: basically the format
of messages (and predicates) must be different whenever their intended type is
different. We show that security is decidable for TASLan if the length of traces
is bounded; more precisely, this problem is NEXPTIME complete. Note that
the restriction in TASLan is not a typed model directly, but rather a general-
ization of the tagging principle; however we do not prescribe a particular way of
disambiguating messages. We show—as a side result of our decision procedure
for bounded-length TASLan—that a typed model is sound (even without any
bounds on the length of traces).

We proceed as follows. We first introduce the fragment TASLan, and then
show that for symbolic states in TASLan, we can decide the satisfiability of
all constraints. This gives an effective procedure for bounded-length traces. Fi-
nally we give the typing result (that the typed model is “relatively sound” for
TASLan), and show how this can be used for different kinds of automatic veri-
fication methods other than our symbolic method.

Definition 2. TASLan is the fragment of ASLan specifications with the follow-
ing additional requirements/modifications:

— Fvery predicate except ik has a type in which untyped does not occur.

— For every predicate ik(t) in the transition rules, t is non-atomic and has a
type in which untyped does not occur.

— Let SMP be the non-atomic subterms of all terms t that occur in a predicate
ik(t) in the transition rules, a-renamed so that two distinct elements of SMP
have no variables in common. Whenever there is a unifier for two ti,ty €
SMP, then t1 and ty must have the same type.

We also assume that the intruder can always generate fresh elements of any
type in any state, so that for instance the constraint ik(X) Aik(Y)A X #Y is
always satisfiable. While it is natural to “grant” this to the intruder, it is tricky
to formulate this, because we actually need transition rules to freshly generate
new intruder constants. We silently assume such rules, and note that our lazy
treatment of constraints below gives this property for free: a constraint like the
above is simply considered as a solved form (without making actual transitions
for creating two concrete values for X and Y).

4.1 How Restrictive is TASLan?

As indicated in the add command in Example 3 (which of course falls into
the TASLan fragment), we model concatenation by the family [-],, of n-tuple
operators (for n > 1). This model abstracts from several implementation details,
such as field lengths or special tags that mark the beginning and end of fields—
we simply assume that the implementation has a unique way to decompose
every acceptable message into its components. This is a reasonable requirement
to the implementation that excludes many low-level attacks. Tags like add in

the example then are an easy way to disambiguate messages. (Alternatively, one
can instead introduce new functions, e.g. add(A, B, G) in example, and give the
intruder rules for composing/decomposing them.)

Basically, we thus see every kind of plaintext message like a paper form that
has a well-defined set of fields. Many ASLan specifications are already written
in this style—independent of our work. With this “form approach”, almost all
specifications meet the requirements of TASLan. This is because we exclude with
a single tag any confusions between different forms that carry similar information
but with different meaning.

Many ASLan specifications, and even more protocols, do not use this regime
and thus do not immediately fall into the TASLan fragment. To use the most
cited example, the encrypted content of the first two messages of NSPK—the
pairs NA, A and NA, NB—already violate our requirements because NA and
NB are random numbers while A is an agent name. (In fact, this ambiguity
gives rise to a type-flaw attack [13].) Our approach would be to identify the
ambiguities and resolve them; the messages may then be [nspkl, NA, A]s and
[nspk2, NA, NB]s for instance, and this variant falls into the TASLan fragment.

We propose that in this way every protocol can be transformed into a reason-
able TASLan model, but in doing so one may exclude some potential low-level
type-flaw or parsing attacks. However the transformation process gives clear
indications where problems could arise and what we require from the imple-
mentation. Thus one could say that TASLan requires, and exploits, what good
engineering practice demands in the first place.

4.2 Symbolic Horn Closure

Let H be the conjunction of Horn clauses without intruder deduction (which we
handle separately). We want to consider the Horn closure under H for symbolic
states. In general, this closure is infinite in ASLan (due to instantiation of vari-
ables), but we will show it is finite in TASLan. For that, we define the following
evaluation relation over symbolic states:

Definition 3. Let H be the conjunction of Horn clauses without intruder de-
duction. ¢ < 1 V Vs if there is a Horn clause Hgr € H such that

— a(Hg) = VX : S — P for a renaming o of variables in Hp,

— S unifies with a subset of Pos(¢) under the most general unifier o,
— 1 =0(¢p A P) and o = —[o],

— o(P) ¢ ¢ (so the predicate is indeed newly derived)

The negative equation constraints in 1, are satisfiable.

We extend — to a relation on disjunctions of symbolic states as expected. We
say @1V ...V ¢, is a normal form (for Horn theory H) if it has no successor
modulo —.

The < can be understood as follows: at every reduction step we check
whether a new predicate (that is not yet present in ¢) is derivable in one step

under a substitution o. Note that we are not forced to take the substitution o,
because this only represents a subset of the ground states represented by ¢ in
which the new predicate o(S) is derivable. All the other states are represented
by —[o] (and in those, o(S) is in general not derivable). Thus each < step makes
a case split into states that satisfy ¢ and those that do not. In order to have a
notion of normal form without enforcing any substitution o, we have the con-
dition that requires that the negative equalities in ¢; are satisfiable: if we have
entered a case with —[o], then we cannot actually apply o to that symbolic state
anymore.

Ezxample 4. Consider the Horn clauses from Table 2 and the following symbolic
state (which can occur in a specification with more transition rules):

¢ = mem(a, g1) N own(gl,f1) AN mem(A2, G2) A own(g2, f2) A deputy(a, A3)

Note that here for instance G2 is a variable, and g2 a constant. One possible
derivation with < is as follows:

o= (¢ Nas(a,f1)) V(o A false)
[
p1= (91[G2 — gl ANas(A2,f1)) V (¢1 A G2 # gl)

b2 s
Pz (3[G2 — g2] Nas(A2,f2)) V (g3 N G2 # g2)

(o @5
(254‘—> (¢4 [AQ — Ag] A zs(a,f?)) V (¢4 ANA2 7é Ag)

b6

We thus have ¢ —* ¢ V ¢5 V ¢g which is a normal form—for instance if we try
in ¢2 to apply the second Horn clause (under A2 = a or under A2 = A3) we
get only the already present fact zs(a, f1). ad

Lemma 2. < is convergent modulo H for TASLan, while for ASLan in general
it is not terminating (but confluent).

Proof. For ¢ — 1 follows ¢ 1 (as we make a case split into interpretations
that support a substitution o and those interpretations that do not). From this
follows immediately confluence modulo H .

For ASLan specifications, < does not terminate in general: e.g. consider the
Horn clause VX : p(X) — p(f(X)) for untyped X, f, and p.

For TASLan specifications, thanks to the typing, we get termination as fol-
lows. In all predicates of the symbolic state ¢ (except ik which we do not consider
in <) we can annotate the variables with their intended type (and that cannot
contain untyped). No unification of the predicates of a Horn clause with pos-
itive predicates of ¢ can destroy well-typedness here, so all derived clauses in

— are still well-typed. The unification can introduce new variables, because we
unify predicates of the symbolic state with the premises of the clause. Since we
a-rename all variables in the clause with fresh variables before this unification
step, we ensure that clauses and states always have disjoint sets of variables.
Consider any variable X : 7 of a symbolic state; in a unification we can distin-
guish three cases:

— X is replaced with another variable Y : 7 of the state.

— X isreplaced with another variable Y : 7 of the a-renamed Horn clause—this
is logically equivalent to conversely replacing Y by X.

— X is unified with a more concrete term.

If we handle the second case by renaming Y to X instead (note that we are
computing Horn closure modulo H), the only case that can actually introduce
new variables into a symbolic state is thus the third case. These new variables
can only be of the appropriate subtype. We can therefore derive a bound on the
set of all variables, constants, and composed terms for any type that occurs in
a conclusion of a Horn clause. Thus we have an upper bound for the derivable
symbolic predicates, bounding also the possible derivations with <. a

Combining the previous results, we get:

Lemma 3. Satisfiability of symbolic states ¢ of TASLan without considering
intruder deduction constraints is decidable.

Proof. Pick a constraint of the form S+ P (except intruder deduction) from ¢.
Compute the symbolic closure (using <) of S under the Horn theory HU{P —
sat} for a fresh symbol sat (where H are the Horn clauses of the specification,
without intruder deduction). This yields a disjunction ¥ V...V ,. It is immedi-
ate that ; contains the predicate sat() if the deduction constraints are satisfied
in all instances represented by ;. Moreover, in those 1); that do not contain
sat(), no instantiation of v; satisfies the deduction constraints.

Let o; be the substitutions performed to derive v;. Let finally ¢’ be ¢ without
the constraint S+ P we had picked. We have:

oH \/ o)Al

i|sat€;

i.e. we can eliminate any S - P constraint by applying the those substitutions
o; to ¢’ under which P is actually derivable from P.

With this procedure we can step by step eliminate all S + P constraints
except intruder deduction. It remains to check the inequalities for satisfiability
(which we can do also at any intermediate step). O

The proof in fact gives us a procedure to obtain from ¢ an equivalent dis-
junction 1 V ...V 1, of symbolic states where all S - P constraints (except
intruder deduction) are eliminated and the remaining inequalities constraints
are all satisfiable.

4.3 Lazy Intruder Constraint Reduction

We now turn to checking the satisfiability of intruder constraints of the form
St P where all predicates of S and P are of the form ik(¢). An important
property for the lazy intruder deduction is that they are well-formed:

Definition 4. A conjunction of intruder deduction constraints is called well-
formed if we can order them as S1 - Py A... NS, F P, such that

— Siy1 = S, for 0 <i < n, i.e. the intruder knowledge grows monotonically.
— fu(S;) C U0<j<ifv(Pj), i.e. all variables in the constraints first occur from
a message the intruder generated.

We call an intruder constraint S + ik(t) simple if t is a variable. A simple
constraint is always satisfiable (because the intruder can generate fresh terms of
any type as discussed before).

In a symbolic state that is reachable from a ground initial state, we order the
constraints in the order they have been created. The intruder knowledge grows
monotonically because ik(-) is persistent. The condition on variable occurrence
however does not hold for reachable symbolic states in general: variables may
as well be “introduced” by other (non-intruder) constraints of the form S - P.
However, after performing the symbolic Horn closure, these constraints are all
gone, and the respective variables can be substituted by terms that can only
contain variables that occur elsewhere in the state—i.e. introduced by intruder
constraints.

Theorem 1 (Adaption of [15]). Satisfiability of well-formed intruder deduc-
tion constraints is NP-complete. Moreover, there is a procedure that transforms
a well-formed ¢ into a finite disjunction of well-formed intruder deduction con-
straints 1 V...V, Heo (n > 0) such that every i; is simple.

Proof. This proof follows the standard lazy intruder technique [14, 15, 6].
¥

We first give a set of rules ¢ that can be read as “if 1) is satisfiable then also
1”. They mirror the ground intruder deduction rules on the symbolic level: the
intruder can use terms from his knowledge to satisfy a constraint, he can compose
terms from his knowledge (respectively: decompose the terms to generate), and
he can analyze terms in his knowledge, provided he can derive the necessary keys
from his knowledge:

a(¢) A o]
(k) A S — ik(s)) A ¢

(Unify) t,s ¢ V,o0 = mguf(s,t)

(S =t A NS —ty) (vx;ik(Xl)A...mk(Xn)>eH
((g)FAlll(((s)))ASHkE))F ik(tn)) A

ik(t1 k(2 VX :ik(t) Aik(t) A 5

(ik(t) A S Fik(u)) A (Aik(tn) — ik(s)) SHEEY

(4

Soundness is straightforward: For each rule ¢, from a satisfying interpretation
of an instance 7(1) of v, we can derive an interpretation that satisfies 7¢.

Completeness: Consider a satisfiable non-simple constraint ¢, and a satisfying
interpretation Z. Thus for every S F P in ¢ we can label P with a proof tree
that Z(P) can be derived from Z(S) using the intruder deduction Horn clauses.
Show that there is at least one constraint reduction step that supports Z and
that mirrors a deduction step that some non-simple P is labeled with. (Here we
need to exploit well-formedness, because we need to exclude that a predicate
ik(X) in the intruder knowledge ever needs to be analyzed.)

Termination: The way we formulate it here, analysis steps may lead us into a
non-termination, if repeatedly analyzing the same term. If we exclude that, our
proof relationship can produce only finitely many irreducible constraints. All
irreducible constraints are either unsatisfiable or simple (because non-simple,
satisfiable constraints can be further reduced due to completeness).

The length of derivations is polynomial in the size of the constraints. Note
that substitutions may give an exponential blow up in ASLan in general (e.g.
[Xo — f(X1,X4)], followed by [X; — f(X2,X5)] and so on) but exponential
running time here can be avoided when representing substitutions as a DAG [15].
We can thus derive a polynomial time non-deterministic machine that accepts a
constraint iff it is satisfiable (in each step “non-deterministically guessing” which
intruder rule to apply next). Thus the satisfiability is in NP.

NP-Hardness (even for TASLan):! Given a Boolean formula ¢ in CNF with
variables (X7i,...,X,). We construct an intruder deduction problem from ¢ so
that the intruder can first choose true or false for each X;:

Define My = {h(1,¢0), h(1,¢1), h(2,¢0), h(2,¢1),...,h(n,co), h(n,c1)} where

constants ¢g and ¢; are not known to intruder, and
tra(¢) = \ {ik(m) | m € Mo} - ik(h(i, X))
i=1

We further have a constraint with a knowledge M that includes besides My
the following terms that depend on the intruder’s previous choices X;:

f@, X)) for1<i<n

— scrypt(f(i,co), sx) if clause number k of ¢ contains —X; as a literal
— scrypt(f(i,c1), sx) if clause number k of ¢ contains X; as a literal
scerypt(g(so, - .-, S1), s) for I the number of clauses in ¢.

Thus for each choice X; the intruder now knows the term f(i, X;). Here scrypt
stands for symmetric encryption and we have the decryption rule

ik(scrypt(X,Y)) ANik(X) — ik(Y) .

! The proof assumes that the set of symbols and intruder deduction rules is not fixed;
when this is fixed, we can still give a similar proof for ASLan, but for TASLan, we
have then a fixed number of satisfiable S F P constraints (modulo variable renaming)
so the decision problem is then trivially in linear time.

Then he can derive the secret s, iff the kth clause contains a literal that
becomes true under the his choice of the X;. If he knows all si, i.e., when the
entire formula is true under his choice, he obtains the main secret s. Thus the
constraint

tr(p) = tra(¢) A {ik(m) | minM} F ik(s)
is satisfiable iff ¢ is. ad
Together we now have:

Lemma 4. Satisfiability is decidable for reachable symbolic states of TASLan
specifications, and thus whether an attack state is reachable in | steps or less.

Proof. Let ¢ be a reachable symbolic state.

— First we solve all S = P constraints of ¢ that are not intruder deduction
constraints according to Lemma 3 and obtain symbolic states ¢, V...V 1,.
These must all be well-formed since the state is reachable (i.e. variables can
only be introduced by the deduction constraints, and the v; can contain only
intruder deduction constraints).

— We next apply Theorem 1 to each v; to solve the intruder constraints and ob-
tain a new disjunction x1 V... xm in which all intruder deduction constraints
are simple.

— We check the negative substitutions in the x;. (Note that some substitutions
performed in the lazy intruder constraint reduction may render the negative
substitution constraints unsatisfiable, then the respective x; is ruled out.)

We thus have at this point a set of satisfiable simple intruder deduction con-
straints, i.e. of the form M F ik(X), and a conjunction of negative substitution
constraints -3X.s; =t; A...A s, = t,. Moreover all free variables of the nega-
tive substitutions occur as variables of the M F ik(X). The question is whether
this conjunction of intruder constraints and inequalities is satisfiable.

Recall that the procedure to check the satisfiability of negative substitutions
is based on replacing all free variables with fresh constants of the respective
types (and then trying to unify the resulting s = ¢ which is possible iff the
negative substitution is unsatisfiable). Even if the intruder knowledge in any
of the constraints does not contain enough different constants of the respective
types, in an untyped model the intruder can simply generate different terms for
every free variable X and then the negative substitutions are also satisfied.

Thus, the inequalities may force us into an ill-typed substitution of variables
when the intruder knowledge does not have enough “diversity” of constants. For
this reason we had assumed in the definition of TASLan that we have intruder
rules for creating fresh constants of any type. Thus, if we have an attack where
the inequalities require ill-typed substitutions of variables, there is also an attack
where the intruder first created sufficiently many fresh constants of the respective
types so that all constraints can be solved in a well-typed form.

Note that our symbolic model gives us the fresh constants “for free”: we
simply stop when we have reached simple constraints and satisfiable inequalities
since we know this is satisfiable, even in a typed model if we had generated
enough fresh constants. ad

4.4 Organizing Search

With this, we have generalized the symbolic, constraint-based decision pro-
cedures for bounded-length verification—the lazy intruder—to support Horn
clauses. There are now several choices how to coordinate the different aspects
of constraint reduction. When solving the constraints of a symbolic state ¢, we
usually get into a finite case split ¢1 V...V ¢, of symbolic states where each 1);
has only constraints in a solved form. If n = 0 we know that ¢ is unsatisfiable
and can be discarded from the search. When constructing the successor states of
¢ we can either continue with ¢ or compute the successor states of each of the
;. It is in general unclear which is preferable: continuing on ¢ requires that we
repeat a lot of constraint reduction work in the successor states, while continuing
on ; can mean a large case split into similar cases. Our current prototype is
based on the v; expansion, but we see room for optimization in finding a middle
ground between the two extremes: sometimes being more lazy and leaving some
choices open once we have established that there exists at least one solution.

4.5 Typed Model for TASLan

It is crucial that all results so far do mot require the restriction to a typed
model (Definition 1), but merely exploit the fact that TASLan requires distinct
formats for messages of distinct types (Definition 2). We now use these results,
in particular Theorem 1, to show that the restriction to a typed model comes
without loss of attacks for TASLan specifications:

Lemma 5. If there is an attack against a TASLan specification, then there is
an attack in the typed model, i.e. where every variable of transition and Horn
rules is instantiated with a term of the desired type.

Proof. There are only three points where unification occurs (and thus instanti-
ation of variables):

— In checking negated substitutions.
— In computing the symbolic Horn closure.
— In the lazy intruder Unify rule.

As already shown above, the first two can never lead to ill-typed substitutions
in our satisfiability checks. We now show that this also holds for the Unify rule
of the lazy intruder: this rule has the property that it only unifies terms s and
t that are not variables. We had required for TASLan that any non-variable
subterms s and ¢ of messages that can be sent and received (i.e. that can ever
become part of a lazy intruder constraint) are unifiable iff they have the same
type.

Note that this holds for any attack, independent of bounds on the length of
derivations. a

Theorem 2 (Completely typed model is no restriction). Fvery TASLan
specification S can effectively be transformed into a specification S’ such that

— In 8’ also the variables in intruder rules are typed.

— S has an attack iff S’ has an attack (and the same holds when bounding
traces to length l or less).

— |S’| is polynomial in the size of S.

Proof. Instantiate all intruder rules with types that can ever occur when honest
agents are sending and receiving. a

There is another way to see this: since every variable now has a completely
determined type, we can turn this into a problem without function symbols:
consider a predicate p(t) for ¢ : f(7), then we could replace this with a pred-
icate py(t’) for t' : 7. This is because even if ¢ is a variable, the typed model
dictates it can only be instantiated with a term of the form f(t') for ¢’ : 7, i.e.
we can equivalently replace ¢ with f(x) where x : 7 is a new variable. Applying
this to the whole specification, we obtain a specification without function sym-
bols. However note that we hereby replace ik(-) with a family of predicates that
represent intruder knowledge of certain functions—and they must be treated
accordingly as persistent predicates that are allowed on the right-hand side of
both Horn clauses and transition rules. This reflects that with the typed model
we essentially turn the logic programming problem of the Horn clauses into a
Datalog problem [5].

We now prove NEXPTIME completeness of TASLan insecurity when we are
given a bounded length of traces (“bounded number of sessions” in the security
protocol parlance):

Theorem 3. The following problem is NEXPTIME-complete: Given a bound
l € N, and a TASLan specification S, is an attack state reachable in | state
transitions or less? Here the problem size N is the length in bits of the description
of S and 1 together (thus 1 < 2V).

Proof. We use here the typed model of TASLan according to Theorem 2.

Bounded TASLan insecurity is in NEXPTIME. We can first derive some upper
bounds for sizes of things:

— Since we require that the bound [is part of the encoding, we have [< 2V
for the size in bits N.

— The set X of symbols (variables, constants, functions, predicates) that can
occur in an ASLan specification is also linear: |Xy| < N. Note that, since we
have allow declaration of symbols, its encoding/denotation in the specifica-
tion is not constant size, but rather log, N bits.

— The set X of fresh constant symbols that can occur in reachable states:
Y € O(I-N) (because in every step, we can generate at most N new symbols).

— The universe U of all predicates that can ever be true in any ground state
is therefore |U| € O(2P°%(N)) (for poly(N) some polynomial of N).

— The space of reachable ground states is thus in O(2/Yl) (which is over-
exponential).

— Horn closure HC(S) of a ground state S can be at most of size |U| (because
we can only positively derive predicates). Note this includes also intruder
deduction.

Let now a non-deterministic machine “guess” a symbolic trace Sp — S1 — ... —
Sy, of length k£ < I: in each state S;, choose non-deterministically a rule to apply;
choose for each positive predicate of the rule a matching predicate from HC(S;)
and check that the negative predicates are not contained in S; (recall only explicit
facts can occur negatively in a rule); check the equalities and inequalities and
compute the appropriate successor state. Finally, accept if Sj contains attack().
This machine accepts iff an attack state is reachable in [steps or less. The
runtime of this non-deterministic machine is bounded by |U|- N -1 € O(2P°(N))
because computing the Horn closure costs at most |U| steps, matching the rule
to some choice of predicates at most N steps, and we have at most [such
computations. Thus the machine has non-deterministic exponential time.

Bounded TASLan insecurity is NEXPTIME-hard. We encode the NEXPTIME-
complete Tiling problem [12]: A tile T = (N, S, E, W) is a four-tuple of integers.
As input we are given a collection C' = {T1,...,T,} of tiles where E1, = Wr,,,
for 1 < i < n, as well as a size parameter N < n. The question is: exists
a mapping f : {1,...,N}?> — C such that Efii5) = Wygij+1) and Ny) =
Stiit1,y forall 1 <4,5 < N and f(1,i) =T; for 1 <i <n?

We give the following encoding into TASLan (using the typed model). Let
the search bound | = N2. Let k = [log, N be the number of bits to represent a
counter up to N. We write in the following the vector notation IN to represent
an integer N as a binary vector (Ng_1,...Np); we also use this notation for
vectors of binary variables, and bin for the respective type.

We use the following symbols and types:

Symbol Type Intuitive Meaning

tile (tileI D, int,int, int,int) Description of Tile

f (bin, bin, tileI D) representing function value
correct (bin,bin) f correct up to here

succ (bin,bin) “succ(N,N +1)"

Note that the int type is just pro-forma, being defined by the set of constants
used in the tiles itself. The constants and variables we use have the appropriate
types. Let tq,...,t, be constants that identify the tiles T4, ..., T,.

The TASLan specification of initial state, transition rules, and Horn theory
is found in Table 3. This specification non-deterministically chooses any tiling f
and then checks using the Horn clauses whether this is indeed a correct solution.
A state is an attack iff we have found a solution, thus an attack state is reachable
iff a solution exists.

As this reduction is polynomial in the size IV of the original problem, we have
shown that bounded TASLan insecurity is at least as hard as all NEXPTIME
problems. Together with the containment in NEXPTIME we thus have NEXP-
TIME completeness. a

Initial state:

length(N) A tile(th]VT1 s ST1 R .ET1 s WTl) JANAAY tile(tn, NT" , ST,L , ET" , WT”)/\
FLLt) A A f(1,n,tn)
Acorrect(1,1) A isBool(0) A isBool(1)

The transition rules:

FILJ, T) A suce(ST,J)A=3T; : f(I, 8T, Ty).tile(T2,N,S,E, W) = f(I,S8J, Ts)
FI,J, T) A suce(SI, I)A—=3T; : f(SI,J, Ty).tile(Ts, N, S, E, W) = f(SI,J, T»)

The Horn theory (where we omit the universal quantifiers and the predicate is Bool(X;)
on the left-hand sides for all Boolean variables):

— succ(kal, .. ,,X17]., kal, .. ,,X170)

for each 2 < i < k the rule :
—)S’LLCC(X]C,:[,...,Xi,o,l,...,l, Xk;,l,...,Xi,l,O,...,O)

suce(ST, I) A succ(SJT,J) A correct(SI, J) A correct(I,SJ)

NI, 8T, Ty) A f(SI,J,T>) A f(SI,S8J,Ts)

tile(Ty, N1, S1, E1, Wl) N t’ile(TQ, N, S2, Ea, Wz) AN t’ile(Tg, S1,Ss, Es, Ez)
— correct(SI, SJ)

succ(SJ, J) A correct(1, J) A f(1,T,Th) A f(1,ST,Tz)
/\tile(Th Ny, 517 Wy, El) A til@(Tz, No, SQ, E, Ez)
— correct(1,SJ)

succ(ST, I) A correct(I,1) A f(I,1,T1) A f(SI,1,T3)
/\tile(T1, Ny, 517 Wi, El) A tile(Tz, S1, 527 Wa, EQ)
— correct(1,SJ)

length(L) A correct(L, L) — attack

Table 3. Typed TASLan encoding of the Tiling problem.

5 Towards a Full ASLan

We have so far neglected some features of the original ASLan that seem less
central to us. Here we briefly discuss how to (partially) support these features
as well.

“Wildcard” Horn Clauses For Horn clauses VX : S — P we had previously re-
quired fv(P) C fv(S) (and fv(S) C X) so the right-hand side cannot introduce
new variables. Thus prevents clauses like VX :— p(X, X). Dropping this restric-
tion causes a slight problem for the symbolic approach, because this may lead to
non-termination of Horn closure (since this introduces new variables). Further
this can destroy the well-formedness condition for the symbolic intruder deduc-
tion (because the new variables are not depending on a choice of the intruder).

This limitation can be overcome with a special predicate isBeta(-) for new vari-
ables of type 8. An example is found in the proof of NEXPTIME-hardness
in Theorem 3.

A way to deal with this, is shown in the proof of NEXPTIME-hardness
in Theorem 3: whenever the conclusion P of a Horn clause contains a variable
X of a basic type § that is not introduced in the premises, then add another
premise isBeta(X). We then only need to ensure isBeta(t) indeed holds for all
terms t of type 3. This is straightforward for basic types: we can explicitly write
this in the initial state for all S-constants that occur in the specification, and
every state transition that creates a fresh constant of type § shall have the type
declaration on the right-hand side. For a variable X of a composed type f(7),
replace X with f(X) for fresh variables X of the respective subtypes. Thanks
to the typing result, these transformations of the specification are without loss
of attacks.

Subtypes The original ASLan allows the declaration of subtypes, e.g. honest as a
subtype of agent. Such an example could be modeled in TASLan by having only
the basic type agent, and a special predicate honest (of type agent) that holds
true for all those agents that are honest. A similar encoding is possible for two
composed types 7 and 7o that differ only in an basic subtype.

Mappings For many problems it is helpful to have some function symbols to
express mappings such as sk(A, B) to denote the shared key between agents A
and B, but of course the resulting key is then of type sk(agent, agent) and thus
with terms of a basic type symkey to represent symmetric keys. More generally,
the problem is to model a function f of type tau — 79 where 79 # f(tau).
A way to achieve this is the use of a new predicate to represent the function,
e.g. in the example sk’ : (agent, agent, symkey). We then need to take care of an
appropriate constant for the function result, e.g. the symmetric key here. Also
this encoding has its limitations: for instance a function like s : § — (3 cannot
be injective (as this would lead to an infinite type).

Algebraic Properties One may consider algebraic properties to support some
cryptographic primitives. This quickly rules out many methods, e.g. when the
equivalence class of a term gets infinite. We just hint that for some algebraic
properties the symbolic methods work [10].

FOLTL Goals We have considered only state-based safety properties, while
ASLan allows for the specification of FOLTL goals, i.e. first-order logic extended
with the temporal operators of linear temporal logic. Again this logic gives rise
to undecidable problems in general. Borrowing from the arguments of Theo-
rem 3, we can however identify a decidable fragment that fits with the TASLan
approach. The idea is that typed TASLan for a bounded-length trace gives a
finite universe of predicates (because also the number of fresh constants that
can be created is bounded). When checking safety properties, considering finite
traces is no restriction. When checking non-safety properties (e.g. for resilient

channels [3]) common methods also need to consider finite state spaces (so that
all infinite traces go in loops through the state space), in which case it is also
not a restriction to limit the number of fresh constants. When we have a finite
universe, then we can reduce problem into a propositional LTL problem.

We have left this out of our main presentation since many verification meth-
ods based on abstract interpretation and symbolic constraints do not combine
well with FOLTL goals, for instance a goal like G(ik(s) — ik(t)) implies negative
intruder knowledge constraints that cannot be directly handled.

6 Conclusions

ASLan is a specification language that integrates Horn clauses with transition
systems, and this combination in the specification language gives a particular ex-
pressive power: we can formulate a transition system with immediate evaluations
for every state. The typical application is the interaction between the work-flow
of a distributed system and its access control policies, see the AVANTSSAR case
studies for a large class of security-relevant systems [2]. A completely different
application to combine immediate evaluations with transitions is in our recent
work to analyze security of virtualized infrastructures [8]. Here we model a net-
work representing a virtualized infrastructure that can change due to actions of
honest agents and intruder. The Horn clauses can be used to make evaluations on
the network in each state, e.g. between which nodes information flow is possible.

In this paper we have reviewed the syntax and semantics of ASLan, giving
a conceptually simpler account than previous definition [4]. We have extended
the concepts of symbolic transition systems to ASLan as a logically sound basis
for constraint-based model-checking.

We have defined the fragment TASLan by the requirement that messages and
predicates of different intended types must have sufficiently different formats so
they cannot be confused. To a large extend, such disambiguations are good engi-
neering practice anyway, and we can exploit this to obtain a class of specifications
that is better to tackle with automated methods, while maintaining the powerful
concept of combining transition systems with immediate evaluations.

We have built a decision procedure for bounded-length TASLan (or a semi-
decision procedure for unbounded length) extending the constraint-based “lazy
intruder” approach [14, 15, 6] to support the combination with Horn deduction
constraints.

We show that, when an attack exists, the lazy intruder will find a well-typed
attack, and thus we have a generalization of several typing-results [11,7,1]: for
TASLan specification, we can safely restrict the verification to a typed model.
This enables methods that cannot deal with an infinite universe of intruder-
generated messages or only under great difficulty. Seen another way, the typed
model simplifies the undecidable logic-programming problem induced by the
Horn clauses to a decidable Datalog problem.

On the conceptual side, we show that the problem whether a TASLan speci-
fication has an attack for a bounded number of transitions is NEXPTIME com-
plete.

Despite the high complexity class, first experiments with extending the tool
OFMC [6] demonstrate that the method is feasible for many practically relevant
problems: a first prototype successfully analyzes 70 of the 142 ASLan specifica-
tions of the AVANTSSAR library [2] in under 8 minutes.

References

1. M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In
FSTTCS, pages 376-387, 2007.

2. A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai, R. Car-
bone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea,
S. Médersheim, D. von Oheimb, G. Pellegrino, S. E. Ponta, M. Rocchetto, M. Rusi-
nowitch, M. Torabi Dashti, M. Turuani, and L. Vigano. The AVANTSSAR Plat-
form for the Automated Validation of Trust and Security of Service-Oriented Ar-
chitectures. In Proceedings of TACAS, LNCS 7214, pages 267-282, 2012.

3. A. Armando, R. Carbone, and L. Compagna. LTL Model Checking for Security
Protocols. In Proceedings of CSF20. IEEE Computer Society Press, 2007.

4. The AVANTSSAR Project: Deliverable 2.3: ASLan (final version), 2010. Available
at www.avantssar.eu.

5. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In PODS, pages 1-15, 1986.

6. D. Basin, S. Mddersheim, and L. Vigano. OFMC: A symbolic model checker for
security protocols. International Journal of Information Security, 4(3):181-208,
2005.

7. B. Blanchet and A. Podelski. Verification of cryptographic protocols: tagging en-
forces termination. Theor. Comput. Sci., 333(1-2):67-90, 2005.

8. S. Bleikertz, T. Grof}, and S. M6dersheim. Automated verification of virtualized
infrastructures. In CCSW, pages 47-58, 2011.

9. I. Cervesato, N. A. Durgin, J. C. Mitchell, P. Lincoln, and A. Scedrov. Relating
strands and multiset rewriting for security protocol analysis. In CSFW, pages
35-51, 2000.

10. Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In
FST TCS’03, LNCS 2914, pages 124-135, 2003.

11. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. In Proceedings of CSFW’00. IEEE Computer Society Press, 2000.

12. D. S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity (A), pages 67-161. Elsevier,
1990.

13. C. Meadows. Analyzing the needham-schroeder public-key protocol: A comparison
of two approaches. In ESORICS, pages 351-364, 1996.

14. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proceedings of CCS’01, pages 166-175. ACM Press,
2001.

15. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions, composed keys is NP-complete. Theor. Comput. Sci., 1-3(299):451-475,
2003.

