
Abstraction by Set-Membership

Verifying Security Protocols and Web Services with Databases

Sebastian A. Mödersheim
∗

Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Kongens Lyngby
samo@imm.dtu.dk

ABSTRACT
The abstraction and over-approximation of protocols and
web services by a set of Horn clauses is a very successful
method in practice. It has however limitations for proto-
cols and web services that are based on databases of keys,
contracts, or even access rights, where revocation is pos-
sible, so that the set of true facts does not monotonically
grow with state transitions. We extend the scope of these
over-approximation methods by defining a new way of ab-
straction that can handle such databases, and we formally
prove that the abstraction is sound. We realize a translator
from a convenient specification language to standard Horn
clauses and use the verifier ProVerif and the theorem prover
SPASS to solve them. We show by a number of examples
that this approach is practically feasible for wide variety of
verification problems of security protocols and web services.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol verification; D.2.4
[Software/Program Verification]: Formal methods

General Terms
Verification

Keywords
Automated verification, abstract interpretation, revocation,
web services, APIs

1. INTRODUCTION
Tools based on over-approximation like ProVerif have been

very successful on the verification of security protocols and

∗The author was partially supported by the EU-Project
AVANTSSAR. This paper was written while the author was
working for IBM Research Zurich. The author thanks Luca
Viganò, Hanne Riis Nielson, Flemming Nielson, Graham
Steel and the anonymous reviewers for helpful comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

web services [7, 11, 10, 21, 6]. In contrast to conventional
model checking approaches like [15, 4, 1], the over-approxi-
mation methods do not consider a state transition system,
but just a set of derivable (state-independent) facts like in-
truder knowledge (and the intruder never forgets). More-
over, the creation of fresh keys and nonces is replaced by a
function of the context in which they are created. For in-
stance if agent a creates a nonce for use with agent b, this
may simply be n(a, b) in every run of the protocol. The main
advantage is that this kind of verification works for an un-
bounded number of sessions, while standard model checking
methods consider a bounded number of sessions. In fact, the
entire interleaving problem of model checking does not oc-
cur in the over-approximation approach, and tools thus also
scale better with the number of protocol steps and repeated
parts of the protocol. Another advantage is that models
of this kind can be represented as a set of first-order Horn
clauses for which many existing methods can be used off the
shelf, e.g. the SPASS theorem prover [21, 22].

A disadvantage of the abstractions are false positives, i.e.
attacks that are introduced by the over-approximation. In
the worst case we may thus fail to verify a correct proto-
col. This problem can sometimes be solved by refining the
abstraction. However, if we turn to more complex systems
that consist of several protocols or web services, the abstrac-
tion approaches reach a limitation. The reason is that we
may consider servers that maintain some form of database,
for instance a key-server maintains a set of keys, to which
agents they belong and what their status is, e.g. valid or
revoked/outdated. Another example is a web service for on-
line shopping that maintains a database of orders that have
been processed and their current status. Further, servers
may maintain a database of access rights and access rights
may be revoked. Common between these examples is that
the set of true facts does not monotonically grow with the
executions of the protocols. Such non-monotonic behavior
simply cannot be expressed in the standard (stateless) ap-
proach of abstracting protocols by a set of Horn clauses,
because deduction is monotonic, i.e. adding facts like a re-
vocation can never lead to fewer deductions.

This work tackles this problem with a different kind of
abstraction of the fresh data while maintaining the basic
approach of over-approximating the protocol or web service
by a set of first-order Horn clauses. As a basis, we consider
a model where each participant can maintain a database
in which freshly generated data like nonces, keys, or order-
numbers can be stored along with their context, e.g. the
owner and status of a key. To deal with such systems in an

1

abstraction approach, we define the abstraction of all created
data by their status and membership in the databases of
the participants. For instance, suppose there are two agents
a and b which each maintain a set of keys that are either
unknown, valid, or revoked; two concrete keys k1 and k2 are
now mapped to the same abstract key k iff they are equal
in the membership of the databases, e.g. a considers both
keys as revoked, and b considers both as valid.

So, as usual in these approaches, the infinite set of data
is mapped to finitely many equivalence classes or represen-
tatives (if we have finitely many participants), but here the
abstraction depends on the current state of the databases.
Consider for example that the intruder knows a message
m containing, as a subterm, the abstract key k mentioned
above. Consider further a transition rule that allows one
to revoke a key at agent b, so that in the abstract model,
the key k should be “transformed” into a key k′ represent-
ing all the keys that are known as revoked to both a and b.
The idea to handle this in the abstraction is to maintain all
previous facts that contain the key k in its old form and to
add also all these facts with k′ replaced for k. So everything
the intruder knows with a valid key k (in b’s eyes), he also
knows with a revoked key k′. The intuitive reason why this is
indeed sound is that—thanks to the over-approximation—
every derivation in the abstract model corresponds to an
unlimited number of executions with concrete data that fall
into the same equivalence class.

The transformation of facts that arises from the state-
transition of the database is expressed by a new kind of
rule, so-called term implication rules that have the form
φ → k →→ k′. This expresses that, if the clauses in φ hold,
then f [k] implies f [k′] for every context f [·]. We show that
these rules can be encoded into standard Horn clauses.

Our contributions are both theoretical and practical. First,
we define the specification language AIF, a variant of the
AVISPA Intermediate Format [3] that allows for a declara-
tive specification of the un-abstracted transition system with
fresh data and databases. Second, we define a novel way to
abstract this specification into a set of Horn clauses and
term implication rules, a concept that naturally arises from
this kind of specification. Third, we show that this abstrac-
tion is sound, i.e. without excluding attacks. Fourth we
show how to encode also the term implication rules as Horn
clauses without excluding or introducing attacks. Fifth, we
implement this translation from AIF to Horn clauses for the
syntax of the tools SPASS and ProVerif, both of which im-
plement state of the art resolution techniques for first-order
(Horn) clauses. This allows us to demonstrate with a num-
ber of non-trivial examples that the approach is practically
feasible. The implementation and a library of AIF examples
with detailed descriptions is available [17].

2. AIF AND THE CONCRETE MODEL
This section introduces the language AIF that we use for

specifying security protocols, web services, and their goals
without the abstraction. It is a variant of the AVISPA Inter-
mediate Format[3] influenced by the needs of our methods
and adding syntactic sugar for convenience.

2.1 A Running Example
Before we give the formal definition, we first introduce

a simple example that we use throughout this paper. For
simplicity, we limit the example to three agents: the honest

user a, the honest server s, and the dishonest intruder i.
The full specification considered in section 7 is parametrized
and can be used with any (but fixed) number of honest and
dishonest users (see also [17]).

Each agent has a database of its own that contains all the
information that this agent has to maintain over a longer
time (i.e., that may span several sessions). In our example,
the user keeps a database of all its valid public/private key
pairs that it currently has registered with the server s. We
denote with inv(k) the private key that belongs to public key
k. Thus, all entries of a’s database are of the form (k, inv(k))
and it is sufficient to represent the database entries only by
the public key k (omitting inv(k) in the term representation
of the database). We thus write the set condition k ∈ ring(a)
for every key k in the database of a.

The server stores in its database the registered keys along
with their owner and status, which is either valid or revoked.
One could write for instance (k, a, valid) ∈ db(s) for a key
k that is stored in the database of s as a valid key owned
by a, but we rather use a slightly different representation
and write k ∈ db(s, a, valid). This is equivalent to think-
ing of a server that maintains for each user two databases,
namely the sets of valid and revoked keys. This represen-
tation is helpful for the abstraction below because all sets
contain only data that can be abstracted (public keys in this
example) rather than a mixture of different kinds of data.

An AIF specification describes a state transition system
by a set of rules. The first rule of our example is an ini-
tialization rule that represents an out of band registration
of the key with a server. (Suppose the user physically visits
the organization that owns the server.)

=[PK]⇒ PK ∈ ring(a) · PK ∈ db(s, a, valid) · iknows(PK)

This rule can be taken in any state (because there are no con-
ditions left of the arrow) and will first create a fresh value
(that never occurred before) that we bind to the variable
PK , intuitively a public key. In the successor state, PK is
both in the databases of a and of the server as a valid key.
We use iknows(m) to denote that the intruder knows m, so in
this case he learns immediately the new public key PK . The
rule can be applied any number of times to register as many
keys as desired. Note that iknows(·) does not have a pre-
defined meaning in AIF, is rather characterized by intruder
deduction rules reflecting the standard Dolev-Yao model,
e.g. iknows(M).iknows(inv(K)) ⇒ signinv(K)(M) (which can
be applied to any state that contains facts matching what is
left of ⇒).

The second rule of our example is the transmission of a
new key using a registered valid key:

PK ∈ ring(a) · iknows(PK)
=[NPK]⇒ NPK ∈ ring(a) · iknows(signinv(PK)(new, a,NPK))

We do not repeat the condition PK ∈ ring(a) on the RHS;
in AIF this means that this condition gets removed by the
transition, i.e. the user a forgets the key PK (which is a bit
unrealistic and only done for the sake of simplicity).

The third rule is the server receiving such a message, reg-
istering the new key and revoking the old key:

iknows(signinv(PK)(new, a,NPK)) · PK ∈ db(s, a, valid)·
NPK /∈ db(s, a, valid) ·NPK /∈ db(s, a, revoked)
⇒ PK ∈ db(s, a, revoked) ·NPK ∈ db(s, a, valid)
·iknows(inv(PK))

2

Here, the intruder learns the private key of the revoked key.
To define a security goal, we give yet a further rule that

produces the fact attack if the intruder finds out the private
key of a valid public key of a:

iknows(inv(PK)) · PK ∈ db(s, a, valid)⇒ attack

2.2 Formal Definition of AIF
We use a standard term model of messages, the only spe-

cialty is the distinction of constants and variables that will
be abstracted later.

Definition 1. Messages are represented as terms over a
signature Σ ∪ A and a set V of variables, where Σ is finite,
V is countable, and A is a countable set of constant symbols
(namely those that are going to be abstracted later). Σ, A,
and V are non-empty and pairwise disjoint. Let VA ⊂ V be a
set of variables that can only be substituted by constants of
A. Let TA = A∪VA denote the set of all abstractable symbols.
By convention, we use upper-case letters for variables and
lower-case letters for constant and function symbols.

Note that this paper will assume a free algebra interpretation
of terms (i.e. two terms are equal iff they are syntactically
equal). We come back later to this issue when we use SPASS
(which does not consider a fixed interpretation).

Definition 2. Let Σf be a finite signature (disjoint from
all sets above) of fact symbols. A fact is a term of the form
f(t1, . . . , tn) where f is a fact symbol of arity n and the ti are
messages. A positive (negative) set condition has the form
t ∈ M (t /∈ M) where t ∈ TA and M is a set expression,
namely a ground message term in which no symbol of TA
occurs.

The syntactic form of set expressions likeM in this definition
enforces that a specification can only use a fixed number of
sets that we denote with N . Also, in all formal arguments in
this paper we will thus simply assume these sets are called
s1, . . . , sN , while in AIF specifications, one we will use more
intuitive terms like ring(a) for the set of keys known by
agent a.

We now come to the core of the AIF specifications, namely
the state transition rules.

Definition 3. A state is a finite set of facts and positive
set conditions. A transition rule r has the form

LF · S+ · S− =[F]⇒ RF ·RS

where LF and RF are sets of facts, S+ and RS are sets of
positive set conditions, S− is a set of negative set conditions,
and F ⊆ VA. We require that

vars(RF ·RS·S−) ⊆ F∪vars(LF ·S+) and vars(S−)∩F = ∅ .

Moreover, we require that each t ∈ TA that occurs in S+ or
S− also occurs in LF and each t ∈ TA that occurs in RS
also occurs in RF .1

We say S ⇒r S
′ iff there is a grounding substitution σ

(for all variables of r) such that

• (LF · S+)σ ⊆ S,

1This condition ensures that when we remove set conditions
in rules and states in the abstract model below, the elements
(that will carry the set conditions in their abstraction) still
appear in the normal facts.

• S−σ ∩ S = ∅, S′ = (S \ S+σ) ∪RFσ ∪RSσ,

• Fσ are fresh constants from A (i.e. they do not occur
in S or any rule r that we consider).

A state S is called reachable using the set of transition rules
R, iff ∅ ⇒∗R S. Here ⇒R is the union of ⇒r for all r ∈ R
and ·∗ is the reflexive transitive closure. (We generally use
the ∅ as the initial state.)

Intuitively, the left-hand side of a rule describes to which
states the rule can be applied, and the right-hand side de-
scribes the changes to the state after the transition.

There is a subtle difference to AVISPA IF and other set-
rewriting/multi-set rewriting approaches. In AIF, facts are
persistent, i.e. a fact that holds in one state also holds in all
successor states. The only entities that can be removed from
a state during a transitions are the positive set conditions,
namely by a transition rule that has a positive condition
x ∈ si on the left-hand side that is not repeated on the
right-hand side.

The persistence of facts is a restriction with respect to
other approaches, but one that comes without loss of gener-
ality: a non-persistent fact f(t1, . . . , tn) of AVISPA IF can
be simulated in AIF by a persistent fact f ′(t1, . . . , tn, F ID),
where FID is a fresh identifier created when introducing the
fact, and using a distinguished set valid that contains FID
in exactly those states where f(t1, . . . , tn) holds.

Our construction to make set membership the only “revo-
cable” entity while facts monotonously grow over transitions
gives a distinction that becomes valuable in the abstraction
later. To see that, consider that the AIF transition rules (or
the AVISPA IF transition rules) are not monotonic (i.e. a
rule that is applicable to a state S is not necessarily appli-
cable to any superset of S). In contrast, the Horn-clauses of
the abstract model are interpreted in standard–monotone–
first-order logic. Our construction thus ensures that all the
non-monotonic aspects, the set memberships, are part of the
abstraction.

We close this discussion with the remark that all previous
abstraction approaches in protocol verification like [7, 11,
10, 21] are entirely based on persistent facts. This (usu-
ally) means an over-approximation that leads to the fol-
lowing phenomenon [16]: every participant can react to a
given message any number of times, even if the real system
prevents that with challenge-response or timestamps. As
can be seen by the success of the abstraction methods, this
over-approximation usually works fine (if one does not con-
sider replay which requires special care [8]). So in general,
for what concerns this new abstraction approach where we
have the choice to make things revocable, one may start
with a model where all facts are persistent and perform
the above encoding of non-persistent facts only when nec-
essary, i.e. when one obtains false attacks caused by the
over-approximation.

2.3 Syntactic Sugar
For readability and brevity of specifications, the AIF lan-

guage supports a number of constructs to avoid finite enu-
merations. One can declare a number of variables that range
over a given set of constants, e.g.:

A,B : {a, b, s, i};
Honest : {a, b};
Status : {valid , revoked};

3

We call variables that have been declared in this way enu-
meration variables. An AIF specification includes the enu-
meration of all sets or databases that occur in the specifi-
cation. Here, the enumeration variables can be used. For
example:

Sets : ring(Honest), db(s,A, Status);

defines that every honest agent Honest has its own keyring
ring(Honest), which may be for instance a set of public keys,
and the server s has a database for each agent A and each
Status, each of which may again be a set of public-keys.
Thus, this example specification uses N = 10 sets.

One can further use the enumeration variables as abbre-
viations in rules. First, we may use universal quantification
of enumeration variables in negative set conditions, e.g.

∀A,Status.PK /∈ db(s,A, Status)

to mean that PK cannot occur in any of the sets covered
by expanding all values of the enumeration variables, so this
example expands to 8 negative set conditions.

Second, we can parametrize an entire rule over enumera-
tion variables. We may write for instance λA.⇒ iknows(A)
to denote that the intruder knows every agent name. We
write λ to avoid confusion with quantification: in fact, the
meaning of λX.r is the set of rules {r[X 7→ v] | v ∈ V }
where V is the enumeration declared for X.

With this syntactic sugar, it is easy to generalize our ex-
ample specification for any number of honest and dishonest
users and servers, namely by replacing the constants by enu-
meration variables and enumerating the desired set of agents
there [17]. The “unrolling” of this sugar is not always effi-
cient and we plan as future work to investigate strategies for
avoiding that in the translation.

2.4 Inconsistent Rules
We exclude rules that are “inconsistent” in a certain sense

(although their semantics is well-defined):

Definition 4. A rule r = LF · S+ · S− =[F]⇒ RF · RS is
called inconsistent, if any of the following holds:

• t ∈M occurs in S+ and t /∈M occurs in S−, or

• s ∈M occurs in S+\RF and t ∈M occurs in RF , and
the rule allows for an instantiation σ with sσ = tσ.

For the rest of this paper, we consider only consistent rules.

The first kind of inconsistent rule is simply never applicable.
For the second kind, we get the contradiction only under a
particular instantiation, namely when sσ = tσ, because the
rule says that the constraint sσ ∈M should be removed and
tσ ∈ M should be added or kept. (The semantics tells us
that here the positive constraint to keep tσ ∈M wins.)

Note that all rules of our running example are consistent;
for instance in the second rule, the instantiation PKσ =
NPKσ is not possible because NPK is fresh, and in the
third rule such a substitution is also ruled out by the left-
hand side constraints PK ∈ db(s, a, valid) and NPK /∈
db(s, a, valid). In fact, the notion that a rule allows for the
instantiation sσ = tσ is purely syntactical (i.e. independent
of the actually reachable states).

There are two reasons to exclude inconsistent rules. First,
they often result from a specification mistake, i.e. they do

not reflect what the user actually wanted to model. Sec-
ond, the soundness proof of our abstractions below is more
complex when allowing the second kind of inconsistent rules.

3. SET-BASED ABSTRACTION
The core idea of set-based abstraction is the following: we

abstract the fresh data according to its membership in the
used sets. For instance, if we have three sets s1, s2, and s3,
we may abstract all elements that are contained in s1 but not
in s2 and s3 into one equivalence class denoted val(1, 0, 0).

In our running example, we have the sets s1 = ring(a),
s2 = db(s, a, valid), and s3 = db(s, a, revoked). Thus let
val(1, 0, 0) represent the class of all public keys that the
user a has created but that are not (yet) registered with the
server s as valid or revoked. The abstract model thus does
not distinguish between several different keys that have the
same status in terms of set-membership.

The standard way to express the abstract model by Horn
clauses in previous approaches does not work with this ab-
straction. In particular, when the set membership of a con-
stant changes from the abstract value a to the abstract value
a′, then for every derivable fact f [a] that contains a also f [a′]
is derivable. This requires an extension with a new kind of
rule that can exactly express f [a] =⇒ f [a′] for every con-
text f [·] and which we formalize below. Note that this kind
of rule is different from an algebraic equation like a ≈ a′,
because f [a′] does not necessarily imply f [a]; moreover, it
is different from a rewrite rule, because f [a] is not replaced
by f [a′] but both f [a] and f [a′] hold.

3.1 Definition of the Abstraction

Definition 5. Consider a set of rules that uses the ground
terms s1, . . . , sN in set conditions t ∈ si and t /∈ si (including
the choice of a total order on the si). For a state S, we define
the function absS that maps from A to val(Bn) as follows:
absS(c) = val(b1, . . . , bN) with bi true iff (c ∈ si) ∈ S. This
induces an equivalence relation (parametrized by a state S)
on A: define c ≡S c

′ iff absS(c) = absS(c′).

It is indeed unusual that an abstract interpretation depends
on states and can change from state to state. This reflects
exactly why the databases we want to model do not ex-
actly fit into the standard abstraction approach of protocol
verification: the abstract model does not have a notion of
states any more. We will see below (in section 4) how to
overcome this problem and define a state-independent ab-
straction function.

3.2 Term Implication Rules
We now introduce the form of rule that allows us to deal

with abstractions with the changing set-membership of con-
stants.

Definition 6. A term implication rule has the form

P1 . . . Pn

s→→ t

where the Pi are predicates (i.e. facts) and vars(t)∪vars(s) ⊆⋃n
i=1 vars(Pi). An implication rule is either a term implica-

tion rule or a Horn clause. We often write A→ C instead of
A
C

. We may also write A→ C1 · . . . · Cn as an abbreviation

for the set of rules {A→ Ci | 1 ≤ i ≤ n }.

4

For implication rules, we define a function that, given a
set Γ of facts, yields all facts that can be derived from Γ by
one rule application:[[
φ1 . . . φn

φ

]]
(Γ) = {φσ | φ1σ ∈ Γ ∧ . . . ∧ φnσ ∈ Γ}[[

φ1 . . . φn

s→→ t

]]
(Γ) = {C[tσ] | C[sσ] ∈ Γ ∧ φ1σ ∈ Γ

∧ . . . ∧ φnσ ∈ Γ }

Here, C[·] is a context, i.e. a “term with a hole”, and C[t]
means filling the hole with term t. The least fixed-point of
a set of implication rules R, denoted LFP (R) is defined as
the least set Γ that is closed under [[r]] for each r ∈ R.

3.3 Translation to Abstract Rules
We now translate the standard transition rules (that work

on the real sets) to implication rules of an abstract model
(that work on the abstract encoding of set membership). We
show in section 4 that this abstraction is sound.

Definition 7. Consider a transition rule

r = LF · S+ · S− =[F]⇒ RF ·RS

Let TA(r) be the symbols from TA that occur in r. We define
for each t ∈ TA(r) and for each 1 ≤ i ≤ N :

Li(t) =

1 if t ∈ si occurs in S+

0 if t /∈ si occurs in S−

Xt,i otherwise

Ri(t) =

1 if t ∈ si occurs in RS

Xt,i otherwise, if Li(t) = Xt,i and t /∈ F
0 otherwise

Here, let Xt,i :: B be variables that do not occur in r. Let

L(t) = val(L1(t), . . . , LN (t))

R(t) = val(R1(t), . . . , RN (t)) .

The abstraction r of the rule r is defined as:

r = LFλ→ RFρ · C

for the following substitutions λ and ρ and term implications
C:

• λ = [t 7→ L(t) | t ∈ TA(r)]

• ρ = [t 7→ R(t) | t ∈ TA(r)]

• C = {tλ→→ tρ | t ∈ TA(r) \ F}

3.4 The Example
Figure 1 shows the translation of our running example.

Thanks to the abstraction, it is straightforward to convince
oneself that attack is unreachable, as this requires the fact
iknows(inv(val(X1, 1, X2))) (i.e. a valid key) whereas the
only rule that gives the intruder a private key has the in-
compatible set membership (X1, 0, 1) (i.e. a revoked key)
and there is no term implication rule that could turn a re-
voked key into a valid one. Let

SK = {val(0, 0, 0), val(0, 1, 0), val(0, 0, 1)}
K = SK ∪ {val(1, 0, 0), val(1, 1, 0)}

K is the set of all public keys that occur in some fact.
(The other three bearable keys val(0, 1, 1) and val(1, 1, 1)

1,0,0

0,0,0

0,1,0 0,0,1

1,1,0

Figure 2: The key life-cycle as formalized by the
term implications.

and val(1, 0, 1) do never occur.) The subset SK contains
those keys that can ever occur as the signing key in a signa-
ture.

The fixed-point is Γ = {iknows(m) | m ∈M} where

M = DY(K ∪ {signinv(sk)(a, new, k) | sk ∈ SK, k ∈ K}
∪{inv(val(0, 0, 1))})

and DY(·) denotes the closure under protocol-independent
intruder deduction rules (like encryption). In particular,
only the private keys of revoked, invalid keys get known to
the intruder, and attack is not in Γ.

We note that the concrete term implications s→→ t which
get activated in Γ, displayed in Figure 2, represent exactly
the life-cycle of keys.

4. SOUNDNESS
For verification, the crucial property of our abstraction

is that if the concrete model has an attack, then so has
the abstract model. If this holds, then verification of the
abstract model implies verification of the concrete model.We
take a detour over some intermediate models which greatly
simplifies the actual proof of correctness.

The labeled concrete model.
The first idea is to label all symbols of TA in the concrete

model with the corresponding abstract terms according to
Definition 5. Being merely an annotation, this does not
change the model.

Definition 8. The labeled concrete model is defined as the
following modification rules of the concrete model: every
t ∈ TA on the LHS (RHS) of a rule is labeled with L(t)
(R(T)) (cf. Definition 7). We denote the labeling of term t
with label l by t@l. Moreover, for each t ∈ TA that occurs on
both sides, we add the label modification t@L(t) 7→ t@R(t).
This label modification is applied as a replacement on the
successor state: let r′ = r ·(t@l 7→ t@l′) the augmentation of
r with the label modification. We then define r′ transitions
based on r transitions as follows: if S ⇒r S

′ under match σ
then S ⇒r′ S

′τ where τ is the replacement of all occurrences
of tσ (for any label) with tσ labeled by l′.

As an example, the second rule of our running example
looks as follows in the labeled model:

iknows(PK @(1, X1, X2)) · PK @(1, X1, X2) ∈ ring(a)
=[NPK @(1, 0, 0)]⇒
NPK @(1, 0, 0) ∈ ring(a)
iknows(signinv(PK@(0,X1,X2))

(new, a,NPK @(1, 0, 0))) ·
PK@(1, X1, X2) 7→ PK@(0, X1, X2)

Lemma 1. In the labeled model, in every state S, every
occurrence of an abstractable constant c is labeled with l =
(b1, . . . , bN) such that bi is true iff the set condition c ∈ si
is contained in S.

5

=[PK]⇒ →
iknows(PK) · PK ∈ ring(a) · PK ∈ db(s, a, valid) iknows(val(1, 1, 0))
iknows(PK) · PK ∈ ring(a) iknows(val(1, X1, X2))
=[NPK]⇒ →
NPK ∈ ring(a) · val(1, X1, X2)→→ val(0, X1, X2) ·
iknows(signinv(PK)(new, a,NPK)) iknows(signinv(val(0,X1,X2))

(new, a, val(1, 0, 0)))

iknows(signinv(PK)(new, a,NPK)) · iknows(signinv(val(X1,1,X2))
(new, a, val(X3, 0, 0)))

PK ∈ db(s, a, valid) ·NPK /∈ db(s, a, valid) ·NPK /∈ db(s, a, revoked)
⇒ →
PK ∈ db(s, a, revoked) · val(X1, 1, X2)→→ val(X1, 0, 1) ·
NPK ∈ db(s, a, valid) · val(X3, 0, 0)→→ val(X3, 1, 0) ·
iknows(inv(PK)) iknows(inv(val(X1, 0, 1)))
iknows(inv(PK)) · PK ∈ db(s, a, valid) iknows(inv(val(X1, 1, X2)))
⇒ →
attack attack

Figure 1: The transition rules of the running example (LHS) and their abstraction (RHS).

Proof. We show this by induction over reachability. It
trivially holds for the initial state. For transitions, suppose
the property holds in state S, and S →r′ S

′ for some labeled
rule r′ and let σ be the rule match. Consider any c ∈ Abs
that occurs in S′ with label (b1, . . . , bN). We show for every
1 ≤ i ≤ N : bi is true iff c ∈ sI occurs in S′. We distinguish
the following cases:

• c does not occur in S, so it was freshly created by the
transition to S′. Thus there is a variable X in the
fresh variables of r′ such that Xσ = c. By definition,
X (and thus every occurrence of c in S′) is labeled
with bi = Ri(X) which is true iff Xi ∈ si is contained
in the right-hand side of r′, which is the case iff c ∈ si
is contained in S′.

• c occurs in S, and for no abstractable variable X in r′

it holds that c = Xσ. Then c is simply not touched
by the transition and has the same label and set mem-
berships in both states.

• c occurs in S, and for some abstractable variable X
in r′, we have Xσ = c. (Note there may be other
variables Y with Y σ = c.) We further distinguish:

– X ∈ si occurs in S+. Then c ∈ si occurs in S
and there is no variable Y such that both Y σ = c
and Y /∈ si occurs in S− (otherwise r′ would not
have been applicable to S under σ). If for any
variable Y with Y σ = c, Y ∈ si occurs in RS,
then also X ∈ si must occur in RS otherwise
the rule is not consistent (cf. Definition 4). Thus
Ri(X) and bi is true and c ∈ si is contained in S′.
Otherwise, if for no variable Y with Y σ = c, Y ∈
si is contained in RS, then by the definition there
is a label change for X in r′, namely changing at
least the ith position from true to false. Then
c ∈ si is not in S′ and bi is false.

– X /∈ si occurs in S−. Then c ∈ si does not occur
in S, and there is no variable Y with Y σ = c and
Y ∈ si in S+. Suppose for any Y with Y σ =
c, Y ∈ si occurs in RS, then also X ∈ si in
RS (otherwise the rule were again inconsistent).
Thus there is a label change in the ith position

from false to true and bi is true and c ∈ si is
contained in S′. Otherwise, X is labeled on both
sides with false for the ith component, and bi is
false, and c ∈ si does not occur in S′.

– Neither X ∈ si occurs in S+ nor X /∈ si occurs
in S−. If X ∈ si occurs in the RS, then we have
a label change in the ith position of the labeling
of X, namely from arbitrary Xi to 1. Thus bi is
1 and c ∈ si occurs in S′. Otherwise, if X ∈ si
does not occur in RS, then X is not involved in
any set conditions. Then either c stays with the
same label and set membership in the transition
from S to S′, or there is another variable Y with
Y σ = c and any of the above cases can be applied
with Y in the role of X.

• c occurs in S but there is no abstractable variable X
in r′ such that Xσ = c. Then there is no change of set
memberships of c and no label change and the property
remains that the labeling is correct.

Labeled concrete model without set conditions.
The labels are thus a correct alternative representation of

the set conditions, and as a second step we now “upgrade”
the labels from a mere annotation to a part of term struc-
ture, i.e. considering @ as a binary (infix) function sym-
bol. Then, upon rule matching the label does matter. In
turn, we can remove the set conditions from our model com-
pletely, because we can always reconstruct the set member-
ships from the labels (thanks to persistence and rule form,
no abstractable constants can get lost on a transition) and
the set conditions on the left-hand side of a rule are correctly
handled by the label matching. In this labeled model without
set conditions, the second rule of our running example is:

iknows(PK @(1, X1, X2))
=[NPK @(1, 0, 0)]⇒
iknows(signinv(PK@(0,X1,X2))

(new, a,NPK @(1, 0, 0))) ·
PK@(1, X1, X2) 7→ PK@(0, X1, X2)

Note how close this rule is to the abstract model, while still
being a state transition rule. It is immediate from Lemma 1

6

that this changes the model only in terms of representation:

Lemma 2. The labeled model and the labeled model with-
out set conditions have the same set of reachable states mod-
ulo the representation of set conditions in labels.

The abstraction.
All the previous steps were only changing the representa-

tion of the model, but besides that the models are all equiva-
lent. Now we finally come to the actual abstraction step that
transforms the model into an abstract over-approximation.

We define a representation function η that maps terms and
facts of the concrete model to ones of the abstract model:

Definition 9.

η(t@(b1, . . . , bN)) = val(b1, . . . , bN) for t ∈ TA
η(f(t1, . . . , tn)) = f(η(t1), . . . , η(tn))

for any function or fact symbol f of arity n

We show that the abstract rules allow for the derivation
of the abstract representation of every reachable fact f of
the concrete model:

Lemma 3. Let R be a rule set in AIF, R′ be the corre-
sponding rule set in the labeled model without set conditions
of R, f be a fact in a reachable state of R′ (i.e. ∅ →∗R′ S
and f ∈ S for some S). Let R be the translation into
Horn clauses of the rules R according to Definition 7, and
Γ = LFP (R). Then η(f) ∈ Γ.

Proof. Again we show this by induction over reachabil-
ity. The initial state ∅ is clear. Let now S be any reachable
state and η(f) ∈ Γ for every f ∈ S. We show that for every
S′ that is reached by one rule application and every f ∈ S′
also η(f) ∈ Γ.

Let the considered rule be

r = LF =[F]⇒ RF · LM

where LM are the label modifications (see Definition 8)—
being part of the labeled model without set conditions there
are no set conditions in the rule. By our constructions, the
Horn clauses R contain a similar rule, namely

r = η(LF)→ η(RF) · η(LM)

where we extend η to sets of facts as expected. The extension
of η to label modifications (and sets thereof in η(LM)) is also
straightforward:

η(t@l 7→ t@l′) = val(l)→→ val(l′)

Let now σ be the corresponding substitution for S →r S
′.

Then LFσ ⊆ S and thus η(LFσ) ⊆ η(S). Thus the Horn
clause r is applicable and therefore η(RFσ) ⊆ Γ. It remains
only to show that all the modifications of facts by the label
modification rule are also contained in Γ.

To that end, consider any fact f [c@l] ∈ (S ∪ RF)σ that
has exactly one occurrence of c@l and LM contains the rule
t@l 7→ t@l′ for some t with tσ = c. Since l →→ l′ is part of
the term implication of r and since we have η(f [c@l]) ∈ Γ,
we also have η(f [c@l′]) ∈ Γ. If there is more than one occur-
rence of an abstractable constant in a fact that is affected
by a label modification, then we can repeatedly apply this
argument. Note that the term implication of the (general-
ized) Horn clauses only replace one occurrence at a time.

The reason is that from the label l we cannot be sure that
all its occurrences correspond to the same constant c@l in
the concrete model, so replacement of only part of the labels
is included.

We have thus shown that all the facts in S′ are also con-
tained in Γ, modulo the representation function η.

From Lemmata 2 and 3 immediately follows that the over-
approximation is sound:

Theorem 4. Given an AIF specification with rules R. If
an attack state is reachable with R, then attack ∈ LFP (R).

5. ENCODING TERM IMPLICATION
We show how the term implication rules that we have in-

troduced can be encoded into Horn clauses. Intuitively, the
problem is that the rule s →→ t expresses C[s] =⇒ C[t]
for any context C, and thus summarizes an infinite number
of Horn clauses. However, this infinite enumeration can be
avoided by limiting ourselves to ones that can be instan-
tiated to a derivable fact. This can be done using a new
constant symbol ε and two new binary fact symbols occurs
and implies (i.e. these symbols do not occur in the given
specification). occurs(p, t) expresses that t is a subterm of
some fact that holds, and either

• p is ε, then t is a direct subterm of a fact that holds,
or

• p is also a subterm of a fact that holds, and t is a direct
subterm of p.

Further, implies(s, t) represents a rule of the form s →→ t.
For every n-ary fact symbol f (not including occurs and
implies), every m-ary operator g, every 1 ≤ i ≤ n and every
1 ≤ j ≤ m, we have the following Horn clauses:

f(x1, . . . , xn)→ occurs(ε, xi)
occurs(x, g(y1, . . . , ym))→ occurs(g(y1, . . . , ym), yj)
occurs(g(x1, . . . , xm), xj) · implies(xj , y)
→ implies(g(x1, . . . , xm), g(x1, . . . , xj−1, y, xj+1, . . . , xm))

f(x1, . . . , xn) · implies(xi, y)
→ f(x1, . . . , xi−1, y, xi+1, . . . , xn)

Let us call these Horn clauses R0. Consider an arbitrary set
of Horn clauses Rh and term implication rules Rt. Call R′t
the Horn clauses that are obtained from Rt by replacing the
consequence s→→ t by the fact implies(s, t).

Theorem 5. LFP(Rh ∪ Rt) = LFP(R0 ∪ Rh ∪ R′t) \
{implies(·, ·), occurs(·, ·)}

Proof. Let Γ = LFP(Rh∪Rt) and Γ′ = LFP(R0∪Rh∪
R′t) and Γ′′ = Γ′ \ {implies(·, ·), occurs(·, ·)}.

Soundness, i.e. Γ′′ ⊆ Γ: occurs(·, t) ∈ Γ′ only holds for
subterms t of facts in Γ and implies(t1, t2) only holds if for
any fact C[t1] ∈ Γ also C[t2] ∈ Γ holds. As a consequence,
the last rule schema of R0 can only give facts that are in Γ.

Completeness, i.e. Γ ⊆ Γ′: Suppose f ∈ Γ \ Γ′, and sup-
pose f is the “shortest” counter-example, i.e. it can be
derived with one rule application of Rt from Γ′ (it can-
not be a rule from Rh since Γ′ is closed under Rh). Let
φ1, . . . , φn → s →→ t be that rule, σ the substitution under
which it is applied and thus f = C[tσ] for some context C[·].
By the assumption of shortest counter-example, φiσ ∈ Γ′

and C[sσ] ∈ Γ′. Thus we also have implies(sσ, tσ) ∈ Γ′.

7

Moreover, occurs(·, u) ∈ Γ′ for all subterms of C[sσ] and by
that we have the implies(·, ·) over corresponding subterms
of C[sσ] and C[tσ]. Thus, finally, C[tσ] ∈ Γ′.

6. DECIDABILITY
It is straightforward to adapt, to our AIF formalism, the

classical proof of [13] that protocol verification is undecid-
able. This is because this proof relies only on intruder deduc-
tion rules that can be applied without any bounds. More-
over, since it does not even use fresh constants, the proof
also applies to the abstracted model of an AIF specification.
Thus, the security of AIF specification is undecidable both
in the concrete and abstract model.

Let us consider the restriction that all rule variables can
be instantiated only with variables of a given depth. Such
a bounding of substitutions is without loss of attacks in a
typed model that can be justified for a large class of proto-
cols by tagging [14]. For the abstract model, decidability is
now obvious, because this makes the set of derivable terms
finite. For the concrete model, however, we now show that
verification is undecidable even when bounding the message
depth. [12] shows this for verification in a standard multi-set
rewriting approach, but their proof cannot be carried over
to AIF immediately because AIF only supports persistent
facts and membership conditions for a fixed number of sets.
We show that it is expressive enough, however, to simulate
Turing machines and thus obtain the following decidability
results:

Theorem 6. Reachability of the attack fact is undecid-
able both in the concrete and in the abstract model (even
when using no sets and fresh data). With a depth restric-
tion on substitutions, the abstract model is decidable, while
the concrete model remains undecidable.

Proof. The idea for encoding Turing machines into mess-
age-bounded AIF is that every position of the tape is mod-
eled by a fresh constant, and the symbol is carried by set
containment. In an initialization phase, we generate an
arbitrary long but finite tape—the length is chosen non-
deterministically:2

⇒ westend(c0)

westend(c0) · c0 /∈ initializing
=[X]⇒ c0 ∈ initializing · succ(c0, X) ·X ∈ current

c0 ∈ initializing ·X ∈ current
=[Y]⇒ succ(X,Y) · Y ∈ current · c0 ∈ initializing

c0 ∈ initializing ·X ∈ current =[Y]⇒
succ(X,Y) · eastend(Y) · c0 ∈ current·
c0 ∈ q0 · c0 ∈ computing

where q0 is the initial state of the machine. For every ma-
chine transition (q, s)→ (q′, s′, L) the rule

c0 ∈ computing ·X ∈ current ·X ∈ q ·X ∈ s · succ(Y,X)
⇒ c0 ∈ computing · Y ∈ current · Y ∈ q′ ·X ∈ s′

The rules for moving right and neutral are similar. Addi-
tionally, when the machine reaches the eastend of the tape
(which only exists in our model), we go to a sink state of

2The finiteness is not a restriction as we use a special sink
state when reaching the eastend of the tape.

the model from which no further progress can be made:

c0 ∈ computing ·X ∈ current ·X ∈ q ·X ∈ s · eastend(X)
⇒ c0 ∈ stuck

Note that one can easily also encode an initial value of the
tape. The Turing machine can reach a certain state q, if the
concrete model has a reachable state that contains c ∈ q for
some value c. This can, of course, also be formalized by an
attack rule. For this model, a depth bound for variables of
1 (i.e. variables can only be substituted by constants) is no
restriction. As reachability of states for a Turing machine is
undecidable, so is the reachability of an attack state in the
depth bounded concrete model.

7. EXPERIMENTAL RESULTS
We have implemented the translation from AIF to a set

of Horn clauses as described in the previous sections both
for the syntax of the theorem prover SPASS and for the
syntax of the protocol verifier ProVerif. This implementa-
tion along with a library of AIF specifications is available,
including more detailed descriptions of the examples pre-
sented here [17].

Recall that above we explicitly said that we want to in-
terpret terms and Horn clauses in the free algebra: terms
are interpreted as equal iff they are syntactically equal. For
instance, for different constants a and b, a = b is false. The
same is not necessarily true in first-order logic: it rather de-
pends the structure (i.e. universe and interpretation of all
function and relation symbols) in which a formula is inter-
preted. Thus, there are interpretations in which the formula
a = b holds. A formula is valid, if it holds in all interpreta-
tions (e.g. a = b→ b = a).

The SPASS theorem prover allows us to declare a list of
axioms φ1, . . . , φn and a conjecture φ. It will then try to
prove or disprove that φ1 ∧ . . . ∧ φn =⇒ φ is valid. We
use as the axioms φi the Horn clauses that result from the
translation of AIF and as the conjecture φ we use simply
attack . When SPASS returns “proof found”, we know that
there is indeed an attack (against the abstract model), as
that can be derived from the Horn clauses in any interpreta-
tion of the symbols, including the free algebra interpretation.
When SPASS however returns “completion found”, then for
at least one interpretation, attack cannot be derived. Of
course this means, that the attack cannot be derived in the
free algebra interpretation (because if it can be derived in
the free algebra interpretation, then it can be derived in any
interpretation). Thus if SPASS finds a completion, we know
the given protocol is secure in the abstract model with the
free algebra interpretation [21] and by the soundness also in
the concrete model.

The translation to ProVerif is similar, where we may ex-
ploit domain-specific optimizations, such as treatment of
the intruder-knowledge fact. In general it turns out that
ProVerif is faster than SPASS in finding results, see Table 1,
which is not surprising as ProVerif is a dedicated, specialized
tool. (The exception where ProVerif times out is discussed
below.) We have noted the number of agents that were used
in each example, and it can be seen that this has a major
influence on the run-time. This is of course due to the fact
that with the number of agents, also the number N of sets in
our model increases and the number of equivalence classes
underlying the abstraction is 2N .

8

Problem Agents Result SPASS ProVerif
Time Time

Key-server example a, i, s safe 1s 0s
a, b, c, i, s safe 37s 0s

SEVECOM (one key) hsm, auth, i safe 12s 0s
(both keys) hsm, auth, i unsafe 0s timeout

ASW a, i, s safe 3hrs 6min
TLS (simplified) a, i safe 1s 0s

a, b, i safe 75s 13s
NSL (w. conf. ch.) a, b, i safe 17s 0s
NSPK (w. conf. ch.) a, b, i unsafe 0s 0s

Table 1: Experimental results using SPASS and ProVerif

As the first concrete example, we have considered our key-
server example, albeit with several honest and dishonest
participants. The second example analyzes part of a sys-
tem for secure vehicle communication from the SEVECOM
project [18]. Here, each car has a hardware security module
HSM that, amongst others, stores two public root keys of
an authority (for verifying messages sent by the authority).
The reason for using two root key pairs is that even if one
private key is leaked, the authority can still safely update it
using the other. We have found some new attacks that were
missed in the analysis of [19], because that model does not
include the authority (and thus no legal update messages).
The attacks are practically limited as they require either
several updates within a short period of time or that there
is a confusion about which key has been leaked (i.e. the in-
truder knows one key and the authority updates the other).
We have verified the system under the following simple re-
striction (see [17] for other suggestions to avoid the attacks):
we assume that one of the two private keys is never leaked
and thus never needs an update, while the other key may
be leaked and updated any number of times. Under this
restriction, we can verify the following goals: the intruder
never finds out private keys (except for ones we give him
deliberately), he cannot insert into the HSM any keys he
generated himself, and he cannot re-insert old keys. Finally,
if we give the intruder both keys, the resulting trivial attack
is found by SPASS immediately while ProVerif times out.
The reason seems to be that ProVerif dives into the more
complicated derivations enabled by the additional intruder
knowledge before finding the attack. We will investigate
this behavior further as it occurred several times during our
experimentation with this example set.

The largest example, and in fact one of the original moti-
vations for this work, is the contract signing protocol ASW
based on optimistic fair-exchange [2]. Again, we restrict
our discussion to a short summary of ASW and highlighting
some key issues of the formalization in AIF, more details are
found in [17]. The idea is that two parties can sign a con-
tract in a fair way, i.e. such that finally either both parties
or no party has a valid contract. This requires in general a
trusted third party TTP, which for ASW is only needed for
resolving disputes. The TTP maintains a database of con-
tracts that it has processed so far, which are either aborted
or resolved. A resolve means that the TTP issues a valid
contract. Whenever an agent asks the TTP for an abort or
resolve, the TTP checks whether the contract in question is
already registered as aborted or resolved. If this is not the
case, then the request to abort or resolve is granted, other-

wise the agent gets the abort token or replacement contract
stored in the database.

The protocol is based on nonces to which the exchange is
bound. Therefore each agent including the TTP maintains
a database of nonces. The database stores for each nonce
to which parties it relates, to which contractual text, and
the status of the respective transaction. For the TTP, the
status is just aborted or revoked, for honest agents the sta-
tus is the stage in the protocol execution (there are several
rounds and exceptions). One of the major difficulties of this
case study is that the fair exchange relies on the assump-
tion of resilient channels between agents and the TTP, i.e.
the intruder (which may be a dishonest contractual partner)
cannot block the communication forever. For this, we use a
model where the request from the user and the answer from
the TTP happen in a single transition. Roughly speaking,
we have three cases for each party asking for an abort (and
three similar for resolve requests):

• The party is in a stage of the protocol execution where
it can ask for an abort, and the TTP has not previously
seen the nonce contained in the abort request, i.e. it
was not involved in a resolve or an abort. Then we can
go to a state where both the party and the TTP have
noted the nonce as aborted.

• The other two rules are similar but for the case that
the TTP has already noted the nonce as aborted or as
resolved and this result is communicated to the agent.

While in general, the handling of resilient channels cannot
be done by such a contraction of several steps into a single
one, the model in this case covers all real executions if we
assume that no honest party sends several requests at a time
and that the TTP processes requests sequentially.

Another challenge are the goals of fair exchange itself,
namely when one party has a valid contract, then the other
one can eventually obtain one. This is in fact a liveness
property and cannot directly be expressed. We use here the
fact that every agent who does not obtain a contract will
eventually contact the trusted third party and get either an
abort or resolve. Thus, it is sufficient to check that we never
come to a state where one party has a valid contract and
the other one has an abort for that contract; this is a safety
property.

Finally, we have also considered some “normal” protocols
that do not rely on databases, namely a simplified version
of TLS, the famous flawed NSPK and the fixed variant by
Lowe (NSL). The reason is that these protocols are standard
examples. Also this demonstrates that we can use databases

9

of nonces or keys as an alternative way to describe the rel-
evant state-information of agents. For NSPK and NSL we
use confidential channels instead of public-key encryption.

The experimental results demonstrate that our abstrac-
tion approach is feasible for a variety of verification problems
of security protocols and web services.

8. CONCLUSIONS
The abstraction and over-approximation of protocols and

web services by a set of Horn clauses is a very successful
method in practice [7, 11, 10, 21, 6]. In contrast to classical
model-checking approaches, this kind of over-approximation
does not suffer from the usual interleaving problems and can
verify protocols for an unbounded number of sessions. The
technique has however limitations for protocols and web ser-
vices that are based on databases of keys, contracts, or even
access rights, where revocation is possible, so that the set of
true facts does not monotonically grow with the transitions.

We present a new way of abstraction in the spirit of the
Horn clauses approach that can handle such databases and
thus broadens the scope of this abstraction method. The
abstraction of data we propose is based on the membership
of the data in the databases. The updating of the databases
requires also an update of the abstraction of the data which
we can declaratively express with a new form of rule we have
introduced, the term implication rule. We show how to en-
code this rule into standard Horn clauses. As a consequence
we can use with ProVerif an existing tool from the abstrac-
tion community, and even the general purpose first-order
theorem prover SPASS. The SEVECOM and ASW exam-
ples show that our method is feasible for modeling complex
real-world systems with databases and APIs that, for rea-
sons of their non-monotonic behavior, were previously out of
the scope of the standard abstraction-based methods. While
the AIF-library is still small, this suggest that our method
is practically feasible to tackle exactly what is missing for
the verification of more complex cryptographic systems.

[20] considers an abstraction of keys in an API by at-
tributes; this has some similarity with our set-membership
abstraction. However, the attributes in [20] are static (i.e.
set memberships cannot change).

Our new language AIF gives a convenient way of writing
specifications in an un-abstracted form. Still, AIF is too low-
level to be used by a protocol or web service designer. We
thus plan as part of future work to connect more high-level
languages. Also we plan to build a tool with native support
for the term-implication rules and for other improvements
specific to our approach. Further, the approach is currently
limited to a fixed number N of sets; we plan to investigate
how we can avoid this limitation. Another interesting ques-
tion we want to consider is the relation of our approach to
two quite different approaches, namely static analysis [9] and
type-based analysis [5], which, besides all differences, show
some similarities with our approach.

9. REFERENCES
[1] A. Armando, L. Compagna. SAT-based

Model-Checking for Security Protocols Analysis. Int.
J. of Information Security, 6(1):3–32, 2007.

[2] N. Asokan, V. Shoup, M. Waidner. Asynchronous
protocols for optimistic fair exchange. In IEEE
Symposium on Research in Security and Privacy,
86–99. 1998.

[3] AVISPA. Deliverable 2.3: The Intermediate Format,
2003. Available at
www.avispa-project.org/publications.html.

[4] D. Basin, S. Mödersheim, L. Viganò. OFMC: A
symbolic model checker for security protocols. Int. J.
of Information Security, 4(3):181–208, 2005.

[5] J. Bengtson, K. Bhargavan, C. Fournet, A. D.
Gordon, S. Maffeis. Refinement types for secure
implementations. In CSF, 17–32. 2008.

[6] K. Bhargavan, C. Fournet, A. D. Gordon, R. Pucella.
Tulafale: A security tool for web services. In FMCO,
197–222. 2003.

[7] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW’01, 82–96.
IEEE Computer Society Press, 2001.

[8] B. Blanchet. Automatic verification of
correspondences for security protocols. Journal of
Computer Security, 17(4):363–434, 2009.

[9] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, H. R.
Nielson. Static validation of security protocols.
Journal of Computer Security, 13(3):347–390, 2005.

[10] Y. Boichut, P.-C. Héam, O. Kouchnarenko, F. Oehl.
Improvements on the Genet and Klay technique to
automatically verify security protocols. In AVIS’04,
1–11. 2004.

[11] L. Bozga, Y. Lakhnech, M. Perin. Hermes: An
automatic tool for the verification of secrecy in
security protocols. In CAV’03, LNCS 2725, 219–222.
Springer-Verlag, 2003.

[12] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov.
Undecidability of bounded security protocols. In
Formal methods and security Protocols. 1999.

[13] S. Even, O. Goldreich. On the security of multi-party
ping-pong protocols. In FOCS, 34–39. 1983.

[14] J. Heather, G. Lowe, S. Schneider. How to prevent
type flaw attacks on security protocols. In CSFW’00.
IEEE Computer Society Press, 2000.

[15] G. Lowe. Casper: a Compiler for the Analysis of
Security Protocols. Journal of Computer Security,
6(1):53–84, 1998.

[16] S. Mödersheim. On the Relationships between Models
in Protocol Verification. J. of Information and
Computation, 206(2–4):291–311, 2008.

[17] S. Mödersheim. Verification based on set-abstraction
using the AIF framework. Tech. Rep. IMM-Technical
report-2010-09, DTU/IMM, 2010. Available at
www.imm.dtu.dk/~samo.

[18] SEVECOM. Deliverable 2.1-App.A: Baseline Security
Specifications, 2009. Available at www.sevecom.org.

[19] G. Steel. Towards a formal security analysis of the
Sevecom API. In ESCAR. 2009.

[20] G. Steel. Abstractions for Verifying Key Management
APIs. In SecReT. 2010.

[21] C. Weidenbach. Towards an automatic analysis of
security protocols. In CADE, LNCS 1632, 378–382.
Berlin, 1999.

[22] C. Weidenbach, R. A. Schmidt, T. Hillenbrand,
R. Rusev, D. Topic. System description: Spass version
3.0. In CADE, 514–520. 2007.

10

www.avispa-project.org/publications.html
www.imm.dtu.dk/~samo
www.sevecom.org

	Introduction
	AIF and the Concrete Model
	A Running Example
	Formal Definition of AIF
	Syntactic Sugar
	Inconsistent Rules

	Set-Based Abstraction
	Definition of the Abstraction
	Term Implication Rules
	Translation to Abstract Rules
	The Example

	Soundness
	Encoding Term Implication
	Decidability
	Experimental Results
	Conclusions
	References

