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Abstract—We consider a model of multiple independent
intruders that have no ability to share knowledge between
each other. We use this model to analyze security in wireless
ad-hoc networks, where each intruder has a local control in
the network, i.e., he can read and send messages only to his
direct neighbors. Another application is the mobile ambient
calculus where several intruder processes are not able to
exchange their knowledge. Both these security problems can
be reduced to satisfiability of lazy intruder constraint systems,
for a bounded number of steps of the honest agents. However,
the constraint-based verification method usually relies on a
well-formedness property of constraints. This well-formedness
entails that the constraints can be ordered so that the intruder
knowledge is monotonically growing. This does not hold for
several intruders that learn independent of each other. For the
resulting generalized class of weak-well-formed constraints, we
give a novel constraint reduction procedure and prove that it
is sound, complete and terminating. We also prove that it is
NP-complete.

Keywords- Multiple independent intruders, constraint-based
deduction, routing protocols, mobile code.

I. INTRODUCTION

It is common in security to model one single intruder who
works against all other honest participants. Even if we have
in practice more than one dishonest adversary, the worst
case is that they all collaborate. This allows one to simply
think of all dishonest participants to be agents under control
of one intruder. Moreover, one usually considers that the
entire communication medium is controlled by the intruder:
he can see all messages sent, block messages, insert any
message he knows claiming any sender name. Even though
it is of course unrealistic that an intruder controls the entire
Internet, it makes sense again as a worst case assumption,
because any communication line that is not secured physically
should be assumed insecure and therefore messages must
be protected using cryptography. This gives us a simple and
powerful intruder model, namely an intruder that basically
is the communication medium: every messages sent by an
honest agent goes directly into the intruder knowledge and
every message received by an honest agent is something
from the intruder knowledge.

The conglomeration of all the dishonest participants into
one single intruder however relies (besides their willingness
to collaborate) on the assumption that all these participants

can arbitrarily exchange messages, i.e., whenever one of
them learns any value he can immediately tell it to every one
of the intruders—so that we can truly work with one global
intruder knowledge. This assumption obviously holds true
when all communication lines are controlled by the intruders,
but it does not, if we consider a world where intruders may
be to some degree isolated from each other.

In this paper, we consider a model of several independent
intruders that are willing to collaborate, but that cannot
directly communicate with each other. We give two scenarios
where such an intruder model is relevant: routing in wireless
ad-hoc networks and the mobile ambient problem.

Wireless ad-hoc networks are decentralized networks, they
do not rely on a pre-existing infrastructure. They crucially
depend on efficient and correct routing protocols. Routing
protocols aim at establishing a valid route between a source
S and a destination D, i.e., a route representing an existing
path in the network from S to D where every two adjacent
nodes on the route are indeed real neighbors in the network.
We speak of a successful attack on a routing protocol when
the protocol establishes an invalid route. For a model where
all dishonest nodes collaborate and can freely communicate
with each other, Arnaud et. al. show that security of routing
protocols is co-NP-complete for a bounded number of
sessions [ACD10]. However, many routing protocols are
trivially vulnerable to such a powerful intruder who can
launch wormhole attacks, i.e., direct communication between
physically distant dishonest nodes [HPJ06], [LPM+05]. In
contrast many routing protocols are secure in a weaker
intruder model. In the model we consider, only neighboring
dishonest nodes can directly communicate. This weaker
model is in fact more realistic than the powerful intruder:
Especially in wireless ad-hoc setting, the intruder may have
only a limited number of devices under his control, and each
with a limited range. An extreme example is the case of
ad-hoc sensors that are thrown from a plane into the enemy
field during a battle.

The second scenario of multiple independent intruders that
we consider is a problem of mobile ambients: an intruder
has written some malicious code that is being executed on
one or more honest platforms, e.g., a web-browser, mobile
phone, or in a virtual machine. Each piece of code can be



thought of as one independent intruder, and a priori, these
intruders cannot communicate with each other: a platform
may have the code compute on some secret and try to ensure
that this secret never leaves the platform.

This model of independent intruders however clashes with
one of the most successful protocol verification techniques:
the constraint-based method of protocol verification, that
we simply call lazy intruder for short [Hui99], [MS01],
[CKRT03], [BMV05]. The idea of the lazy intruder is to
avoid exploring the space of all messages the intruder can
construct each time he is sending a message to an honest
agent. Instead we note a constraint T ` x where x is a
new variable and T is the set of messages he currently
knows and ` represents the intruder deduction relation, i.e.,
whatever x is, it must be something that can be deduced
from knowledge T . The variables like x get then instantiated
in a demand-driven, lazy way: we instantiate them only
when it is necessary for performing some transition. Note
that the answer that an honest agent sends in reply may
also contain variables that occurred in messages he received
previously. Therefore the intruder knowledge T ′ at a later
point can contain variables. Note that in the normal case
of a single intruder, we can rely on a well-formedness
property of the constraints: if knowledge T ′ contains a
variable x, then there must be an “earlier” constraint T ` t
where x occurs in t and T ⊆ T ′ because the intruder
knowledge is growing monotonically. This is very helpful
in the checking the satisfiability of constraints; in a nutshell,
once the T ` t constraint is solved we can rely that x is
something the intruder could construct from knowledge T ,
thus it is subsumed by the knowledge T ′ and we then do not
need to analyze it. It is well-known that the satisfiability
problem (and thus insecurity for a bounded number of
sessions) is NP-complete in the free algebra. Moreover there
exist several extensions for some algebraic theories like for
instance in [RT03], [CLS03], [MS03], [CKRT03], [DLLT08],
[CLCZ10].

In the case of multiple intruders, however, the monotonicity
does not hold anymore. Here it may happen that T ` x
represents that one of the intruders with knowledge T said
some message x to an honest agent, and later that agent
says a message that contains x to another intruder who
has knowledge T ′. If these intruders have been working
independently, T ⊆ T ′ may not hold.

It it thus a question whether one can adapt the lazy
intruder technique to handle also constraints without the
well-formedness assumption and so to apply this efficient
technique to the scenarios we have described. Indeed,
Avanesov et al. [ACRT10], [ACRT12] show that even without
well-formedness, satisfiability of the intruder constraints
is NP-complete. Note that the detailed description of the
method and the proof of its correctness spans around
40 pages. Even more crucially, the arguments rely on the
(non-deterministic) exploration of all possible solutions up to

a certain (polynomial) size. This defies the basic idea of the
lazy intruder to avoid the complete exploration of possible
messages the intruder could say, and is thus primarily of
conceptual value.

Contributions: We present a novel reduction calculus
for the satisfiability of lazy intruder constraints without
well-formedness that arise in the multiple-intruder setting.
The calculus is declarative and conceptually simple, and
so are the formal proofs of its soundness, completeness,
and termination. Also the proof of NP-completeness of
the problem, verifying [ACRT10], [ACRT12], is almost
immediate in our formalization.

Further, our calculus is close in its spirit to the original lazy
intruder technique, lazily narrowing to the possible solutions.
The main change to handle non-well-formed constraints is as
follows: if the variable x represents an arbitrary message than
one intruder has created, and x later appears in the knowledge
of another intruder, then our calculus will “optimistically”
assume that the first intruder transmits its entire knowledge
via x to the second intruder—as long as the reductions do
not force us to instantiate x in a particular way. Only in
this case, we check that our optimistic derivations are still
possible under the different instantiation of x. Thus we also
handle the non-monotonic knowledge problem in a truly
demand-driven, lazy way. We claim that with this idea in
fact all the various lazy intruder results for different algebraic
theories can be generalized to work with non-well-formed
constraints.

Further, we apply the multiple lazy intruder technique in
two applications. First, we formalize routing protocols for
wireless ad-hoc networks assuming independent dishonest
nodes. Here we give an example of a modified version of the
Secure Routing Protocol SRP [PH02] applied to the Dynamic
Source Routing protocol DSR [JMB01]. This protocol has
an attack in the standard intruder model where all dishonest
nodes can communicate with each other directly, but is safe
in our more realistic model of independent intruders (as long
as there is an honest node on every path between source
and destination). Second, we show how to extend the lazy
mobile intruder approach of [MNN13] to communication
with arbitrary cryptographic messages which also produces
non-well-formed constraints.

Outline: In Section II, we introduce definitions and
notations. In Section III, we summarize standard lazy intruder
procedure for well-formed constrains. Then in Section IV,
we first define the form of constraint system for weak-well-
formed constraints, i.e., for the case of multiple intruders.
Then we design some rules and prove that our procedure
is terminating, sound, and complete. We also prove that it
is NP-complete. Finally before concluding we present two
applications in Section V. First we model routing protocols
and show how to reducing security properties for a bounded
number of sessions to satisfiability of weak-well-formed
constraints. Then, we extend the result of [MNN13] in order
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to obtain a conjunction of weak-well-formed constraints for
ambient calculus. Note that missing proofs are given in
Appendix.

II. PRELIMINARIES

Messages are represented by terms build over the signature
given in Figure 1. We consider a countable set of variables
V . For a set V ⊆ V , we define a set of terms T (F , V ) to be
the smallest set containing F0 and V , such that for f ∈ Fn:
if t1, . . . , tn ∈ T (F , V ) then f(t1, . . . , tn) ∈ T (F , V ).

We do not consider any equational theory then in the rest of
the paper we use the standard syntactic subterms. In the case
that V = ∅, we simply write T (F), this is the set of ground
terms. For a term t, let vars(t) be the set of variables that
occur in t, such that for some f ∈ Fn:

vars(t) =

{
{t} if t ∈ V
vars(t1) ∪ · · · ∪ vars(tn) if t = f(t1, . . . , tn).

inv(·) private key of a given public key
scrypt ·(·) symmetric encryption
hmac·(·) message authentication code
acrypt ·(·) asymmetric encryption
sig ·(·) digital signature
l·, ·m concatenation
[] empty list
· :: · list constructor
req constant identifies the request phase
rep constant identifies the response phase
ik name of intruder k
Ω a constant available for all intruders
in,out, open constructors used for ambient calculus

Figure 1. Signature F .

Every intruder k has only access to his name ik and also to
all symbols of Figure 1 except inv(·) symbol. The functions
that intruder has access to are called intrudable functions.
Note that we use agent names as public keys.

Substitutions and Unifications: A substitution σ is a
mapping from V to T (F ,V) with the domain dom(σ) =
{x ∈ V | σ(x) 6= x}. We say that a substitution σ is ground,
if for every x ∈ dom(σ), the term σ(x) is ground. We extend
σ to a homomorphism on terms and set of terms as expected.
We say that the two terms t and s are unifiable, if there
exists a substitution θ, called unifier, such that θ(t) = θ(s).
We define the most general unifier, or for short mgu, of two
terms t and s to be a unifier, denoted mgu(t, s), such that
for any unifier θ of t and s, there exists a substitution σ
such that θ = σ ◦mgu(t, s), where ◦ is a composite of two
mappings.

III. THE CONVENTIONAL LAZY INTRUDER

We define how the intruder can deduce new messages
from a given set of messages that he has initially and that he
observed by eavesdropping on the network. Namely, how he
can decompose and compose messages in order to build new

ones. We model the ability of the intruder by the deduction
relation `. The relation T ` t means that the term t is
deducible from the set of terms T . In Figure 2, we define
this relation with a deduction system. The composition rule
(C) expresses that, for every intrudable function f ∈ Fn,
and for any terms t1, . . . , tn that the intruder can derive, he
can compose the term f(t1, . . . , tn), so that he can compose
messages by pairing, building lists, encrypting and signing
messages providing he has the corresponding keys. The rules
(UP ) and (UL) express respectively that the intruder can
decompose a pair and a list into their components. The axiom
rule (A) expresses that the given message t is contained on
the set T . The rule (SD) expresses that the intruder can
decrypt symmetric cipher only if he knows the encryption key.
The last two rules (AD) and (US) express respectively that
each term encrypted by a public key t2 can be decrypted by
the intruder only if he knows the corresponding private key
inv(t2), the same he can read a term signed by the private key
inv(t2) provided that he knows the corresponding public key
t2. Note that inv(inv(t)) 6= t and inv(·) is not intrudable:
the intruder cannot obtain the private key from a known
public key.

A. Syntax and Semantics of Constraints

We use constraints φ, ψ etc. over the following language:

φ, ψ ::= T ` t
| φ ∧ ψ
| x = t

where x is a variable, t is a term and T is a set of terms.
Let I be a mapping from variables to ground terms,

extended to a morphism on messages and sets of messages
as expected. Then we define:

I |= T ` t iff I(T ) ` I(t)
I |= φ ∧ ψ iff I |= φ and I |= ψ
I |= x = t iff I(x) = I(t)

The conventional lazy intruder is based on the following
assumption of well-formedness:

Definition III.1 (Well-formedness). Given a constraint φ ≡
T1 ` t1 ∧ . . . ∧ Tn ` tn ∧ φ0, where φ0 is a conjunction
of equality constraints. We say that φ (in this ordering of
the Ti ` ti) satisfies the knowledge monotonicity property
iff Ti ⊆ Tj whenever 1 ≤ i ≤ j ≤ n. We say that φ
satisfies the variable origination property iff for each variable
x ∈ vars(Tj) (with 1 ≤ j ≤ n) follows x ∈ vars(ti) for
some 1 ≤ i ≤ j. A constraint φ is called well-formed iff
its deduction conjunctions can be ordered so that both the
variable origination and knowledge monotonicity property
hold.

Intuitively, the ordering of the constraints is the temporal
order (i.e., in which the ti have been sent by the intruder),
knowledge monotonicity means that the intruder knowledge
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(C)
T ` t1 · · ·T ` tn
T ` f(t1, . . . , tn)

f is intrudable (UP )
T ` lt1, t2m

T ` ti
i ∈ {1, 2} (UL)

T ` t1 :: t2

T ` ti
i ∈ {1, 2} (A)

t ∈ T
T ` t

(SD)
T ` scryptt2(t1) T ` t2

T ` t1
(AD)

T ` acryptt2(t1) T ` inv(t2)

T ` t1
(US)

T ` sig inv(t2)
(t1) T ` t2

T ` t1

Figure 2. Intruder deduction system.

can only grow over time, and variable origination means that
variables do come out of the blue but first occur in a term
ti that the intruder sends. The assumption is crucial for the
completeness of the conventional lazy intruder procedure.

In the following section we will relax this well-formedness
assumption (and calling it weak well-formedness) by dropping
the knowledge monotonicity property—to allow for multiple
intruders that can learn independently, so their knowledges
cannot necessarily be ordered like this. We define that a
constraint is simple (or in solved form) if for every conjunct
T ` t it holds that t ∈ V .

B. A Proof Calculus

The lazy intruder proof calculus is a declarative way to
describe much of the constraint reduction and to keep it
separated from some of the technical aspects. The proof
rules have the form ψ

φ and should be read as follows: if
constraint ψ is satisfiable, then so is φ. One would use
them backwards, i.e., starting with a constraint φ, find all
applicable rules to reduce to some simpler ψ—until a simple
form (solved form) has been found. We consider only the 3
following proof rules in the free algebra:

Generate Rule: :
T ` t1 ∧ . . . ∧ T ` tn ∧ φ
T ` f(t1, . . . , tn) ∧ φ

for any operation symbol f that is available to the intruder.
Unification Rule:

σ(φ) ∧ eq(σ)

T ` t ∧ φ s, t /∈ V, s ∈ T, σ ∈ mgu(s, t)

where mgu(s, t) denotes the set of most general unifiers of
s and t and eq([x1 7→ s1, . . . , xn 7→ sn]) is the formula
x1 = s1 ∧ . . . ∧ xn = sn.

Analysis Rule: The analysis rule for asymmetric encryp-
tion for instance looks as follows, allowing the intruder to
obtain the plain-text of a message but adding the constraint
that he knows the respective private key:

T ` inv(k) ∧ (T ` t ∧ φ)m�T

T ` t ∧ φ acryptk(m) ∈ T

where φm�T shall denote that we look in φ for all conjuncts
of the form T ′ ` m′ and if T ⊆ T ′, we replace it with
T ′ ∪ {m} ` m′, i.e., in all super-knowledges of T the
message m will be available. This update of the intruder

knowledge is convenient to preserve well-formedness without
any cumbersome constructions.

For opening a signature, the intruder needs the correspond-
ing public key:

T ` k ∧ (T ` t ∧ φ)m�T

T ` t ∧ φ
sig inv(k)(m) ∈ T

For symmetric encryption, the intruder needs the key itself:

T ` k ∧ (T ` t ∧ φ)m�T

T ` t ∧ φ scryptk(m) ∈ T

Finally, from pairs and lists he gets the components without
any requirements on his knowledge:

(T ` t ∧ φ)m1,m2�T

T ` t ∧ φ lm1,m2m ∈ T or m1 :: m2 ∈ T

IV. MULTIPLE LAZY INTRUDERS

The “classical lazy intruder” of the previous section was
based on the assumption of well-formedness, i.e., that all
variables originate from intruder choices and the intruder
knowledge grows monotonically. Therefore, in a constraint
T ` t with x ∈ T , we know there is an “earlier” constraint
T0 ` t0 such that T0 ⊆ T and x occurs in t0. Intuitively,
x is part of a choice the intruder made earlier, at a smaller
knowledge. Suppose we first apply reduction to T0 ` t0,
then we either instantiate x with something more concrete,
or we eventually end up with T0 ` x. In this case, we know
that whatever x is, it can be constructed from T0. Thus, we
can safely ignore the message x in T ` t (some constraint
systems even do remove it). In fact, this is the reason why
the calculus is complete despite the fact that analysis and
unification rules cannot be applied to a variable x in the
knowledge.

We now like to consider multiple intruders that learn
messages independent of each other and who are separated so
that they cannot pool their knowledge. For instance, consider
two intruders with knowledge T1 = {k, c1} and T2 = {k, c2}
and between whom sits an honest agent who would be happy
to forward one arbitrary message received from the first
intruder to the second intruder. Finally, let the goal be that the
second intruder can produce c1. This can be expressed by the
constraint: T1 ` x∧T2∪{x} ` c1. This constraint is not well-
formed, because T1 ( T2. On non-well-formed constraints,
the classical lazy intruder is still sound and terminating, but
not necessarily complete. For the given example, it would
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miss the solution x = c1 (because the unification rule cannot
be applied between c1 and x). We thus define a weaker
version of the well-formedness assumption that is satisfied
for constraints produced by multiple intruders:

Definition IV.1 (Weak well-formedness). A constraint φ is
called weakly well-formed iff its deduction conjunctions can
be ordered so that the variable origination property holds:
φ ≡ T1 ` t1 ∧ . . .∧Tn ` tn ∧φ0, where φ0 is a conjunction
of equality constraints, and for every variable x ∈ vars(Ti),
1 ≤ i ≤ n, exists j, 1 ≤ j < i, such that x ∈ vars(tj).
Moreover well-formedness requires that for every equation
x = t, x cannot occur on the left-hand side of any other
equation or in T ` t.

Again, in applications the order on the constraints is
simply the temporal order in which the constraints arise,
and weak well-formedness means that variables have to first
occur in a term ti that an intruder says. Therefore, every
variable x that occurs in the constraints is associated to
one conjunct Ti ` ti in which it first occurs (in ti) and
the possible values of x “originating” from the knowledge
Ti (although in general x ∈ Ti does not hold). For a well-
formed constraint φ, let us thus denote with knowφ(x) this
knowledge Ti from which x originates.1 We may omit
the subscript φ when clear from the context. The rest of
this section is devoted to design a sound, complete, and
terminating reduction procedure for weakly well-formed
constraints. The main idea for this can be illustrated by
the above example: here we could use the variable x as
a kind of “channel” through which the first intruder could
transmit all his current knowledge to the second intruder,
i.e., he could simply choose x = lk, c1m. This channel idea
does, however, not work in general: we may have further
constraints on x that destroy the channel. Suppose we have
the further constraint {f(x)} ` f(scryptk(y)) then there is
still a solution, namely y = c1 and x = scryptk(y), but the
simple solution of choosing x to be the concatenation of the
entire knowledge T1 does not work then.

In fact, we thus use an “optimistic strategy”: as long as we
are not forced to instantiate variables in a particular way, we
just assume that they can transport the entire knowledge from
which they were created. We would that replace the above
constraint T2∪{x} ` c1 with T1∪T2 ` c1 optimistically. We
have to remember however that this is optimistic and relies
on variable x to transport the entire knowledge, so we need
to remember the original constraint (modulo instantiations
of variables we have made) so we can revert to it when x
gets instantiated. This motivates a new form of constraints
to carry the entire information.

1In some cases, this knowledge is not uniquely determined because there
may be more than one order of the T ` t conjuncts such that the variable
origination property is satisfied. In this case, we simply assume that one
fixes one such order throughout the constraint reduction.

A. Optimistic Constraint Systems

Definition IV.2 (Optimistic Constraint System). An opti-
mistic constraint system has the form φ[V ]φ′ where φ and
φ′ are conventional weakly well-formed intruder constraints
and V is a set of variables. For every equation x = t of φ
and φ′, x /∈ V .

The idea is that φ is the original constraint (modulo
instantiations of variables we always perform throughout
φ and φ′), and φ′ is what is left to solve if we can use all
variables in V as channels, i.e., if we can instantiate them
arbitrarily). In fact we treat both [V ] and φ′ as an annotation
to the constraint φ.

Definition IV.3 (Semantics). An interpretation I (map-
ping all variables to ground terms) satisfies an optimistic
constraint system if it satisfies the classical part: I |=
φ[V ]φ′ iff I |= φ. The meaning of the annotation [V ]φ′

is determined only indirectly by an invariant. Let φ and φ′

be weakly well-formed. Let Rφ
′

V ≡
∧
x∈V {x} ` knowφ′(x).

We omit φ′ in Rφ
′

V when it is clear from the context. We define:
invariant(φ[V ]φ′) iff φ′∧Rφ

′

V |= φ . As is standard, the |=
relation between formulae here denotes logical implication,
i.e., all models of the first formula are models of the second.

The invariant thus expresses the following property our
procedure will rely on: for solving φ it is sufficient to solve
φ′ as long as every variable x ∈ V can be instantiated to
communicate the entire knowledge knowφ′(x)—so intruders
who know x also know knowφ′(x). The invariant ensures
that in all interpretations in which this holds, also φ holds.

We prove below that all constraint reductions we consider
in this paper preserve the invariant, and we will start with
the constraint φ[]φ for which the invariant trivially holds,
since φ |= φ. In contrast, it would be difficult to check for
an arbitrary optimistic constraint store whether it satisfies the
invariant. We therefore define the notion of simple constraints
independent of the invariant.

Definition IV.4 (Simplicity). An optimistic constraint store
is simple if it has the form φ[V ]φ′ and φ′ is simple.

Lemma IV.1 (Satisfiability). If φ[V ]φ′ is simple and satisfies
the invariant, then φ is satisfiable.

Proof: Let φ[V ]φ′ be a simple constraint store, then φ′

is simple. Consider the following set of equations:
• Every x = t that occurs in φ′

• x = lt1, . . . , tnm for every x ∈ V and knowφ′(x) =
{t1, . . . , tn} (choosing any order for the ti).

• x = Ω for all other variables.
By weak well-formedness of φ′, every variable x occurs
only on the left-hand side of one unique equation in this
system. We can thus, by successive replacement, obtain an
interpretation I that is a model of this set of equations. This
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interpretation satisfies φ′ because every intruder knows (at
any knowledge) the special constant Ω. Further I |= RV ,
because each x ∈ V is instantiated with a concatenation
of the terms in the respective knowledge. By the invariant
follows I |= φ. Thus, we have constructed a model of φ and
thus φ[V ]φ′ is satisfiable.

B. Expansion and Substitution
A key element of optimistic constraint stores is that we

work temporally under the assumption that every variable
x in the intruder knowledge carries the entire knowledge it
originates from, i.e., knowφ′(x). We thus define a function
that expands the intruder knowledges in φ′ as follows:

expand(φ[V ]φ′) =
expand(φ[{x} ∪ V ]T \ {x} ∪ knowφ′(x) ` t ∧ φ′0)

iff φ′ = φ′0 ∧ T ` t and x ∈ T ∩ V,
φ[V ]φ′, otherwise

Note that in the first clause, there is a non-deterministic
choice of the conjunct and variable to process first; the
final result is however uniquely defined (i.e., every order of
expansions leads to the same normal form where T ∩ V = ∅
for every conjunct T ` t of φ′).

Based on the definition of the expansion function, we
define how to apply a substitution to the optimistic constraint
system, recording also the substituted variables in an equation
both on the φ and φ′ side: σ(φ[V ]φ′) ={

expand(σ(φ) ∧ eq(σ)[]σ(φ)eq(σ)) if dom(σ) ∩ V 6= ∅
σ(φ) ∧ eq(σ)[V ]σ(φ′) ∧ eq(σ) otherwise

Lemma IV.2 (Closure). For every φ, the optimistic constraint
φ[]φ satisfies the invariant. Application of the function
expand and application of a substitution σ to φ[V ]φ′

preserves the invariant and the weak well-formedness.

C. Reduction Rules
For the new optimistic constraint stores, we now introduce

reduction rules that are working in a similar way as the ones
of the conventional lazy intruder.

Unify: First we have a unify rule that allows us to unify
a term t to generate with a term s in the knowledge. We then
apply the unifier σ to entire optimistic constraint store which,
as defined above, will re-instantiate σ(φ) if σ substitutes any
variable of V .

σ(φ[V ]φ′)

φ[V ]T ` t ∧ φ′
s ∈ T ; s, t /∈ V; σ ∈ mgu(s, t)

Generate: Next, we have a generate rule that reduces the
derivation of a composed term f(t1, . . . , tn) to the derivation
of its subterms ti if f is an intrudable operation.

φ[V ]T ` t1 ∧ . . . T ` tn ∧ φ′

φ[V ]T ` f(t1, . . . , tn) ∧ φ′
f intrudable

Analyze Crypt: Finally, we have the analysis rules. For
asymmetric encryption, when in a deduction constraint T ` t,
T contains a term acryptk(m), then we can try to derive
the decryption key, i.e., add the constraint T ` inv(k) and
add the resulting m to every other constraint with knowledge
that is a superset of T :

expand(φ[V ]T ` inv(k) ∧ (T ` t ∧ φ′)m�T )

φ[V ]T ` t ∧ φ′
acryptk(m) ∈ T

Note that we apply here the expand function to the
resulting constraint. This is because the resulting term m of
the analysis step may be a variable—in this case potentially
being a channel from another intruder knowledge knowφ′(m).
The other analysis rules are similarly adapted from the
conventional lazy intruder.

We illustrate our procedure using the following constraint
system φ. We have that I(x): I(x) = acryptk(k) and
I(y) = k is a solution of φ.

φ =


{a, acryptk(k)} ` x
{x, inv(k), b} ` scryptk(b)

{f(x)} ` f(acryptk(y))

We show how to obtaine this solution by applying our
procedure. We starte from expand(φ[]φ):

φ [{x}]


{a, acryptk(k)} ` x
{a, acryptk(k), inv(k), b} ` scryptk(b)

{f(x)} ` f(acryptk(y))

Generate and Unify b on second:

φ [{x}]


{a, acryptk(k)} ` x
{a, acryptk(k), inv(k), b} ` k
{f(x)} ` f(acryptk(y))

Analysis on second:

φ [{x}]


{a, acryptk(k)} ` x
{a, acryptk(k), inv(k), b} ` inv(k)

{a, acryptk(k), inv(k), b, k} ` k
{f(x)} ` f(acryptk(y))

Unify inv(k) on second and k on third:

φ [{x}]
{ {a, acryptk(k)} ` x
{f(x)} ` f(acryptk(y))

Unify on second: σ = {x → acryptk(y)}: as x ∈
dom(σ)∩ V , the application of σ results in expand(σ(φ)∧
eq(σ)[]σ(φ) ∧ eq(σ)).

σ(φ) ∧ eq(σ) []


{a, acryptk(k)} ` acryptk(y)

{acryptk(y), inv(k), b} ` scryptk(b)

{f(acryptk(y))} ` f(acryptk(y))

x = acryptk(y)

6



Unify on first: σ′ = {y → k}, σ′′ = σ′ ◦ σ:

σ′′(φ) ∧ eq(σ′′) []


{acryptk(k), inv(k), b} ` scryptk(b)

{f(acryptk(k))} ` f(acryptk(k))

x = acryptk(y) ∧ y = k

Generate and Unify b on first:

σ′′(φ) ∧ eq(σ′′) []


{acryptk(k), inv(k), b} ` k
{f(acryptk(k))} ` f(acryptk(k))

x = acryptk(y) ∧ y = k

Analysis acryptk(k) on first:

σ′′(φ) ∧ eq(σ′′) []


{acryptk(k), inv(k), b} ` inv(k)

{acryptk(k), inv(k), b, k} ` k
{f(acryptk(k))} ` f(acryptk(k))

x = acryptk(k) ∧ y = k

Unify on first, second and third:

σ′′(φ) ∧ eq(σ′′) []
{
x = acryptk(k) ∧ y = k

We now want to show that the reduction calculus is
correct, complete and terminating, and since for a large
part, the reduction is working on the annotation part [V ]φ′

of an optimistic constraint, we first need to prove that the
invariants (and the weak well-formedness) are preserved by
any application of the reduction rules.

D. Preservation of the Invariant

Unify Rule: Suppose the invariant holds for φ[V ]T `
t ∧ φ′, s ∈ T , s, t /∈ V , σ ∈ mgu(s, t). If dom(σ) ∩ φ 6= ∅,
then the result is expand(σ(φ)∧eq(σ)[]σ(φ)eq(σ)) for which
the invariant and the weak well-formedness follows already
by Lemma IV.2. Otherwise we have σ(φ)∧ eq(σ)[V ]σ(φ′)∧
eq(σ). Now we have

RV ∧ φ′ ∧ eq(σ)
|= RV ∧ φ′ ∧ T ` t because σ ∈ mgu(s, t)
|= φ by the invariant before reduction.

Weak well-formedness in this case: consider an order
according to which T ` t ∧ φ′ is well-formed. Let x be
a variables that occurs in t and that originates in the T ` t
conjunct. The unifier σ then either
• substitutes x; and then the variables of σ(x) originate

in earlier constraints, or
• substitutes a variable y that occurs in s ∈ T with a

term containing x. Since y must originate in an earlier
constraint T0 ` t0 in φ′, we have that in σ(φ′), x
originates in σ(T0 ` t0).

So in both cases variable origination of x or σ(x) is preserved,
even though the T ` t constraint is removed.

Generate Rule: For the invariant, the derivation is again
similar, this time using the implication: ∧ni=1T ` ti |= T `
f(t1, . . . , tn) if f is intrudable. Weak well-formedness is
immediate if we consider the T ` ti (in any order) to take

the position of T ` f(t1, . . . , tn) in the well-formedness
order.

Analysis Rule: Let acryptk(m) ∈ T and T ′ ⊇ T ; then
we have T ` inv(k) ∧ (T ′ ∪ {m}) ` t |= T ′ ` t thus
T ` inv(k) ∧ (ψ)m�T |= ψ for any ψ. Then preservation
of the invariant is immediate.

Weak well-formedness: the new conjunct T ` inv(k) is
in the order just before T ` t. The addition of m in T does
not destroy the origination property because m is a subterm
of a term in T .

E. Soundness
Lemma IV.3 (Soundness). All the constraint rules are sound,
i.e., for every concrete reduction χ′

χ with our calculus holds
χ′ |= χ.

F. Completeness

The completeness lemma states that, if a constraint is
satisfiable under a particular interpretation, then it is either
already simple or there exists an applicable reduction rule
that supports that interpretation. Together with soundness
and termination below, this gives a decision procedure for
satisfiability.

Lemma IV.4 (Completeness). Given a weakly well-formed
conventional constraint φ. Starting with the optimistic con-
straint expand(φ[V ]φ), all optimistic constraints that we can
reach with the reduction rules are either simple, unsatisfiable,
or admit the application of another reduction rule.

G. Termination

Note that our calculus still admits infinite derivations: when
an analysis rule is applicable, the same rule can be applied
over and over again, but without changing the semantics of
the constraint, since we just add a conjunct that we already
have and extend the intruder knowledge of some constraints
with a term that they already contain. Let us call an analysis
step redundant, when it triggers the update m � T for
some m ∈ T . Note this is not a semantical check (like
I(T ) ` I(t)), but simply a syntactic measure to apply a rule
again or for a trivial case. Excluding redundant steps, our
calculus is terminating:

Lemma IV.5 (Termination). Given the optimistic constraint
store expand(φ[]φ) for some weakly well-formed conven-
tional constraint φ. Then the reduction rules do not admit
an infinitely long sequence of non-redundant reduction steps.

Theorem IV.1 (Decision Procedure). Given a weakly
well-formed conventional intruder constraint φ. Then
our extended calculus derive from φ[]φ a finite set
{φ1[V1]φ′1, . . . , φn[Vn]φ′n} of optimistic constraints that are
simple and have the same models as φ, i.e.,

I |= φ iff I |= φi[Vi]φ
′
i for some i ∈ {1, . . . , n} .
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Note that φ is unsatisfiable iff n = 0.
The problem whether a weakly well-formed conventional

constraint φ is satisfiable is NP-complete.

Proof: Compute all non-redundant reductions of
expand(φ[]φ) to simple constraints. By the termination
lemma, there is no infinitely long derivation. Moreover, the
reduction relation is finitely branching, i.e., to an optimistic
constraint system φ[V ]φ′ every reduction rule can be applied
only in finitely many ways. Thus by König’s lemma, there
are finitely many reachable optimistic constraint systems
φi[Vi]φ

′
i. By the soundness lemma, their models are a subset

of the models of φ and by completeness lemma, a superset.
For the NP-hardness of the problem is straightforward

because it is a generalization of the conventional lazy intruder
(with well-formed instead of weakly well-formed constraints)
and which is already NP-complete [RT01].

For containment in NP, observe that the usual guess-
and-check argument is not directly possible, because the
smallest solution maybe exponential. For instance, a con-
straint may have as the only solution: X1 = lc, cm, X2 =
lX1, X1m, . . . , Xn = lXn−1, Xn−1m.

Like [RT01] we use the fact that all these substitutions
can however be represented by a polynomial-size DAG. This
follows from the termination proof as follows: for a constraint
with n variables, we can at most perform n substitutions of
variables with more concrete terms throughout the deduction.
These substitutions are always with subterms of the initial
φ. Therefore whatever substitution we can reach, it can be
represented by a polynomial size DAG, and we can even
effectively enumerate this space because it is bounded by
the subterms of φ. So we can have a polynomial-time non-
deterministic machine guess any of the possible substitutions
that can be performed by the calculus. Checking that such a
substitution σ is a solution is relatively easy as we sketch
it briefly. We do not perform σ to the constraint because
this can lead to an exponential blow-up, but we note that
we can polynomially check whether for given terms s and
t, σ(s) = σ(t). We first perform the expansion of every
intruder knowledge Ti with respect to variables that have
not been substituted by σ. Then we analyze each knowledge
Ti as far as possible without performing substitutions, i.e.,
if t ∈ Ti with σ(t) = crypt(k,m), then check whether
k can be derived by Ti by only composition (without
substitution). Then add m. Again this must all be done
without performing σ. E.g., given σ(x) = crypt(x1, x2)
(actually σ(x) = crypt(σ(x1), σ(x2)—but we assume the
DAG representation here), we check that x1 can be derived,
and if so add x2, but we do not expand to σ(x1) and
σ(x2). Similarly, on the construction side we must avoid the
expansion. For both analysis and generation we must avoid
an exponential number of steps, even though the ground
terms have exponential size. The point is that they can only
have exponential size by repetition of variables (i.e., they

are based on a polynomial-size set of distinct subterms).
Thus decomposition cannot run into exponentially many
steps; composition can however: consider lX1, f(X1)m and
suppose we first compose X1 and then later f(X1). This is
however easy to avoid: compose pair and f so it remains to
compose is (one instance of) X1. With this it is possible to
check the constraints for a given σ in polynomial time.

H. Extensions

We now consider a few generalizations of our approach.
We did not directly incorporate them into our main exposition,
as they unnecessarily complicate the presentation of the core
ideas.

First we observe that with weak well-formedness, we
still assume the variable origination property, i.e., that we
can order constraints so every variable first occurs on the
right-hand side of some constraint. In contrast, [ACRT10]
consider even constraints where variables are introduced
on the left-hand side of a constraint. This means that one
intruder receives a message with an undetermined subterm x,
so this variable could be instantiated with any ground term.
This in particular means that the initial knowledge of the
intruders is not necessarily ground. It is possible to handle
this kind of constraints with our method, but we need to
make some minor modifications. Intuitively, a non-originating
variable x ∈ T means that the respective intruder can “make
a wish”. Note that the adaption of the semantics, invariant,
and proofs is complicating everything without being very
insightful. Since we did not see any practical example that
would generate constraints with non-originating variables,
we decided to keep it out of our main presentation.

Another extension of our approach is the handling of
algebraic properties such as the properties of modular
exponentiation for Diffie-Hellman based protocols. The
problem of the multiple intruder is really orthogonal to
the problem of handling algebraic equations. In fact we
believe that one can “lift” any lazy intruder calculus for
well-formed constraints that is correct and terminating for a
particular algebraic theory—to one that analogously works
on optimistic constraints to be correct and terminating on
weakly well-formed constraints. We plan to investigate this
claim as part of our future work.

V. APPLICATIONS

A. Routing Protocols with Multiple Independent Intruders

In this section we show how our procedure can be used
to analyze routing protocols for ad-hoc networks. First, We
give a modified version of the Secure Routing Protocol
SRP [PH02] applied to the Dynamic Source Routing protocol
DSR [JMB01]. Then we show that in the extended Dolev-
Yao model proposed by Arnaud et al. (where all intruders
share their knowledge) there is an attack, but if we consider
independent intruder this attack does not exists any more.
Finally, we show how we can model the execution of SRP
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protocol over our model by a weak-well-formed constraint
system, and show that, by solving the obtained constraints,
we can get a trace of an attack on SRP protocol.

Let us recall SRP protocol applied to DSR assuming that
each node already knows its neighbors and that the source S
and the destination D of the route discovery already shared
a certain symmetric key KSD. The SRP protocol consists of
two phases as follows:

Request phase:
• The source S broadcasts to its neighbors a request mes-

sage: lreq, S,D, Id, [S], HSm, where Id is a unique
identifier, [S] is the initial route list and HS is the
MAC: hmacksd(lreq, S,D, Idm).

• Each intermediate node that receives the request checks
the list, if the list ends with a neighbor’s identifier, then
it broadcasts the request after appending its identifier
to the list, else it drops the message.
Reply phase:

• Once the destination node received a message, it checks
that last node in the route is one of its neighbors and
verifies the MAC. Then it initiates the reply phase by
sending a message containing the discovered route, and
a MAC with the key KSD.

• Each intermediate node checks if its identifier appears
in the route list between two of its neighbors, if so it
forwards the message to the next node in the route list.

• Once the source S receives a message containing a route
to D with a MAC matching this route. It checks that
the route does not contains loops and that its neighbor
in the route is indeed one of its neighbor in the network.

The only difference between MSRP and SRP, is that
the destination D initiates the reply phase by sending the
discovered route signed with its private key inv(D). So,
other nodes have to verify this signature.

We represent the network by an undirected graph G =
(V,E) where V is a ground set of nodes made up the network
and E is a set of couples that represents the symmetric links
between nodes. The statement (a, b) ∈ E means that a and b
are neighbors. All identifiers used in the protocol description
that starts with an upper-case letter, e.g. S,D, are variables
and we use identifiers that starts with lower-case letters, e.g.
s, d, to denote the concrete values used in an execution of
the protocol. Note that we use lt1, t2, . . . , tnm to represent
lt1,lt2,l · · · , tn m · · ·mm for simplicity.

s i1 a i2 d

Figure 3. Graph G0

Consider the network represented in graph G0 of Figure 3,
assume that the node s initiates a route discovery to reach
the node d, and that i1 and i2 are two intruders. We show
an attack exists on MSRP if i1 and i2 share their knowledge,

and cannot be mounted if they are independent,i.e. they do
not share there knowledge. First, assume that i1 and i2 share
their knowledge, then we have the following attack:

Request phase: The source s chooses a unique id
and broadcasts m1 = lreq, s, d, id, [s], hsm, where hs =
hmacksd(lreq, s, d, idm). The node i1 receives the route
request message m1. As i1 and i2 share their knowledge,
then i1 shears m1 with i2. So, i2 can modify m1 and obtain
a fake message m′1 = lreq, s, d, id, [s, i1, i2], hsm and send
it to d. Since, i2 is neighbor of d and the MAC hs computed
by ksd, then d accepts m′1.

Reply phase: The destination d signs
the list with inv(d), computes a new MAC
hd = hmacksd(lreq, s, d, id, [s, i1, i2, d]m) and sends
m2 = lrep, s, d, id, sig inv(d)([s, i1, i2, d]), hdm to i2, in
order to propagate it back to s. When the node i2 receives
the message m2, i2 shares it with i1. In order to complete
the attack i1 just forward m2 to s. As i1 is neighbor of s,
the MAC of hd built by d with the correct key ksd, the
route [s, i1, i2, d] is loop free and signed by inv(d) then s
accepts the messages. Thus, i1 and i2 can force s and d
to believe in the false route [s, i1, i2, d] if they share their
knowledge.

Now, assume that i1 and i2 are independent. We show
that they can not force s and d to believe in the false route
[s, i1, i2, d]. The source s initiates the protocol as usual, so
i1 receives the request m1 = lreq, s, d, id, [s], hsm, where
hs = hmacksd(lreq, s, d, idm). If i1 sends m1 to the node
a, then a will drop it since s and a are not neighbors. Another
choice for i1 is to follow the protocol by sending m1 to a
after appending its identifier to the list, then a will accepts it,
appends its identifier and sends lreq, s, d, id, [s, i1, a], hsm
to i2. Now:
• If i2 removes a from the list, appends i2 and sends m′1 =

lreq, s, d, id, [s, i1, i2], hsm to d. Then, d checks the hs
accepts it and initiates the reply phase by sending m2 =
lrep, s, d, id, sig inv(d)([s, i1, i2, d]), hdm to i2, where
hd = hmacksd(lreq, s, d, id, [s, i1, i2, d]m). Since, i2
can not get inv(d), he has no ability to modify the
signed list sig inv(d)([s, i1, i2, d]) by adding a’s identifier.
So, i2 cannot pass m2 through a, since a will drop it
as its identifier is not on the list.

• If i2 follows the protocol and sends
lreq, s, d, id, l, hsm to d, where l = [s, i1, a, i2, d].
Then, d will reply by lrep, s, d, id, sig inv(d)(l), h′dm
to i2, where h′d = hmacksd(lreq, s, d, id, lm). Since
neither i1 nor i2 can modify the signed list sig inv(d)(l),
they cannot remove a from the l, and so they cannot
force s to believe in the route l = [s, i1, i2, d]

We show how to model the execution of SRP by a weak
well-formed constraint system, and show that, by solving
the obtained constraints, we can get a trace of an attack
on SRP in the network G0 of Figure 3 if i1 and i2 are
independent. Assume that the initial knowledge of i1 and
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i2 are T 1
0 = {s, i1, a, inv(i1)} and T 2

0 = {a, i2, d, inv(i2)}
respectively. We assume that a secure neighborhood discov-
ery protocol has been used, consequently, each node can
check whether a given node is one of its neighbors. We
express these checks thanks to a the following grammar:
P,Q ::= test(·, ·), testl(·, ·), route(·, ·, ·),noloop(·), P ∧
Q,P ∨Q,¬P , where test(·, ·) checks neighborhood property
of two nodes, testl(·, ·) checks local neighborhood property
of a node in a list, route(·, ·, ·) checks validity of a route
between two nodes, noloop(·) verifies that a given list is
free from loops.

In Figure 4, we give the semantics of the predicates which
models the security properties for analyzing routing protocols,
for a given graph G = (V,E), nodes A,B,C, S and D, and
list L.

We consider the interaction of the intruders with honest
nodes where the exchanged messages are of the form
expected by honest nodes, ignoring for a moment the question
whether the intruder can generate the respective messages.
Using constraints, we model the requirement that the intruder
is able to generate each message he sent from his current
knowledge. The modeling is as follows:

Request phase: The source s broadcasts
u1 = lreq, s, d, id, [s], hsm, where hs =
hmacksd(lreq, s, d, idm)m. The first intruder i1 receives
u1 and adds it to his knowledge, so the knowledge of i1
becomes T 1

1 = T 1
0 ∪ {u1}. The node a expects a message

of the form v1 = lreq, S1, D1, Id1, L1 :: N1, H1m, such
that N1 is neighbor of a. We model this by the constraint:
T 1
1 = T 1

0 ∪ {u1} ` v1 and the formula Pa = test(a,N1)
that reflect, when satisfied, the ability of intruder to build
a message of the expected form. The honest node a
receives v1, appends its identifier to L1 :: N1 and sends
u2 = lreq, S1, D1, Id1, L1 :: N1 :: a,H1m to i2 which
add it to his knowledge. Now, i2 has to build the message
v2 = lreq, S2, D2, Id2, L2 :: N2, H2m, this results in a
new constraint T 1

1 = T 1
0 ∪ {u1} ` v1 and the formula

Pd = test(N2, d) which grantee that N2 is neighbor of d.
Reply phase: The destination d computes hd =

hmacksd(lrep,D2, S2, Id2, L2 :: N2 :: dm) and sends
u3 = lrep, S2, D2, Id2, L2 :: N2 :: d, hdm to i2. Then
i2 has to build v3 = lrep, S′2, D′2, Id′2, L′2, H ′2m and sends
it to a, that result in the constraint T 2

3 = T 2
0 ∪{u2, u3} ` v3.

The node a have to check if its identifier appears between
two of its neighbors in the list, the formula P ′a = test(a, L′2)
reflects this check. So, we assume that a sends u4 = v3 to
i1. Finally, i1 has to build v4 = lrep, S′1, D′1, Id′1, L′1, H ′1m
and sends it to s, which results on T 1

4 = T 1
0 ∪{u1, u4} ` v4.

Since, s has to made neighborhood and loop free checks on
the list L′1 the formula Ps = testl(s, L′1) ∧ noloop(L′1) is
needed.

The resulting constraint system and logical formula are:
T 1
1 ` v1 ∧ T 2

2 ` v2 ∧ T 2
3 ` v3 ∧ T 1

4 ` v4 ∧ P , where
P = Ps ∧ Pd ∧ Pa ∧ P ′a ∧ ¬route(s, d, L′1).

By setting: S1, S′1, S2 and S′2 to s; D1, D′1, D2 and D′2 to
d; Id1, Id′1, Id2, and Id′2 to id; L1 and L2 to [s] and [s, i1]
respectively; L′1 and L′2 to [s, i1, a, i2, d] and [s, i1, i2, d]
respectively; N1 and N2 to i1 and i2 respectively. H1 and
H2 both to hs; H ′1 and H ′2 both to hd; we get a solution
for both the logical formula and the constraint system. This
solution is a trace for an attack on SRP in G0 over our
model i.e, i1 and i2 are independent, where s and d can be
convinced that [s, i1, i2, d] is a valid route between them.

B. The Mobile Intruder

In this section we consider the problem of a platform
that executes some code from an intruder, e.g., a web-server
running a script from a potentially malicious website, a
mobile phone running a downloaded application, or a virtual
machine that is hosting application from potentially dishonest
customers. We give an extension of our work in [MNN13]
which uses the mobile ambient calculus of Cardelli and
Gordon [CG00] to model the platforms and the code they
are hosting, and applies the constraint-based lazy intruder
technique to efficiently analyze security problems in this
calculus.

The ambient calculus is a process calculus with the
usual constructs like the parallel composition P | Q of two
processes P and Q. An ambient is a process with a boundary
around it, written n[P ] where P is a process and n is the
name of the ambient. For instance P1 | p[P2 | v1[P3] | v2[P4]]
could model a platform p that is running a process P2 as well
as two virtual machines v1 and v2 that run processes P3 and
P4, respectively; outside the platform runs another process P1.
There are three kinds of capabilities: in n, out n, and open n
to enter, exit, or open an ambient n, respectively. For instance
the process n[in m.P ] | m[Q] can reduce to m[n[P ] | Q].
Observe here that only an entire ambient (like n[·]) can move.
Cardelli and Gorden also consider an extension of the basic
ambient calculus with the communication of capabilities. A
process can only communicate when they are in parallel
with each other, namely: 〈M〉 | (x).P ⇒ σ(P ) where σ
substitutes x with M .

Our paper [MNN13] considers the execution of one or
more malicious processes in an environment of honest
participants. The malicious processes are constructed by an
intruder from his initial knowledge. The initial knowledge
consists of a set of (ground) ambient names and capabilities.
The intruder can construct processes from his knowledge
by using the constructors of the ambient calculus, just
like he can construct messages in protocol verification. For
instance knowing n and in m, he can construct the process
n[in m.(x).out x]. Note that the intruder may use arbitrary
variable symbols in a process, but the process must be closed,
i.e. every variable must be bound by some surrounding input
operation.

We are interested in the following problem. Let us call a
context C[·] “a process with a whole”, i.e. with a subterm
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I, G |= test(A,B) iff (I(A), I(B)) ∈ E or (I(B), I(A)) ∈ E
I, G |= testl(C,L) iff I(C) appears on I(L) between two of its neighbors.
I, G |= noloop(L) iff I(L) = a1 :: · · · :: an such that, for every 1 ≤ i, j ≤ n, if i 6= j then ai 6= aj .
I, G |= route(S,D,L) iff I(L) = a1 :: · · · :: an such that I(S) = a1, I(D) = an, for every 1 ≤ i < n,

(ai, ai+1) ∈ E, and for every 1 ≤ i, j ≤ n, if i 6= j then ai 6= aj .
I, G |= P ∧Q iff I, G |= P and I, G |= Q
I, G |= P ∨Q iff I, G |= P or I, G |= Q
I, G |= ¬P iff I, G 2 P

Figure 4. Semantics of the interpretations for formulas

where we can insert any term P of type process and to obtain
the process C[P ]. Given the following:
• an honest platform as a context C[·]
• an initial intruder knowledge T0,
• and an attack predicate attack(P ) that formalizes that

in P an attack has occurred
can the intruder construct any process P0 from T0, written
T0 ` P0 such that C[P0]→∗ P and attack(P ), i.e. can the
platform upon executing any intruder process ever reach an
attack state?

Note that even though we consider here only one initial
intruder process, this process may be a parallel composition
of several sub-processes and they may move to different
locations. For instance in above example of the host p with
two virtual machines, we may have that the intruder process
P0 is initially outside the host p. Then a sub-process of P0

may move into the virtual machine v1 and learn there a secret
s1, and another sub-process of P0 may similarly move into
v2 and there learn s2. The desired security property may for
instance be that neither process can ever communicate s1
or s2 to a process outside the host p and that no intruder
process ever sees both secrets s1 and s2.

Our approach is to use the lazy intruder technique to
answer this kind of questions: instead of directly exploring the
infinite space of processes P0 that the intruder can construct
from his initial knowledge T0, we work with a placeholder
T that represents any process that the intruder can construct

from knowledge T and instantiate it during the search. For
instance, from the state n[ T | R] | m[Q] we can reach
m[n[ T | R] | Q] if T ` in m. The reason is that if the
intruder has the capability in m, he can construct the process
P = in m.P0 from T for any process P0 a T . Thus, from
n[P | R] | m[Q] we can reach m[n[P0 | R] | Q]. The T
notation here allows us to work without the variables P and
P0 and focus on constraints like T ` in m that deal only
with capabilities (not processes).

When we look at communication, we get a very natural
effect with the lazy intruder: if the intruder code runs in
parallel with an honest process who wants to communicate
a capability M , then this capability is simply added to the
intruder knowledge: 〈M〉 | T → T ∪ {M} . This rule
is sound because for every process P that the intruder can
construct from knowledge T ∪{M} he can analogously build
a process (x).P ′ from knowledge T that contains the variable

x at every position where P uses the capability M . Thus,
replacing in P ′ every occurrence of x with M gives P .

Vice versa, if there is an honest process who would like
to receive a message, we can use the laziness of the intruder
to postpone the decision which concrete message should be
sent. The transition rule is therefore simply (x).P | T →
P | T where T ` x. Note that P is not a closed process
anymore, but has a free variable x (unless input x is never
used in P ). We add however the intruder constraint that x
must be some capability that can be constructed from T .

Finally, if two intruder processes meet, they can pool their
knowledge: T | T ′ → T ∪ T ′ . This is sound because
the intruder can design the first process so that it successively
sends every capability of T \ T ′ and the second process to
receives them.

From the lazy intruder approach we thus get a symbolic
state transition system where each state consists of a process
and a conjunction of T ` M constraints where T is a set
of capabilities and M is a capability (where both T and M
may contain variables). Every state in this symbolic transition
system has finitely many successor states and if we do not
have unbounded replication of honest processes (i.e. , !P ) we
can safely limit ourselves to exploring the transition system
to a finite depth [MNN13]. Safely here means that if an
attack state is reachable then one exists before the depth
bound. Thus what remains is to check the satisfiability of
the intruder constraints.

Here we have again the multiple-intruder problem, even if
we start with only one intruder process with ground initial
knowledge T0. This is because the intruder process can
branch into several ones that move and learn independently
in the contact with honest agents. Consider for instance
the process T | n[ T ′ | (x).m[out n.〈x〉]]. Here, inside
the ambient n we have an intruder running parallel with
an agent who wants to receive some x and then move
outside the ambient n and output x. Lazily we thus get
first T | n[ T ′ | m[out n.〈x〉]] with the constraint T ′ ` x.
Then we get with another transition to T |m[〈x〉] | n[ T ′ ].
Suppose open m ∈ T , then we can reach T | 〈x〉 | n[ T ′ ]

and thus T ∪ {x} | n[ T ′ ]. Thus, the process T ∪ {x}
has learned some value x that was generated from knowledge
T ′, and T ′ is not necessarily a subset of T .

As in the case of wireless ad-hoc networks, we thus
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produce here intruder constraints that are no longer well-
formed in the classical sense. In the example for instance,
any further constraint caused by the process T ∪ {x} will
be of the form T ∪{x} `M for some capability M , and here
we have a variable x in the knowledge side that originates
in a constraint T ′ ` x; the knowledge T ′ is not necessarily
a subset of T . However, as in the wireless scenario, we
do have the weak well-formedness: we have an order on
the constraints (the order in which they have been created)
according to which every variable first occurs on the right-
hand side of a `, i.e. every variable is still related to the
choice of some intruder rather than being an arbitrary value.

In fact, for the ambient calculus as considered in [MNN13],
this weaker form causes no trouble because the constraints
only deal with capabilities and there are no “analysis” rules
on that, i.e. , from a term that describes a capability we can
never learn a subterm. This is in contrast to messages in
cryptographic protocols, where an intruder can for instance
learn the clear-text of an encrypted message in his knowledge,
if he also knows the corresponding key for decryption. In fact,
analysis is in a way the tricky part when we have constraints
that are not well-formed in the classical sense.

Extending Ambients with Arbitrary Messages: An
interesting extension of ambients is to allow the commu-
nication of cryptographic messages between processes, so
that we can easily model communication protocols occurring
between the processes. The reason is that within a platform
(e.g. the network of a company, a virtual machine, or a
browser) the communication between processes may also
need properties like authentication and confidentially because
not all processes are necessarily honest.

In the ambient calculus, the term capability is defined as
the least closure of (ambient) names and variables under the
constructors in, out, and open. Communication is defined
as 〈M〉 and (x).P , and actions are of the form M.P where
M is capability x is a variable and P is a process. We now
propose the following conservative extension: capabilities
may be arbitrary terms from the message algebra T (F , V ),
and where in, out, and open are simply unary function
symbols of F that are intrudable. Of course all occurring
variables in a process should be bounded in the end as it
is standard, i.e. , we do not consider processes with free
variables (except during evaluations with the lazy intruder
where still all variables are “bounded” by some constraint).
We also want to allow (M).P on an input action where M
may contain variables. This is for pattern matching and means
that the process is willing to receive any ground message
that is an instance of M , thereby binding the variables in
M and continue with an appropriate instance of P . For
instance (acryptb(lxNA, xAm)).〈acryptxA

(lxNA, nbm)〉.
(acryptb(nb)).n[in m.〈xNA, nb〉] would be a process that
first behaves like the receiver role in the famous Needham-
Schroeder protocol and when that is successfully finished

enters the ambient m and outputs the agreed pair of nonces
in that protected environment.

Formally, the semantics of the ambient calculus is defined
operationally as a reduction relation on closed processes; we
change it by only generalizing the communication rule for the
described pattern matching: 〈M〉 | (M ′).P → σ(P ) if σ ∈
mgu(M,M ′). Note that this is on closed processes, so M
is a ground term, thus σ substitutes all variables of M ′ with
ground terms. Thus since (M ′).P is closed, also σ(P ) is.

One may wonder whether this needs other extensions,
since a process can read a variable and then perform that
as an action, so for instance 〈scryptk(m)〉 | (x).x.0 →
scryptk(m).0. In fact, we do not forbid that (just like the
original calculus does not forbid ill-formed capabilities like
in in m) and just observe that this process cannot go any
further because no rule matches it.

For the lazy intruder approach of checking mobile ambients
we do not get many changes either from this extension—in
particular the communication rules stay exactly the same
except the intruder output. Here, due to the pattern matching,
we need to generalize the rule as follows: (M).P | T →
P | T where T `M. i.e. , rather than a single variable x
the intruder here has to construct whatever term M is. As a
result we get a conjunction of weak-well-formed constraints
on messages. Note that the weak variable origination property
(i.e. each variable first occurs on the right-hand side of a
constraint) still holds because every free variable of the
process P in the above rule must occur in M .

VI. CONCLUSION

We have shown how to decide the satisfiability of weak-
well-formed constraint systems. Our procedure reduces a
given weak-well-formed constraint system into a set of
simpler ones, until we either reach a simple (or solved)
form or we cannot do further reductions. The correctness
proof shows that set of all reachable constraint systems we
can reach by these reductions are together equivalent to
the original constraint system. Moreover, when a satisfiable
constraint system is non-simple, there is an applicable
reduction rule. Thus, if we reach an irreducible, non-simple
constraint system, it must be unsatisfiable. The termination
proof ensures that the reduction of constraint systems does not
admit infinitely long non-redundant deductions. Moreover we
can easily see that the problem is still in NP (NP-hardness
follows because it is a generalization of an NP-complete
problem). We use this result about multiple independent
intruders to analyze routing protocols in wireless networks
where each intruder is a single node of the network who
cannot directly communicate with other intruders outside his
proximity. We further use it to extend the result of [MNN13]
to communication of arbitrary cryptographic messages; this
is helpful for analyzing platforms like web-browsers, mobile
phones, and virtualized infrastructures that host potentially
malicious code.
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APPENDIX

Lemma IV.2 (Closure). For every φ, the optimistic constraint
φ[]φ satisfies the invariant. Application of the function
expand and application of a substitution σ to φ[V ]φ′

preserves the invariant and the weak well-formedness.

Proof: The invariant holds for φ[]φ because φ |= φ.
Preservation of the invariant under expand: Let φ[V ]φ′

be a constraint that satisfies the invariant, and let φ′ =
φ′0 ∧ T ` t such that there exists a variable x ∈ T . After
applying expand, we thus have φ[V ∪ {x}]φ′′ for φ′′ =
φ′0 ∧ T ′ ` t where T ′ = T \ {x} ∪ knowφ′(x). We have to
show φ′′ ∧RV ∪{x} |= φ:

φ′′ ∧RV ∪{x} |= φ′0 ∧ T ′ ` t ∧ {x} ` knowφ′(x) ∧RV
|= φ′0 ∧ T ` t ∧RV |= φ′ ∧RV |= φ

The last implication uses the fact that invariant already holds
for φ[V ]φ′.

Preservation of weak well-formedness under expand:
All variables in knowφ(x) must originate even earlier in
the constraint according to the order of the weak-well-
formedness, so we cannot destroy the origination property.

Preservation of the invariant under substitutions: In the
first case, the invariant is preserved since σ(φ) ∧ eq(σ) |=
σ(φ) ∧ eq(σ) and expand preserves the invariant. For the
second case, first observe that from φ |= ψ follows σ(φ) |=
σ(ψ) for any φ,ψ, and σ.2 Since the invariant holds for
φ[V ]φ′ we have φ′ ∧RV |= φ. Since dom(σ) ∩ V = ∅, we
conclude σ(φ′) ∧RV ∧ eq(σ) |= σ(φ) ∧ eq(σ).

Preservation of weak well-formedness under substitu-
tions: Instantiation of variables cannot destroy the variable
origination property. About the occurrence of variables in
equations: for every x = t in eq(σ), x cannot occur on the
left-hand side of an equation in φ or φ′ and does not occur
in σ(φ) and σ(φ′).
Lemma IV.3 (Soundness). All the constraint rules are sound,
i.e., for every concrete reduction χ′

χ with our calculus holds
χ′ |= χ.

Proof: Note that by the semantics of optimistic constraint
stores φ[V ]φ′ only φ is relevant. Therefore, both generate
and analysis rules are straightforward. For the unify rule, we
have the case σ(φ[V ] . . .) ≡ σ(φ) ∧ eq(σ) |= φ, which is
immediate.

2For first-order logic this is straightforward, using the deduction theorem;
however since our constraints are interpreted in a way that involves the
least transitive closure of the deduction relation, we cannot directly use that
argument. Let φ |= ψ and let Iσ be any model of σ(φ). Then construct
another interpretation I as follows:

I(x) =
{
Iσ(σ(x)) if x ∈ dom(σ)

Iσ(x) otherwise

Then I |= φ and thus I |= ψ. Since σ(ψ) does not contain any variables of
dom(σ) and Iσ is identical with I on all other variables, also Iσ |= σ(ψ).

Lemma IV.4 (Completeness). Given a weakly well-formed
conventional constraint φ. Starting with the optimistic con-
straint expand(φ[V ]φ), all optimistic constraints that we can
reach with the reduction rules are either simple, unsatisfiable,
or admit the application of another reduction rule.

Proof: First observe that by the soundness, no reduction
rule can introduce new solutions. It therefore suffices to fix
one model I of the original φ (if φ is unsatisfiable, the
lemma trivially holds by soundness) and show that we can
always find a reduction that supports I unless we have run
into a simple constraint.

Since I |= φ, for every T ` t we know I(T ) ` I(t).
Therefore there exists an intruder derivation tree, i.e., a tree of
ground terms, where the root is I(t), the leaves are elements
of I(T ) and every inner node can be derived from its children
by one step of the Dolev-Yao model of Fig. 2. Let us therefore
label in expand(φ[]φ) every term t a T with a derivation tree
for I(t) with leaves in I(T ). (This is also possible under
expand, T \{x}∪knowφ(x) allows at least as much to derive
as T when x ∈ T .) We show throughout the reduction we
can preserve this labeling for some constraint and consider an
arbitrary φ[V ]φ′ that we have reached and that is accordingly
labeled.

At any state φ[V ]φ′, we focus on the first conjunct T ` t
of φ′ (in the order of the weak well-formedness) that is not
simple, i.e., t /∈ V , and the derivation tree of I(t):
• If the derivation tree is a leaf, then I(t) ∈ I(T ). Since
t /∈ V and T ∩V = ∅ (due to the application of expand),
the unify rule is applicable with respect to t and some
term s ∈ T such that I(t) = I(s). The most general
unifier σ of s and t must therefore be supported by I,
i.e., I |= eq(σ). Thus, I is still a model of the new
optimistic constraint store we obtain by the unify rule.
Moreover, we obtain a correct labeling of the T ` t
conjuncts, if we just keep all labels as they are: since
I |= eq(σ), it is correct if σ(T ) ` σ(t) is labeled by a
derivation tree for I(t) with leaves in I(T ).

• If it is a composition step, then since t /∈ V , we have
t = f(t1, . . . , tn), and f must be intrudable, because
the composition step works on the ground level and
I(t) = f(I(t1), . . . , I(tn)). Therefore the generate rule
is applicable, and the T ` ti constraints in the new
constraint system can be correctly labeled with the
respective subtrees for I(ti).

• If it is an analysis step, note that the analysis rule may
not be directly applicable, if the term being analyzed
is itself a subtree that contains further analysis (or
composition) steps, so we need to consider the derivation
tree of the term being analyzed.
Here we can exclude the case that a term being analyzed
is composed before, e.g., an intruder first encrypts a
message and then decrypts it again (in such cases we
can easily simplify the proof tree as expected). However,
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that does not mean that the proof tree with an analysis
node at the root cannot have composition steps: e.g.
for the symmetric encryption scrypth(k1,k2)(m), if the
intruder knows both k1 and k2 and h is intrudable, he
is able to first compose the key and then analyze the
encrypted message to obtain m. What we can exclude
is only that the derivation tree for a term t contains as
a proper subtree again a derivation tree for t. From that
we derive that for any analysis step in the derivation tree
the analyzed term itself is either a leaf (i.e., in I(T ))
or the result of an analysis step. Since the derivation
tree cannot have infinitely long paths, following the
analyzed terms eventually leads us to a leaf, i.e., a term
in I(T ) that can be analyzed in I.
Recall T ∩V = ∅ (because of the application of expand).
Therefore there must be a term t0 ∈ T for which analysis
can be applied, and in fact it can be applied to every
other conjunct T ′ ` t′ with T ′ ⊇ T . In the constraint
system we obtain after the analysis step, we may have a
new constraint for the key derivation, if the analysis step
was a decryption, e.g., in the asymmetric T ` inv(k). In
the derivation tree of the analyzed term I(t0), there is
thus a subtree for the key, in the example for I(inv(k)).
We can thus label the key derivation with an appropriate
derivation tree (with leaves in I(T )). In all constraints
that are updated by the m � T , i.e., where we have
derivation trees with leaves in I(T ′) for some T ′ ⊇ T ,
we can replace all analysis steps for I(t0) simply with
a leaf since the respective subterm of t0 is now added
to T ′ by the update.

Lemma IV.5 (Termination). Given the optimistic constraint
store expand(φ[]φ) for some weakly well-formed conven-
tional constraint φ. Then the reduction rules do not admit
an infinitely long sequence of non-redundant reduction steps.

Proof: For optimistic constraints φ[V ]φ′, we define a
termination order on pairs (k,w) of positive integers as
(k,w) > (k′, w′) iff k > k′ or (k = k′ and w > w′). This
order is well-founded. The first component k is the number
of variables that occurs in φ, φ′ and V without taking in
the account the equality constraints (x = t), and w is the
maximum number of reduction steps that can be done without
substituting any variable. This value w can be computed on
φ′ as follows:

w(φ ∧ ψ) = w(φ) + w(ψ) (1)
w(T ` t) = w1(T ) + w2(t) (2)

w1({t1, . . . , tn}) = w2(t1) + . . .+ w2(tn) (3)
w2(f(t1, . . . , tn)) = 1 + w2(t1) + . . .+ w2(tn) (4)

w2(x) = 0 (5)

It is immediate that all non-redundant reduction steps that do
not substitute any variable (including the Unify rule when

applied to identical terms s and t) reduce the weight w(φ′).
In a step that does unify a variable, then the number of the
variables in the resulting constraint is lower (because in the
free algebra mgu(·) never introduces new variables); thus this
reduces the first component k of the order—while the second
component may reset to a higher value when a variable
of V is instantiated. Thus every reduction step decreases
the weight of the constraint and it is positively defined, so
there cannot be an infinite derivation using non-redundant
reductions.
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