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Abstract

This paper deals with a problem that arises in vertical composition of
protocols, i.e., when a channel protocol is used to encrypt and transport
arbitrary data from an application protocol that uses the channel. Our
work proves that we can verify that the channel protocol ensures its se-
curity goals independent of a particular application. More in detail, we
build a general paradigm to express vertical composition of an applica-
tion protocol and a channel protocol, and we give a transformation of the
channel protocol where the application payload messages are replaced by
abstract constants in a particular way that is feasible for standard auto-
mated verification tools. We prove that this transformation is sound for
a large class of channel and application protocols. The requirements that
channel and application have to satisfy for the vertical composition are
all of an easy-to-check syntactic nature.

Keywords— security protocols, formal methods and verification, vertical composi-
tion, stateful protocols

1 Introduction

With vertical composition, we mean that a high-level protocol called application,
or App for short, uses for message transport a low-level protocol called channel, or Ch
for short. For instance, a banking application may be run over a channel established
by TLS. For concreteness, let us consider a simple running example of a login protocol
over a unilaterally authenticated channel as shown in semi-formal notation in Figure
Here [C]P represents a client C' that is not authenticated but acting under an alias
(pseudonym) P, which is simply a public key, and only C' knows the corresponding
private key inv(P). Clients can have any number of aliases, and thus choose in every



session to either work under a new identity or use the same alias, and thereby link the
sessions. The setup of the channel has the client generate a new session key K, sign
it with inv(P) and encrypt it for a server S. The functions f(.. ) represent message
formats like XML that structure data and distinguish different kinds of messages. This
gives us a secure key between P and S: the server S is authenticated w.r.t. its real
name while the client is only authenticated w.r.t. alias P—this is somewhat similar
to the typical deployment of TLS where P would correspond to the unauthenticated
Diffie-Hellman half-key of the client. We can transmit messages on the channel by
encrypting with the established key, and the login protocol now uses this channel for
authenticating the client. For simplicity, the client is computing a MAC on a challenge
N from the server with a shared secret. This models the second factor in the Danish
NemlID |Net21]| service where each user has a personal key-card to look up the response
for a given challenge N. The first factor, a password, we just omit for simplicity.

Channel protocol Ch:
Setup:
[C]P: new K
[C1P = St crypt(pk(S), Sign(inv(P), fucusess (P, S, K))

Transport:

For [C]P s X, transmit scrypt(K, fpseudo (P, S, X))
For § % [C]P: X, transmit scrypt(K, fpseudo(S, P, X))

Login protocol App:

S:  newN
s [CIP: fi(N,S)
[C1P NS fa(mac(secret(C, S), N))

Figure 1: Running Example

Most existing works on protocol composition have concentrated on parallel com-
position, i.e., when protocols run independently on the same network only sharing an
infrastructure of fixed long-term keys [HT96; |GT00} |And+08; |Gut09} |CD09; [CC10;
Che+13; ]ACD15; |Alm+15|. In contrast, we want to compose here components that
interact with each other, namely an application App that hands messages to a chan-
nel Ch for secure transmission. [GM11; (CCW17] allow for interaction between the
protocols that are being composed, albeit specialized to a particular form of interac-
tion. [HMB18| is the first parallel compositionality result to support arbitrary inter-
actions between protocols: it allows for stateful protocols that maintain databases,
shares them between protocols, and for the declassification of long-term secrets.

As a first contribution, we build upon these results a general paradigm for verti-
cal composition: we use such databases to connect channel Ch and application App
protocols. For instance, when the application wants to send a message from A to B,
then it puts it into the shared set outbox(A, B) where the channel protocol fetches
it, encrypts and transmits it, and puts it in the corresponding inbox of B where the
application can pick it up.



As a second contribution, we extend the typing result from |[Hes19| to take into
account that messages from App can be manipulated by Ch. Thus, in our paradigm,
Ch and App are arbitrary protocols from a large class of protocols that synchronize
via shared sets inbox and outbox and fulfills a number of simple syntactic conditions.

Compared to refinement approaches that “compose” a particular application with
a specific channel, our vertical compositionality result is much more general: from the
definition of a channel protocol Ch, we extract an idealized behavior Ch*, the protocol
interface, that hides how the channel is actually implemented and offers only a high-
level interface for the application, e.g., guaranteeing confidential and/or authentic
transmission of messages. The application can be then verified against this interface,
and so we can at any time replace Ch by any other channel Ch’ that implements the
same interface Ch* without verifying the application again. However, the third and
core contribution of this paper is a solution for the converse question, namely how to
also verify the channel independently of the application, so that the channel Ch can
be used with any application App that relies only on the properties guaranteed by the
interface Ch*.

If we look for instance at the formal verification of TLS in [Cre+17; BBK17|,
all the payload messages that are transmitted over the channel (corresponding to X
in Figure [1]) are just modeled as fresh nonces. One could say this paper verifies that
TLS is correct if the application sends only fresh nonces. In reality, the messages
may neither be fresh nor unknown to the intruder, and in fact they may be composed
terms that could interfere with the channel context they are embedded in. For a well-
designed channel protocol, this is unlikely to cause trouble, but wouldn’t it be nice to
formally prove that?

The core contribution of this paper is a general solution for this problem: we de-
velop an abstraction of the payload messages and prove its soundness. The abstraction
is indeed similar to the fresh-nonce idea, but taking into account that they represent
structured messages that may be (partially) known to the intruder, and that applica-
tions may transmit the same message multiple times over a channel. This gives rise
to a translation from the concrete Ch to an abstract version Ch* that uses nonces as
payloads—a concept that all standard protocol verification tools support. The sound-
ness means that it is sufficient to verify Ch* in order to establish that Ch is secure in
that it fulfills its interface Ch*, and is securely composable with any application App
that expects interface Ch* (and given that some syntactic conditions between App and
Ch are met, like no interference between their message formats). In the example, after
verification, we know that not only this composition is secure, but that Ch is secure
for any application that requires a unilaterally authenticated channel, and App can
securely run on any channel providing the same interface. Thus, the composition may
not only reduce the complexity of verification, breaking it into smaller problems, but
also make the verification result more general.

Organization: in §2] we introduce the framework to model stateful protocols. In §3]
we describe our paradigm for vertical composition, and we extend a typing result to
support an abstract payload type. In §4 we prove that our abstraction of payloads
is sound, and that our vertical composition result can be used with a wide variety
of channel and application protocols. We relate our work to others and conclude
in §§] Appendix [A] gives the proof of the main theorems. Appendix [B] gives the
full extension of the typing results. Appendix [C] show how to apply the vertical
composability definition to our running example. Appendix gives a battery of
examples to illustrate the scope of our results. Finally, Appendix [E] shows how our
results can be used to study channel bindings.



2 Preliminaries

Most of the content of this section is adapted from |[Hes19).

2.1 Terms and substitutions

We consider a countable signature ¥ and a countable set V of variable symbols disjoint
from ¥. We do not fix a particular set of cryptographic operators, and our theory is
parametrized over an arbitrary 3. A term is either a variable x € V or a composed
term of the form f(¢1,...,ts,) where f € X", the t; are terms, and X" denotes the
symbols in ¥ of arity n. We define the set of constants C as ©°. We denote the set of
terms over ¥ and V as 7(X,V). We denote the set of variables of a term ¢ as fv(¢),
and if fv(t) = (0 then ¢ is ground. We extend these notions to sets of terms. We denote
the subterm relation by L.

We define substitutions as functions from variables to terms. dom(o) = {x €
V | o(z) # x} is the domain of a substitution o, i.e., the set of variables that are
not mapped to themselves by o. We then define the substitution image, img (o), as
the image of dom(o) under o: img(c) = o(dom(o)), and we say o is ground if its
image is ground. An interpretation is defined as a substitution that assigns a ground
term to every variable: Z is an interpretation iff dom(Z) = V and img(Z) is ground.
Substitutions are extended to functions on terms and set of terms as expected. Finally,
a substitution o is a unifier of terms t and t' iff o(t) = o (t').

2.2 The Intruder Model

We use a Dolev-Yao-style intruder model, i.e., cryptography is treated as a black-box
where the intruder can encrypt and decrypt terms when he has the respective keys, but
he cannot break cryptography. In order to define intruder deduction in a model where
the set of operators ¥ is not fixed, one first needs to also specify what the intruder can
compose and decompose. To that end, we denote as X7, C X the public functions,
which are available to the intruder, of ¥ of arity n, and we define a function Ana that
takes a term ¢ and returns a pair (K,T") of sets of terms. This function specifies that,
from the term ¢, the intruder can obtain the terms T, if he knows all the “keys” in
the set K. For example, if scrypt is a public function symbol to represent symmetric
encryption, we may define Ana(scrypt(k,m)) = ({k}, {m}) for any terms k and m. We
define the relation F, where M F ¢t means that an intruder who knows the set of terms
M can derive the message t as follows:

Definition 1 (Intruder Model [Hes19|). We define b as the least relation that in-
cludes the knowledge, and is closed under composition with public functions and under
analysis with Ana:

(Aziom), MkEt,...MFt, (Compose),
Mrt teM MF f(t,...,tn) € Zpuw

(Decompose),
MEt M]\;fltj“M}_kn Ana(t) = (K,T),
i ti €T, K = {ki,...,kn}

(Aziom) says that the intruder can derive everything in his knowledge. (Compose)
says that the intruder can compose messages by applying public function symbols to



derivable messages. (Decompose) says that the intruder can decompose, i.e., analyze,
messages if he can derive the keys specified by Ana. The specification of Ana must sat-
isfy the following requirements for the typing and compositionality results from [Hes19|
to hold:

1. Ana(t) = (K, T) implies that K is finite and fv(K) C fu(t),

2. Ana(z) = (0,0) for variables z € V,

3. Ana(f(t1,...,tn)) = (K,T) implies T C {t1,...,tn}, and

4. Ana(f(t1,... 7tn)) = (K, T) implies Ana(a(f(t1,...,tn))) = (0(K),o(T)).

Ana is defined for arbitrary terms, including terms with variables (though the standard
Dolev-Yao deduction is normally used on ground terms only). The first requirement
restricts the set of keys K to be finite and to not introduce any new variables, but the
keys otherwise do not need to be subterms of the term being decomposed. The second
requirement says that we cannot analyze a variable. The third requirement says that
the result of the analysis are immediate subterms of the term being analyzed. The
fourth requirement says that Ana is invariant under instantiation.

Example 1. Let scrypt, crypt and sign be public function symbols, representing respec-
tively symmetric encryption, asymmetric encryption and signatures, and let inv be a
private function symbol mapping public keys to the corresponding private key. We char-
acterize these symbols with the following Ana theory: Ana(scrypt(k,m)) = ({k},{m}),
Ana(crypt(k,m)) = ({inv(k)},{m}), Ana(sign(k,m)) = (0,{m}). To model message
formats, we define a number of transparent functions, e.g., fi that the intruder can
open without knowing any keys: Ana(fi(t,t')) = (0,{¢t,t'}). For all other terms t:
Ana(t) = (0,0).

This model of terms and the intruder is not considering algebraic properties such
as the ones needed for Diffie-Hellman-based protocols. Since handling algebraic prop-
erties is making everything more complicated, while being largely orthogonal to the
points of this paper, for simplicity, we stick with this free term algebra model.

2.3 Stateful Protocols

We introduce a strand-based protocol formalism for stateful protocols. The idea is to
extend strands with a concept of sets to model long-term mutable state information of
stateful protocols. The semantics is defined by a symbolic transition system where con-
straints are built up during transitions. The models of the constraints then constitute
the concrete protocol runs.

Protocols are defined as sets P = {Rx1,...} of transaction rules of the form: R; =
Vo1 € Th, ..., T € Th. new yi,...,ym.S where S is a transaction strand with sets,
i.e. of the form receive(t1)..... receive(ty). ¢1..... drr. send(ty). . ... send(t},,) where t
and t’ ranges over terms and Z over finite sequences x1, ..., T, of variables from V:

pu= t=t |VZ. t#t |tEt |V t ¢t |insert(t,t') | delete(t,t’)

As syntactic sugar, we may write t # ¢ and t ¢ ¢’ in lieu of VZ. t # t' and VZ. ¢ &t/
when 7 is the empty sequence. We may also write t — ¢’ for insert(,t') and t < ¢’ for
t & t' delete(t,t'). We may also write «——— for receive(t) and —— for send(t) when
writing rules. The prefix Vz1 € T1,...,z, € T;, denotes that the transaction strand S



is applicable for instantiations o of the x; variables where o(z;) € T;. The construct
new yi,...,Ym represents that the occurrences of the variables y; in the transaction
strand S are instantiated with fresh constants.

Example 2. In Figure[3, we formalize the App from Figure [I; we now look at a few
rules as examples and discuss the others later. Note that each step of a rule is labeled
by either label App or x which we also introduce below. The rule Apps models an
honest server S who first generates a new nonce N, stores it in a set of active nonces
sent(S, P) where P is an identifier (alias) for a currently unauthenticated agent. It
then adds the message fehalienge (N, S) to a set outbox(S, P) for being sent on a secure
channel to P. Here, fchailenge 15 just a format to structure the message. In App,, this
is recetved by a client A in its inbox(S, P), where the relation between the client A and
its pseudonym is ensured by the positive check P € alias(A). The client then sends a
more complex message as a reply.

We call all variables that are introduced by a quantifier or new the bound variables
of a transaction, and all other variables free. We say a transaction rule is well-formed
if all free variables first occur in a receive step or a positive check, and the bound
variables are disjoint from the free variables (over the entire protocol). For the rest of
this paper we restrict ourselves to well-formed transaction rules.

2.4 Stateful Symbolic Constraints

The semantics of a stateful protocol is defined as in terms of a symbolic transition sys-
tem of intruder constraints. The intruder constraints are also represented as strands,
essentially a sequence of transactions where parameters and new variables are instan-
tiated, and are formulated from the intruder’s point of view, i.e., a message sent in
a transaction becomes a received message in the intruder constraint and vice-versa.
We first define the semantics of constraints and then how a protocol induces a set of
reachable constraints.

By trms(A) we denote the set of terms occurring in the constraint A. The set of
set operations of A, called setops(.A), is defined as follows where we assume a binary
symbol (-,-) € £2

setops(A) = {(t,s) | insert(t,s) or delete(t,s) or t € s or VZ.t ¢ s occurs in A}

We extend trms(-) and setops(-) to transaction strands, rules and protocols as
expected. For the semantics of constraints, we first define a predicate [M, D; A] Z,
where M is a ground set of terms (the intruder knowledge), D is a ground set of tuples
(the state of the sets), A is a constraint and Z is an interpretation:

[M,D;0] Z iff  true

[M, D;send(t).A] T iff M Z(t) and [M, D; A] T
[M, D; receive(t).A] Z ifft [{Z(t)}uM,D; AT
[M,D;t =t .A] T iff  Z(t) = Z(t') and [M,D; A] T
[M, D; (vz. t #').A] T iff [M,D;A] Z and

(Z(o(t)) # Z(o(t")) for all ground substitutions o with domain )
[M, D;insert(t,s).A] Z iff [M,{Z((¢t,s))}UD;A]Z
[M, D;delete(t,s).A] T iff [M,D\{Z((t,s))}:A] T
[M,D;t . A] T iff  Z((t,s)) € D and [M, D; A] T
[M,D;(Vz. t ¢t').A] T iff [M,D;A]T and

(Z(o((t,s))) & D for all ground substitutions o with domain z)



T is called a model of A, written Z = A, iff [0, 0; A] Z. We define again free and
bound variables as for transactions, and say a constraint is well-formed if every free
variable first occurs in a send step or a positive check and free variables are disjoint
from bound variables. We denote the free variables of a constraint A by fv(A). In
contrast, in a transaction we defined free variables must first occur in a receive step or
a positive check; this is because constraints are formulated from the intruder’s point
of view. For the rest of the paper we consider only well-formed constraints without
further mention.

2.5 Reachable Constraints

Let P be a protocol. We define a state transition relation = where states are con-
straints and the initial state is the empty constraint 0. First the dual of a transaction
strand S, written dual(S) means “swapping” the direction of the sent and received mes-
sages of S: dual(send(t).S) = receive(t).dual(S), dual(receive(t).S) = send(t).dual(S)
and otherwise dual(s.S) = s.dual(S) for any other step s. The transition A =
A.dual(ca(o(S))) is possible if the following conditions are met:

1. Vo1 €T1,...,2n € Tn.new y1,...,yn.S) is a transaction of P,

. dom(a) = {$1,-~~733n7y17~--7ym}7
. o(x) €T, for alli € {1,...,n},

2
3
4. o(ys) is a fresh constant for all s € {1,...,m}, and
5

. a is a variable-renaming of the variables of ¢(S) with fresh variables.

Note that by these semantics, each transaction is atomic (we do not allow partial
application of a transaction), and each transaction rule can be taken arbitrarily often,
thus allowing for an unbounded number of “sessions”.

We say that a constraint A is reachable in protocol P if 0 =* A where =* is the
transitive reflexive closure of =. Note that we consider only well-formed transactions
and thus every reachable state is a well-formed constraint.

To model goal violations of a protocol P we first fix a special non-public constant

unique to P, e.g. attackp. We can then formulate transactions that check for violations

of the goal and if so, send out the message attackp. A protocol has an attack if there

. . . k .
exists a satisfiable reachable constraint of the form A. &), otherwise the

protocol is secure. This allows for modeling all security properties expressible in the
geometric fragment [Alm+15;|Gut14], e.g., standard reachability goals like secrecy and
authentication, but not for instance privacy-type properties. We give attack rules in
our examples in Example [3] and Example

3 Stateful Vertical Composition

The compositionality result of Hess et al. [Hes19; [HMB20]| allows for the parallel com-
position of stateful protocols. The protocols being composed may share sets. An
example would be a server that maintains a database and runs several protocols that
access and modify this databaseEI After specifying an appropriate interface how these

1One could also use sets to model an abstract synchronous communication channel between
participants, but that is not what we will consider here: we will only use sets that belong to
one single agent who may engage in several protocols.



protocols may access and modify the database, one can verify each protocol individu-
ally with respect to this interface and obtain the security of the composed system.

A simple idea is to re-use this result for vertical composition of protocols as follows
(but we explain later why this is not enough). We consider a channel protocol Ch and
an application protocol App that wants to transmit messages over this channel. We
regard them as running in parallel and sharing two families of sets as an interface,
called inbox and outbox. In the application, if A wants to send a message to B over
the channel, she inserts it into outbox(A, B). The channel protocol on A’s side retrieves
the message from outbox(A, B), encrypts it appropriately and transmits it to B, where
it is decrypted and delivered into inbox(A, B). The application on B’s side can now
receive the message from this inbox.

This paradigm is very general: the application can freely transmit messages over
the channel, similar to sending on the normal network; there are no limitations on
the number of messages that can be sent. Similarly, we can model a wide variety of
channels and the protections they offer, e.g., our running example considers a channel
where only one side is authenticated like in the typical TLS deployment. Moreover,
the channel may have a handshake that establishes one or more keys that are used in
the transport, where we can model both that the same key is used for several message
transmissions, and that we can establish any number of such keys.

Nevertheless, there are three challenges to overcome. First, the compositionality
result of [Hes19; [HMB20| relies on a typing result, and this typing result is not pow-
erful enough for our paradigm of vertical composition, due to the payload messages
from the application that are inserted on the channel. The extension is in fact our
first main contribution in Note that comes mainly from [Hes19; HMB20] but
we include it here because we need to incorporate our extension of the typing result,
and we need to update several definitions to take into account the specific features of
vertical composition. The second challenge in is to define an appropriate interface
between channel and application, i.e., which security properties the channel ensures
that the application can rely on. This interface allows for verifying the application
completely independent of the channel, in particular, the channel can then be replaced
by any other channel that implements the same interface without verifying the appli-
cation again. Finally, the third and main challenge (in §4) is a sound abstraction
of the payload messages of the application so that the channel can also be verified
independent of the application.

3.1 Typed Model and Payloads

As already mentioned, the typing result of [Hes19; HMB20| is not general enough for
our purposes: since we want to define a channel protocol independent of the application
that uses the channel, we would like the messages that the channel transports to be
of an abstract type p (payload) that can, during composition, be instantiated by the
concrete message types of the application protocol.

This requires, however, a substantial extension of the typing system and the typing
result, since from the point of view of the channel protocol, the payload is a variable
that is embedded into a channel message, e.g., a particular way to encrypt the payload.
The fact that the payload is a variable reflects that the channel is indeed “agnostic”
about the content that it is transporting. This is, however, incompatible with the
typing result from [Hes19; [HMB20]|, because the instantiation of the payload type with
several concrete message types from the application protocol implies that, among the
channel, messages are unifiable message patterns of different types, which is precisely



what |Hes19; HMB20] forbid.

The main idea to overcome this problem is as follows. Let ¥, be the set of con-
crete payload types of a given application, i.e., the types of messages the application
transmits over the channel. Essentially, we want to exclude that there can ever be
an ambiguity over the type of a transmitted message, i.e., that one protocol recipient
sends a message of type 71 € T, and the recipient receives it as some different type
79 € Tp. Such ambiguity can for instance be prevented by using a distinct format for
each type (e.g., using a tag).

This allows us to extend the typing and the depending compositionality results
from [Hes19; HMB20| such that every instantiation of the abstract payload type p
with a type of T, counts as well-typed. We now introduce all concepts in the notation
of |[Hes19] and mark our extensions; the proof of the results under the extensions is
given in Appendix [B]

Type expressions are terms built over a finite set ¥, of atomic types like Agent
and Nonce and the function symbols of ¥ without constants. Our extensions are the
special abstract payload type p and a finite non-empty set ¥, of concrete payload types
where T, C T(X\C, Ta).

Let T be a given type specification for all variables and constants, i.e., I'(c) € T,
for every constant ¢ and I'(z) = 7 € T(X\ C,%a) U {p} such that 7 does not contain
an element of T, as a subterm.

The restriction that 7 does not contain an element of ¥, is our new addition: it
prevents that the application (or the channel) uses any variables of a payload type (or
variables that can be instantiated with a term that contains a payload-typed subterm).
This is to prevent that we can have unifiers between terms of distinct types. Similarly,
observe that p can only be the type of a variable, and that it cannot occur as a proper
subterm in a type expression. The type system leaves the protocol only two choices
for handling payloads: either abstractly (in the channel) as a variable of type p or
concretely (in the application) as a non-variable term of T, type.

The typing function is extended to composed terms as follows: T'(f(t1,...,tn)) =
f(L(t1),...,T(tn)) for every f € X"\ C and terms ¢;. Further, it is required that for
every atomic type S € T, the intruder has an unlimited supply of these terms, i.e.,
{c €C|c€ Zpu,(c) = B} is infinite for each atomic type 3.

For the payload extension, we define a partial order on types, formalizing that the
abstract payload is a generalization of the types in Ty:

e p>rforalte%,,

e r>7iff r=7"V7r>7 and

o f(Ti,eee,mn) > flrd,eo )T 2T A AT > 7

We say that two types 7 and 7’ are compatible when they can be compared with
the partial order. We say a substitution o is well-typed iff I'(z) > I'(o(z)) for all
z € V. This is a generalization of [Hes19] which instead requires I'(x) = I'(o(z)),
i.e., we allow here the instantiation of p with types from T,. The central theorem for

extending [Hes19| with payload types is that, for any two unifiable terms s and ¢ with
I'(s) > I'(t), their most general unifier is well-typed:

Theorem 1. Let s,t be unifiable terms with I'(s) > I'(t). Then their most general
unifier is well-typed.

The modifications to the following definitions and results with respect to [Hes19|
are minor: we use our updated notion of well-typed, and we use the notion of com-



patible types instead of the same type. We give the definitions as an almost verbatim
quote without pointing out these minor differences each time.

The typing result is essentially that the messages and sub-messages of a protocol
have different form whenever they do not have compatible types. Thus, given a set of
messages M that occur in a protocol, define the set of sub-message patterns SMP (M)
as:

Definition 2 (Sub-message patterns |Hes19|). The sub-message patterns for a set
of messages M is denotes as SMP(M) and is defined as the least set satisfying the
following rules:

1. M C SMP(M).

2. Ift € SMP(M) and t' C t thent' € SMP(M).

3. Ift € SMP(M) and o is a well-typed substitution then o(t) € SMP(M).
4. Ift € SMP(M) and Ana(t) = (K, T) then K C SMP(M).

It is sufficient for the typing result that the non-variable sub-message patterns have
no unifier unless they have compatible types:

Definition 3 (Type-flaw resistance (extended from |[Hes19|)). We call a term ¢ generic
for a set of variables X, if t = f(z1,...,2n), n >0 and z1,...,2, € X.

We say a set M of messages is type-flaw resistant iff Vt,t' € SMP(M)\V. (Jo.0(t) =
a(t)) = T(t) >T#)VI() <T(t'). We call a constraint A type-flaw resistant iff the
following holds:

o trms(A) U setops(A) is type-flaw resistant,

o for all t = t' occurring in A: if t and t' are unifiable then T(t) < T'(¥) or
L) >=T(),

o for allVZ.t#t occurring in A, no subterm of (t,t') is generic for T, and
e for allVz.t ¢ t' occurring in A, no subterm of (t,t') is generic for z.

We say that a protocol P is type-flaw resistant iff the set trms(P) U setops(P) is type-
flaw resistant and all the transactions of P are type-flaw resistant.

Our extension of the type system with the payload types requires an update of the
typing result of [Hes19]. Most of this is straightforward and Theorem [1] is the only
new theorem. In a nutshell, the typing result shows that the intruder never needs to
make any ill-typed choice to perform an attack, and thus if there is an attack, then
there is a well-typed one:

Theorem 2 ((extended from [Hesl9|)). If A is a well-formed, type-flaw resistant
constraint, and if T = A, then there exists a well-typed interpretation Z, such that

I, = A

The typing requirements essentially imply that messages with different meaning
should be made discernable, and this is indeed a good engineering practice. However,
since we will below require that channel and application messages are also distinguish-
able, we will not be able to stack several layers of the same channel.
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App; : VC € Agent|pon, P € Alias|on- App,: VP € Alias|pjs.

App: P gé taken. % inv(P) N
App: P — taken.
App: P — alias(C)

Apps: VS € Agent|hon, P € Alias, new N.

App: N — sent(S, P).
*: fchallenge(N, S) — OU"IbOX(S7 P)

App,: VS € Agent, P € Alias|pon, C € Agent|yon-
*:  fehalienge(IN, S) <= inbox(S, P).
App: P €alias(C).
*x:  fresponse(mac(secret(C, S), N)) — outbox(P, S)

Apps: VS € Agent|uon, P € Alias, C € Agent.

*:  fresponse(mac(secret(C, S), N)) < inbox(P, S).
App: N < sent(S, P)

Appg: VS € Agent|pon, P € Alias, C' € Agent|pon.
*:  fresponse(mac(secret(C, S), N)) < inbox(P, S).
App: N 6 sent(S, P).
App: P ¢ alias(C).
App attackapp

Figure 2: Example of a login protocol

3.2 Parallel Compositionality

We review and adapt the parallel composition result from [Hes19|. The compositional-
ity result ensures that attacks cannot arise from the composition itself. To keep track
of where a step originated in a constraint, each step in a transaction is labeled with the
name of the protocol, or with a special label x. This * labels all those steps of a proto-
col that are relevant to the other: when the protocols to compose share any sets, then
all checks and modifications to these sets must be labeled *. One may always label
even more steps with x to make them visible to the other protocol (this may be neces-
sary to ensure well-formedness of the interface). From this labeling, one can obtain an
interface between the protocols to compose as follows. Define the idealization P* of a
protocol P as removing all steps from P that are not labeled x. The compositionality
result essentially says that the parallel composition P; || P2 is secure, if P || P53 and
Pi || P2 are secure (and some syntactic conditions hold), i.e., each protocol can be
verified in isolation against the idealization of the other. In the special case that no
sets are shared between the two protocols, these idealizations are empty.

The protocols to compose should, to some extent, have separate message spaces,
e.g., by tagging messages uniquely for each protocol. In fact, messages (or sub-
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messages) that occur in both protocols must be given special attention. Unproblematic
are basic public terms {t | O F t}, i.e., all messages that the intruder initially knows.
All other messages that can occur in more than one protocol must be part of a set Sec
of messages that are initially considered secret. A secret may be explicitly declassified
by a transaction that sends it on the network with a x label, e.g., when an agent sends
a message to a dishonest agent, this message has to be explicitly declassified. For
instance, Sec can contain all public and private keys, and then declassify all public
keys and the private keys of dishonest agents. Of course it counts as an attack if any
protocol leaks a secret that has not been declassified.

Formally, the ground sub-message patterns (GSMP) of a set of terms M is defined
as GSMP(M) = {t € SMP(M) | fv(t) = 0}. For a constraint A, we define GSMP 4 =
GSMP (trms(A)Usetops(A)), and similarly for protocols. It is required for composition
that two protocols are disjoint in their ground sub-message except for basic public
terms and shared secrets:

Definition 4 (GSMP disjointness [Hes19|). Given two sets of terms My and M2, and
a ground set of terms Sec (the shared secrets), we say that M1 and Ms are Sec-GSMP
disjoint iff GSMP(M1) N GSMP(Ms) C Sec U {t |0+ t}.

For declassification, we extend the definition from [Hes19|: we close the declassified
messages under intruder deduction. We denote the Dolev-Yao closure of a set of
messages M by DY(M) = {t | M + t}. We now define that what the intruder can
derive from declassified messages is also declassiﬁedﬂ

Definition 5 (Declassification (extended from |Hes19|)). Let A be a labeled con-
straint and T a model of A. Then the set of declassified secrets of A under I is

declassifiedpy, (A, ) = DY ({t | *: —1 occurs in Z(A)}).

This modification requires the update of several definitions and proofs in [Hes19).
We provide the details of this extension in Appendix

If the intruder learns a secret that has not been declassified then it counts as an
attack. We say that the protocol P leaks a secret s if there is a reachable satisfiable
constraint A where the intruder learns s before it is declassified:

Definition 6 (Leakage (|Hes19])). Let Sec be a set of secrets and Z be a model of
the labeled constraint A. A leaks a secret from Sec under I iff there exists s € Sec\
declassified y, (A, T) and a protocol-specific label | such that I |= Al;.send(s) where Al;
is the projection of A to the steps labeled | or *.

We define the traces of a protocol P as the “solved” ground instances of reachable
constraints: traces(P) = {Z(A) | 0 = AAZ = A}. Next is the compositionality
requirement on protocols that ensures that all traces are parallel composable:

Definition 7 (Parallel composability |[Hes19]). Let P1 || P2 be a composed protocol
and let Sec be a ground set of terms. Then (P1, P2, Sec) is parallel composable iff

1. P1 || P3 is Sec-GSMP disjoint from Py || Pa,

2. for all s € Sec and s’ C s, either O - s’ or s’ € Sec,

2Each protocol can define more refined secrecy goals to catch unintended declassifications
(so it is not a restriction in the protocols we can model), while the Dolev-Yao closure of
declassification is necessary since later after abstraction of payload messages, we cannot reason
about deductions from these payload messages anymore.
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3. for alll: (t,s), I': (t',s") € labeledsetops(P1 || Pz), if (t,s) and (t',s") are unifi-
able thenl =1,

4. P1|| P2 is type-flaw resistant and P1, P2, Py and P3 are well-formed.

where labeledsetops(P) = {I: (t,s) | I: insert(t, s) orl: delete(t, s) orl: tEs orl: (VZ.t¢
s) occurs in P}.

Composition of secure, parallel composable protocols is secure:

Theorem 3 (Parallel Composition [Hesl9|). If (Pi, P2, Sec) is parallel composable
and P1 || P3 is well-typed secure in isolation, and P71 || P2 does not leak a secret under
any well-typed model, then all goals of P1 hold in Pi || P2.

3.3 Channels and Applications

As our second contribution, we propose a general paradigm for expressing vertical
composition problems as parallel composition of a channel protocol Ch and an appli-
cation protocol App that transmits messages over the channel. We employ the parallel
compositionality result from [Hes19|, where we connect the two protocols with each
other via shared sets inbox and outbox. We may even denote this by using the notation
%, emphasizing it is essentially a parallel composition. Let us first look more closely

to the application protocols:

Definition 8 (Application Protocol). Let inbox and outbox be two families of sets
(e.g., parametrized over agent names). An application protocol App is a protocol that
does not contain any normal sending and receiving step, but may insert messages into
sets of the outbox family, and retrieve messages from sets of the inbox family and
perform no other operations on these sets. The inbox and outbox steps are labeled
* (since these sets are shared with the channel protocol), and no other operations are
labeled x— except potentially set operation steps needed to ensure well-formedness of the
idealization App*, whose sets are only accessed by the application. The set of concrete
payload types T, of the type system is determined to contain exactly those message
types that are inserted into an outbox or received from an inbox by the application.
Finally, let the set Sec of shared secrets contain all application messages.

This definition does not specify what guarantees the application can get from the
channel (like secure transmission). This will in fact be formalized next as part of the
channel protocol. Recall also that our type system requires that no variable may have
a type in which a ¥, type occurs as a subterm.

Example 3. We formalize the running example from Figure[] i.e., a login protocol,
as an application that runs over a secure channel where one side is not yet authen-
ticated. As explained, we formalize the unauthenticated endpoint of a channel using
an alias P, which is an unauthenticated public key and the owner is the person who
created P and knows the corresponding private key inv(P). Thus let Names be a set of
the public constants that is further partitioned into a subset Agent, representing real
names of agents, and a subset Alias, representing the aliases. The set Names is further
partitioned between honest principals Hon and dishonest principals Dis. We write for
example Agent|uon when we restrict the agent set to the honest principals. Since global
constants cannot be freshly created, the rules App, and App, formalize that every agent
can assume any alias P that has not yet been taken, mark it as taken, and insert it
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into its set of aliases. For the honest users, the knowledge of the corresponding inv(P)
s implicitly understood, for the dishonest agents, we declassify inv(P). P is public
anyway, and by obtaining inv(P) the intruder will be able to use alias PE| Note that,
in this way, the protocol can simply distinguish between pseudonyms belonging to hon-
est and dishonest agents—which of course is not visible to any agent. Note also that
we do not need to explicitly specify that the honest agents also know inv(P) to every P
they pick.

The actual protocol begins with Apps, and it assumes a secure channel between
some server S and some unauthenticated client under some alias P. Here, the server
S generates a fresh nonce N (of type Nonce) and inserts it into its set sent(S, P) of
unanswered challenges. Then, S uses the channel to P by inserting fchatienge (N, S) into
its outbox for P, where fchaiienge @S message format, i.e., a transparent function. The
rule App, describes how this message is received by the unauthenticated client C who is
the owner of P. The client computes a MAC of the challenge N with a secret pre-shared
with the server, secret(C,S). Here, mac is a public function, whereas secret is a private
function. This in fact models a personal code card where agents can look up the answer
to a challenge N from a server. C inserts its response, fresponse(mac(secret(C,S), N))
where fresponse 15 another message format distinct from fehalienge, into its outbox (P, S).
In the rule Apps, an honest server can retrieve C'’s message from its set inbox(P,.S),
where N < sent(S, P) means that the server both checks that N is an active challenge
for P and removes it from the set. At this point, S accepts C' as authenticated, i.e., S
believes that C is indeed the owner of alias P, and thus the other endpoint of the secure
channel. Consequently, Appg defines that it counts as an attack if that is actually not
the case: this rule can fire when a server could accept the login (with Appy) while P is
actually not owned by C. Note that in this rule, we limit C' and S to honest agents,
similar to standard authentication goals (if the intruder authenticates under the name
of any dishonest agents, there are no security guarantees for such sessions). Appg is
in fact a non-injective authentication goal (it does mot check for replay); we discuss
such ezamples in Appendiz[D

The payload types of this application are

Tp = { fehatienge (Nonce, Agent), fresponse (mac(secret(Agent, Agent), Nonce))}.

Observe that the example protocol would indeed have an attack if we implemented
the channel as simply transmitting the payload messages in clear text through the
network. The application obviously needs the channel to implement some properties
in order to be secure, and this is indeed now part of the formalization of the channel
itself:

Definition 9 (Channel Protocol). Let again inbox and outbox be families of sets. A
channel protocol is a protocol that uses these families only in a particular way: it only
retrieves from outbox as variable X of the abstract payload type p and only inserts to
inbox also with X of type p, and these steps must be labeled star.

Example 4 (Unilaterally authenticated secure channel). We now model the channel
protocol from Figure[1]in our framework as a unilaterally authenticated secure channel,

3This declassification step is in principle forbidden by Definition However, as we see
below at the channel protocol, the channel will automatically declassify all payloads sent to
a dishonest recipient, and thus, we can see declassification of inv(P) in the application as
syntactic sugar for VP € Aliasp;s, C € Agent|pis.*: inv(P) — outbox(C, C).
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Chy: VP € Alias|yon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch: crypt(pk(B),sign(inv(P), frnewsess (P, B,K)))

Chy: VP € Alias, B € Agent|ton.
crypt(pk(B),sign(inv(P), frnewsess (P, B,K)))

Ch:
Ch: K — sessKeys(B, P)

Chs: VA € Names|yon, B € Names|pon.  Chy: VA € Names|yon, B € Names|pon-
*: X < outbox(A, B). Ch: scrypt(K, fpseudo (A, B, X))

Ch: K sessKe)Es(A,)B), Ch: K € sessKeys(B, A).
*: X — secCh(A, B). ) : )
scrypt (K, Fpseudo (A,B,X)) *: X €secCh(A, B).

Ch: *x: X — inbox(A4, B)
Chs: VA € Names, B € Names|p;s. Ch7: VA € Names|pon, B € Names|pon.
*: X < outbox(A4, B). Ch: « SSYPHE fpscudo (4,8, X))
*: —y Ch: K € sessKeys(4, B).
*x: X ¢ secCh(A4, B).
Chg: VA € Names|pis, B € Names. Ch: attackch
o

*: X — inbox(A, B)

Figure 3: Example for an unilaterally authenticated pseudonymous secure chan-
nel

similar to what TLS without client authentication would establish. We consider the
same sets of agents that we used in Example @ Additionally, we have a function pk(A)
to model an authenticated public key of a server A and the corresponding private key
is inv(pk(A)). We define all these public keys and the private keys of any dishonest A
as public terms.

In the first rule Chy in Figure[3 an honest client with alias P generates a session
key K (of type Key) for talking to an agent B, stores it in sessKeys(P, B), and signs it
with the private key inv(P) of their alias, and encrypts it with the public key pk(B) of
B. Note that a similar protocol for a mutually secure channels would just instead of
P use a real name A, and use inv(pk(A)) for signing, but this would require clients to
have an authenticated public key. Also note that this implicitly assumes that all users
know the public keys of all servers, and in Appendiz [0} we consider variants where
this is actually communicated using key certificates.

In Cha, an honest agent B is receiving a session key K encrypted with his public
key and signed by an agent under an alias P. They insert K into sessKeys(B, P).
Note that this is a minimal key exchange protocol for simplicity (that does not protect
against replay). One may in fact here install a more complicated protocol that also uses
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sessKeys as an interface to the other rules Chs...Ch7 as a sequential composition.

The following rules use the session keys, and they do not distinguish whether end-
points are real names (from the set Agent) or aliases (from the set Alias), and instead
use the union set Names. In Chs, an honest A can transmit a payload message X that
an application protocol has inserted into an outbox set using for encryption any session
key K that was established for that recipient. The term X bears the type payload p,
and in a composition, p will be instantiated with all the concrete payload types from
the application, like T, in Example @ Let us ignore the insertion into the set secCh
for a moment.

In Chy, an honest B can receive the encrypted payload X from A, provided it is
encrypted correctly with a key K that has been established with A. Both A and B can
be a real name or an alias. It is inserted into inbox(A, B) to make it available on an
application level. We ignore again the secCh.

Rules Chs and Chg describe symmetrically the sending and the receiving operations
for a dishonest principal, i.e., the intruder can receive message directed to any dis-
honest recipient, and send messages under the identity of any dishonest sender, where
recipient and sender can both be real names or aliases. Note also that Chs means de-
classifying the payload X : the message was directed to a dishonest agent, so if it was
a secret so far, it cannot be considered one anymore.

For formulating goals, and especially the interface to the application, we introduce
the set secCh(A, B) that represents all messages ever sent by an honest A for an honest
B. Note the similarity between rules Chy and Chr: they are applicable when a message
that looks like a legitimate message from honest A to honest B with the right session
key arrives at B. Chy can fire if the corresponding X was indeed sent by A for B,
i.e., secCh holds, and otherwise we have an authentication attack, and Chr fires. This
expresses that the channel ensures non-injective agreement of the payload messages:
recipient B can be sure it came from A, but we do not check for replay here. In fact,
in this simple channel, the intruder can simply replay the encrypted message so that
B can receive a payload more often than it was sent. For an example of a channel
offering replay protection, see Appendiz[D}

Ch;: VA € Names|yon, B € Names|yon.  Ch}: VA € Names|yon, B € Names|yon.

*x: X < outbox(A4, B). *x: X €secCh(A, B).
*: X — secCh(4, B). *: X — inbox(A, B)
Ch:: VA € Names, B € Names|pis. Chg: VA € Names|pis, B € Names.
*: X < outbox(A, B). IS S
o —x *: X — inbox(A4, B)

Figure 4: Idealization of the channel protocol from Figure [3]

Now consider the idealization Ch* of the protocol, i.e., the restriction to x-labeled
steps of the Ch protocol as in Figure[]: this describes abstractly every changes that the
channel can ever do to the sets outbox and inbox that it shares with the application
(given that the channel protocol does not have an attack, i.e., Chy can never fire): all
messages sent by honest A to honest B move to a set secCh(A, B) and from there into
the inbox of B, and the intruder can read messages directed to a dishonest B and send

16



messages as any dishonest A.

Observe how interface and attack declaration complement each other: when a mes-
sage arrives at an honest B coming apparently from an honest A, either this is true
(and rule Chy is applicable), or not (and rule Chr is applicable). The former case is
what the interface advertises, while if the latter can ever happen, the verification of the
channel fails.

Secrecy is specified implicitly: recall that all messages from the application are part
of the set Sec of shared secrets and it counts as an attack if a protocol leaks a secret that
has not been explicitly declassified. Here we only declassify messages that are directed
at a dishonest agent (Chg), i.e., the interface advertises that it will keep all messages
secret (if they are not public anyway) except those sent to dishonest recipients.

Chg,: VB € Agent. Chop: VP € Aliasyon, B € Agent, new PK.
Ch: B — compromized Ch: B ¢ compromized
Ch: inv(pk(B)) N Ch: PK — tmpK(B, P)

Ch: sign(inv(pk(B)),frk (B,P,PK))

Chy: VP € Alias|pon, B € Agent, new K.

Ch: B ¢ compromized
Ch: sign(inv(pk(B)), frx (B,P,PK))

Ch: K — sessKeys(P, B).
Ch: crypt(PK ,sign(inv(P), frnewsess (P, B,K)))

Chy: VA € Alias, B € Agent|uon.

Ch: B gé compromized

Ch: crypt(PK sign(inv(P)), frnewsess (P, B, K))
Ch: PK «+ tmpK(B, P)

Ch: K — sessKeys(B, P)

Figure 5: Example for a channel with perfect forward secrecy.

Example 5 (Perfect Forward secrecy). Figure @ shows a modification of our running
example that also provides perfect forward secrecy for the channel, i.e., even when
the private key of the server B is given to the intruder, it does not compromise past
sessions. For this reason, we have a new special rule Choq that gives inv(pk(B)) to the
intruder and marks B as compromised. The transactions of the key-exchange (Chop,
Chy and Chz) require that B is uncompromised; however, after the key K is established,
the channel allows for transactions with a compromised B. In our running example, the
channel would not provide forward secrecy because the intruder could learn all session
keys K any client has established with B, and thus decrypt all traffic with B. We have a
slightly more complicated key exchange: in Choy the server generates a new (ephemeral)
public key PK and signs it. Chy is similar to the running example, except that the key
K is now encrypted with PK instead of inv(pk(B)). This is somewhat simulating an
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aspect of Diffie-Hellman, since both PK and P play the role of ephemeral keys, and
later discovery of the authentication key inv(pk(B)) does not reveal the session key
K. We do not need to even update the specification of the goals, because the channel
should provide exactly the same interface to the application: it keeps the secrecy of all
payload messages that have not been explicitly declassified (either by the application or
by sending to a dishonest agent with Chs). It is merely a change on the channel level
that long-term private keys may be lostEI

Let us take stock. We can define application and channel protocols App and Ch
that interact with each other via the inbox and outbox sets, and the idealization of
the channel protocol Ch* describes abstractly the properties that the channel guar-
antees, such as authentication or secrecy properties, and in fact, one can use this for
more complicated properties like preserving the order of transmissions. Verifying the
application now essentially means to verify that App || Ch* is secure, i.e., that the
application has no attack as long as the channel does not manipulate the inbox and
outbox sets in any other way than described in Ch* and does not leak any messages
except those explicitly declassified in Ch*. The first main point of composition is here
that this verification App || Ch* is independent of the concrete implementation Ch:
any channel Ch’ with Ch"* = Ch* would work! In fact, using Theoremwe can derive:

Theorem 4 (Vertical Composition (with unabstracted payload)). Given a channel
protocol Ch and an application protocol App w.r.t. a ground set Sec of terms where the
only shared sets are the inbox and outbox setﬁﬂ s.t. (Ch, App, Sec) is parallel composable.
If both App || Ch* and App* || Ch are secure and do not leak secrets (in the typed model)

then the vertical composition % is secure (even in the untyped model).

The verification of App || Ch* is now independent of the concrete channel, however
the verification of App* || Ch is still depending largely on the concrete messages of App,
especially if, to achieve well-formedness, almost everything in App has to be labeled *.
The next section is solving exactly this.

4 Abstracting the Payload

As the third and core contribution, we show how to verify the channel independent of
the payload messages of a particular application. After recasting the vertical compo-
sition as a parallel composition, the problem is that a concrete execution of Ch || App*
has the concrete messages from the application at least in the outbox and inbox sets
and as subterms of the messages that the channel transmits. There are two reasons
why we want to do this independently of App: it should be simpler (we do not want
the complexity of the messages of App) and more general (we do not want to have to
verify the channel again when considering a different application).

We show a transformation of the problem, at the end of which we have a completely
App-independent protocol Ch* such that each transformation is sound (if there is an

4Note that in our specification the public-key infrastructure is only used by the channel.
If the application were to use them, then inv(pk(B)) would have to be part of Sec, and thus
declassified in Chgg, and similarly compromized would have to be a shared set (i.e., operations
labeled ).

5Note: *-labeled set operations on other sets (like secCh in the example) are not forbidden
by this as long as each set is mentioned in only one of the protocols. This then simply means
that the respective set is not “hidden” by the interface.
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attack, then so there is after the transformation). If we manage to verify Ch¥, then
we have also verified Ch || App* and (with the results of the previous section) the
vertical composition %. In fact, the requirements for automated verification tools to

handle Ch* are modest: besides whatever the modeling of the channel itself requires,
our result will only require a supply of fresh constants that can be used as payloads
and which can occasionally be given to the intruder—and the tool needs to be able to
track which ones are still secret.

4.1 Abstract Constants

At the core of the transformation is the idea to replace the concrete payload messages
that can be inserted on the channel by abstract constants in a sound way. The intuition
is as follows: the precise form of the messages of the application should not matter as
long as we can ensure that they do not interfere with the form of the messages of the
channel. For that purpose, let & C Sec be an infinite set of constants disjoint from
GSMPcp and from GSMPpp,. All elements of & are elements of a new type a that
does not occur in App or Ch. We now define a protocol Ch* where we replace payload
messages X of type p by variables of this type a, and where we remove the outbox and
inbox sets.

Moreover, we introduce two new sets, closed and opened. We use these two sets
during transactions to keep track of which constants from & have been declassified,
namely they are in closed if they have not been declassified, in opened otherwise.

4.2 Translation to the abstract channel

We now explain formally the transformation of Ch into the protocol Ch*. As explained,
in the rules of Ch?, the payload messages of type p have been replaced by variables of
type a, thus allowing us to verify the channel without considering the concrete terms
from the application. Furthermore, since after this abstraction we do not need the
interface with the application anymore, we drop the steps with outbox and inbox sets.
We prove later that Ch? has an attack if Ch || App* has, i.e., this abstraction is sound.

Definition 10 (Transformation of rules of Ch to rules of Ch*). Given a channel rule
Ch;, its translation to Ch! rules is as follows.

e we remove all the steps containing outbox or inbox sets,

e if the rule contains any variable X of type p, we make a case split into two
rules: one containing the positive check (x: X Eopened) and the other containing
(x: X €closed), and X is now of type a. We repeat this case splitting until there
is no more variable of type p, and

o for every rule that contains both (x: X € closed) and (*: Lﬂ, we replace

these two steps by (x: X < closed. x: X — opened. *: Lﬁ

Finally, we add the special rule: Chfe,: new G.x: G — closed for creating new con-
stants.

The idea of the special rule (Chf,ew) is that any “new” abstract constant is first
inserted in closed, and that they are moved to opened and reveled to the intruder
whenever they represent a payload that is declassified. Note that this setup handles
both payloads that are secret to the intruder and payloads that are known to the
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intruder, and further they can be fresh or they can be a repetition. We now give as
an example the translation of the rules from Figure [3}

Chﬁ: VP € Alias|yon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch: crypt(pk(B),sign(inv(P), frewsess (P, B,K)))

Chi: VP € Alias, B € Agent|on.
crypt(pk(B),sign(inv(P), frewsess (P, B,K)))

Ch:
Ch: K — sessKeys(B, P)

Chga 1 VA € Names|pon, B € Names|ion. Chi” p: VA € Names|pon, B € Names|yon.

x: G € opened /G € closed. x: G € opened /G € closed.
Ch: K € sessKeys(A4, B). . SYP(K, fpecudo (A, B,G))
: st Ch:
*: G :r s?(clgf( 7?14).3 o) Ch: K € sessKeys(B, A).
Ch: PR T *x: G €secCh(A, B).
Cht,: Chl,:
*: G € opened. *: G <+ closed
*: G *: G — opened.
*: L}

Chga’b: Chﬁm,b: VA € Names|yon, B € Names|hon.
*: G € opened /G € closed. *: G € opened /G € closed.
*: G . Ch Scrypt(vapseudo(AvaG))

Ch: K € sessKeys(4, B).

Chiey: new G. *: G ¢ secCh(A4, B).

*: G — closed Ch: <+ 2ttackan

Figure 6: Abstraction for our example channel Ch from

Example 6 (Abstraction of the channel from Example . In Figure @ we give the
set of rules of Ch¥ transformed from the set of rules given in Figure|3 following Defini-
tion [I0] where we have actually renamed the payload variables X into G to emphasize
that they now bear the type a. We consider the same set of agents that we used in Ez-
ample @ We write x: G € opened/G € closed as a syntactic sugar to avoid writing
two rules, one with (x: G €opened) and one with (x: G € closed), when all other things
are equal.

Chy and Chs are not affected by the transformation since they do not deal with any
payload messages. These two rules can be seen as “pure” channel rules since they are
already independent of any application protocol. Thus Ch’i and Ch'i2 are identical to the
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original rules.

A payload message X occurs in Chs, thus we need to divide this rule into two rules.
The rule Chga contains the positive check (x: G € opened) at the beginning, whereas
the rule Chgb contains (x: G €closed). The further transformations are similar for the
two rules since there is no declassification step for the payload. The step containing
the set operation for outbox is dropped. The payload message inserted into the secCh
set is replaced by the variable G of type a, as is the payload message in the transmitted
message. The transformations for the rule Chy are very similar. It needs to be split
into two rules, the inbox step is dropped and the payload messages X are replaced by a
variable G of type a.

The rule Chs also has to be split into two rules. Since the payload is declassified
upon transmission to the intruder, the transformations are different for the two rules.
In Chga, we add the positive check (x: GEopened). We then simply remove the step with
outbox and replace the payload message by the variable G of type a. In Chgb, we add the
positive check (x: G Eclosed). We also remove the step with outbox. Since, the remain-
ing step, after replacing the payload with the variable of type a, is the declassification of
that variable, and since that G is in closed, we need to replace the previously added pos-
itive check and the declassification step by (x: G + closed.x: G — opened.x: L>)
We correctly abstracted the declassification of the original payload.

The rule Chg has to be be split into two rules. The step with the set inbox is removed
and the payload is replaced by a variable of type a in both rules. Note that these rules
become superfluous (since they contain only a check and a receive) but we keep them
here to illustrate the transformation. We also add the rule Ch.,, that me mentioned
before. Finally, Chy has also to be split into two rules. Further, in both rules, the
payload variable X is replaced by the variable G of type a.

Recall that the parallel composability of Ch and App requires that GSMPch N
GSMPpppx C Sec U {t | @ + ¢}, and that the definition of an application requires
that GSMPap, C Sec U {t | 0 I t}. For the abstraction of the payload we actually
need something even stronger, namely that the application is completely disjoint from
the channel without payloads. Having defined Ch*, we can specify this simply as
GSMP s N GSMPap, C {t | O F t}, i.e., the only terms common to the channel and
the application are public. This allows us to label any ground term and subterm of a
channel and an application protocol in any well-typed instantiation in a unique way
either as Pub (when it is in {¢ | @ + ¢}), Ch (when it is in GSMP¢,; or a variable
of type p) or App (when it is in GSMPap,). We require that when f(t1,...,t,) is a
message of GSMPcp and Ana(f(t1,...,tn)) = (K,T) that none of the keys in K or
their subterms are labeled App, i.e., the channel never uses payload messages in key
positions. This is because application payloads are abstracted and thus application
payload messages cannot be used to encrypt channel messages. In fact, a violation of
this rule would be a poor practice of protocol design.

Let us now collect all the conditions we stated for vertical composition in the
following notion of vertical composability:

Definition 11 (Vertical Composability). Let Ch be a channel protocol, App an ap-
plication protocol w.r.t. a ground set Sec of terms. Then (Ch,App, Sec) is vertical
composable iff

1. (Ch, App, Sec) is parallel composable,
2. GSMPppp C SecU{t |0+ t},
3. GSMPcps N GSMPpp, C {t | 0 F t}, and
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4. none of the keys in K or their subterms in an analysis rule for a channel term
s.t. Ana(f(t1,...,tn)) = (K, T) are labeled App.

The first condition was also required in Theorem |4 Conditions (2)—(3) give the
disjointness requirements. Condition (4) requires that the keys or their subterms are
not labeled App. We now can give the main theorem:

Theorem 5. Let Ch be a channel protocol and App an application protocol w.r.t. a
ground set Sec of terms that are vertical composable. If there is an attack in Ch||App*,
then there is one in the protocol Ch?.

The proof is given in Appendix [A] and the proof idea is as follows. First, we
define an intermediate channel protocol Ch*P? where the payloads are instantiated by
arbitrary concrete ground terms from the application and where we delete the steps
with the sets outbox and inbox. We show that this protocol has an attack if Ch || App*
has. Then we define a translation of ground traces of Ch”PP that replaces the concrete
payloads with abstract ones, keeping track of which are declassified, and show that
the resulting trace is a trace of Ch®. Again, we show that all attacks are preserved.

This last result allows us to conclude on the security of the vertical composition
of a channel and an application protocol:

Corollary 1. Let Ch be a channel protocol and App an application protocol w.r.t. a
ground set Sec of terms. If (Ch, App, Sec) is vertical composable, and Ch* and Ch* ||
App are both secure in isolation, then the composition % is also secure.

To summarize, in order to prove the security of 222 w.r.t. a ground set Sec of terms,
Ch

one has first to prove that (Ch, App, Sec) is vertical composable (Definition [[T)). This
means that one has to prove (Ch, App, Sec) is parallel composable (Definition E[) and
Ch || App is type-flaw resistant (Deﬁnition. Then, one has to make sure that all the
terms from GSMPap, are shared secrets or public terms, and that none of the keys
used in the channel or their subterms are labeled App, to avoid them being abstracted.
Finally, one has to check that GSMPap, and GSMP,: only shares public terms. All
these requirements are syntactical conditions. Provided that Ch* and Ch* || App are
secure in isolation, one can conclude with Corollary [II We show how to apply the
results to the protocols from our main examples in Appendix @

5 Related Work and Conclusion

There exists a sequence of works on protocol composability that has pushed the bound-
aries of the class of protocols that can be composed, for instance |[GT00; |Gut09; |(CDO09].
These works are concerned with protocols that do not interact with each other but
just run independently on the same network, maybe sharing an infrastructure of fixed
long-term keys. A limited form of interaction is allowed in [GM11] for vertical compo-
sition: a handshake protocol can generate secure keys that are then used to encrypt
traffic of an application protocol; similarly, [CCW17| allows for sequential composition
between a handshake establishing keys that can then be used by a subsequent protocol.

There are several refinement approaches that are close to vertical composition,
such as |SB18|, where a particular application that assumes abstract channels for
communication gets refined by a particular implementation of a channel. The draw-
back of a refinement proof is that it has to be entirely re-done after changing the
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application. Indeed, the work |[CCM15| bears the word refinement in its title, while
it is actually a vertical composition (i.e., not specializing to a particular application)
and is thus closest to our work. Our paper generalizes this result in several regards:
while [CCM15| considers only authentic, confidential and secure channels, we can spec-
ify any channel property that can be expressed by our formalism; this is of course also
limited to trace-based properties but we can formulate all goals from the geometric
fragment |Gutl4]. Second, [CCM15| formulates the result only for secrecy goals of
the application, while our result holds for all properties expressible in our formalism.
Moreover, note that our formalism is stateful, i.e., both channel and application may
use information that goes beyond single isolated sessions. This also includes a general
notion of declassification that has not been present in any vertical composition ap-
proach so far. Moreover, [CCM15| requires a particular tagging scheme on protocols,
while we have a more general non-unifiability requirement (that can be implemented
by tagging but also instead by other forms of message structuring like XML or ASN.1).
Last but not least, we want to point out the succinctness of our result. We see a contri-
bution of this paper in decomposing the problem into two smaller problems: a parallel
composition of stateful protocols and a sound abstraction of payloads messages in the
channel. For the first, we had to make a non-trivial extension to an existing com-
positionality result, namely handling abstract payload types and declassification, but
this allows to reduce a large part of the problem to existing results, and can handle
everything in greater generality. This is both mathematically economical and easy to
understand and use.

Our work significantly generalizes [MV09; MV 14|, which were a first step in solving
vertical composition without fixing a particular form of interaction, but had to fix the
number of transmissions that the channel can be used for, and the constructions are
very complicated. We see as future work the application of our results in cases where
the low-level protocol can hardly be called a channel but some general way to handle a
form of payload, e.g., a distributed ledger, generalizing further the class of compositions
that we support.

We emphasize that our results can be used with standard automated verification
tools. Our compositionality result reduces the verification of % to a number of syn-

tactic conditions and the verification tasks of Ch* || App and Ch*. In most cases, these
are well suited for automated verification tools: while one can of course consider proto-
cols that are not suitable for automated verification, our running example for instance
requires only features expressible (with slight over approximation) in the standard
tools like ProVerif [Bla01], AVISPA |[Arm+05|, Maude-NPA |[EMMO07], CPSA|Gutll]
or Tamarin |[Mei+13|. We have verified for instance our running example in Isabelle
with PSPSP [Hes+21].

We see however three main limitations to our results. First, the behavior and
goals must of course be expressible with transaction and sets, where the interface
between low-level and high-level is just sets that one can only read and the other
can only write—and the low-level is agnostic of the high-level data. Second, the
results we are building on do not support algebraic properties, limiting the class of
primitives that can be used, e.g., it is not possible yet to consider Diffie-Hellmann-based
protocols. We consider the extension of this compositionality result to support the
term algebra as future work. Third, we require that messages from channel and payload
are discernable. This forbids multiple vertical compositions with several instances of
the same channel protocol.

Finally, while this work is based on a black-box model of cryptography, there is
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a great similarity of the ideas in this paper with the Universal Composability frame-
work |Can01} [KT11]. UC is typically used in a refinement style: one defines an ideal
functionality and shows that (under appropriate cryptographic hardness assumptions)
a particular real system implements the ideal one in the sense that real and ideal sys-
tem cannot be distinguished. The real system can be for instance a channel protocol
Ch and the ideal system would be similar to our abstraction Ch*, i.e., abstractly de-
scribing properties of the channel without containing concrete cryptography. We can
then verify an application being correct using Ch* instead of Ch. The differences to our
work are that we do not consider one particular implementation Ch, but give a general
methodology to verify an arbitrary implementation Ch, in particular, reducing the
problem to one with abstract constants Ch* that is compatible with existing protocol
verification tools. This allows notably also for payloads that can be declassified, even
after occurring in a transmission. However, our model is Dolev-Yao style abstracting
from cryptography and we consider it an interesting future challenge to extend our
ideas in UC style to a full cryptographic result.
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A  Proofs

We give in this section the proofs of our results. We first introduce a new nota-
tion. KEach constraint can be seen as a sequence of blocks with each block being
an application of a transaction rule. We sometimes write a block between "7. For
n > 0, we write .A(n) when we consider the n-th block or A(1,n) when we consider
the n first blocks of the constraint. We adopt the following convention for n = O:
A(0) and A(1,0) are the empty constraints. Given a constraint .4(1,n), we define
M(A(1,n)) = {m | +"— occurs in A(1,n)} as the intruder knowledge until the
n-th block of the constraint .A. We use later the same notations for traces, i.e., tr(1,n)
and ¢r(n). We designed in Section [4| a transformation from a channel protocol Ch to
the protocol Ch*. To prove the main theorem of this work, we first want to introduce
an intermediary transformation. In order to lower the complexity of verifying the
protocol Ch || App*, we want to reduce the problem of solving an intruder constraint
representing a protocol execution of Ch || App* containing set operations coming from
the idealization of the application protocol App* to solving an intruder constraint
without these set operations — namely set operations dealing with the outbox and
inbox sets. We call the protocol that we obtain at the end of this transformation an
instantiated channel and we denote it by Ch”PP.

Definition 12 (Transformation of rules of Ch to rules of Ch*P?). Given a pure channel
rule Ch;, its translation into an instantiated channel rule is given as follows. If the
rule contains a step of the form (X < outbox(A, B)), where X is a payload variable
of type p, it is split into a rule for every t € GSMPapy s.t. Ch?ft’p = Ch;[X + t] where
the payload is instantiated with a ground subterm from the application. All other steps

with a set operation for a set of the set families inbox or outbox are dropped.

Note that if Ch; is a well-formed rule, then Chﬁ’;p, for every t € GSMPapp, are
also well-formed rules. Indeed, instead of retrieving a variable from an outbox set,
we instantiate it with a ground term from GSMPap,. By Definition a channel
protocol can only retrieve from an outbox set, no other set operation is allowed on this
set family. Similarly, a channel protocol can only insert into an inbox set, no other set
operation is allowed on this set family. We now state a soundness theorem for this
transformation.

Theorem 6. Let A be a constraint of the protocol Ch || App* and Z an interpretation
st. T = A. Then, there exists a constraint A’ of the protocol Ch*® s.t. T = A’.
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Furthermore, if there is an attack against Ch || App* then there is an attack against
Ch#®P,

Proof. Let A be a constraint of Ch || App* and Z an interpretation s.t. Z = .A. We de-
fine the following translation and then prove it is a constraint of Ch*"P. The translation
of the constraint A, that we denote A’, is obtained by the following operations:

e for every block b being an application of an App* rule, drop the block b,

o for every step (X <« outbox(A, B)), instantiate X with Z(X) in the whole con-
straint, and

e for every step s where a set of the set family outbox or inbox occurs, drop the
step s (but not the entire block to which this step belongs to).

We show that A’ is a constraint of the protocol Ch**? defined in Definition
and that Z = A’. We proceed by induction where the induction hypothesis H(n) is
concerned with the first n blocks of the constraints A(1,n) and A’(1,n):

(a) A’(1,n) is a valid constraint of the protocol Ch*PP,

(b) the knowledge of the intruder is the same in both constraints, i.e. M(Z(A(1,
n))) = M(Z(A'(1,n))),

(c) the state of the sets, except the set from the set families outbox and inbox and sets
only accessed from App* are the same in both traces, and

(d) T A'(1,n)

For n =0, i.e., the empty constraints, it is obvious. Let us now assume that #H(n)
holds for every blocks until n > 0, let us prove it holds also for n + 1 blocks. We have
to distinguish if the block n + 1 is the application of a Ch or an App* transaction.

First, consider the case when the block n + 1 is the application of an App* rule.
Then, it is dropped from the constraint, so A'(1,n + 1) = A’(1,n). By induction
hypothesis, Z = A’(1,n) so Z = A’(1,n+1) (d). Since the only set operations allowed
in App” are set operations involving sets from the set families inbox and outbox or
sets only accessed by the application, the requirement on the state of sets holds (c).
There are no sent messages in App*, thus we also have that M(Z(A(1,n + 1))) =
M(Z(A'(1,n+1))) (b). Also, by induction hypothesis A’(1,n) is a valid constraint of
Ch**" and thus so is A'(1,n + 1) (a).

Second, consider the case when the block n + 1 is an application of a Ch rule. If
the block n + 1 contains a step (X < outbox(A, B)), since by induction hypothesis
Z = A(l,n) and Z(X) € GSMPapp, it is possible to instantiate X with Z(X) in the
whole constraint. Then, all the steps where a set of the set family inbox or outbox
occur are dropped. Since by induction hypothesis, the constraint until now did not
contain any of these sets, removing these steps does not affect the satisfiability of the
constraint, i.e. Z = A’(1,n + 1) (d). Following this argument, the knowledge of the
intruder remains the same after the translation, so M (Z(A(n+1))) = M(Z(A' (n+1)))
(b) and besides sets of the set families inbox and outbox, the state of sets remains the
same (c). Also, during the translation of this Ch block, we instantiated X with a
ground term from GSMPap, and remove the sets from the set families inbox and
outbox, so we obtain a valid block of a constraint of Ch**P. Thus A’(1,n+ 1) is a valid
constraint of Ch**? (a).

By induction we proved that there exists a constraint A’ of the protocol Ch*PP
s.t. T = A’. Tt entails that if there is an attack against Ch || App*, there is an attack
against ChAPP, O
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We are now ready to take it to the level of the protocol Ch*. We want to define a
ground trace of Ch* from a translation of a ground trace of Ch*P. For that purpose, we
define an abstraction function denoted g that takes terms from GSMPY,, = GSMPay\
{t | @ ¢t} — namely the terms that are labeled App — and abstract from them by
replacing them by a fresh constant g from & — the infinite set of constants that we
defined in Section This function leaves unchanged the terms labeled Ch or Pub:

Definition 13 (g function). Let g be an injective function from GSMPR,, to & (i.e.,
Vs,t € GSMPj,,. g(s) = g(t) = s =t). We extend g to a function from Ts — Ts by
setting g(f(t1,...,tn)) = f(9(t1),...,9(tn)) whenever f(t1,...,tn) &€ GSMPR,,.

If we apply this function to all steps of a ground trace of Ch*?", we can abstract
from the terms introduced by the application. We use this function to defined a ground
trace tr’ that we later prove to be a valid trace of ChF:

Definition 14 (Translated trace ir’). We define the meta function status on the
abstract constants of a trace tr':

: d) if (9 — d) € tr'(1,
status(g, tr'(1,n)) = (g e opened) if (g 'opene ) € tr'(1,n)
(g € closed)  otherwise
For a given ground trace tr of Ch*P" and n >= 1, we define the translated ground trace
tr' by:

tr'(0) = {"g — closed™ | g € g(GSMP (M (tr))) N &}
tr'(n) = "{status(g, tr'(a,n — 1)) | g € g(tr(n)) N B}.g(tr(n))7

Besides, if g € declassifiedpy,(tr'(n)) N &, i.e., g is declassified in the n-th block in
a step (x: +—2—), and (g & closed) € tr'(n), then these two steps are replaced by
(g + closed.g — opened.x: +—2—).

We now show that the declassified terms of a ground trace of Ch* are just the
abstraction of the declassified terms of the original ground trace of Ch”PP:

Lemma 1. The declassified Payload messages of the translated trace coincides with
the ones of the original trace modulo g, i.e., g(declassifiedy,(tr(1,n) N GSMPR,,) =
declassified py, (' (0,n))) N G.

Proof. Let g € g(declassified s, (tr(1,n)) N GSMP},,). By Definition g€ 6. If
g € closed, then it is going to be declassified and inserted in opened during the transla-
tion of original trace as defined in Deﬁnition and then g € declassified y, (tr'(0,n)).
If g € opened, then it means it has been declassified before because abstraction
constants can only be inserted in an opened during declassification and then again
g € declassifiedy, (tr'(0,n)). Thus, g € declassifiedy,(tr'(0,n)) N &.

Let M = declassified y,(tr(1,n)) and M’ = declassified py,(tr'(0,n)), i.e., the de-
classified messages of each trace without restriction to payloads, for the other direction.
First, observe that for every s € M’ there is a t with M + ¢ and g(t) = s; this is because
M’ contains only messages that are the translation g(t) of a message ¢ declassified in
tr, or that have been opened, i.e., t € declassifiedy, (tr(1,n))N GSMP},,. Let M' | s,
then there is a corresponding derivation M F ¢t with g(¢) = s, because we can replace
every constant from & in the proof M’ I s with the corresponding term from M. Thus
declassified py, (tr'(0,n)) C g(declassified py, (tr(1,n))).
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We thus proved that the declassified Payload messages of the translated trace coin-
cides with the ones of the original trace modulo g, i.e., declassified y,(¢r'(0,n)) NG =
g(declassified py (tr(1,n)) N GSMPR,,). O

Lemma 2. Let tr be a ground trace from Ch*P? of length at least n + 1. Let MT =
M(tr(1,n+1)) and M* = M(tr'(0,n+1)). If g(DY(M(tr(1,n)))) C DY (g(M (tr'(0,
n)))) then also g(DY(M™1)) C DY(M™*) or there exists g € DY(M*) s.t. (g — closed)
occurs in tr'(0,n + 1) and not (g — opened).

Proof. Let tr,tr',n, M, M* given as in the statement. Let us say that tr(1,n + 1)
leaks payload if there is a message t € GSMP?,, \ declassifiedpy,(tr(1,n + 1)) such
that Mt I ¢, and similarly, say that tr'(0,n 4 1) leaks payload if there is a message
g € &\ declassified 1y, (tr'(0,n + 1)) such that M* F g. If tr'(0,n + 1) leaks payload,
then this lemma holds, because M* |- g for some g € & (so g — closed occurs in the
trace) and g ¢ declassifiedy,(¢tr'(0,n + 1)) (so g — opened does not). Thus, for the
remainder of this proof we can assume that ¢r'(0,n + 1) does not leak payload.

Note that, if g € declassified y, (tr'(1,n + 1)) N &, then by Lemma there exists
a t € declassified py (tr(0,n 4 1)) N GSMP,, such that g(t) = g.

We proceed by structural induction over the derivation M ™ ¢ (see Definition .
Our induction hypothesis (for m € N) is: p(m) =Vt. M+ ™t = M* I g(t) where
" denotes the derivation in at most m steps.

The initial case (0) coincides with the (Axiom) case: 3+, t € M*. By
definition of the translated trace tr', g(t) € M™* thus M™* I ¢.

For the induction step p(m) = ¢(m + 1): we have either a composition or a
decomposition step.

For the (Compose) derivation, we have that t = f(t1,...,tp) for some f € ¥? , and
MTFE™t o MVYE™{,
MTE™ ft, . tp)

We further distinguish two cases:

1. f(t1,...,tp) € GSMPR,,: we have g(f(t1,...,t)) € &, and t; € GSMPpp, for
1 <i<p. Foreach 1 <i < p, we have either t; € {¢t | 0 F ¢}, then g(¢;) = t;,
otherwise g(t;) € &. In that case, g(t:) € declassifiedy,(tr'(0,n+1)) N & since
tr'(0,n+1) does not leak, and thus ¢; € declassifiedpy, (tr(1,n+1)) N GSMP3,,
by Lemma Thus, t; € declassifiedpy, (tr(1,n + 1)) for all 1 <4 < p (including
public ¢;). Thus, by DY-closure also f(t1,...,t,) € declassifiedpy, (tr(1,n+ 1)),
and since also f(t1,...,t,) € GSMP},,, again by Lemma we have g(f(t1,...,
tp)) € declassifiedpy, (tr'(1,n + 1)) N ® and thus g(f(t1,...,tp)) € M* by the
construction of ¢r'. We thus have M* & g(f(t1,...,tp)) and therefore p(m + 1)
holds.

2. f(t1,...,tp) € GSMPy,,: then by definition of g, g(f(t1,...,tp)) = f(g(t1),...,
g(tp)). Since M™* F g(t;) by induction, also M* F f(g(t1),...,9(tp)) and thus
»(m + 1) holds.

(Decompose): then there is to = f(t1,...,tq) such that t € {¢t1,...,¢q} and

. By induction, we have that M* - g(¢1),...,M* F g(tp).

M*YE™tg MYE™ k... MYE"k, Ana(to) = ({k1, ..., kp}, {t} UT),
M*T ™ p<gq

By the form of Ana rules, {k1,...,kp} C {t1,...,tq}. W.Lo.g. we can assume that the
keys are the first p positions of f, i.e. t1 = ki1,...,tp, = kp. By induction, we have
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that M* + g(to), M* + g(k1),...,M™* F g(kp). To show: M* F g(t). We distinguish
further two the cases:

1. to € GSMPR,,: we have that g(to) € &, and t,t1,...,t4 € GSMPpp,. For
each 0 < ¢ < ¢, we have either ¢t; € {t | 0 F ¢}, then g(¢;) = t;, otherwise
ti € GSMPyR,, and thus g(t;) € &. In that case, g(t;) € declassified -, (tr' (0,
n + 1)) N &, since tr'(1,n + 1) does not leak, and thus by Lemma t; €
declassified py, (tr(1,n + 1)) N GSMP,,. Thus, t; € declassifiedpy, (tr(1,n + 1))
for all 0 < ¢ < ¢ (including public ¢;). Thus by DY, also t € declassifiedy, (tr(1,
n+1)). Ift € {t | O F ¢}, then trivially M™ b g(¢), otherwise since t € GSMP ppp,
we have t € declassified py, (tr(1,n+1))N GSMP},,, and thus again by Lemma
g(t) € declassifiedry,(tr'(0,n + 1)) N &, and thus g(t) € M™ by construction.
Therefore M* - ¢g(t) and therefore ¢(m + 1) holds.

2. to ¢ GSMP},,: excluding the trivial case to € {t | § - t}, to is thus labeled
channel and thus by our assumptions so are also the keys t1,...,tp, i.e., they
cannot be part of GSMP3R,, either. Thus, g(to) = g(f(t1,...,tq)) = f(g(t1),...,
g(tq)) = f(t1,-. -, tp,g(tp+1),.-.,9(tq)). By induction, we have that M™ F g(to)
and M* F g(t;) = t; for 1 < ¢ < g. Thus the corresponding analysis step is
possible in M*, yielding M™ F g(t).

O

Theorem Let Ch be a channel protocol and App an application protocol w.r.t. a
ground set Sec of terms that are vertical composable. If there is an attack in Ch || App*,
then there is one in the protocol Ch?.

Proof. Let us consider a constraint A of Ch || App* and an interpretation Z s.t. Z = A.
By Theorem @ there exists a constraint A’ of Ch** s.t. T = A’. T(A’) is a ground
trace of Ch*PP. We note it ¢r and we consider its translation following Definition

We proceed now by induction, where the induction hypothesis H(n) is concerned
with the first n blocks of the original trace ¢r(1,n) and the n+ 1 blocks of steps of the
translated trace ¢r'(0,n) defined in Definition

e cither #/(0,n) is a valid trace of Ch*, and we have that g(DY(M (tr(1,n)))) C
DY(M(tr'(0,n))),

e cither DY (M (ir'(0,n))) N (g(Sec\ declassifiedpy,(tr(1,n))) U {attackcn}) # 0

The second conjunction holds for n = 0. We show that #'(0,0) is a valid trace of
Ch¥. It was defined in Definition [14] that initially a number of g-values are inserted in
the closed set. These steps can be generated by the rule Chf,. There is initially no
declassified values.

Suppose the induction hypothesis holds for some number n > 0, and the number
of blocks of steps in both traces is at least n+ 1. Note that once the second disjunction
is true for n, it is also true for all n” > m. Thus we suppose the second disjunction
does not hold until n. We start by showing that the translation of every new block is
the application of a valid rule of Ch*. Note that as specified in Definition all the
constants g € & occurring in #r’'(0,n + 1) have been inserted in the set closed at the
start of the trace. The function status only inserts positive checks at the beginning
of the blocks, as in every rule of Ch*. There are already no outbox or inbox in Ch”PP.
We then apply the function g to the block that replace every ground term from the
application, that replaced payload variables, by an abstract constant from &. We
also specify how to correctly declassify the constants from &. Thus we obtain a valid
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application of a rule of Ch*. Then, we can now show that the induction hypothesis
holds for n 4+ 1. We distinguish the following cases according to the kind of blocks of
steps that we are concerned with at the block n+ 1. In the following, we consider that
the second disjunction is not true until n, otherwise the induction is trivially true as
we explained earlier.

e new messages are received but not the constant attackch: it means the knowledge
of the intruder is augmented by the set of new received messages, i.e. M (tr(1,n+
1)) = M(tr(1,n)) U M(tr(n + 1)). By induction hypothesis, we can apply
Lemma 2| and we have g(DY(M (¢r(1,n + 1)))) € DY (g(M(tr'(0,n + 1)))) or
there exists g € DY(g(M (tr(1,n + 1)))) s.t. (g € closed) occurs in tr’(0,n + 1).
Therefore, either of the disjunction of the induction hypothesis holds and H(n+
1) holds.

e no new messages are received: the knowledge of the intruder stays the same, i.e.
M(tr(l,n+1)) = M(tr(1,n)). We can use the induction hypothesis and apply
Lemma [2} either of the disjunction holds and H(n + 1) holds.

e the constant attackch is received in the original trace: as explained in Defi-
nition the constant attackc, is not abstracted. This means the constant
attackch is also received in the translated trace. Therefore the second disjunc-
tion holds in the block n + 1 and H(n + 1).

By induction, we proved the theorem. O

Finally, the composition of vertical composable and secure application and channel
protocols is secure:
Corollary Let Ch be a channel protocol and App an application protocol w.r.t. a
ground set Sec of terms. If (Ch, App, Sec) is vertical composable, and Ch* and Ch* ||
App are both secure in isolation, then the composition % is also secure.

Proof. This is a direct consequence of Theorem [5| and Theorem O

B Extension of the typing results
B.1 Extension of the Typing Result [Hess18]

We define a compatibility relation as the least reflexive and symmetric relation such
that:

o 7 7o if 71 < 79, and
o f(Ti,. o, Tn) XA f(T], .o yTn) T DATI AL AT XIT)

Note that < is not transitive, e.g. p > fs(Nonce) and fi(Nonce, Agent) 1 p, but
f3(Nonce) 54 fi(Nonce, Agent).

We silently assume in the following that all substitutions are idempotent, i.e. vari-
ables of the domain do not occur in the image. Note that all unifiers of terms can be
made idempotent.

As it is standard we define the composition 6 o o of two substitutions o and 6
as function composition. Note that the result is in general not idempotent (e.g. o =
[x = fy)], 0 = [y — f(x)]), therefore, we silently assume in the following that
fo(img(0)) N dom(o) = @ (which is the case for all constructions we make in this

paper).
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Lemma 3. Given well-typed o and 0, then 0 o o is well-typed.

Proof. Consider any variable z, we have to show I'(z) > I'(o(z)) > T'(6(c(z))).

By well-typedness of o follows already I'(z) > I'(o(x)). If o(x) is a variable, then
also I'(o(z)) > I'(8(c(x))) follows by well-typedness of 6. If o(z) is not a variable, no
proper subterm of o(z) can have type p or a type from ¥, (because otherwise I'(z)
would contain p or T, as a proper subterm). Thus I'(y) = I'(6(y)) for every variable y
in o(z), and thus I'(o(z)) < T'(0(c(x))). O

Lemma 4. Let s,t be terms such that I'(s) x I'(t), and 0 = [z — u] with T'(z) = p
and I'(u) € T, such that 6(s) and O(t) can be unified. Then I'(6(s)) > T'(6(¢)).

Proof. : Consider P = pos(s) N pos(t), the set of positions that exist in both s and ¢.
Note that I'(s|p) o< I'(¢t|p) for all p € P. Consider any position p where z occurs in s
or t, say in s. We consider two cases:

e p € P. Since I'(s|p) x T'(¢|p), t|p is:
— either a variable of type p (thus T'(6(s|p)) > T'(0(¢|p)))

— or a composed term of a type in T,. Since 6(s|p) can be unified with 6(t|p),
follows I'(t|p) = I'(w) (thus I'(8(s|p)) = T'(8(t|p)))-

e p ¢ P. Let po be the longest prefix of p with po € P. Since I'(s|po) > I'(¢|po),
t|po must be variable (otherwise a strictly longer prefix of p would be in P).
However, that also means I'(t|po) contains as a subterm either p or an element
of ¥, — that contradicts the requirements on the typing system.

For all other positions p € P (including p = €), it follows I'(8(s|p)) > I'(8(¢|p)) from
the definition of <. O

Theorem Let s,t be unifiable terms with I'(s) > I'(t). Then their most general
unifier is well-typed.

Proof. We show an invariant for the standard unification algorithm where a state
of the algorithm is characterized by a set of pairs of terms {(s1,t1),...,(Sn,tn)} to
unify (initially this set consists of the given pair {(s,t)}) and a current substitution o
(initially the identity). The invariant is that I'(s;) > I'(¢;) and o is well-typed. We
exploit during the proof the fact that the given s and ¢ are unifiable, and the standard
unification algorithm is correct, i.e., it will return a unifier oy that is most general,
and at each state, the current o will have oy as an instance, and the (s;,t;) pairs all
have oy as a unifier.
The algorithm picks any pair (s;,t;) to unify first and we distinguish the cases:

e I'(s;) = p. Then s; is a variable (since p is not an atomic or composed type).
Since I'(s;) 1 I'(¢;), we have one of the following two cases:

— I'(¢;) = p, and hence ¢; is a variable. Then 6 = [s; — ;] (or 8 = [t; — si],
depending on the algorithm’s preference) is well-typed, thus 6 o ¢ is also
well-typed by Lemma Moreover, 6 does not change the type of any term
it is applied to, i.e. I'(8(s;)) = I'(s:) > I'(¢;) = T'(0(¢;)).

— I'(t;) € %p, and hence ¢; is not a variable. Thus 8 = [s; — ¢;] is well-
typed since I'(s;) > I'(¢;). Moreover, 6 o o is well-typed by Lemma By
Lemma [4] we have that T'(6(s;)) > T'(6(t;)) for the all pairs to unify.

This takes care of the case that one of the terms to unify is a variable of type p.
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e If s; is a variable, but not of type p, then it cannot contain p or any element
of ¥, as subterm of the type. Thus actually I'(s;) = ['(¢;) and the substitution
0 = [si — t;] does not change any types and thus preserves the invariant. The
case that t; is a variable is handled symmetrically.

e Otherwise we have s; = f(u1,...,ur) and t; = f(v1,...,vx) for some operator
f and I'(u;) > I'(v;) by construction, thus also here the invariant is preserved
recursively.

O

B.2 Extending the Results of [Hess18§|

We now describe how the definition and results from |Hes19| can be extended to the
payload data type that we have introduced. We just summarize definitions and proofs
that do not require any changes, and we omit aspects that we do not need for our
result.

The thesis [Hes19| develops the typing result in several stages, namely in Sec. 3.2
first on intruder constraints without analysis (so the intruder can only compose and
unify) and without set operations and conditions; this is extended in Sec. 3.3 to tran-
sition systems (where analysis is also handled), and then in Sec. 4, this is extended
to stateful constraints (augmenting with set operations and conditions). The reason
is that Sec. 3.3 and Sec. 4 are done by reduction to problems of Sec. 3.2; since all
the extensions on all levels are similar, we will sometimes group this together for the
different levels.

Note that the typing result we have formalized so far is a conservative extension
of the typing system in |[Hes19| (Sec. 3.2) in the sense that our system allows strictly
more types, considers strictly more substitutions as well-typed and leads to a strictly
larger SMP for a given protocol (since it is closed under well-typed substitutions).

Our notion of type-flaw resistance is thus more liberal than |[Hes19| (Def. 3.17
and 4.12) except for the requirements on inequalities: here [Hes19| gives two possible
ways to satisfy the requirements: either all free variables of the inequality are of atomic
type or no subterm of the inequality is generic. We have opted to specify only the
second choice since we never practically needed the first and wanted to make the notion
of type-flaw resistance not unnecessarily complicated — the result holds however even
when allowing both choices.

In section |Hes19|, a sound, complete and terminating procedure for constraint
reduction is introduced. This procedure is applied to a pair (A, 6) where A is a well-
formed constraint and 6 a substitution for variables that have been already instantiated
(so dom(0) N fu(A) = 0); initially 0 is the identity. This procedure is unaffected by
our extensions. The core of the typing result is the following lemma:

Lemma 5 (|[Hes19] (Lemma 3.18)). If (A, 0) is well-formed, A is type-flaw resistant,
0 is well-typed, and from (A,0) the constraint reduction can reach (A’,0), then A’ is
type-flaw resistant and 0" is well-typed.

Proof. The constraint reduction can do any of the following steps:

e it can unify a received term s and a term ¢ that the intruder has sent. Neither
s nor t may be a variable (but may contain variables). By type-flaw resistance
and since s,t € SMP(A) and are not variables, if they have a unifier, then either
I'(s) < I'(t) or I'(s) > I'(t), and thus by Theorem [I} their most general unifier is
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well-typed. Thus, the invariants are satisfied on the resulting constraint. This
is in fact the main point why our extension of the typing result is correct.

e for equality we already have that the two terms must have compatible types,
and thus again their most general unifier is well-typed, and

e the other two operators are composition and analysis (in [Hes19| (Sec. 3.3)),
both just move to subterms or key-terms under which SMP is closed.

O

Thus, as far this procedure is concerned, the intruder never needs to make an ill-
typed choice to launch an attack. The constraint reduction terminates with so-called
simple constraints: all messages left to send for the intruder are variables with sat-
isfiable inequalities. Without any inequality constraints, this is trivially satisfiable,
because the intruder can pick just any value for the remaining variables. For con-
straints with inequalities [Hes19] (Lemma 3.7) (that is independent of the typing) tells
us to pick a fresh value for every remaining variable and check the inequalities; if
they are unsatisfiable, then they are unsatisfiable for every choice, otherwise we have
a solution. The point is that this pick can be done also well-typed:

Lemma 6 ([Hes19| (Lemma 3.19)). If (A,0) is well-formed, A is simple, and 0 is
well-typed, then (A,0) has a well-typed model.

Proof. The point is that the intruder has unbounded reservoir of public constants of
any atomic type; for composed types with a public function symbol, he can just apply
the function symbol to fresh terms of the corresponding subtypes. Private function
symbols are in fact just syntactic sugar: a private function symbol f € X" is encoded
as a public function symbol f, € Z;Lut17 where the first argument for all terms of
a protocol is a special constant the intruder does not have, so he cannot compose
“interesting” private terms of the protocol (like private keys), but something that
satisfies the typing. For our extension with payload types, there is only one item to
consider: the abstract payload type p. Here, we have to pick a value for some type of
%p. This requires that T, # 0, which is however not a restriction as we actually do
want to use it with concrete payloads. O

From this follows immediately the typing result for constraints [Hes19| (Theorem
3.20) that a type-flaw resistant constraint has a solution iff it has a well-typed solution.

As part of lifting the result to the protocol level, the analysis rules integrated
in [Hes19] (Sec. 3.3.3); this is relevant since the analysis rules are untyped, while we
have to handle this in way compatible with the typing result. The construction is to
allow analysis steps for every subterm in the intruder knowledge except variables. This
is sufficient since the intruder does not have to analyze any term that does not occur
as a construction in his knowledge (because all other constructions are by the intruder,
so he already knows the subterms). In fact, this proof also works when we integrate
payloads: either a variable of type p is never instantiated (so the intruder does not
have to analyze it) or it is instantiated with a more concrete term that already occurs
in the constraint (then it is already covered by the construction). Thus there is in
fact no modification for obtaining the result [Hes19| (Theorem 3.27) for the typing
result on the protocol level: every satisfiable reachable constraint of a protocol has a
well-typed solution.

In [Hes19| (Sec. 4), the result is lifted to stateful constraints by a reduction proof
that maps set operations and check into equality and inequality checks. In fact, the
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result theorem |Hes19| (Theorem 4.15) requires only the updates to type-flaw resis-
tance already discussed, i.e. for type-flaw resistant stateful protocols, every satisfiable
reachable constraint of a protocol has a well-typed solution.

B.3 Update of the Parallel Composability Result

|Hes19] defines the declassified messages as those that are sent by an honest agent
in a x-labeled step, i.e., those that some component explicitly wishes to declassify.
This mechanism was initially intended to apply only to a few distinguished secrets
used in both protocols, e.g., public and private keys. The construction in this paper,
however, treats all messages of the payload and their submessages (as far as they are
not public) as members of Sec. For instance, in a pair-style function (i.e., the intruder
can both compose and decompose it), we would have for instance that the intruder
also immediately knows the components, and also that he can build other messages
of the protocol with these components. It is unfeasible to explicitly declassify all
these messages, because the intruder may even compose well-typed messages from
components that he learned in different declassification steps. Therefore, we consider
in this paper a variant of declassification that is closed under Dolev-Yao deduction.

B.4 Declassification (extended from [Hess18])

Let A be a labeled constraint and Z a model of A. Then declassifiedpy(A,Z) =

DYt | *: +—1 occurs in Z(A)}) is the set of declassified secrets of A under Z.

First, one may wonder if this is going to far, i.e., that this closure includes some
declassifications that the designer of the protocol did not intend and is not aware of.
However, this is in our opinion not the case, since the declassification does in general
not play the role of secrecy goals, but only the one of an interface in the composition
of protocols where they are guaranteeing each other not to leak. In other words, the
declassification plays the role of a “contract” between two protocols, each of them
should have their own policy about secrecy, and it is then part of the verification of
each protocols goals, that said contract is sufficient to guarantee these goals.

As a concrete example, let us consider the famous attack on Needham-Schroeder
Public-Key Protocol (NSPK) |[Low95|. Suppose we have NSPK without cryptography
as an application running over confidential channels. In the attack, an honest a in
role A first sends a message fi(na,a) to the intruder, i.e., to a dishonest recipient.
Note that we use here a format fi instead of pairs to ensure type-flaw resistance. This
means that we declassify fi(na,a), and thus na and later also f2(na,nb) which would
be a type-correct message of the second step. The intruder forwards this message on
a confidential channel to an honest b in role B, who answers with f2(na,nb) on a
confidential channel to a, so this is not declassified. In fact, nb is now considered by
NSPK as a secret between a and b, and is made explicit by putting nb — secret(a, b)

(with the corresponding rule (# .M € secret(A, B).attack) for all honest A and
B). Further, a, who believes to be talking to the intruder, sends the reply f3(nb) on
a confidential channel to the intruder. From a’s point of view this is fine, and f3(nb)
and nb get declassified as they are deliberately sent to a dishonest recipient. Now,
the intruder does indeed know the declassified nb and can trigger the violation of the
secrecy goal for b. This illustrates that the attack exploits a discrepancy between a’s
understanding of the protocol (in particular na,nb € secret(a,7)), and thus sending
this message to the intruder in accordance with the protocol, and thereby revealing
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a value that b considers as a secret. However, this does not violate the contract
between channel and application: in the steps where a has sent messages to a dishonest
recipient, she has just released the channel from the obligation to keep these messages
secret.

It seems intuitive that all proofs of the compositionality result [Hes19| still work
with this modified notion of the declassification, because these proofs do not actually
depend on what message the particular protocols choose to declassify; the only crucial
property — that the intruder can derive all declassified messages — still holds with
this definition.

However, the way the proofs are constructed in |[Hesl9] on the constraint level
does not work with this update directly. Like in the typing result, [Hes19| (Sec. 5)
first establishes all properties on a constraint level, and for all notions considers only
messages that occur on the constraint level, but not all messages that may occur in
a given set of protocols. In contrast, our new notion of declassification deliberately
considers terms that have not yet occurred at a particular point in a constraint, but
that the intruder may want to use later.

However this “scoping” issue can be overcome by the following change to a number
the definitions in [Hes19|: where the scope is limited to GSMP of a particular trace, we
replace it with the GSMP of the entire protocol. This is actually a substantial change
to a number of definitions and lemmas, but the intuition why this works is quite simple:
suppose we add to a constraint at the start that the intruder should send messages
covering every message pattern occurring in the protocol (using fresh variables). This
does not constrain the intruder really —since he is always able to generate messages in
the form of the protocol— and the GSMP of the constraint would then indeed cover
the GSMP of the entire protocol we consider. However, this is only the intuition why
this change works, and we now provide proper definitions.

First, we have the definition given in the main text, i.e., the set Sec; the definition
of GSMP for a set of messages, for a trace, and for a protocol; and GSMP-disjointness.
We also define declassifiedy,(A,T) as in the main text as the Dolev-Yao closure of
the x-labeled messages received by the intruder in Z(.A). Thus, declassifiedpy, (A, L) =
DY(declassified(A,T)) for the notion of declassified in [Hes19| (Def. 5.2). We define
leakage with respect to our notion of declassification.

The definition of parallel composability is also changed w.r.t. |Hes19| (Def. 5.4
and 5.6) on the constraint level and on the protocol level: we omit the requirement
that a transaction cannot have x-labeled receive steps (i.e., sending from the intruder’s
point of view). In fact, the authors of [HMB20| have discovered in the meantime that
the proofs can be conducted without this requirement. Another change is that we of
course now use the notion of type-flaw resistance that we have defined in this paper
earlier (and the parallel compositionality only relies on the typing result itself, i.e.,
that a well-typed attack exists if an attack exists).

To prove the updated parallel compositionality result, let us fix a few terms for the
remainder of this section: suppose P4i,..., P, are protocols that are parallel compos-
able with respect to a set Sec of secrets. Let P = Py || ... || Pn. The first definitions
and lemmata consider once again only constraints on the stateless level (i.e., without
set operations and set conditions).

Definition 15 (Update of [Hes19] (Def. 5.9)). Let A be a constraint from P.
e A termt is i-specific iff t € GSMPp, \ (Sec U {t |0+ t}) for a label i.

e A term t is heterogeneous iff there exists protocol-specific labels 11 # lo and
subterms t1 and t2 of t such that each t; is l;-specific.
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e A term t is homogeneous iff it is not heterogeneous.
We have then (with the same proof idea):

Lemma 7 (Update of [Hes19| (Lemma 5.10)). If A is a constraint of P, then every
t € GSMP 4 is homogeneous.

An important next step is that the intruder never needs to construct heterogeneous
terms. For that we first define homogeneous intruder deduction:

M }_hom t te M
M bFnomti oo M bpom tn S Do
U f(t1,...,tn) homogeneous,
hom f(t - otn) L) € GSMPp
M Fhomt MbFnom ki ... M Fuom kn Ana(t) = (k1,...,l€n7T),
M Fhom tz tz c T

Lemma 8 (Update of [Hes19| (Lemma 5.12)). Given a finite set of messages M C
GSMPp and a term t € GSMPp, then M bt iff M From t.

Proof. This is only a minor update in the proof; the essential idea is that we can do
proof normalization. If the proof tree for M I t contains a composition f(t1,...,tn)
from known ¢; that is being analyzed to obtain one of the ¢; again, then we can
simplify the proof for that ¢;. Further, since for homogeneous ¢, Ana(t) = (K,T) has
that also K and T are all homogeneous terms, and the goal term ¢ of the statement
must be homogeneous, no heterogeneous term in the derivation remains after proof
normalization. O

From homogeneity follows, where ik(A) is the intruder knowledge in .A:

Lemma 9 (Update of [Hes19] (Lemma 5.13)). Given a constraint A of P and a well-
typed model I such that Vs € Sec \ declassifiedpy, (A, T). k(Z(Al:)) Vhom s for any
label i, (i.e., none of the protocols in isolation leaks a classified secret in Z(A)). Let
ik(Z(A)) Fhom t, then t & Sec\ declassifiedy,(A,I) and if t € GSMP(A|;) for some
1, then ik(Z(Al;)) Fhom t.

Thus, these lemmata together give that if the protocols do not leak secrets, then
every derivation of a term that belongs to protocol ¢ can be achieved in the projection
to protocol i of the constraint:

Lemma 10 (Update of [Hes19] (Lemma 5.14)). Given a constraint A of P and a well-
typed model Z. Then A leaks a secret from Sec or for every ik(Z(A)) Ft € GSMP(A|;),
we have ik(Z(A|;)) F t where i is a protocol-specific label.

The next step is:

Lemma 11 (Update of |Hesl9| (Lemma 5.15)). Given a constraint A of P and a
well-typed model Z. Then either some prefic of A leaks a secret, or T = I(A|;) for
every label 1.
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Proof. This proof actually does not need an update with respect to our modification
of declassification, but one in order to lift the original requirement that no receiving
step in a transaction is labeled *.

Suppose A = A’.(l: 5) for a constraint A" on which the statement already holds
and a step s labeled I. If a prefix of A’ leaks a secret, then so does a prefix of A.
Suppose thus, Z = Z(A’];) for every label i, and we have to show that also Z = Z(A[;)
for all .. We do this by case distinction of [ and s.

e 5 is a receive step of A (thus, a send in the corresponding transaction): this is
not problematic as it only augments the intruder knowledge and, if x-labeled,
also the declassified terms, but cannot invalidate Z.

e s=—"01 (thus a receive of a transaction) and [ is a protocol specific label: since
ik(Z(A)) F Z(t) (since T |= A’), we have by Lemma [10] that also ik(Z(A'[;)) -
Z(t).

e The difficult part is if s =—2" 5 and the label [ is *. Avoiding this case in the
proof was indeed the reason for forbidding transaction with a star-labeled receive
(i.e. *-labeled send in the resulting constraints). However, it can be proved
without as seen in [HMB20|. First, Z(¢) must be in Sec U {t | 0 - t}, because it
occurs in the projections Z(.Al;) for all labels ¢ and this would violate GSMP-
disjointness if Z(t) had any i-specific subterms. If it is public (i.e., in {¢t | 0 - t})
or declassified (i.e., in declassifiedy,(Z(A))), then the statement easily follows.
There remains the most tricky case: Z(t) € Sec\ declassified,,(Z(A’)). Since
T = A, we have that ik(Z(A")) F Z(t). To show: one of the P; is to blame for
leaking this classified secret (and thus concluding this case).

Consider the normalized derivation proof for ik(Z(A")) - Z(t).

— If the root operation is a compose step, i.e., producing a term of the form
f(t1,...,tn), then the t; are in Sec U {t | @ I ¢}. Then, also one of the
t; must be in Sec\ declassifiedpy,(Z(A')) (otherwise, if all ¢; are public or
declassified, then also f(t1,...,tn) € declassifiedy,(Z(A'))). In this case,
we shall continue with the respective subterm. By repeatedly applying
this argument we thus arrive at a node in the derivation tree that is not
a composition, but an (Axiom) or (Decompose) step, and such that this
term is in Sec U{t | @ It} as handled by the following cases.

— We assume thus we have a term tg € Sec U {t | 0+ ¢} and ik(Z(A")) + to,
and root node of the derivation tree is (Axiom) or (Decompose). In the
case of analysis, note that the term being analyzed cannot be obtained by
a (Compose) step due to proof normalization, so it is either itself obtained
by (Axiom) or (Decompose). We follow this chain of analysis steps until we
reach a message that was obtained by (Axiom). In any case this message
contains to as a subterm and was sent by some protocol P; and must be
homogeneous. Thus all keys that have been used to obtain the analysis
steps along the path to to must be labeled ¢ or x. Thus, by Lemma [I0} we
have either a leak or ik(Z(.A|;)) F to, which is then also a leak.

e Equalities and inequalities are also not problematic as they are all already sat-
isfied since Z is a model of A.

O
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|Hes19] (Lemma 5.16) does not change in statement or proof: if no protocol leaks,
then every constraint A with model Z has a well-typed model that is a model of every
project Al;.

Again, |[Hes19] (Sec. 5.4.2) lifts the previous result from ordinary constraints (with-
out set operations and conditions) to the stateful level by a translation from stateful to
ordinary constraints and |[Hes19| (Sec. 5.4.3) lifts it to the protocol level. This requires
no changes for our modification of declassification.

C Application of the theorems

In this section, we want to show in detail how to apply our results to the vertical
composition 22 from our running example (see Figures [2[and [3) as summarized in the
end of Section @ Thus, following Definition [TT} we neeto show that:

1. (Ch, App, Sec) is parallel composable,

2. GSMPppp, C SecU{t | O+ ¢},

3. GSMPcps N GSMPpp, C{t |0+ t}, and

4

. none of the keys in K or their subterms in an analysis rule for a channel term
s.t. Ana(f(t1,...,tn)) = (K, T) are labeled App.

Let us start with showing that (Ch, App, Sec) is parallel composable (Definition 7).
This means that we have to show that:
a) Ch || App is Sec-GSMP disjoint from Ch* || App,
b) for all s € Sec and s’ C s, either ) - s’ or s’ € Sec,
c) foralll: (¢,5),1": (t',s") € labeledsetops(Ch || App), if (t,s) and (¢, s") are unifiable
then | =1’, and
d) Ch || App is type-flaw resistant and Ch, App, Ch* and App* are well-formed.

We give here the basis for the demonstration, for more details on how to prove the
parallel composability, we refer the reader to [Hes19].

Following Definition [3] let us first start by proving the type-flaw resistance (1d) of
Ch || App, i.e., we can prove the type-flaw resistance of the following set of steps M
that subsumes the steps of Ch || App as well-typed instances, where I'({P}) = {Alias},
P({C,S}) = {Agent}, T({N}) = {Nonce}, [({K}) = {Key}, [({A, B}) = {Names}
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and ({X}) = {p}:

M={P ¢ taken, P — taken, P — alias(C), ‘i—», N — sent(S, P),
fenattenge (N, S) — outbox(S, P), fenaiienge (N, S) < inbox(S, P),
N + sent(S, P), P € alias(C), K — sessKeys(P, B),
Sresponse (mac(secret(C, S), N)) — outbox(P, S),
fresponse (mac(secret(C, S), N)) + inbox(P, S), (VC.P ¢ alias(C)),

attackapp crypt(pk(B) sign(inv( P), frewsess (P, B, K)))
5 b

crypt(pk(B),sign(frewsSess (P, B,K)))

, K — sessKeys(B, P),
X <+ outbox(A, B), K € sessKeys(4, B), X — secCh(A, B),

serypt(K, fpseudo (A, B, X)) scrypt(K, fpseudo (A; B, X))
) )

K € sessKeys(B, A), X € secCh(A, B), X — inbox(A, B),

— X X (VA,B.X ¢ secCh(A, B)), «—22% 3y

All variables have atomic types. Besides the non-constant, non-variable sub-message
patterns of M consist of the composed terms and subterms closed under well-typed
variable renaming and well-typed instantiation of the variables with constants. It is
easy to see that each pair of non-variable terms among these composed sub-message
patterns have compatible types if they are unifiable. There are no inequality checks
in M, there remains just the conditions for negative checks to fulfill. There are only
three negative checks, (P ¢ taken), (P ¢ alias(C)) and (X ¢ secCh(A, B)), and none of
their subterms are generic for any set of variables.

It is easy to see that Ch, App, Ch* and App* are well-formed. Now that we proved
that Ch || App is type-flaw resistant, we need to prove the other conditions for parallel
composability. First let us look at the GSMP disjointness of Ch || App* and Ch* || App
(1a). The set GSMPcpx|app consists of the following set closed under subterms:

{attackapp, (p, alias(a)), (n1, sent(s, p)),
(fresponse (mac(secret(c, s),n1)), outbox(p, s)),
Sresponse (Mac(secret(c, s),n1)), inbox(p, s)),
fehattenge (N1, 8), inbox(p, 8)), (fehatienge (N1, 8), outbox(p, s)), inv(p),
z, outbox(a, b)), (z,secCh(a, b)), (z, inbox(a, b)), z,
p,taken) | n1,a,s,p,b,¢c,x € C,I'({n1}) = {Nonce},
I({e,s}) = {Agent}, T({p}) = {Alias},
I'({a,b}) = {Names}, I'({z}) = {p}},

(
(
(
(

40



and GSMPcpapp+ consists of the following set closed under subterms:

{attackch, (k, sessKeys(a, b)), scrypt(k, fpseudo (A, B, X)),

(z, outbox(b, c)), (x, secCh(b, ¢)), (x, inbox(b, ¢)), x,

(fresponse (mac(secret(c, s),n1)), outbox(p, s)),

(fresponse (mac(secret(c, s),n1)), inbox(p, s)),

(fenatienge (111, 8), inbox(p, 5)), (fenatienge (1, $), outbox(p, s)), inv(p),

(k, sessKeys(s,p)) | n1,a,s,p,b,¢c,z,k € C,

I'({n1}) = {Nonce},I'({c, s}) = {Agent},

I'({p}) = {Alias},I'({a, b}) = {Names},

P({}) = {p}.T({k}) = {Key}.}

The terms occurring in the intersection of the GSMP are included in the following

set Sec:

{z, (x,secCh(a, b)), (x, outbox(a, b)), (z, inbox(a, b)),

(fresponse (mac(secret(c, s),n1)), outbox(p, s)),

(fresponse (mac(secret(c, s),m1)), inbox(p, s)),

(fenatienge (N1, 5),inbox(p, 5)), (fehatienge (N1, 5), outbox(p, 5)), inv(p),

secret(c, s), n1

| ni,a,s,p,b,c,x € C,I'({n1}) = {Nonce},

I'({c,s}) = {Agent}, I'({p}) = {Alias},

I'({a,b}) = {Names}, I'({z}) = {p}}
The second condition (1b) is satisfied since any subterm of a term from Sec is either
in Sec or an agent name. Finally, for the third condition (1c), we indeed have for
all 1: (t,8),l': (t',s") € labeledsetops(Ch || App), if (¢,s) and (t',s) are unifiable then
1=1.

Let us now look at the remaining conditions for the vertical composability following

definition [I11
GSMP ppp consists of the following set closed under subterms:

{attackapp, (p, alias(a)), (n1, sent(s, p)),
(f2(mac(secret(a, s),n1)), inbox(p, s)),
(f2(mac(secret(a, s),n1)), outbox(p, s)),
(f1(n1, ), inbox(s, p)), (f(n1, 5), outbox(s, p)),
inv(p), (p, taken) | p,n1,a,s € C,

I'({p}) = {Alias},T'({n1}) = {Nonce},
I({a,5}) = {Agent}},
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and GSMP; consists of the following set closed under subterms:
{attackch, (g, secCh(a, b)), (k, sessKeys(a, b)),

(97 opened), (97 Closed)7 Scrypt(k7 fpseudo(a,b,g))7
(k, sessKeys(b, a)), (k, sessKeys(c, p)), g

Cl’ypt(pk(b), Sign(inV(p)7 fnewSess (p, ¢, k)))a

I'({g}) = {a}, T({a, b}) = {Names},

I({k}) = {Key}, T'({p}) = {Alias},

I'({c}) = {Agent}}
The second condition (2) and third condition (3) of vertical composability are verified.
Besides, none of the keys in the protocol are labeled App, thus the fourth condition
(4) is also verified.

We proved that the two protocols are vertical composable, and we proved in

PSPSP |Hes+21] that Ch* and Ch* || App are secure, thus we can conclude with Corol-
lary |1| that % is secure.

D Further examples

We include in this section further examples to illustrate the extend of our method.
In particular, we want to show how to formalize different security goals for a channel
protocol. We also want to highlight what aspects are mechanisms of a channel protocol
and what aspects specify the guarantees that the channel exposes in its interface and
thus what an application protocol is verified against when we verify Ch* || App. We
formalize the following examples:

e another variant of the channel from our running example that uses certificate
to authenticate one endpoint in the key-exchange (Figure @,
e a channel providing authentication without secrecy (Figures|8|to [10)),

e two different channel mechanisms to guarantee replay protections that both
expose the same interface, and (Figures [L1] to

We do not reintroduce notations when they have already been introduced in our main
examples.

D.1 Key-exchange with certificate

Consider first the variant of Ch in Figure []] where an agent is authenticated with a
certificate. Let CAuthority be a set of the public constants representing the honest
certification authorities. Let certificate be a transparent function representing the
certificate. In Chg, the certification authority CA signs a certificate for an agent B.
In Chy, an honest agent with alias P generates a session key K for talking to an agent
B, provided that she receives a valid certificate for that agent from a certification
authority, stores it in sessKeys(P, B) and signs it with the private key inv(P) of her
alias, and encrypts it with the public key PKB of B included in the certificate. This
protocol has the same rules Chs, ..., Ch; than the original channel. Even though the
channel mechanisms are different, it offers the same guarantees, especially, we do not
need to alter the formalization of goals. Therefore, the interface for this protocol is
exactly the same than the one in Figure [4]
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Chg: VB € Agent, CA € CAuthority.
sign(inv(pk(C)),certificate( B,pk(B)))

Ch:

Chy: VP € Alias|jon, B € Agent, new K.
sign(inv(pk(C)),certificate( B,PKB))

Ch:
Ch: K — sessKeys(A4, B).
Ch: crypt(PKB,sign(inv(pk(A)), frewsess (A,B,K)))

Figure 7: Example for the key-exchange part of a channel with certificates

D.2 Authenticated channel without secrecy

We continue with an example of a channel that provides unilateral authentication but
without secrecy in Figure[§] We consider a similar setting than the one in Figure[3] and
therefore we consider the same set of principals. Additionally, let mac/2, fouthentic/4
and fmac/3 be public functions to respectively model a message authentication code
and message formats. For the mac function, we have Ana(mac(t1,t2)) = (0, {t2})
and fouthentic and fmec are transparent functions, i.e. Ana(fouthentic(t1,t2,t3,t4)) =
(@, {t1,t2,t3,ta}) and Ana(fmac(t1,t2,t3)) = (0,{t1,t2,t3}). Besides, we introduce a
new family of set, authCh(A, B), that we describe shortly later.

The two first rules, Ch; and Chs, remain unchanged with respect to the running
example. In Chs, an honest A can transmit a payload message X that an application
protocol has inserted into an outbox set. For transmission, A generates a MAC of
X with a key K that was established with B. In Chy, an honest B can receive the
authenticated payload X from A, provided it is MAC-ed correctly with a key K that
has been established with A. It is then inserted into inbox(A, B) to make it available
on an application level.

We can now describe the security guarantees exposed in the interface, i.e., the
*-labeled steps. Comparing with the running example, we basically only replaced the
set secCh(A, B) by the set authCh(A, B) that represents all messages ever sent by an
honest A for an honest B—and we note that Chs declassifies the payload X. Here, the
interface warns that payloads are not guaranteed to be secret (but only authentic),
i.e., the application must assume all messages handed to the channel will end up in
the intruder knowledge.

Once again, the rules Chy and Ch; bear similarities; they are applicable when a
message that looks like a legitimate message from honest A to honest B with the right
session key arrives at B. Chy can fire if the corresponding X was indeed sent by A
for B, i.e., authCh(A, B) holds. Otherwise, we have an authentication attack and Chr
fires. Thus again, the interface promises that the channel delivers only messages that
indeed come from the claimed origin—and if this is not true, then the channel has an
attack according to Chy.

The intruder rules Chs and Chg are not modified. Now consider the idealization Ch*
of the protocol. This still describes all changes that the channel can ever do to the sets
outbox and inbox that it shares with the application (given that the channel protocol is
safe). All messages sent by honest A to honest B move to a set authCh(A, B) and from
there to the inbox of B. The main difference in this interface in Figure [9] compared to
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Chy: VP € Alias|yon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch: crypt(pk(B),sign(inv(P), frewsess (P, B,K)))

Chy: VA € Alias, B € Agent|pon-

crypt(pk(B),sign(inv(P)), frewsess (P, B,K))

Ch:
Ch: K — sessKeys(B, P)

Chs: VA € Names|yon, B € Names|pon.
*x: X < outbox(4, B).
Ch: K &sessKeys(4, B).
*: X — authCh(A4, B).
Fauthentic (A, B, X, mac(K, frmac(A,B,X)))
Ch:
X

*: EEE—

Chy: VA € Names|pon, B € Names|pon.
Sauthentic (A, B,X,mac(K, fmac(A,B,X)))

Ch:
Ch: K €sessKeys(B, A).
*x: X €authCh(4, B).
*x: X — inbox(A, B)

Chs: VA € Names, B € Names|p;s. Chg: VA € Names|pis, B € Names.
*: X « outbox(A4, B). x X
o *x: X — inbox(A4, B)

Ch7: VA € Names|pon, B € Names|yon.
Sauthentic (A, B, X,mac(K, fmac(A,B,X)))

Ch:
Ch: K €sessKeys(4, B).
*: X ¢ authCh(A, B).

Ch: attackcp

Figure 8: Example for an unilateraly authenticated channel without secrecy

the one in Figure [4]is that messages transported on the channel are declassified.

For concision, we keep in the abstraction in Figure [10| only the rules that perform
an action or that are not redundant, i.e., if after abstraction a rule contains only
receiving and checking steps, then we drop it. We describe here the transformation in
detail one more time. Ch; and Chz remains unaffected by the transformations since
they do not deal with any payload messages and only have Ch-labeled steps: these
rules are “pure” channel rules. Thus, Chg and Chﬁ2 are identical to the original rules.
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Ch3: VA € Names|pon, B € Names|pon. Ch}: VA € Names|non, B € Names|pon.

*x: X < outbox(4, B). *x: X € authCh(4, B).
*: X — authCh(A4, B). *: X — inbox(A, B)
o —
Ch%: VA € Names, B € Names|pjs. Chg: VA € Names|pis, B € Names.
*x: X < outbox(A4, B). x X
o — x: X — inbox(A, B)

Figure 9: Idealization of the channel protocol from Figure [§]

A payload message X occurs in Chs, thus we need to divide this rule into two
rules: Chga that contains the positive check (x: G € opened), and Chgb that contains
the positive check (x: G € closed). For Chga, the step containing the set operation for
outbox is dropped, and we replace the payload message that is inserted to secCh by the
variable G of type a, as is the payload message in the transmitted message. For Chgb,
the set operation for outbox is also dropped and the payload message inserted into the
set secCh is replaced by the variable G of type a. It is also replaced in the transmitted
message. However, since a variable of type a that is in the closed is declassified,
we need to replace the declassification step by the steps (x: G « closed.x: G —

opened.x: 'G—A) The transformations for the rule Chy leads to a rule performing
no action so it is dropped.

The transformation for the rules Chs and Chg are the same as the ones of the main
example. We only keep here the rule Chs, that is the only non redundant rule; it
represents the abstraction of the declassification of a payload. We add still the rule
Chf,,, to allow for the creation of new variable of type a. Finally, Ch~ is also split into
two rules. Further, in both rules, the payload X is replaced by the variable G of type
a.

D.3 Channel with replay protection

Let us now go back to our original example with a unilaterally authenticated pseudony-
mous channel, but let us add a replay protection mechanism in Figure [[T] The first
one we introduce is quite simple and not really practical, because it will basically re-
quire to remember nonces for messages received so far. The second one is a bit more
involved, but will expose the same interface to the application and not demanding to
remember much.

Let frepiay/4 be a public and transparent function. We also introduce two new
sets: seen to keep track of identifiers that have already been received for the channel
mechanism and end for specifying the replay protection goal (injective agreement).

The two first rules remain unchanged. In rule Chs, an honest A can transmit a
payload message X that an application protocol has inserted into an outbox. In the
transmission, it adds a fresh nonce IV, and for encryption it uses a session key K that
was established for that recipient. In Chy4, an honest B can retrieve the encrypted
payload X and the nonce N from A, provided it is encrypted correctly with a key K
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Chﬁ: VP € Alias|pon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch . Crypt(pk(B)vsign(inV(P)’fnewScss(PvaK)))

Chi: VP € Alias, B € Agent]|yon.
crypt(pk(B) sign(inv(P). fucusess (P.B.K)))

Ch:
Ch: K — sessKeys(B, P)

Chga: VA e Names'Hom Bc Names\Hon.

*: G € opened.
Ch: K €sessKeys(4, B).
*: G — authCh(A4, B).
Sauthentic (A, B,G,mac(K, fmac(A,B,G)))
Ch:
G

*: R d

Chgb: VA € Names|pon, B € Names|pon.

Ch: K €sessKeys(4, B).
*x: G — authCh(A4, B).
Ch: fauthentic (A, B,G mac(K, fmac(A,B,G)))

*x: G <+ closed(A, B).
: G — opened(A, B).
€]

—7
Chgb: Chf_,: new G.
*: G + closed *x: G — closed
*: G — opened.
o =

Chgmb: VA € Names|pon, B € Names|yon.

x: G € opened/G € closed.
fauthentic (A, B,G,mac(K, fmac(A,B,G)))
Ch:
Ch: K € sessKeys(4, B).

*: G ¢ authCh(A4, B).
Ch: attackcp

Figure 10: Abstraction for our example channel Ch from Figure

that has been established with A and that the nonce N has not been seen in an earlier
exchange. The payload is then inserted into inbox(A, B) to make it available on the
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Chy: VP € Alias|yon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch: crypt(pk(B),sign(inv(P), frnewsess (P, B,K)))

Chy: VP € Alias, B € Agent|non.
crypt(pk(B),sign(inv(P), frewsess (P, B,K)))

Ch:
Ch: K — sessKeys(B, P)

Chs: VA € Names|yon, B € Names|pon,

new N. Chy: VA € Names|yon, B € Names|pon-
*x: X < outbox(A4, B). Ch: scrypt(X, freptay (4,8,X,N))
Chf Ke sessKey(s:(Af,lB). Ch: K € sessKeys(B, A).
*: X, N — secCh(4, B). *x: X, N €secCh(4, B).
scrypt(K, frepiay (A, B, X ,N)) .
Ch: Ch: N ¢ seen(A, B).
*: N ¢ end(A, B).
Chs: VA € Names, B € Names|p;s. Ch: N — seen(4, B).
*: X « outbox(A, B). *x: N — end(A4, B).
o —X *x: X — inbox(A, B)
Chg: VA € Names|pis, B € Names. Chg: VA € Names|yon, B € Names|pon-
PRI S Ch: . SPEE frooy (A, B.X.N))
*: X — inbox(A, B) Ch: K € sessKeys(A, B).

*x: X, N €secCh(4, B).
Ch7: VA € Names|yon, B € Names|pon. Ch: N ¢ seen(A, B).

Scrypt(vaTeplay(AvaXvN)) *: NGend(A,B)
: Ch: attackcp

Ch:
Ch: K €& sessKeys(A4, B).

*x: X, N ¢ secCh(A, B).
Ch: attackch

Figure 11: Example for an unilaterally authenticated pseudonymous channel
with replay protection

application level and the nonce is registered into the set seen(A, B).

We can now describe what has to do with the security guarantees in the interface.
We keep the set secCh(A, B) that represents all messages and challenges ever sent by
an honest A for an honest B. Note that here, we insert jointly X, N into the set;
this allows for storing the same payload X several times, if A sends it several times
to B. We introduce the set end(A, B) to formulate the injectivity aspect of the goal
w.r.t. nonce N. Note once again the similarities between rules Chy, Ch7 and Chg; they
are applicable when a message that looks like a legitimate message from honest A to
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Ch;: VA € Names|pon, B € Names|ron,

new N. Ch}: VA € Names|pon, B € Names|yon.
*x: X < outbox(A, B). *x: X, N €secCh(A, B).
*x: X, N — secCh(A, B) x: N ¢ end(A4, B).
*: N — end(A, B).
*: X — inbox(A, B).
Ch;: VA € Names, B € Names|pis. Chg: VA € Names|pis, B € Names.
*x: X < outbox(A4, B). P S
o — *: X — inbox(A, B)

Figure 12: Idealization of the channel protocol from Figure [I]

honest B with the right session key arrives at B. Chy can fire if the corresponding
X was indeed sent for the first time by A for B, i.e., secCh(A, B) holds and N is not
in end(A, B) yet (and in this case we insert N into end(A, B)). Otherwise, we either
have an authentication attack and Chy fires, or we have a replay attack and Chg fires.

The rules Chs and Chg describe again the sending and the receiving operations
for a dishonest principal and remain unchanged. Note that the idealization of this
protocol in Figure [12]is slightly different than the one in our main example, since now
the operations on secCh(A, B) must include a nonce N and the replay protection goal
is stated with the set end(A, B).

We give the abstraction of the protocol in Figure Note that we once again
removed the redundant rules and the ones that do not perform an action anymore.

D.4 Second mechanism for replay protection

We now give an alternative protocol for replay protected channels that will exhibit the
exact same interface, i.e., offers the same guarantees to an application protocol. This
is sometimes useful to design a “canonical” and simple but inefficient solution (like all
the nonces above have to be remembered) and then to replace it with a more efficient
one that offers the same “functionality”.

More generally, when we have two different channel protocols Ch; and Chs, but that
offer the same guarantees for an application protocol (Ch} = Ch3), then for verifying

the vertical compositions 2% and é%, it is enough to verify Chg, Chg and Chi || App
1 2
since the two protocols have the exact same interface.

In this example, the mechanism to provide replay protection is based on a challenge-
response mechanism. We still consider a similar setting as before and therefore the
same set of principals. Additionally let frepiay2/5 and fiew,gess/4 be public and trans-
parent functions. We need for this example to further consider two new families of
set: myChall(A, B) that A uses to keep track of the challenges she issued to B and
theirChall(A, B) that A uses to keep track of the challenges she received from B. How-
ever, these sets will at any time contain at most one value.

This time, the two rules Ch; and Chz are modified for the key exchange to issue a
challenge. In Chy, an honest agent with alias P generates a fresh session key for talking
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Chﬁ: VP € Alias|pon, B € Agent, new K.

Ch: K — sessKeys(P, B).
Ch . Crypt(pk(B)’Sign(inV(P)afnchcss (PsB»K)))

Chi: VP € Alias, B € Agent|on.
crypt(pk(B),sign(inv(P), frewsess (P, B, K)))

Ch:
Ch: K — sessKeys(B, P)

Chga b VA e Names'HomB S Names|Hom
new N. Chi, ,: VA € Names|uon, B € Names|ion.

*: G € opened/G € closed. *x: G € opened/G € closed.
x: K € sessKeys(A, B). scrypt(K, freptay (A, B,G,N))

Ch:
*: G, ;727 — secCh(A4, B). 11 K & sessKeys(B. A).
rypt(K, frepiay (A,B,G,N)) :
Ch: x: G, N € secCh(4, B).

Ch: N ¢ seen(4, B).
*: N ¢ end(A, B).
Ch: N — seen(A, B).
*: N — end(4, B)

Ch,: Ch®_,: new G.
*: G <+ closed *: G — closed
*: G — opened.

o —

Chﬁm p: VA € Names|pon, B € Names|pon. Chﬁga »: VA € Names|yon, B € Names|pon.

x: G € opened/G € closed. *x: G € opened/G € closed.
Ch: scrypt(K, freplay (A,B,G,N)) . Ch: scrypt(K, frepiay (A, B,G,N))
Ch: K € sessKeys(A, B). Ch: K € sessKeys(A, B).

*x: G, N ¢ secCh(A, B). *: G, N € secCh(4, B).

Ch: . 2ttacken *: N ¢ seen(A, B).

*: N €end(4, B).
Ch: attackcp

Figure 13: Abstraction for our example channel Ch from Figure

to an agent B, stores it in the set sessKeys(P, B), generates a fresh nonce to challenge
the agent B, stores it in the set myChall(A4, B) and signs them with the private key
inv(P) of their alias, and encrypts it with the public key pk(B) of B. In Chgz, an honest
agent B is receiving a session key K and a nonce IV encrypted with his public key and
signed by an agent under an alias P. They insert K into their set sessKeys(B, P) and
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Chy: VP € Alias|yon, B € Agent,new K, new N.
Ch: K — sessKeys(P, B).
Ch: N — myChall(P, B).
Ch . crypt(pk(B),sign(inv(P),f,,’wwscss(P,B7K7N)))

Chy: VP € Alias, B € Agent|yon.

crypt(pk(B),sign(inv(P), 15055 (P B, K, N)))

Ch:
Ch: N — theirChall(B, P).
Ch: K — sessKeys(B, P)

Chs: VA € Names|yon, B € Names|pon,
new M. Chy: VA € Names|pon, B € Names|pon.
*: X + outbox(A4, B). Ch: ¢ SSYPHUE froptay2 (4,8, X, N, M))
Ch: N < theirChall(A, B). Ch: K & sessKeys(B, A).
Ch: M — myChall(A, B). Ch: I < myChall(B. 4)
Ch: K € sessKeys(A, B). vt XN € secCh(A,,B).
*: X, N — secCh(4, B). Ch: M — theirChall(B, A).
scrypt (K, freplay2 (A, B,X,N,M)) .
Ch: *: N ¢ end(A, B).
*: N — end(A, B).
*: X — inbox(A4, B)

Chs: VA € Names, B € Names|pjs. Chg: VA € Names|pis, B € Names.
*: X < outbox(A, B). X
o — *: X — inbox(A, B)

Ch7: VA € Names|pon, B € Names|pon. Chg: VA € Names|yon, B € Names|jon.
scrypt(K, freplay2 (A, B,X,N,M)) scrypt (K, freplay2 (A,B,X,N,M))

Ch: . Ch:

Ch: K € sessKeys(A, B). Ch: K € sessKeys(A, B).

Ch: N < myChall(B, A). Ch: N < myChall(B, A).
*: X,NésecCh(A,B). *x: X, N €secCh(A, B).

Ch: attackcn Ch: M — theirChall(B, A).

*x: N € end(A, B).
Ch: attackcp

Figure 14: Second example for an unilaterally authenticated pseudonymous
channel with replay protection

N in theirChall(B, P).
In Chs, an honest A can transmit a payload X and a response to the recipient’s
challenge that an application protocol has inserted into an outbox set using for en-
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cryption any session K that was established for communicating with B. They retrieve
the challenge N that this recipient had emitted and generate a fresh nonce M for
their response that they insert into their set myChall(A, B). In Chy4, an honest B can
retrieve the encrypted payload X and the response M to their challenge N from A,
provided that it is encrypted correctly with a key K that has been established with
A. The response is inserted into theirChall(B, A) and the payload is then inserted into
inbox(A, B) to make it available on an application level.

This protocol and the previous one offer an additional guarantee compared to the
protocol in our main example. The example of an application protocol in Figure 2]
implements a challenge response itself and thus it is not relying on a replay protection
by the channel. In fact, the App from the running example is perfectly fine with these
two replay-protected channels.

App;: VC € Agent|pon, P € Alias|ion.  Appsy: VP € Alias|pis.

App: P ¢ taken. P UICONN
App: P — taken.
App: P — alias(C)

Apps: VS € Agent, P € Alias|uon, C € Agent|pon, newN.
App: P € alias(C).
App: N — loginCounter(P,.S).
*: fa(secret(C, S)) — outbox(P, S)

App,: VS € Agent|pon, P € Alias|ion, C € Agent|non.
*: fa(secret(C, S)) < inbox(P, S).
App: P € alias(C).
App: N <« loginCounter(P, S)

App,: VS € Agent|pon, P € Alias|ion, C € Agent|non.
*: fa(secret(C, S)) < inbox(P, S).

App: P ¢ alias(C).
attackapp
App:

Figure 15: Example of a login protocol without replay protection

Now with the additional guarantee for replay protection from the channel, we
consider in Figure [I5] a weaker login protocol as an application that relies on the
replay protection mechanism provided by the channel. Rules App; and App, remain
unchanged. The original rule App; has been removed since the server does not need to
issue a challenge (this is now taken care of by the channel). This means that the server
S does not need to create a fresh nonce anymore and to keep track of the ones that
have not been answered with a set sent(S, P). The new rule App, describes how the
client C updates its login counter on the server S with a fresh nonce N and sends its
pre-shared secret, i.e., C inserts their response into her outbox(P, S), provided that P
is an alias owned by C. The server removes this login attempt from the set loginCounter
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provided the login message has been sent by an alias that the client owns. If not, there
is an attack. Remains then also the underlying secrecy goal that the intruder cannot
learn any shared secret, e.g., secret(C, S) here.

E Channel Bindings

App;: VA € Agent|yon, P € Alias|yon- Appy: VP € Alias|pis.
App: P gé taken. w inv(P) ;

App: P — taken.
App: P — alias(A).

Apps: VA € Agent|pon, P € Alias, S € Agent, new N.
App: P €alias(A).
App: critCmd(N) — begin(A4, S).
*x:  critCmd(N) — outbox(P, S).

App,: VS € Agent|uon, P € Alias, new M.
*:  critCmd(N) < inbox(P, S).
App:  (critCmd(N), M) — pending(P, S).
*:  authPlease(M) — outbox(S, P).

Apps: VA € Agent|uon, P € Alias, S € Agent.
App: P €alias(4).
*:  authPlease(M) < inbox(S, P).
App: sign(inv(sigKey(A)), ack(M)) — outbox(P, S).

Appg: VS € Agent|on, P € Alias, A € Agent|pon.
*: sign(inv(sigKey(A)), ack(M)) < inbox(P,.S).
App:  (critCmd(N), M) < pending(P, S).
App: critCmd(N) ¢ begin(A4, S).

attackapp

App:

Figure 16: Example of an application (to deploy over a unilaterally authenti-
cated secure channel) that has a renegotiation-style flaw.

There is a number of flaws in application protocols that arise from using secure
channels where one party is not authenticated (like the channel in our running example)
and using this channel to transmit a credential to authenticate that party (like our login
application). The problem is that a dishonest server may forward these credentials
in a man-in-the-middle attack to another server, pretending to be the owner of the
credentials. This is for instance the case in the SAML SSO attack from |[Arm-+08| or
the re-negotiation attack on TLS (cf. for instance the study about channel bindings
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in [BDP15|). In fact, one could say that this is all just the old attack on the Needham-
Schroeder Public-Key Protocol in new disguises: if the messages fail to bind to context,
a dishonest participant can abuse it, and designers often disregard the dishonest server
in their intuitive analysis.

We show here an example akin to the gist of the TLS re-negotiation attack (bor-
rowed from the formalization from |[GMI11]): the protocol in Figure [16|is meant to be
run over the unilaterally authenticated channel from Figure@ The first two rules App;
and App, are again just honest agents choosing any number of aliases that have not
been taken yet, and the intruder owning all dishonest aliases. Note that the unilat-
erally authenticated channel from Figure [3] only guarantees the authentication of the
server side while the client side is authenticated only with respect to an alias. Appg
now describes that an honest agent A, who owns alias P, sends a critical command to
the server. Critical here means that this requires the authentication of A. The function
critCmd is a message format, and the nonce N represents some relevant arguments to
the command. For the security goal, it is noted in the set begin(A,S) that A really
meant to issue this command to S. An honest server in App, receives this command
and, since it comes from the unauthenticated source P, marks it as pending and sends
an authentication request with a fresh challenge M (also the function authPlease is a
message format). Apps; models how an honest A answers this challenge using a signa-
ture with a dedicated signing key pair, and we assume the server knows the public key
sigey(A) and that it belongs to A; again, ack is a format. Finally, when the server
receives a response with a signature by an agent A that fits a pending request of a
critical command N, then the server infers that this command was indeed issued by
A. We formalize here with Appg only that this would be an authentication problem,
if A were an honest agent and critCmd(V) ¢ begin(A, S), i.e., the server is believing a
command to come from A while this is actually not the case.

An attack with Appg is actually possible: suppose an honest agent a under alias p;
starts a session with a dishonest server i, and 7 starts a session under alias p2 with the
honest server s, issuing some critical command. The intruder forwards authentication
request authPlease(m) from s to a/p:1 who responds with a corresponding signature
according to App;. With this, Appg is applicable, since ¢ can now authenticate its
command as coming from a, while the critical command is actually not in begin(a, s).

More generally, the problem is the following. The fact that we have a secure
channel with an agent (under some alias) does not mean that all messages we receive
from that agent are necessarily authored by that agent. In the case of the login
application of Figure [2 this is not a problem, since a dishonest server only learns
the password that a user has with this server and cannot re-use this in other sessions
(unless, of course, a user uses the same password with multiple servers). In contrast,
the application of Figure[I6]has a flaw since the signature that is meant to authenticate
the endpoint could in fact come from a different run.

This demonstrates that the compositionality does not magically give us secure
protocols, but it guarantees that when there is a flaw, like in the example, we can
identify one or two culprits:

e the channel does not live up to what its interface promises, and in this case we
find an attack against Ch?, and

e or (as in this example) even if the channel behaves as advertised, the application
could fail to achieve its goals, and in this case we find an attack against App ||
Ch*.

A fix for the App protocol in Figure [I6] could be to require that the command
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directly be authenticated, i.e., replacing the signature in rules App; and App, with
sign(inv(sigKey(A)), feontext (critCmd(NN ), ack(M), S)). For good measure, we have here
even included the name of the server S. A similar solution is also advised by |[Arm+-08|
to fix the attack on SAML SSO: here the original protocol contains a credential from
the identity provider that basically just acknowledges that the holder is a particular
person, but this is of course not secure when the recipient (the relying party) is dis-
honest and authenticates itself with it. The solution is here to include the name of the
relying party to prevent forwarding.

Finally, let us look at an example where the party has a key certificate, say
sign(inv(pkca), feert (A, pk(A))) (where pkca is the key of a certificate authority; we
omit other typical fields like expiration for simplicity). If such a credential is used over
a unilaterally authenticate channel to authenticate A, we have the same problems as
before that a dishonest server could abuse this certificate to pose as A. Also in this
case, we thus have to require that A signs something with the private key inv(pk(A))
to prove ownership, and the signed text must contain at least the name of B so that
B cannot take this to another agent. This is shown in Figure [17] where we actually
bind also the alias P to it. We have formulated here only the simple (non-injective)
authentication goal that P indeed belongs to A. The binding to an alias has differences
to the bindings usually considered in TLS and similar protocols [BDP15|, as it has an
asymmetric form, and we want to investigate further this relationship in future work.

App;: VA € Agent|yon, P € Alias|yon- App,: VP € Alias|pjs.
App: P §§ taken. *: inv(P) N

App: P — taken.
App: P — alias(4).

Apps: VA € Agent|pon, P € Alias, S € Agent, new N.
App: P €alias(A).
*: sign(inv(pkeca), feert (A, pk(A))) — outbox(P, S).
*: sign(inv(pk(A)), fown (A4, P, S)) — outbox(P, S)

App,: VS € Agent|pon, P € Alias, A € Agent|non-
*: sign(inv(pkeca), feert (A, pk(A))) < inbox(P, S).
*: sign(inv(pk(A)), fown (4, P, S)) <= inbox(P, ).
x: P ¢ alias(A).
attackapp
App:

Figure 17: Binding the alias P to a real name with an asymmetric credential.

We conclude with the remark that the application in Figure [I7, composed with
a suitable channel protocol, could be itself serve as a channel protocol, as it lifts
the underlying unilaterally authenticated secure channel to a bilaterally authenticated
one. This can be done by rules that take messages from a higher-level outboxy (A, B),
transfer them into the low-level outbox(A, B), and vice-versa on the receiving side
with inboxes. Thus we can describe this as several layers of composition to achieve a
channel with better guarantees.
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