
Domain Engineering:⋆

A “Radical Innovation” for

Software and Systems Engineering ?

A Biased Account⋆⋆

Dines Bjørner

Computer Science and Engineering (CSE),
Informatics and Mathematical Modelling (IMM)

Building 322, Richard Petersens Plads
Technical University of Denmark (DTU)

DK–2800 Kgs.Lyngby, Denmark
E–Mail: db@imm.dtu.dk

Abstract. Some facts: Before software and computing systems can
be developed, their requirements must be reasonably well under-
stood. Before requirements can be finalised the application domain,
as it is, must be fairly well understood.

Some opinions: In today’s software and computing systems devel-
opment very little, if anything is done, we claim, to establish fair
understandings of the domain. It simply does not suffice, we further
claim, to record assumptions about the domain when recording re-
quirements. Far more radical theories of application domains must
be at hand before requirements development is even attempted.

In this presentation we advocate a strong rôle for domain engineer-
ing. We argue that domain descriptions are far more stable than are
requirements prescriptions for support of one or another set of do-
main activities. We further argue, that once, given extensive domain
descriptions, it is comparatively faster to establish trustworthy and
stable requirements than it is today. We finally argue that once we
have a sufficient (varietal) collection of domain specific, ie. related,
albeit distinct, requirements, we can develop far more reusable soft-
ware components than using current approaches.

⋆ This paper was first drafted in connection with a US DoD Workshop held at Venezia,
Italy, October 7–1, 2002. Sections of the present paper relates to the Call for that
Workshop.

⋆⋆ The research behind and the presentation of this paper is partially, re-
spectively fully funded under the 5th EU/IST Framework Programme
(http://www.cordis.lu/fp5/home.html) of the European Commission, Contract Ref-
erence IST-2001-33123: CoLogNET: Network of Excellence in Computational Logic:
http://www.eurice.de/colognet/

Thus, in this contribution we shall reason, at a meta-level, about
major phases of software engineering: Domain engineering, require-
ments engineering, and software design.

We shall suggest a number of domain and requirements engineering
as well as software design concerns, stages and steps, notably: Do-
main facets, including domain intrinsics, support technologies, man-
agement & organisation, rules & regulations, as well as human be-
haviour. Requirements: Domain requirements, interface requirements,
and machine requirements. Specifically: Domain requirements projec-
tion, determination, extension, and initialisation.

We shall then proceed to “lift” our methodological concerns to en-
compass the more general ones of abstraction and modelling; of in-
formal as well as formal description; of the more general issues of
documentation: Informative, descriptive/prescriptive, and analytical;
and hence of the importance of semiotics: Pragmatics, semantics,
and syntax.

The paper concludes with a proposal for a ‘Grand Challenge’ for
computing science [62, 89, 19].

Paragraphs marked ⋆ in the text are considered somewhat novel.

A Laudatio: To Zohar Manna

It is indeed a great honour to help celebrate Zohar Manna. I first heard about
Zohar when, as an IBM employee, working for Gene Amdahl at the IBM Advanced
Computing Systems Laboratory at 2800 Sand Hill Road in Menlo Park, I was able,
with Gene’s kind permission, to sneak over and be enlightened by listening to Zohar’s
lectures in, I believe it was Polya Hall. Later, at IBM Research, I also followed Zohar’s
lectures via closed circuit television to the IBM site at Monterey & Cottle Roads in
San Jose. At that time I motored up to Stanford to listen to PhD lectures by Zohar’s
students: Jean Marie Cadiou, Ashok Chandra and Jean Vuillemin. And there were
others. 12 years later I was able to have two of my own PhD students, now Drs
Bo Stig Hansen and Michael Reichardt Hansen, for a year with Ted Codd at IBM
Research, still in San Jose, follow Zohar’s lectures at Stanford. He was kind enough
to tell me that they were indeed very good students. Yes they damn well be if one
sends them to Zohar — if only for lectures. But the crowning moment, as a father,
was when our own son, Nikolaj, became a PhD student of Zohar’s. Thanks, Zohar,
for showing — in a double entendre on the word ‘showing’ — us that the subject
with which we are working is not only fascinating and great, but for lecturing to
us in such vivid, beautiful and enticing ways. Thanks also, as the father of Nikolaj,
to have ensured that a father can become positively known for the scientific deeds
of his son. Thanks for fascinating encounters around the world: Never let one’s
deep commitment to science overshadow the joy of life. Thanks for helping advicing

and steering “my” UNU/IIST1 to even greater achievements — as you do through
Your never in–active membership of the Board of UNU/IIST. Thanks finally for a
wonderful trip to Ulaan Baator and, in Jeeps, for five days, sleeping outdoors, in
sub–zero (ie., centigrade) degree weather, across the deserts of Western Mongolia
in August 1995. What would we be without our wives: So a cheer and many thanks
also goes to Nitza.

1 Introduction

1.1 Background

This paper has been written on the backgound of 30 years2 of work developing,
researching and using formal techniques, notably VDM and RAISE. It is also writ-
ten on the background of teaching this for 27 years, personally graduating more
than 120 MSc candidates most of whom now works in some seven to eight Danish
industries where they habitually use formal techniques. All of these companies are
either founded by these former students or are significantly staffed and managed
by such candidates. The paper is also written on the background, 24 years ago,
of the first deployment of formal techniques, from “light” (we then called it sys-
tematic) to rigorous, to the development of commercial compilers for CHILL [60]
and Ada [41, 79] — with the Ada company, DDC Intl., still in existence 19 years
after its formation. The paper is finally written on the background of UNU/IIST’s3

rather successful technology transfer activities, while a founding UN Director, and
afterwards, to groups in around 30 developing countries [55].

1.2 Itemised Summary

Some facts:

– Before software and computing systems can be developed, their requirements
must be reasonably well understood.

– Before requirements can be finalised the application domain, as it is, must be
fairly well understood.

Some opinions:

– In today’s software and computing systems development very little, if anything
is done, we claim, to establish fair understandings of the domain.

1 UNU/IIST is the United Nations University’s International Institute for Software
Technology, located in Macau SAR, China — but active all over the developing
world.

2 The author then joined, May 1973, The IBM Vienna Laboratory at Vienna, Austria,
after having worked with Gene Amdahl, John W. Backus and E.F. Codd at IBM
Adv.Comp.Sys.Devt., Menlo Park, respectively at IBM Research, San Jose, both in
California.

3 UNU/IIST: The United Nations’ University’s International Institute for Software
Technology, Macau: www.iist.unu.edu.

– It simply does not suffice, we further claim, to record assumptions about the
domain when recording requirements.

– Far more radical theories of application domains must be at hand before require-
ments development is even attempted.

In this presentation we advocate a strong rôle for domain engineering.

– We argue that domain descriptions are far more stable than are requirements
prescriptions for support of one or another set of domain activities.

– We further argue, that once, given extensive domain descriptions, it is compar-
atively faster to establish trustworthy and stable requirements than it is today.

– We finally argue that once we have a sufficient (varietal) collection of do-
main specific, ie. related, albeit distinct, requirements, we can develop far more
reusable software components than using current approaches.

Thus, in this contribution we shall reason, at a meta-level, about major phases of
software engineering:

– Domain engineering,
– requirements engineering, and
– software design.

We shall suggest a number of domain and requirements engineering as well as
software design concerns, stages and steps, notably:

– Domain facets, including
• domain intrinsics,
• support technologies,
• management & organisation,
• rules & regulations, as well as
• human behaviour.

– Requirements:
• Domain requirements,
• interface requirements, and
• machine requirements.

– Specifically:
• Domain requirements projection,
• determination,
• extension, and
• initialisation.

We shall then proceed to “lift” our methodological concerns to encompass the more
general ones of

– abstraction and modelling;
– of informal as well as formal description;
– of the more general issues of documentation: Informative, descriptive/prescriptive,

and analytical;
– and hence of the importance of semiotics: Pragmatics, semantics, and syntax.

It is our contention that many of these concerns are more proper concerns of re-
searching and teaching software engineering than what is currently en vogue, and
hence we shall plead for their study and for them as proper didactic foundations
for the field of software engineering. We have omitted, in this paper, even an, how-
ever summary, treatment of documentation and semiotics in order to discuss, on
a proper background, the issues of “radical innovation” of systems and software

engineering for the future: We think that the triptych of software engineering, as
covered in Section 2 (Pages 5–31), goes hand–in–hand with documentation and
semiotics. Without a proper understanding of also the issues of the latter we will
not be developing trustworthy, maintainable software systems.

In this paper we shall only very briefly mention the problem of requirements
acquisition: At the end, respectively at the beginning of Section 2.2 and Section 2.3.
The concerns of “classical” requirements acquisition are now the concerns both of
domain and requirements acquisition. The possibilities of inconsistencies remain:
Different stake–holders may have different views. In the domain they mean that a
proper “business engineering” need be done. For requirements they entail the usual
acts of requirements resolution.

2 A Triptych of Software Engineering

So in what does this new engineering consist ? The next many sections and subsec-
tions, etcetera, will outline facts as well as opinions.

2.1 Abstraction and Modelling in General

The ability to abstract is central, we believe, to good software development. But it
is hard to learn. And few teach it. Also: Maybe not all can learn it. But those who
can, suffice. Not all architects have to be such as Richard Meier, Paul Gehry, Jørn
Utzon, etc. A few good “abstractionists”, in a software company, can put a good
many “lesser” souls to good and meaningful work.

2.2 Domain Engineering

There seems many ways of tackling the description — the modelling — of application
domains: Of “entire” such domains as: A railway system, or all railway systems, a
healthcare system, a financial service industry, logistics, the background domain for
(ie., “before”) e–commerce, etc. We will single out some for which we can offer
principles, techniques and tools for their methodical description.

Domain Stake–holders & Perspectives :
As far ranging an enumeration need be made at the outset of every phase of

software development: Domain, requirements and software deisgn, of the stake–
holders “of that phase”. A generic list for some enterprise software development
could include: (i) The enterprise owners (share holders), (ii) the executive, (iii) line,

(iv) operations and (v) “floor” management, (vi) the “floor” workers (and (vii)
their families), (viii) customers of the enterprise, suppliers of (ix) IT, (x) non–IT
equipment and services ((xi) banking, (xii) utilities, (xiii) postal, (xiv) trucking, etc.)
to the enterprise, (xv) regulators of the industry sector (if relevant), (xvi) politicians,
and (xvii) the “public at large”.

For each of the relevant ones of these domain knowledge has to be acquired
[58, 57, 99, 56, 75, 77]. Inconsistencies in acquired information has to be resolved
[64]. Conflicts have to be identified [91]. (It is not a task of domain engineering to
resolve domain conflicts. Such is more a task of Business Process (Re–)Engineering.)
Obstacles to acquisition has to be overcome [92, 94]. Etcetera. Finally the various
perspectives have to be integrated [78].

In this paper we shall not get into this extremely important area. But “simply”
assume that the domain knowledge is somehow represented in a form that allow us
to identify domain attributes and domain facets.

We shall return, below, to a separate, albeit very brief discussion of Domain
Acquisition.

Domain Facets :
How do we structure the description of a domain ? Well, here is one way of doing

it. First describe the intrinsics, then go on to describe either the support technologies,
or to describe the triplet of management & organisation, rules & regulations and
human behaviour in that order. Or do it the other way around. Details follow.

Each of these five facets may need being described from the perspectives of each
of the stake–holder classes.

⋆ Intrinsics :
By intrinsics we mean ‘‘that which is common, in any description of a domain,

to all the other facets” (treated below).
But the intrinsics of domain depends on the stake–holder view. We take a small

example, from railway systems, namely that of railway nets.
Simple Nets of Single Lines and Simple Stations: A railway net consists of

two or more stations and one or more lines. Any line of a net connects exactly two
distinct stations of that net.

scheme VSN =
class

type
N, L, S

value
obs Ls: N → L-set
obs Ss: N → S-set
obs Ss: L → S-set

axiom
∀ n:N •

card obs Ss(n) ≥ 2 ∧ card obs Ls(n) ≥ 1 ∧

∀ l:L • l ∈ obs Ls(n) ⇒ obs Ss(l) ⊆ obs Ss(n) ∧ card obs Ss(l) = 2
end

To express constraints on stations and lines: At most one per pair of stations, we
extend VSN:

scheme SN 0 =
extend VSN with
class

∀ n:N •

∀ l.l′:L • {l,l′} ⊆ ∈ obs Ls(n) ∧ l 6=l ⇒ card(obs Ss(l) ∩ obs Ss(l′)) ≤ 1
end

This is the simplest stake–holder prespective — as seen by prospective train passen-
ger or freight forwarding stake–holders. Based on the above we can define routes,
connections, etc.

Nets of Multiple Lines and Multiple Platform Stations: As above, but now
extended: Each station possesses one or more platforms, and a pair of stations may
be connected by more than one line.

scheme SN 1 =
extend VSN with
class

type
P

value
obs Ps: S → P-set

axiom
∀ s:S • card obs Ps(s) ≥ 1

end

So it was simpler to express the more sophisticated nets, SN 1, than the single line
nets, SN 0.

This is the stake–holder perspective that actual passengers need to have in order
to enter correct platform for catching a train or for changing trains, or for friends
and porters to come greet, respectively collectr your luggage.

Nets, Lines and Station Units and Connectors: As above, but now nets,
lines and stations consists of — are further refined into — units, and units have
connectors. Linear units have two connectors, switches have three, crossover have
four, etc. Units of lines are units of the net, units of stations are units of the net,
distinct lines have no units in common, distinct stations have no units in common,
units of platforms of stations are units of the net and of their station.

scheme NET
extend SN 1 with

class
type

U, C,
W = C×C
Σ = W-set
Ω = Σ-set

value
obs Us: (N|L|S|P) → U-set
obs Cs: U → C-set
obs Ws: U → W-set
obs Σ: U → Σ

obs Ω: U → Ω

axiom
∀ n:N,l:L,s:S,p:S,u:U,c,c′:C −

l ∈ obs Ls(n) ⇒ obs Us(l) ⊆ obs Us(n) ∧
s ∈ obs Ss(n) ⇒ obs Us(s) ⊆ obs Us(n) ∧
p ∈ obs Ps(s) ⇒ obs Us(p) ⊆ obs Us(s) ∧
σ ∈ obs Ω(u) ⇒ ∀ (c,c′):W • (c,c′) ∈ σ ⇒ {c,c′}⊆obs Cs(u) ∧
card { u:U • u ∈ obs Us(n) ∧ c ∈ obs Cs(u) } ≤ 2
∧ ...

end

The last axiom expresses the syntax, ie., the topological layout of a net: Any con-
nector of a unit of net is the connector of at most two units of the net.

This is part of the stake–holder perspective that train planners, despatchers and
engine men need to have in order to plan, monitor and control secure traffic.

⋆ Support Technology Behaviours :

By support technology we understand a hard technology, ie., something other
than humans, which “implement” some of the phenomena modelled by an intrinsics.

Example 1: Railway Switches: A switch, as intrinsically abstracted above,
had three connectors,c, c′, c′′,and typically the following ways, w : W , through
the switch: (c, c′), (c, c′′), (c′, c),and (c′′, c).An intrinsic state space, ω, of a com-
mon switch would allow for the following states: { {}, {(c, c′)}, {(c, c′′)}, {(c′, c)},

{(c′′, c)}, {(c, c′), (c′, c)}, {(c, c′′), (c′′, c)}, {(c, c′), (c′, c), (c′′, c)},and {(c, c′′), (c′′, c),

(c′, c)}}.

Switches are then implemented, technologically, by humans throwing the
switch (and we shall discuss modelling that below), or by mechanical levers and
pullers connected, over a short distance by steel wires, or by electro–mechanic
means, or by electronic & electro–mechanic means, the latter typically control-
ling groups of switches as in interlocked switching.

For each of these technologies we must model their real behaviour: Their
time response to actions, their failure to operate properly, etc. For that we can
use, for example one of the duration calculi [40]. Etcetera.

Example 2: Railway Traffic: Trains travel the net and occupy sequences
of units of the net. At any one time several trains occupy such sequences, and
over time trains normally move monotonically.

scheme TRAFFIC 0 =
extend NET with

class
type

T, Train
Route = U∗

TF 0 = T → N POS
N POS :: s n:N s ps:(Train →m Route)

axiom
...

end

But how do we observe traffic, TF ? Possibly by means of mechanical or optical or
other forms of sensors. The observed traffic is discretised. The sampling frequency
being some function of those of the sensors.

scheme TRAFFIC 1
extend TRAFFIC 0 with

class
type

TF 1 = T →m N POS
axiom

...

end

How do the two relate: The real, actual, traffic, TRAFFIC 0, and the observed
traffic TRAFFIC !. We say that the sensor technology, st, relates the two:

scheme TRAFFIC 2
extend TRAFFIC 1 with

class
type

ST = TF 0 → TF 1
value

st:ST
close: Route × Route → N → Bool
ok st: ST → Bool
ok st(st) ≡

∀ tf 0:TF 0,tf 1:TF 1 • tf 1 = st(tf 0) ⇒
∀ t:T • t ∈ dom tf 1 ⇒

t ∈ D tf 0 ∧ dom s ps(tf 0(t)) = s ps(dom tf 1(t)) ∧
∀ tn:Tn • tn ∈ s ps(dom tf 1(t)) ⇒

close((s ps(tf 0(t)))(tn),(s ps(tf 1(t)))(tn))(s n(tf 0))
end

The ok st predicate expresses a “goodness” criterion for a sampling technology,
st.

The closeness predicate expresses whether two trains are close, ie., “occupy”
approximately the same or identical routes of a net.

The above is the perspective of the supplier and control engineer stake–
holders who are to provide and develop trustworthy support technology resources
that permit safe and secure monitoring, respectivelt control of traffic.

So “whole” theories can be built up around each supporting technology.

⋆ Management & Organisation :
By management & organisation we understand the relations between various

stake–holders, notably employees of the enterprises at the focus of the chosen
application domain: Their protocols of interaction, including models of their
“agent” and “speech act” behaviours [80].

Management usually formulate strategies and tactics for the desirable be-
haviour of enterprise, ie., the domain, and they also formulate the rules & regula-
tions for suitable behaviours of humans and support technologies of that domain.
So when support technologies and humans fail to perform as stated management
must somehow be informed. Thus management acts “top down” by propagating
strategies , tactics, rules and regulations “down” the “pyramid”, and manage-
ment “back stops” problems, at lower levels, by taking over the responsibility
for handling unforeseen (ie., un–ruled, un–regulated) behaviours.

We can model this by suitable protocol specifications expressed both in terms
of (eg. CSP–like) process behaviours and in terms of suitable agent behaviours,
ie., using appropriate modal logics and suitable speech act illocutions, locutions
and perlocutions.

⋆ Rules & Regulations :
By rules we understand that which guides the work of enterprise stake-holders

and their support technologies, as well as their interaction and the interaction
with non-enterprise stake-holders

By regulations we understand that which stipulate what is to happen if a
rule can be detected not to have been followed when such was deemed necessary.

Some examples are:

– Train Arrivals and Departures at Stations:

• Rule: In China arrival and departure of trains at, respectively from rail-
way stations are subject to the following rule: “In any three minute
interval at most one train may either arrive or depart.”

• Regulation: Disciplinary procedures (not detailed here).

– Train Traffic along Lines:

• Rule: In many countries railway lines (between stations) are segmented
into blocks or sectors. The purpose is to stipulate that if two or more
trains are moving — obviously in the same direction — along the line,
then: “There must be at least one free sector (ie., without a train) be-
tween any two such trains.”

• Regulation: Disciplinary procedures (not detailed here).

There are usually three kinds of syntax involved wrt. (ie. when expressing)
rules & regulations (resp. when invoking actions that are subject to rules & reg-
ulations): Rules, Regus: The syntaxes describing rules, respectively regulations;
and Stimulus: The syntax of [always current] domain external action stimuli. A
rule: RUL = Stimulus → Θ × Θ → Bool, denotationally, is a predicate over
domain stimuli, and current and next domain configurations Θ). A regulation:
REG = Stimulus → Θ → Θ, denotationally, is a domain configuration changing
function over domain stimuli, and current domain configurations.

type
Rules, Regus, Stimulus
Ruls and Regs = Rules × Regus
Θ

RUL = Stimulus → Θ × Θ → Bool,
REG = Stimulus → Θ → Θ

value
interpret: Rules → Θ → RUL-set,
interpret: Regus → Θ → REG

valid: Stimulus × RUL-set → Θ × Θ → Bool
valid(sti,ruls)(θ,θ′) ≡

∀ rul:RUL • rul ∈ ruls ⇒ rul(sti)(θ,θ′)
axiom

∀ (sy rls,sy rgs):Ruls and Regs,θ:Θ•

let se rls = interpret(sy rls)(θ),
se rgs = interpret(sy rgs)(θ) in

∃ sti:Stimulus,θ′,θ′′,θ′′′:Θ •

∼valid(sti,se rls)(θ′,θ′′)
⇒ reg(sti)(θ′)=θ′′′ ∧ valid(sti,se rls)(θ′,θ′′′)

end

⋆ Human Behaviour :

Some people try their best to perform actions according to expectations set
by their colleagues, customers, etc. And they usually succeed in doing so. They
are therefore judged reliable and trustworthy, good, punctual professionals of
their domain. Some people set lower standards for their professional conduct:
Are sometimes or often sloppy, make mistakes, unknowingly or even knowingly.
And yet other people are outright delinquent in the despatch of their work:
Could’nt care less about living up to expectations of their colleagues and cus-
tomers. Finally some people are explicitly criminal in the conduct of what they
do: Deliberately “do the opposite” of what is expected, circumvent rules & reg-
ulations, etc. And we must abstract and model, in any given situation where a
human interferes in the “workings” of a domain action, any one of the above
possible behaviours

By human behaviour we thus understand the way in which domain stake-
holders despatch their actions and interactions wrt. an enterprise: professionally,
sloppily, delinquently, yes even criminally.

Commensurate with the above formalisation, humans interpret rules & reg-
ulations differently, and not always “consistently” — in the sense of repeatedly
applying the same interpretations.

type

Action = Θ
∼

→ Θ-infset
value

hum int: Rules → Θ → (RUL-set)-infset

hum beha: Stimulus × Rules × Action → Θ
∼

→ Θ

hum beha(sti,syn rls,α)(θ) as θ′

post
θ′ ∈ α(θ) ∧
let sem rls:RUL-set • sem rls ∈ hum int(srr)(θ) in

∀ rule:RUL • rule ∈ sem rls ⇒ rule(sti)(θ,θ′)
end

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rule[s]. A human, in carrying out an action, interprets appli-
cable rules and choose a set which that person believes suits some (professional,
sloppy, delinquent or criminal) intent. “Suits” means that it satisfies the intent,
ie., yields true on the pre/post configuration pair, when the action is performed
— whether as intended by the ones who issued the rules & regulations or not.
Such is reality !

Relations to Knowledge Engineering (KE) :
Domain engineering is the engineering of domain descriptions. Domain de-

scriptions “encode” domain knowledge. But that does’nt make domain engineer-
ing equal to, or the same as KE. In our view there is a fundamental, perhaps
just a historic difference: Knowledge representation researchers and engineers all
seem to try express knowledge almost exclusively in a property oriented, read:
Mathematical logic style and, and this is also important, notably one whose ac-
quisition can be partially, and whose formalisation can be mechanised. In our
quest for domain models we accept that our models are not mechanisable. They
are formal, but not necessarily immediately “executable”. Judge for yourself:
You would not qualify the models given above as knowledge models in the tra-
ditional, current sense of knowledge engineering. KE seems to have sprung from
classical AI research, where domain engineering seems to have sprung from clas-
sical denotational engineering. It seems that KE is always searching for new
formal KE languages. In domain engineering we have, at the moment, our hands
full with just trying to express, within existing formal notations. KE seems not
to have actually expressed large scale models of domain in the sense domain
engineering has.

Despite the seeming “assuredness” of the above, see [58, 75].

Domain Acquisition :
We refer to an upcoming subsection on ‘Requirements Acquisition’, barely

half a page onwards. We do so — as was also mentioned in the last paragraph
of Section 1.2 — since there are many similarities between domain and require-
ments acquisition. We seriously think that the issues of domain attributes and
domain facets, as outlined above, can help guide the domain acquisition process.
This also applies to the more general abstraction and modelling techniques, and
especially when all this is done in a context of formal specification: That domain
acquisition, and, as we shall shortly see, also requirements acquisition, will be
“helpfully guided.”

2.3 Requirements Engineering

Delineation of “What is Requirements ?” :
From [90] we quote: “Requirements engineering must address the contextual

goals why a software is needed, the functionalities the software has to accom-
plish to achieve those goals, and the constraints restricting how the software
accomplishing those functions is to be designed and implemented. Such goals,
functions and constraints have to be mapped to precise specifications of software
behaviour; their evolution over time and across software families has to be coped
with as well [100].”

We shall, in this paper, not cover the pragmatics of why software is needed,
and we shall, not only in this paper, exclude “the mapping to precise software
specifications” as we believe this is a task of the first stages of software design
— as will be illustrated in this paper.

Requirements Acquisition :
The process of requirements acquisition will also not be dealt with here.

We assume that proper such techniques, if available, will be used. For example
[59, 44, 76, 45, 57, 99, 78, 56, 46, 1, 64, 92, 91, 93, 77, 94]. That is: We assume that
somehow or other we have some, however roughly, but consistently expressed
itemised set of requirements. We admit, readily, that to achieve this is a major
feat. The domain requirements techniques soon to be outlined in this paper may
help “parameterise” the referenced requirements acquisition techniques.

On the Avaliability of Domain Models :
It is a thesis of this paper that it makes only very little sense to embark

on requirements engineering before one has a fair bit of understanding of the
application domain. Granted that one may feel compelled to develop both “si-
multaneously”, or that one ought expect that others have developed the domain
descriptions (including formal theories) “long time beforehand.” Yes, indeed,
just as control engineers can rely on Newton’s laws and more than three hundred

years of creating improved understanding of the domain of Newtonian physics:
The “mechanical” world as we see it daily, so software engineers ought be able,
sooner or later, to rely on elsewhere developed models of — usually man–made —
application domains. Since that is not yet the situation we, software engineering
cum computing science, shall have to make the first attempts at creating such
domain–wide descriptions — hoping that eventually the domain specific profes-
sions will have reseachers with sufficient computing science education to hone
and further develop such models.

Domain Requirements :
It is also a thesis of this paper that a major, perhaps the most important

aspects of requirements be systematically developed on the basis of domain de-
scriptions. This ‘thesis’ thus undercuts much of current requirements engineer-
ings’ paradigms, it seems.

By a domain requirements we shall understand those requirements (for a
computing system) which are expressed solely by using terms of the application
domain (in addition to ordinary language terms). Thus a domain requirements
must not contain terms that designate the machine, the computing system, the
hardware + software to be deviced.

How do we go about doing this ?
There seems to be two orthogonal approaches. In one we follow the domain

facets outlined above. In the other we apply a number of “operators”, to wit:

– projection, determination, extension, and initialisation,

to domain required facets. We treat the latter first:

Facet–Neutral Domain Requirements :

– Projections:
Well, first we ask for which parts of the domain we, the client, wish computing
support. Usually we must rely on our domain model to cover far more than
just those parts. Hence we establish the first bits of domain requirements by
projecting those parts of both the informal and the formal descriptions onto
— ie., to become — the domain requirements.

– Determinations:
Then we look at those projected parts: If they contain undesired looseness
or non–determinism, or if parts, like types, are just sorts for which we now
wish to state more — not implementation, but “contents” — details, then
we remove such looseness, such non–determinacy, such sorts, etc. This we
call determination.

– Extensions:
Certain functionalities can be spoken of in the domain but to carry them
out by humans have either been too dangerous, too tedious, uneconomical,
or otherwise infeasible. With computing these functionalities may now be
feasible. And, although they, in a sense “belongs” to the domain, we first

introduce them while creating the domain requirements. We call this domain
extension.

– Initialisations:
In describing a domain, such as we for example described the “space” of all
railway nets, we, for each specific net, designate the “space” of all its lines
and stations and their units and connectors. If our requirements involved
lines, stations and units, then sooner or later one has to initialise the com-
puting system (database) to reflect all these many entities. Hence we need
to establish requirements for how to initialise the computing system, how to
maintain and update it, how to vet the input data, etc.

There may be other domain–to–requirements “conversion” steps. We shall, in
this paper, only speak of these.

In doing the above we may iterate between the four (or more) domain–to–
requirements “conversion” steps.

We now illustrate what may be going on here.
An Example Domain: We wish to illustrate the concepts of projection,

determination, extension and initialisation of a domain requirements from a
domain. We will therefore postulate a domain. We choose a very simple domain.
That of a traffic time table, say flight time table. In the domain you could, in
“ye olde days” hold such a time table in your hand, you could browse it, you
could look up a special flight, you could tear pages out of it, etc. There is no end
as to what you can do to such a time table. So we will just postulate a sort, TT,
of time tables. Airline customers, in general only wish to inquire a time table
(so we will here omit treatment of more or less “malicious” or destructive acts).
But you could still count the number of digits “7” in the time table, and other
such ridiculous things. So we postulate a broadest variety of inquiry functions
that apply to time tables and yield values. Specifically designated airline staff
may, however, in addition to what a client can do, update the time table, but,
recalling human behaviours, all we can ascertain for sure is that update functions
apply to time tables and yield two things: Another, replacement time table and
a result such as: “your update succeeded”, or “your update did not succeed”,
etc. In essence this is all we can say for sure about the domain of time table
creations and uses.

scheme TI TBL 0 =
class

type
TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff(tt) ≡ let u:UP in u(tt) end
timtbl 0: TT → Unit
timtbl(tt) ≡

(let v = client 0(tt) in timtbl 0(tt) end)
⌈⌉
(let (tt′,r) = staff 0(tt) in timtbl 0(tt′) end)

end

The system function is here seen as a never ending process, hence the type Unit.
It internal non–deterministically alternates between “serving” the clients and the
staff. Either of these two internal non–deterministically chooses from a possibly
very large set of queries, respectively updates.

Projections: In this case we have defined such a simple, ie., small domain,
so we decide to project all of it onto the domain requirements:

scheme TI TBL 1 = TI TBL 0

Determinations: Now we make more explicit a number of things: Time
tables record, for each flight number, a journey: a sequence of two or more
airport visits, each designated by a time of arrival, the airport name and a time
of departure.

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

Fn, T, An
JR′ = (T × An × T)∗

JR = {| jr:JR′
• len jr ≥ 2 ∧ ... |}

TT = Fn →m JR
end

where we omit (...) to express further wellformedness constraints on journies.
Then we determine the kinds of queries and updates that may take place:

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

value
Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() →

λtt:TT•tt,
mk jour(fn)

→ λtt:TT •

if fn ∈ dom tt then [fn7→tt(fn)] else [] end
end

Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) →

λtt:TT •

if fn ∈ dom tt then (tt,not ok) else (tt ∪ [fn7→jr],ok) end,
mk delt(fn) →

λtt:TT •

if fn ∈ dom tt then (tt\{fn},ok) else (tt,not ok) end
end

end

And finally we redefine the client and staff functions:

scheme TI TBL 4 =
extend TI TBL 3 with

class
value

client 2: TT → VAL,
client 2(tt) ≡ let q:Query in (Mq(q))(tt) end
staff 2: TT → TT × RES,
staff 2(tt) ≡ let u:Update in (Mu(u))(tt) end

end

The timtbl function remains “basically” unchanged !

scheme TI TBL 5 =
extend TI TBL 4 with

class
value

timtbl 2: TT → Unit
timtbl 2(tt) ≡

(let v = client 2(tt) in timtbl 2(tt) end)
⌈⌉
(let (tt′,r) = staff 2(tt) in timtbl 2(tt′) end)

end

Extensions: Suppose a client wishes, querying the time table, to find a
connection betwen two airports with no more than n shift of aircrafts. For n =

0, n = 1 or n = 2 this may not be difficult to do “in the domain”: A few 3m
post it’s a human can perhaps do it in some reasonable time for n = 1 or n = 2.
But what about for n = 5. Exponential growth in possibilities makes this an
infeasible query “in the domain”. But perhaps not using computers.

scheme TI TBL 6 =
extend TI TBL 5 with

class
type

Query == ... | mk conn(fa:An,ta:An,n:Nat)
VAL = TT | CNS
CNS = (JR∗)-set

value
Mq(q) ≡

cases q of
...

mk conn(fa,ta,n) → λtt:TT • ...

end
end

where we leave it to the reader to define the “connections” function !

Initialisations: Initialisation here means: From a given input of flight jour-
nies to create an initial time table — as insert and deletes have already been
defined. But, in their definition we skirted an issues which is paramount also in
initialisation: Namely that of vetting the data. That is, checking that a journey
flies non–cyclically between existing airports, that flight times are commensurate
with flight distances and type of aircraft (jet, supersonic or turbo–prop), that at
at all airports planes touch down and take off at most every n minutes, where n

could be 2, but is otherwise an airport parameter. To check some of these things
information about airports and air space is required.

scheme INI TT =
extend TI TBL 2 with

class
type

Init inp = (Fn × JR)-set
AP = An →m Airport
AS = (An × An) →m AirCorridor-set
Number, Length

value
obs RunWays: Airport → Number
obs Distance: AirCorridor → Length
...

end

We leave it to the imganination, skills and stamina of the reader to complete
the details ! Our points has been made: Initialisation suddenly uncovers a need
for enlarging the domain descriptions, and “there is much more to initialisation
than meets the eye.”4

Facet–Oriented Domain Requirements :

We may be able to make a distinction between “intended” and un–intended
inconsistencies and “intended” and unintended conflicts. The “intended” ones
are due to inherent properties of the domain. The un–intended ones are due to
misinterpretations by the domain recorders or, are “real enough,” but can be
resolved through negotiation between stake–holders — thus entailing aspects of
business process re–engineering — before requirements capture has started.

We thus assume, for brevity of exposition, that un–intended inconsistencies
and un–intended conflicts have been thus resolved, and that otherwise “sepa-
rately” expressed perspectives have been properly integrated (ie. ameliorated).

A major aspect of domain requirements is that of establishing contractual
relationships between the human or support technology ‘agents’ in the environ-
ment of the “software, cum system–to–be”, and the software ‘agents’. As a result
of a properly completed and integrated domain modelling of support technolo-
gies, management & organisation, rules & regulations, and human behaviour, we
have thus identified domain inherent inconsistencies and conflicts. They appear
as a form of non–determinism. These forms of non–determinism typically need
either be made deterministic, as in domain requirements determination, or be
made part of a contract assumed to be enforced by the environment: Namely
a contract that says: “The environment will promise (cum guarantee) that the
inconsistency or the conflict will not ‘show up’ !”

These contractual relationships express assumptions about the interaction
behaviour — to be further explored as part of the next topic: ‘Interface Re-
quirements’. If the environment side of the combined system of the “software,
cum system–to–be” does not honour these contractual relationships, then the
“software, cum system–to–be” cannot be guaranteed to act as intended !

We thus relegate treatment of some facet–oriented domain requirements to
the requirements capture and modelling stage of interface requirements.

⋆ Towards a Calculus of Domain Requirements :

We have sketched a “calculus” for deriving domain requirements. So far we
have identified four operations in this “calculus”: Projection, determination, ex-
tension and initialisation. In each derivation step the operation takes two argu-
ments. One argument is the domain requirements developed so far. The other
argument is the concerns of that step of derivation: What is, and what is not to
be projected, what is and what is not to be determined, what is and what is not
to be extended, respectively what is and what is not to be initialised, etc.

4 Reasonable C code for the input of directed graphs is usually twice the “size” of
similarly reasonable C code for their topological sorting !

We have still to further develop: Identify possibly additional domain require-
ments derivation operators, and to research and provide further principles and
detailed techniques also for already identified derivation operations.

It seems that the sequence of applying these derivators is as suggested above,
but is that “for sure ?”.

Interface Requirements :
By an interface requirements we shall understand those requirements (for a

computing system) which concern very explicitly the “things” ‘shared’ between
the domain and the machine: In the domain we say that these “things” are the
observable phenomena: the information, the functions, and/or the events of, or
in, the domain, In the machine we say that they are the data, the actions, and/or
the interrupts and/or the occurrence of inputs and outputs of the machine.
By ‘sharing’ we mean that the latter shall model, or be harmonised with, the
former. There are other interface aspects — such as “translates” into “bulk”
input/output, etc.

But we shall thus illustrate just the first two aspects of ‘sharing’.

External vs. Internal ‘Agent’ Behaviours :
The objectives of this step of requirements development is the harmonisation

of external and internal ‘agent’ behaviours.
One the side of the environment there are the ‘agents’, say the human users,

of the “software–to–be”. On the side of the “software–to–be” there is, say, the
software ‘agents’ (ie. the processes) that interact with environment ‘agents’. Har-
monisation is now the act of securing, through proper requirements capture nego-
tiations, as well as through proper interaction dialogue and “vetting” protocols,
that the two kinds of ‘agents’ live up to mutually agreed expectations.

Other than this brief explication we shall not treat this area of requirements
engineering further in the present paper.

⋆ GUIs and Databases :
Assume that a database records the data which reflects the topology of some

railway net, or that records the contents of a time table, and assume that some
graphical user interface (GUI) windows represent the interface between man
and machine such that items (fields) of the GUI are indeed “windows” into the
underlying database. We prescribe and model, as an interface requirements, such
GUIs and databases, the latter in terms of a relational, say an SQL, database.

type
Nm, Rn, An, Txt
GUI = Nm →m Item
Item = Txt × Imag
Imag = Icon | Curt | Tabl | Wind
Icon == mk Icon(val:Val)
Curt == mk Curt(vall:Val∗)
Tabl == mk Tabl(rn:Rn,tbl:TPL-set)

Wind == mk Wind(gui:GUI)

Val = VAL | REF | GUI
VAL = mk Intg(i:Intg) | mk Bool(b:Bool)

| mk Text(txt:Text) | mk Char(c:Char)

RDB = Rn →m TPL-set
TPL = An →m VAL
REF == mk Ref(rn:Rn,an:An,sel:(An →m OVL))
OVL == nil | mk Val(val:VAL)

Icons effectively designate a system operator or user definable constant or vari-
able value, or a value that “mirrors” that found in a relation column satisfying
an optional value (OVL). Similar for curtains and tables. Tables more directly
reflect relation tuples (TPL). GUIs (Windows) are defined recursively.

If, for example, the names space values of Nm, Rn, and An, and the chosen
constant texts Txt, suitably mirror names and phenomena of the domain, then
we may be on our way to satisfying a “classical” user interface requirement,
namely that “the system should be user friendly”.

Thus a definition, much like the one, of GUI, above, is, in a sense, pulled
out of the “thin” air and presented, without much further ado, as part of an
interface requirements. Where was its domain “counterpart” ? Or one might
just be content with the reuse of the above definition.

For a specific interface requirements there now remains the task of relating
all shared phenomena and data to one another via the GUI. In a sense this
amounts to mapping concrete types onto primarily relations, and entities of
these (phenomena and data) onto the icons, curtains, and tables.

Machine Requirements :
By machine requirements we understand those requirements which are ex-

clusively related to characteristics of the hardware to be deployed (and, in cases
even designed) and the evolving software. That is, machine requirements are,
in a sense, independent of the specific “details” of the domain and interface
requirements, ie., “considers” these only with a “large grained” view.

Performance Issues :
Performance has to do with consumption of computing system resources:.

Besides time and (storage) space, there are such things as number of terminals,
the choice of the right kind of processeing units, data communication bandwidth,
etc.

Time and Space: Time and (storage) space usually are single out for partic-
ular treatment. Designated functions of the domain and interface requirements
are mandated to execute, when applied, within stated time (usually upper)
bounds. This includes reaction times to user interaction. And designated do-
main information are likewise mandated to occupy, when stored, given (stated)
quantities of locations.

Dependabilities :

Dependability is an “ility” “defined” in terms of many other “ilities”. We
single out a few as we shall later demonstrate their possible discharge in the
component software system design.

Availability: There might be situations where a domain description or a do-
main (or interface) requirements prescription define a function whose execution,
on behalf of a user, when applied, is of such long duration that the system, to
other users, appear unavailable.

In the examle of the time table system, such may be the case when the air
travel connections function searchers for connections: The computation, with
possible “zillions” of database (cum disk) accesses, “grinds” on “forever”.

Accessability: There might be situations where a domain description or a
domain (or interface) requirements prescription may give the impression that
certain users are potentially denied access to the system.

In the example of the time table system, such may be the case when the
time table process non–deterministically chooses between “listening” to requests
(queries) from clients and (updates) from staff. The semantics of both the in-
ternal (⌈⌉) and the external (⌈⌉⌊⌋) non–deterministic operators are such as to not
guarantee fair treatment.

Reliability, Fault Tolerance, Robustness, Safety, and Security: We
omit treatment of the many other “ilities” of dependability.

Discussion: We refrain from attempting to formalise the machine requirements
of availablity and accessability — for the simple reason that whichever way we
today may know how to formalise them, we do not yet know of a systematic way
of transforming these requirements into, ie., of “calculating” their implementa-
tions.

This is clearly an area for much research.

Maintainabilities :

Computing systems have to be maintained: For a number of reasons. We
single out one and characterise this and other maintenance issues.

Adaptability: We say that a computing system is adaptable (not adaptive),
wrt. change of “soft” and “hard” functionalities, when change of software or
hardware “parts” only involves “local” adaptations.

“Locality”, obviously, is our hedge. Not having defined it we have said little,
if anything. The idea is that whatever changes have to be made in order to
accomodate replacement hardware or replacement software, such changes are to
be made in one place: One is able, a priori, to designate these places to within,
say, a line, a paragraph, or, at most, a page of documentation.

We shall discuss adaptability further when we later tackle component soft-
ware design issues.

Perfectability, Correctability and Preventability: A computing sys-
tem is perfectable (not necessarily perfect), wrt. change (usually improvement)
of “soft” and “hard” performance issues [time, space], when such change only
involves “local” changes.

A computing system is correctable (not necessarily correct), wrt. debugging
“soft” and “hard” bugs, when such change only involves “local” corrections.

A computing system has its failure modes being preventable (not necessarily
prevented), wrt. “soft” and “hard” bugs, when regular tests can forestall error
modes. For hardware, preventive maintenance is an old “profession”. Rerunning
standard, accumulative test suites, whenever other forms of maintenance has
been carried out, may be one way of carrying out preventive maintenance ?

Portabilities :

By portability we understand the ability of software to be deployed on dif-
ferent computing systems platforms: From legacy operating systems to, and be-
tween such systems as (Microsoft’s) Windows, Unix and Linux.

Development, Execution, and Maintenance Platforms: One can dis-
tinguish between the computing systems platforms on which it may be require-
ments mandated that development, or execution, or maintenance shall take
place.

Feature Interaction Inconsistency and Conflict Analysis :

One thing is to “dream” up “zillions” of “exciting” requirements, whether
domain, interface, or machine requirements. Another thing is to ensure that these
many individually conceived requirements “harmonise”: “Fit together”, ie., do
not create inconsistencies or conflicts when the “software–to–be” is the basis
of computations. Proper formal requirements models allow systematic, formal
search for such anomalies [101, 39, 102, 100]. Other than mentioning this ‘feature
interaction’ problem, we shall not cover the problem further. But a treatment of
some aspects of requirements engineering would not be satisfying if it completely
omitted any reference to the problem.

Discussion :

We have attempted a near–exhaustive listing and partial survey of as com-
plete a bouquet of requirements prescription issues as possible. We have done so
in order to delineate the scope and span of formal techniques, as well as the rela-
tions, “backward”, to domain descriptions, and, as we shall later see, “forward”
to software design.

A major thesis of our treatment, maybe not so fully convincingly demon-
strated here, but then perhaps more so in our forthcoming books [30], is to
demonstrate these relationships, to demonstrate that requirements, certainly
domain requirements, can be formalised, and to provide sufficiently refined re-
quirements prescription techniques — especially for domain requirements.

We are not convinced by the requirements engineering principles and tech-
niques presented in todays so–called “best–seller” software engineering text books.
So we are, instead, offering our approach as a constructive and viable alternative.

2.4 Software Design

Requirements prescriptions do not specify software designs. Where a require-
ments prescription is allowed to leave open may ways of implementing some
entities (ie., data) and functions, a software design, initially an abstract one, in
the form of an architecture design, makes the first important design decisions.
Incrementally, in stages, from architecture, via program organisation based on
identified components, to module design and code, these stages of software design
concretises previously abstract entities and functions.

Where requirements selected parts of a domain for computerisation by only
stating such requirements for which a computable representation can be found,
software design, one–by–one selects these representations.

Architectures :
By an architecture design we understand a software specification that im-

plemenents the domain and, maybe, some of the interface requirements. The
domain requirements of client 2, staff 2, and timtbl 2, are first transformed, and
this is just a proposal, as a system of three parallel processes client 3, staff 3, and
timtbl 3. Where client 2 and staff 2, embedded within timtbl 2, we now “factor”
them out of timtbl 3, and hence we must provide channels that allow client 3
and staff 3 to communicate with timtbl 3. The communicated values are the de-
notations, cf. aplets, of query and update commands. Whereever client 3 and
staff 3 had time tables as arguments they must now communicate the function
denotations, that were before applied to time tables, to the timtbl 3 process.

scheme ARCH =
extend ... with

class
channel

ctt QU, ttc VAL, stt UP, tts RES
value

system 3: TT → Unit
system 3(tt) ≡ client 3() ‖ staff 3() ‖ timtbl 3(tt)

client 3: Unit → out ctt in ttc Unit
client 3() ≡ let q:Query in ctt!Mq(q); ttc?; client 3() end

staff 3: Unit → out stt in tts Unit
staff 3() ≡ let u:Update in stt ! Mu(u); tts?; staff 3() end

timtbl 3: TT → in ctt,stt out ttc,tts Unit
timtbl 3(tt) ≡

(let q=ctt? in ttc!q(tt) end timtbl 3(tt))
⌈⌉⌊⌋
(let u=stt? in let (tt′,r)=u(tt) in tts!r; timtbl 3(tt′) end end)

end

Notice how we have changed the non–deterministic behaviour from being internal
⌈⌉ for timtbl 3 to becoming external ⌈⌉⌊⌋ for timtbl 4. One needs to argue some
notion of correctness of this.

An interface requirements was not stated above, so we do it here, namely
there shall be a number of separate client 4 processes, each having its identity
as a constant parameter. Figure 15 illustrates the idea.

Fig. 1. Diagrammatic View of Software Architecture

ctt[1]
ttc[1]

stt

tts

Client

Client

Client

Timetable Staff

Architecture: A Time−table with Clients and Staff

The system 4 now consists of n client 4 parallel processes in parallel with a
basically unchanged staff 4 process and a slightly modified timtbl 4 process. The
slightly modified timtbl 4 process expresses willingness to input from any client 4
process, in an external non–deterministic manner. Etcetera:

value
n:Nat

type
CIdx = {| 1..n |}

channel
ctt[1..CIdx] QU, ttc[1..CIdx] VAL, stt UP, tts RES

value
system 4: TT → Unit
system 4(tt) ≡ ‖ { client 4(i) | i:CIdx } ‖ staff 4() ‖ timtbl 4(tt)

client 4: CIdx → out ctt in ttc Unit
client 4(i) ≡ let q:Query in ctt[i] ! Mq(q) ; ttc[i] ? ; client 4(i) end

5 Figures 1–5 also illustrates the use of a diagrammatic language. It is very closely
related to the CSP subset of RSL. Other than showing both scheme ARCH and
Figure 1 we shall not “explain” this diagrammatic language — but it appears to be
straightforward. We shall hence ‘reason’ over constructs (complete diagrams) of this
diagrammatic language.

staff 3: Unit → out stt in tts Unit
staff 3() ≡ let u:Update in stt ! Mu(u) ; tts ? ; staff 3() end

timtbl 4: TT → in { ctt[i],stt[i] i:CIdx } out ttc,tts Unit
timtbl 4(tt) ≡

⌈⌉⌊⌋ { let q = ctt[i] ? in ttc[i] ! q(tt) end timtbl 4(tt) | i:CIdx }
⌈⌉⌊⌋ (let u = stt ? in let (tt′,r) = u(tt) in tts ! r ; timtbl 4(tt′) end end)

Component and Object Design :
By a component and object design we understand a transformation of a soft-

ware architecture design that implements the remaining interface requirements
and major machine requirements. Whereas a software architecture design may
have been expressed in terms of rather comprehensive processes, component de-
sign, as the name intimates, seek to further decompose the architecture design
into more manageable parts. Modularisation (ie., module design) goes hand–in-
–hand with component design, but takes a more fine–grained approach.

One may say, clloquially speaking, that where component design decomposes
a software design, and as guided by (remaining interface and by) machine re-
quirements, into successively smaller parts, module design composes these parts
from initially smallest modules. The former is, so–to–speak “top–down”, where
the latter seems more “bottom–up”6.

At this stage we will just sketch the introduction of new processes that handle
the machine requirements of accessability, availability and adaptability. But, as
it turns out, it is convenient to first tackle an issue of many users versus just one
interface.

Multiplexing :
Instead of designing a time table subsystem that must cater to n+1 users we

design one that caters to just two users. Hence we must provide a multiplexor,
a component which provides for a more–or–les generic interface between, “to
one side” n identical (or at least similar) processes, and, “to the other side” one
process.

Figure 2 illustrates the idea.
What we have done is to factor out the external non–deterministic choice amongst
client process interactions, as documented in timtbl 4 by the distributed choice:

⌈⌉⌊⌋ { let q = ctt[i] ? in ... end | i:CIdx }

from that function into the mpx function. The external non–deterministic choice
(remaining) among the one “bundled” client input and the staff will, see next,
below, later be “moved” to an arbiter function.

We call such a component a multiplexor and leave its definition to the reader.

6 But we normally refrain from these “figurations” as they depend on how one visu-
alises matters: As a root of further roots, or as a tree of branches.

Fig. 2. Diagrammatic View of Multiplexor Component

...

...

...
...

client

staff

client

client

client

mpx

c_m[i]

m_c[i]

m_tt

tt_m s_tt

tt_s

Program Organisation with Clients, Multiplexor, Staff, Timetable, and Channels

timetable

component

application

Accessability :
To “divide & conquer” between requests for interaction with the time table

process from either the (“bundled”) clients (via the multiplexor) or the staff, we
insert an arbiter component.

Figure 3 illustrates the idea.
Its purpose is to create some illusion of fairness in handling non–determinism.
If the arbiter ensures to “listen fairly” to the (“bundled”) client and the staff
“sides”, for example for every f times it handles requests from the client side to
then switch to handling one from the staff side, then perhaps some such fairness
is achieved. The determination of f , or, for that matter, the arbiter algorithm, is
subject to statistical knowledge about the traffic from either side and the service
times for respective updates.

This issue of requiring ‘fairness’ also “spills” over to multiplexor function.
We leave further specification to the reader.

Availability :
The only component (ie., process) that may give rise to “loss of availability” is

the time table process. Computing, for example the “at most n change of flight”
connections may take several orders of magnitude more time than to compute
any other query or update. The idea is therefore to time–share the time table
process, and, as a means of exploiting this time–sharing, to redesign (also) the
multiplexor component and add a queue component.

Figure 4 illustrates the idea.
The multiplexor is now to accept successive requests for interaction from multi-
ple clients (or even the same client). And the queueing component is to queue
outstanding requests that are, at the same time sent to the time table process. It

Fig. 3. Diagrammatic View of Arbiter Component

...

...

...
...

client

arbiter staff

client

client

client

mpx

c_m[i]

m_c[i]

m_a

a_m

a_s

a_tt tt_a

timetable

component

application

Program Organisation with Clients, Multiplexor, Arbiter, Staff, Timetable, and Channels

s_a

Fig. 4. Diagrammatic View of Queueing and Time-shared Components

...

...

...
...

client

staff

client

client

client

mpx

c_m[i]

m_c[i]

a_s

a_tt tt_a

queue

m_q

q_m

q_a

a_q s_a

arbiter

Program Organisation with Clients, Multiplexor, Queue, Arbiter, Staff, time−shared Timetable, and Channels

time−shared

timetable

component

application

may respond to previously received requests, “out–of–order”. The queueing com-
ponent will know “back to which clients” request–responses shall be returned.

We leave further specification to the reader.

Adaptability :
We have seen how the software design has evolved, on paper, in steps of com-

ponent design development, into successively more components. Each of these,
including those of the client, time table and staff processes may need be re-
placed. The client and staff components in response to new terminal (ie., PC)
equipment, and the time table process in response, say to either new database
management systems or new disks, or “both and all” !

If each of these components were developed with an intimate knowledge of
(and hence dependency on) the special interfaces that these components may
offer, then we may find that adaptability is being compromised. Hence we may
decide to insert between neighbouring components so–called connectors. These
are in fact motivated last, as in this “example sample development”, but are
suitably developed first. They “set standards” for exchange of information and
control between components. That is, they define protocols.

Figure 5 illustrates the idea.

Fig. 5. Diagrammatic View of Connector Components

...

...

...
...

client

arbiter staff

client

client

client

mpx queue

mocq comq

qocmcoqm

qoca

coaq

coqa

aocq socacosa

aocs

aoctt

coas

cotta

ttocattoca

cokm[i], komc[i]

kocm[i], mokc[i]

Program Organisation with Clients, Multiplexor, Queue, Arbiter, Staff, Timetable, Connectors and Channels

timeshared

timetable

connector

connector

application

component

We leave further specification to the reader.

Discussion: Architecture vs. ‘Componentry’ :

We refer to work by David Garlan and his colleagues, work that relate very
specifically to the above [5, 2, 52, 6, 85, 3, 51, 7]. What Garlan et al. call software
architecture is not what we call software architecture. Ours is more abstract.
Theirs is more at the level of interfacing components. The CMU (ie., the Garlan
et al.) work is much appreciated.

Towards a Component Structure Calculus :
We have sketched a “calculus” for deriving component structures. in each step

of derivation the “operations” of the “component structure calculus” takes two
“arguments”. One “argument” is a specific machine (or interface) requirement.
The other “argument” is a component structure (or, for the first step, the soft-
ware architecture). The result of applying the “operation” is a new component
structure.

We have still to develop: Identify, research and provide principles and more
detailed techniques for when and how to deploy which machine (or interface) re-
qirements to which component structures. To wit: “Should one apply the ‘avail-
ability’ requirements before or after the ‘accessability’ requirements, etc. It is not
yet clear whether the adaptability (and other maintenance “ility”) requirements
should be discharged, before, in step with, or after the discharge of each of the
dependability “ilities”. Etcetera.

2.5 Discussion

Summary :
We have completed a “tour de force” of example developments. Stepwise

‘refinements’ of domain descriptions, here for railway nets, and phasewise trans-
formation of domain descriptions into requirements prescriptions and the latter
into stages of software designs: Architecture and component designs. It is soon
time to conclude and to review our claims.

Validation and Verification :
We have presented aspects of an almost “complete” chain of phases, stages

and steps of development, from domains via requirements and software architec-
ture to program organsation in terms of components and connectors. In all of
this we have skirted the issues of validation and verification: Validating whether
we are developing the right “product”, and veryfying whether we develop that
“product” right.

An issue that ought be mentioned, in passing, is that of some requirements,
typically machine requirements, only being implementable in an approximate
manner. One may, for example, have to check with runtime behaviour as to the
approximation with which such machine requirements have been implemented
[49].

Obviously more than 30 years of program correctness have not gone behind
our back: With formalisations of many, if not most, phases, stages and steps
it is now easier to state lemmas and theorems of properties and correctness.

Properties of individual descriptions, prescriptions and specifications; correctness
of one phase of development wrt. to the previous phase, respectively the same
for stages and steps.

We have found, however, that developing software “light”: Formally specify-
ing phases, stages and steps, and, in a few, crucial cases, formulating lemmas
and theorems (concerning “this and that”) seem to capture “most” development
mistakes. In any case it is appropriate to end this, the ‘triptych’ section with the
following:

Let D, R and S stand for related Domain descriptions, Requirements pre-
scriptions, repectively Software specifications. Correctnes of the Software with
respect to its Requirements can then be expressed as:

D,S |= R

which, in words, imply: Proofs of correctness of S with respect to R typically
require assumptions about the domain D.

What could those assumptions be ? Are they not already part of the require-
ments ? To the latter the answer could be no, in which case it seems that we may
have projected those assumptions “away” ! And then these assumptions could be
expressed, in the domain descriptions, in the form, for example, of constrained
human or support technology behaviours, or of management behaviours, or they
could be in the form of script languages in which to express rules & regulations,
or they may be properties of the Domain that can be proved in D.

In [90] van Lamsweerde complements the above approximately as follows (our
interpretation7):

Let A stand for a notion of ‘Accuracy’: Non–functional goals requiring that
the state of the input and output software objects accurately reflect the state
of the corresponding monitored, respectively controlled objects they represent,
and let G stand for the set of goals:

A,S |= R with: A,S 6|= false and R,D |= G with: R,D 6|= false

We find this a worthwhile “twist”, and expect more work done to fully under-
stand and exploit the above.

3 Conclusion

It is high time to conclude: To review claims on the background, now, of the
approach to software engineering outlined in some detail in this long paper, and
on the background of this approach having been deployed for quite some years
now, in embryo some 20 years ago, and, since then to an increasing spectrum of
the software development phases and stages outlined in Section 2. Some claims
were made, notably in Sections 1.2.

7 As there are unexplained occurrence of D in van Lamsweerde formula: He addition-
ally uses As where we use D

3.1 An FPO: A Frequently Posited Objection

It is often claimed that “formally specifying requirements is a waste of effort as
requirements always change, and change frequently.” This statement lacks logic:
So what about the required software, it possibly changes even more often, so we
should not code it ?

A counter claim, that we shall raise, is that domains change much less, if at
all ! The terminology of the financial service industry, or of railways, or of health
care — of the intrinsics of these domains — has not changed for maybe perhaps
a hundred years.

When you look at what has changed, in the domain, it is the supporting tech-
nologies, the management & organisation, and the rules & regulations. But these
latter depend on very sizable intrinsics. So at least we need formalise the intrin-
sics. And, before any requirements, for any software that is to monitor or control
some supoprting technology, some management & organisation, or some rules &
regulations — even though they may change “more often” it probably, as hinted
at here, is a good idea to first formalise it, or them, in order to better structure
(project, determine, extend, and initialise) the “derivable” rewuirements.

3.2 Business Process Re–engineering (BPR)

BPR is now a fashionable field. We suggest here that it be conducted on the basis
of first doing Business Process Engineering (BPE), namely domain engineering
— but now not followed by requirements engineering (RE), but by BPR. It is
“almost the same as RE, but instead of setting up requirements for a machine,
it sets up requirements for most human conduct.

3.3 Review and Disposal of Posited Claims

We have put forward a number of claims in Section 1.2. We shall now comment
on those.

No Domain Engineering in Current “Best Practices” :

“Today’s software development hardly builds on precise domain descrip-
tions”: Now that you have seen examples of such descriptions, you will most
likely agree. It may be countered that it takes time to create domain descrip-
tions. To which we counter: That time is “reusable”: You basically only have
to do it once. A software house nomally specialises in products for a specific
domain, so why not, “once and for all”, or, better, as product after product,
version after version, is being requirements prescribed, also continue the de-
velopment of increasingly comprehensive domain descriptions. They are more
stable. They represent the corporate memory, that software house’s “cutting,
competitive edge”.

Domains are “Wider” than Requirements :

“Domain descriptions must be ‘wider’ than ‘related’ requirements prescrip-
tions”: Whenever a domain descriptions does not cover “significantly more” than
the area to be “covered” by a requirements prescription, we find that the require-
ments prescription development is hampered: The “larger” domain description
puts, it seems, the requirements engineer much more at ease as to exactly what
should and what can go into a requirements prescription.

Domains before Requirements :

“Radical domain theories must be ‘at hand’ before requirements prescrip-
tion is even attempted”: As outlined below, a domain theory, ideally, reveals
fundamental properties about a domain, properties that may be subconsciously
known, but which are often misinterpreted in requirements, leading to inconsis-
tent requirements.

Stability of Domains vs. Stability of Requirements :

“Domain descriptions are more stable than requirements prescriptions”: This
claim was already disposed of in Section 3.1 above.

Speed–up of Requirements Development :

“Once domain descriptions are available it is faster to develop requirements
prescriptions’: Obviously. Much work has already been done, and much of re-
quirements is now a projection, determination, extension and initialisation of
parts of a donmain description — as outlined in Section 2.3’s subsection on
‘Domain Requirements’.

Proper Identification of Components :

“Varieties of requirements prescriptions lead to more stable identification of
proper components”: We hope that the development of components and connec-
tors for the, albeit simple minded time table system of Section 2.4’s subsection
on ‘Component and Object Design’, “visualised” in Figures 2–5, can illustrate
this claim: Each of the components — other than the client, time table and staff
components, are components that relate primarily to machine (or, not shown,
interface) requirements. Machine requirements are usually almost identical from
application to application, and hence their components are “usually” reusable.
But also the domain requirements components of clients, staff and time–shared
time table, “cleaned” for all concerns of interface and machinerequirements, now
appear in a form that is easier to parameterise and thus make reusable.

• • •

“Problems in systems and software development” :

Our claim here was, and is, that many problems in development stems from
lack of established domain descriptions. We have, in Denmark, analysed success-
ful, respectively disastrous software development projects. The successfull ones,
although also they “lacked” properly recorded domain descriptions, except for
one (which indeed have had such a domain description for almost 20 years),
all the successfull projects were characterised by the developers having accu-
mulated, in their practice, and ence in their “brains”, an approximate doman
description. The failed projects we “new” in the sense that their developers had
no prior experience in the domain.

“New paradigms for systems development and processes” :

Our claim was, and is, that domain engineering, and that domain require-
ments engineering offer such new paradigms. But they must be taken “radically”.
By that we mean: There must be substantial work done on domain descriptions,
both narratives and formalisations. Rough sketching and terminologisation must
be taken serious, and careful, seemingly tedious, bureaucratic support must be
done for ‘documentation’. But it is not tedious: When care is taken to ensure
good abstractions and sensible refinements, then such “recording” documents
can be a joy to work with.

“New paradigms for modelling and specification languages” :

It should now be abundantly clear: The modelling are based on a rather large
variety of abstraction and modelling techniques, and we do not really have to
search for new specification languages.

The modelling techniques are well recorded in the published literature —
and can be found in my forthcoming text book [30] Chapter 4 (Phenomena,
Concepts, Models and Modelling), Chapter 6 (Property and Model Oriented
Abstractions), Chapter 7 (Specification Programming), Chapter 8 (Abstraction
and Modelling — with topics such as Hierarchical and Compositional Modelling,
Denotational vs. Computational Modelling, Configurations: Contexts and States,
Time, Space and Space/Time, Agents and Agencies and Speech Acts) — with
some domain engineering abstraction and modelling techniques having already
been mentioned in this paper.

As for new languages we have a few comments: (i) There are already enough.
New proposals are mere variants and integrations of previous languages. What
is needed seems to be (ii) graphic subsets of some of these languages, and (iii)
unification techniques for the combined use of two or more otherwise disparate
languages. We have more to say about this below.

• • •

3.4 A Programme of Current Research

The above section may have presented too “rosy” a picture. As if all problems
were “almost solved”. Such is, of course, not the case. In this section we will,
from our perspective, outline some areas of current research.

Domain Theories :
One–by–one “common domains” — such as transportation domains (raiways,

airlines, shipping, trucking, metropolitan passenger transport (busses, taxis, met-
ros, etc.)), logistics, health–care, the financial service industry (banking, insur-
ance, securities trading (stock etc. brokers, traders and exchanges), etc.), “the
market” (of consumers, retailers, wholesalers, goods transport, producers, supply
chanins, etc.), etc. — need be precisely narrated, terminologised and frormalised.
This need be done, not by software houses, but, ideally, by the academic insti-
tutions: universities and academy research centres entrusted with research into
respective of the listed “commin domains”. For a start we, the computing scien-
tists and software engineering researchers and practitioners need lead this new
research. Simply because we have the means: We know what is a formal spec-
ification, we master abstraction, etc. But eventually, as most of the “common
domain” research groups already are competent in “their” mathematics, so they
should soon, within 10 years, be competent in “their” informatics.

Rôles for Modal Logics :
One of the lacks, despite more “rosy” claims above wrt. existence of specifi-

cation languages, is that little of modal logics has “crept” into these languages.
Not that I believe that these, existing languages should be extended, see subsec-
tion on ‘Unifying Theories of Programmin’ below, but there simply has not been
enough examples of reasonably large scale descriptions using appropriate modal
logics: Authors of papers on exciting such modal logics show “factorial function”
like tiny examples from which we cannot draw any conclusion as to their speci-
fication methodologies. So we need embark on much larger scale deployments of
varieties of modal logics for domain engineering-

Multi–agencies and Speech Acts :
Remarks similar to those just above, for ‘Modal Logics’ can be made for

‘Speech Acts’, a much “newer” development. We refer to [80].

Unifying Theories of Programming :
It has been mentioned above, in several places, that we probably, most likely

have most of the specification paradigms appearing in, that is: made accessible
through, one or another specification language. It has then also been remarked
that there is little hope to come up with one, “grand” specification lanuage
that “features” all ! Instead it has been hinted at, that uses of two or more
specification languages, each representing a clean, distinct specification paradigm

(functional, concurrency, modal, etc.), shoukd be favoured — such that one,
somehow, can show a consistency “across & between” these uses. This is one of
the aspects of what is meant by ‘Unifying Theories of Programming’ [63]. The
problem is this, “popularly” explained: Let two specification be present. One
in for example VDM–SL, the other in TCSP. Let an identifier a be present in
both. And let the intention be that “they stand for the same phenomenon” !
In VDM–SL that a may denote a function from environments to functions from
states to states, whereas in TCSP it may denote a refusal set (of traces). Which
are now the conditions under which one can relate the two occurrences of a.
The ‘Unifying Theories of Programming’ [63] purports to help give answers to
questions like the above. The idea of “combining” the uses, as hinted at, is also
referred to as ‘Integration of Formal Methods’ [38].

Components :
The systematic identification and development of provably corrrect com-

poents seems to also be an important area of both research, development and
propagation.

3.5 A[nother] Grand Challenge

The following is quoted from [19]:
“Inspired by Tony Hoare [62] and Martyn Thomas [89] we put forward a

Grand Challenge for computing science.”
“Our Grand Challenge takes its departure point in two facts: The current

Babel Tower of so–called methods for the development of computing systems,
and the Unified Theories of Programming quest (also) launched by Tony Hoare
(and He JiFeng) [63].”

“The Grand Challenge builds on the assumptions (i) that it is desirable to
develop provably correct computing systems, cum software; (ii) that it is desir-
able to develop such software, in several stages of development, from models of
domains via models of requirements to stage and stepwise design of computing
systems cum software; (iii) that no one method, cum abstract specification lan-
guage can ever be devised to cover all foreseeable applications; and (iv) that,
hence we can assume the need for varieties of methods cum abstract specification
languages.”

“The UToPiA acronym here stands for Unified Theories of Programming in
Action.”

“In brief, our Grand Challenge proposal has three parts:”

Unification of Methods cum Abstract Specification Languages :
“First the Grand Challenge proposes that as many of the current computing

systems, cum software, development methods, cum abstract specification lan-
guages, be unified so that developments that use two or more of these methods
(languages) can integrate their use so as to be able to prove all desired proper-
ties.”

Unification with Programming Languages & Compilers :
“The Grand Challenge further adapts Tony Hoare’s and Martyn Thomas’

ideas. It does so in order to complete the use of abstract specification languages.
Namely (completion) by final coding in one or more programming languages
in which everything that can be expressed can be proved (cf. Martyn Thomas
[89]), and for which verifying compilers (cf., Tony Hoare [62]) can be provided.
The provably correct steps from abstract specification language specifications to
programming language codes must be ensured.”

Future “Compliance” :
“The Grand Challenge finally challenges every proposer: Researcher and de-

veloper of new methods, new languages — whether specification or programing
languages — and new tools, to show that they fit the UToPiA challenge.”

Some Comments :
“The Grand Challenge is not a project, and is not aimed at a product for users

or industry. The Grand Challenge has as its sôle aim the science of the artifacts
specific to the computer cum computing science itself, not to any applications
thereof. Pursuing the Grand Challenge shall bring forward that science. Perhaps,
as a beneficial side–effect other advances may result, but such goals are merely
of seconday nature.”

“The present document discusses scientific, technical, financial and collabo-
rative issues connected to any pursuit of the Grand Challenge.”

“A rough guess estimates that the present Grand Challenge, if pursued, world
wide, by at least some 50 groups, could reach a state, some 10 to 15 years from
now, where it could be said: ‘It has been achieved.’ ”

Final Comments :
These ‘final comments’ relate to the Grand Challenge. They serve to relate

that Grand Challenge to the present paper.
You will see that the Grand Challenge is “in line” with the general ghist of

the present paper: There is “a lot out there” that need be accepted — basically
“as is” —, yet consolidated and unified.

The ‘Programme of Future Research’ outlined in Section 3.4 is commensurate
with the Grand Challenge, but for each item in that programme can be effected
in terms of joint projects. With shorter “time horizons”.

3.6 Closing — Some Rather Personal Opinions

This paper has “spread” wide. And it has hinted at somme technical approaches.
The paper was written explicitly to the “Call” as issued by the organisers of

the 2002 Monterey Workshop.
It should be obvious, to the reader, that we are taking explicit issue with

the wording of that call. That call had a ring of “optimism”: That “radical
innovations” will save the industry and its users.

The current author, on one hand, thinks that most of the so–called “radical
innovations” were made 10, 20, yes even 30 years ago, but that still few take
heed. And, on the other hand, believes that the ‘radical innovation’ called for,
is acceptance of these “old discoveries” ! That the software crisis is not one of
lack of methods, principles, techniques and tools. But is one of “legacy” in the
minds of the powers that be, both in university software engineering departments
and in industry. The former seems to kow–tow more to an industry that is not
professional (cf. UML), than to computing science, which, on the other hand,
oftentimes despairs: “So why don’t they use our wonderful ideas ?” Much can
be said, has been said and written, and much more will go on to be said and
written about the sociology (and psychology) of software engineering.

The current author does not despair. He is blessed with former students who
commercially successfully “light weight” uses these “old discoveries” !

In universities we see software engineering researchers happily going on pro-
ducing paper after paper with little attempt, as far as the current author is
concerned, to see their oftentimes very worthwhile contributions in a broader
programming methodological context. We believe this is done in the present
paper (cf. ‘The Triptych’ and its ramifications).

So we, in academia, have a problem. Also one of “Unification” !

4 Bibliographical Notes

4.1 Own Work

We first give a listing of reports (intended for publication) — report which focus
on principles and techniques of ‘Abstraction and Modelling’ [26], ‘Models, Semi-
otics, Documents and Descriptions’ [25], ‘Domain Modelling’ [20], respectively
‘Requirements Modelling’ [29]. In a sense they provide a “capsule view” of [30].

Then we give a listing of mostly reports which focus on domain models.
For a railway domain, reports [12, 32–34, 28] and published papers [31, 17], “the
market” (the domain for E–Commerce) [18] (being published), a resource man-
agement domain [16] (published), a projects (ie., a project management) domain
[15, 27], a sustainable development domain [14] (published), a logistics domain
[24], a health–care domain [23], a fisheries (industry) domain [13], a financial
service–industry domain [35, 22], and many others.

The present stage of most of these “first beginnings” is that they are all
somewhat sketchy: Their ongoing development is pursued as much for the rea-
son of testing development principles and techniques — and discovery of new
or alternative such, as for the reason of these conjectured, respective domain
theories.

4.2 Four Leading “Formal Methods”: VDM, Z, RSL, and B

Basically four major, mostly model oriented approaches to formal specification
“dominate the market.” The simplest, “cleanest” approaches are those of Z

and B. Perhaps the more versatile, and, certainly for RAISE (RSL), compre-
hensice approaches are VDM (VDM-SL) and RAISE (RSL). Books on these four
approaches are as follows:

– VDM: [43, 69, 11, 67, 68, 9, 10, 86, 50].
– Z: [86–88, 97, 47, 81, 65, 70, 42, 73, 95, 74, 61, 98, 8, 83, 84, 48, 36, 37, 82, 96, 66].
– RAISE (besides my three volume text book [30]): [53–55].
– B: [4].

4.3 Temporal Logics

The Duration Calculi (DCs): We have found that many machine and some
interface requirements, as well as real–time domain attributes can profitable be
expressed in one or another of the Duration Calculi. [40] represents the defi-
nite, comprehensive, albeit more foundations than programming methodology
oriented, introduction to the Duration Calculi.

Temporal Logic of Reactive Systems: Remarks completely analogous to the
above for DCs can be said about the similarly elegant and beautiful Temporal
Logic of Reactive Systems — as also embodied in the Stanford Temporal Prover,
STeP, [71, 72].

References

1. Special Issue on Scenario Management. IEEE Trans. on Software Engineering, De-
cember 1998.

2. G. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of software
architecture. SIGSOFT Software Engineering Notes, 18(5):9–20, December 1993.

3. G. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions of
software architecture. ACM Transactions on Software Engineering and Methodol-
ogy, 4(4):319–364, Oct 1995.

4. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

5. R. Allen and D. Garlan. A formal approach to software architectures. In IFIP Trans-
actions A (Computer Science and Technology); IFIP Wordl Congress; Madrid,
Spain, volume vol.A-12, pages 134–141, Amsterdam, Netherlands, 1992. IFIP, North
Holland.

6. R. Allen and D. Garlan. Formalizing architectural connection. In 16th International
Conference on Software Engineering (Cat. No.94CH3409-0); Sorrento, Italy, pages
71–80, Los Alamitos, CA, USA, 1994. IEEE Comput. Soc. Press.

7. R. Allen and D. Garlan. A case study in architectural modeling: the AEGIS system. In
8th International Workshop on Software Specification and Design; Schloss Velen,
Germany, pages 6–15, Los Alamitos, CA, USA, 1996. IEEE Comput. Soc. Press.

8. R. Barden, S. Stepney, and D. Cooper. Z in Practice. BCS Practitioner Series.
Prentice Hall, 1994.

9. J. Bicarregui, J. Fitzgerald, P. Lindsay, R. Moore, and B. Ritchie. Proof in VDM: A
Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-19813-X.

10. J. C. Bicarregui, J. S. Fitzgerald, R. Moore, and B. Ritchie. Proof in VDM: Reader’s
Notes. The Universities of Newcastle upon Tyne and Manchester, and the Ruther-
ford Appleton Laboratory, UK, 1994. Hardcopy available from JSF at The Dept.
of Computing Science, University of Newcastle upon Tyne, NE1 7RU, UK, or from
BR or JCB at The Informatics Dept., Rutherford Appleton Laboratory, Oxfordshire
OX11 0QX, UK. Compressed Postscript is available by ftp from ftp.cs.man.ac.uk

in directoty /pub/Proof-in-VDM.

11. D. Bjøner and C. Jones, editors. Formal Specification and Software Development.
Prentice-Hall International, 1982.

12. D. Bjørner. Prospects for a Viable Software Industry — Enterprise Models, Design
Calculi, and Reusable Modules. In First ACM Japan Chapter Conference, Singapore,
March 7–9 1994. World Scientific Publ. Appendix in collaboration with Søren Prehn
and Dong Yulin.

13. D. Bjørner. FISH: A Fisheries Infrastructure — Hardware/Software Concept. Techni-
cal report, Informatics and Mathematical Modelling, Building 322, Richard Petersens
Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 1998. This
document provides a basis for an M.Sc. Thesis project carried out by Audur Thorun
Rögnvaldsdottir, Sept. 1998 — Aug. 1999.

14. D. Bjørner. A Triptych Software Development Paradigm: Domain, Requirements and
Software. Towards a Model Development of A Decision Support System for Sustain-
able Development. In E.-R. Olderog and B. Steffen, editors, Festschrift to Hans
Langmaack: Correct Systems Design: Recent Insight and Advances, volume 1710
of Lecture Notes in Computer Science, pages 29–60. University of Kiel, Germany,
Springer–Verlag, October 1999. Postscript document8.

15. D. Bjørner. Project Information, Monitoring and Control Systems — A Domain
Analysis. Technical report, Informatics and Mathematical Modelling, Building 322,
Richard Petersens Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby,
Denmark, 1999.

16. D. Bjørner. Domain Modelling: Resource Management Strategics, Tactics & Oper-
ations, Decision Support and Algorithmic Software. In J. Davies, B. Roscoe, and
J. Woodcock, editors, Millenial Perspectives in Computer Science, Cornerstones
of Computing (Ed.: Richard Bird and Tony Hoare), pages 23–40, Houndmills, Bas-
ingstoke, Hampshire, RG21 6XS, UK, 2000. Palgrave (St. Martin’s Press). An Oxford
University and Microsoft Symposium in Honour of Sir Anthony Hoare, September 13–
14, 1999. Postscript document9.

17. D. Bjørner. Formal Software Techniques in Railway Systems. In E. Schnieder, editor,
9th IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical
University, Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess–
und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik.
Invited talk. Postscript document10.

18. D. Bjørner. Domain Models of “The Market” — in Preparation for E–Transaction
Systems. In Practical Foundations of Business and System Specifications (Eds.:
Haim Kilov and Ken Baclawski), page 34 pages, The Netherlands, December 2002.
Kluwer Academic Press.

19. D. Bjørner. UToPiA: Coherent Sets of Computing Systems Development Methods,
A Grand Challenge for Computing Science, August 2002.

8 http://www.imm.dtu.dk/ db/langmaack/hans.ps
9 http://www.imm.dtu.dk/ db/hoare/tony.ps

10 http://www.imm.dtu.dk/ db/documents/2ifacpaper.ps

20. D. Bjørner. Domain Engineering — A Prerequisite for Requirements Engineering —
Principles and Techniques. Technical report, Informatics and Mathematical Modelling,
Building 322, Richard Petersens Plads, Technical University of Denmark, DK–2800
Kgs.Lyngby, Denmark, 2003. This paper is one of a series of papers currently being
submitted for publication: [25, 26, 29, 23, 21, 24, 27, 28, 22]. DRAFT Postscript docu-
ment.

21. D. Bjørner. E–Business. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens
Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This
paper is one of a series of papers currently being submitted for publication: [25, 26,
20, 29, 23, 24, 27, 28, 22].

22. D. Bjørner. Financial Service Institutions: Banks, Securities Trading, Insurance, &c.
Towards a Domain Theory for Work Flow Systems. Technical report, Informatics and
Mathematical Modelling, Building 322, Richard Petersens Plads, Technical University
of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This paper is one of a series of
papers currently being submitted for publication: [25, 26, 20, 29, 23, 21, 24, 28, 27].

23. D. Bjørner. Health–care Systems. Towards a Domain Theory for Work Flow Systems.
Technical report, Informatics and Mathematical Modelling, Building 322, Richard
Petersens Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark,
2003. This paper is one of a series of papers currently being submitted for publication:
[25, 26, 20, 29, 21, 24, 27, 28, 22].

24. D. Bjørner. Logistics. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens
Plads, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This
paper is one of a series of papers currently being submitted for publication: [25, 26,
20, 29, 23, 21, 27, 28, 22].

25. D. Bjørner. Models, Semiotics, Documents and Descriptions — Towards Software
Engineering Literacy. Technical report, Informatics and Mathematical Modelling,
Building 322, Richard Petersens Plads, Technical University of Denmark, DK–2800
Kgs.Lyngby, Denmark, 2003. This paper is one of a series of papers currently being
submitted for publication: [26, 20, 29, 23, 21, 24, 27, 28, 22]. DRAFT Postscript docu-
ment.

26. D. Bjørner. Principles and Techniques of Abstract Modelling — Some Basic Classifi-
cations. — Towards a Methodology of Software Engineering. Technical report, Infor-
matics and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical
University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This paper is one of
a series of papers currently being submitted for publication: [25, 20, 29, 23, 21, 24, 27,
28, 22]. DRAFT Postscript document.

27. D. Bjørner. Projects & Production: Planning, Plans & Execution. Towards a Domain
Theory for Work Flow Systems. Technical report, Informatics and Mathematical
Modelling, Building 322, Richard Petersens Plads, Technical University of Denmark,
DK–2800 Kgs.Lyngby, Denmark, 2003. This paper is one of a series of papers currently
being submitted for publication: [25, 26, 20, 29, 23, 21, 24, 28, 22].

28. D. Bjørner. Railways Systems: Towards a Domain Theory. Technical report, Infor-
matics and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical
University of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This paper is one of
a series of papers currently being submitted for publication: [25, 26, 20, 29, 23, 21, 24,
27, 22].

29. D. Bjørner. Requirements Engineering — Some Principles and Techniques — Bridg-
ing Domain Engineering and Software Design. Technical report, Informatics and

Mathematical Modelling, Building 322, Richard Petersens Plads, Technical University
of Denmark, DK–2800 Kgs.Lyngby, Denmark, 2003. This paper is one of a series
of papers currently being submitted for publication: [25, 26, 20, 23, 21, 24, 27, 28, 22].
DRAFT Postscript document.

30. D. Bjørner. The SE Book: Principles and Techniques of Software Engineering,
volume I: Abstraction & Modelling (750 pages), II: Descriptions and Domains (est.:
500 pages), III: Requirements, Software Design and Management (est. 450 pages).
[Publisher currently (June 2003) being negotiated], 2003–2004.

31. D. Bjørner, C. George, and S. Prehn. Scheduling and Rescheduling of Trains, chap-
ter 8, pages 157–184. Industrial Strength Formal Methods in Practice, Eds.: Michael
G. Hinchey and Jonathan P. Bowen. FACIT, Springer–Verlag, London, England, 1999.
Postscript document11.

32. D. Bjørner, D. Y. Lin, and S. Prehn. Domain Analyses: A Case Study of Station
Management. In KICS’94: Kunming International CASE Symposium, Yunnan
Province, P.R.of China. Software Engineering Association of Japan, 16–20 November
1994. .

33. D. Bjørner, S. Prehn, and C. W. George. Formal Models of Railway Systems: Domains.
Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344, DK–2800
Lyngby, Denmark, September 23 1999. Presented at the FME Rail Workshop on
Formal Methods in Railway Systems, FM’99 World Congress on Formal Methods,
Toulouse, France. Avaliable on CD ROM. Postscript document12.

34. D. Bjørner, S. Prehn, and C. W. George. Formal Models of Railway Systems: Re-
quirements. Technical report, Dept. of IT, Technical University of Denmark, Bldg.
344, DK–2800 Lyngby, Denmark, September 23 1999. Presented at the FME Rail
Workshop on Formal Methods in Railway Systems, FM’99 World Congress on Formal
Methods, Toulouse, France. Avaliable on CD ROM. Postscript document13.

35. D. Bjørner, V. Rosario, and M. Helder. A Normative Model of Concrete Banking Op-
erations — Banking Rules & Regulations and Staff/Client Behaviours. Research, In-
formatics and Mathematical Modelling, Building 322, Richard Petersens Plads, Tech-
nical University of Denmark, DK–2800 Kgs.Lyngby, Denmark, June 1998. (Need be
revised: Some typos etc. !).

36. L. Bottaci and J. Jones. Formal Specification Using Z: A Modelling Approach.
International Thomson Publishing, London, 1995.

37. J. P. Bowen. Formal Specification and Documentation Using Z: A Case Study
Approach. International Thomson Computer Press, 1996.

38. A. Bryant and L. Semmens, editors. Methods Integration, Electronic Workshops in
Computing. Springer-Verlag, 1996.

39. M. J. Butler. Feature interaction analysis using Z. Åbo Akademi University, Finland,
1994.

40. Z. Chaochen and M. R. Hansen. Duration Calculus: A formal approach to real–
time systems. Monographs in Theoretical Computer Science. Springer–Verlag, 2002
(2003). A 238 page manuscript was sent to the potential publisher Monday 15
July 2002. This book collects the work of the main originator and one of the main
contributors to the theory of duration calculi. As such the book represents a dozen
years of research.

11 http://www.it.dtu.dk/ db/racosy/scheduling.ps
12 http://www.imm.dtu.dk/ db/racosy/domain.ps
13 http://www.imm.dtu.dk/ db/racosy/requirements.ps

41. G. Clemmensen and O. Oest. Formal specification and development of an Ada com-
piler – a VDM case study. In Proc. 7th International Conf. on Software Engineering,
26.-29. March 1984, Orlando, Florida, pages 430–440. IEEE, 1984.

42. I. Craig. The Formal Specification of Advanced AI Architectures. AI Series. Ellis
Horwood, Sept. 1991.

43. C. J. e. D. Bjørner. The Vienna Development Method: The Meta-Language, vol-
ume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

44. A. Dardenne, S. Fikas, and A. van Lamsweerde. Goal–Directed Concept Acquisition
in Requirements Elicitation. In Proc. IWSSD–6, 6th Intl. Workshop on Software
Specification and Design, pages 14–21, Como, Italy, 1991. IEEE Computer Society
Press.

45. A. Dardenne, A. van Lamsweerde, and S. Fikas. Goal–Directed Requirements Acqui-
sition. Science of Computer Programming, 20:3–50, 1993.

46. R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal–Driven
Requirements Elaboration. In Proc. FSE’4, Fourth ACM SIGSOFT Symp. on the
Foundations of Software Enginering, pages 179–190. ACM, October 1996.

47. A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, 1990.
48. A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, 2nd edition,

1994.
49. M. Feather, S. Fikas, A. van Lamsweerde, and C. Ponsard. Reconciling System

Requirements and Runtime Behaviours. In Proc. IWSSD’98, 9th Intl. Workshop
on Software Specification and Design, Isobe, Japan, April 1998. IEEE Computer
Society Press.

50. J. Fitzgerald and P. G. Larsen. Software System Design: Formal Methods into
Practice. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU,
UK, 1997. To appear.

51. D. Garlan. Formal approaches to software architecture. In Studies of Software
Design. ICSE ‘93 Workshop. Selected Papers, pages 64–76, Berlin, Germany, 1996.
Springer-Verlag.

52. D. Garlan and M. Shaw. An introduction to software architecture, pages 1–39.
World Scientific, Singapore, 1993.

53. C. George, P. Haff, K. Havelund, A. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn,
and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

54. C. George, A. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The
RAISE Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

55. C. W. George, H. D. Van, T. Janowski, and R. Moore. Case Studies using The
RAISE Method. FACTS (Formal Aspects of Computing: Theory and Software)
and FME (Formal Methods Europe). Springer–Verlag, London, 2002. This book
reports on a number of case studies using RAISE (Rigorous Approach to Software
Engineering). The case studies were done in the period 1994–2001 at UNU/IIST, the
UN University’s International Institute for Software Technology, Macau (till 20 Dec.,
1997, Chinese Teritory under Portuguese administration, now a Special Administrative
Region (SAR) of (the so–called People’s Republic of) China).

56. J. A. Goguen and M. Girotka, editors. Requirements Engineering: Social and Tech-
nical Issues. Academic Press, 1994.

57. J. A. Goguen and C. Linde. Techniques for Requirements Elicitation. In Proc. RE’93,
First IEEE Symposium on Requirements Engineering, pages 152–164, San Diego,
Calif., USA, 1993. IEEE Computer Society Press.

58. S. J. Greenspan, J. Mylopoulos, and A. Borgida. Capturing More World–Knowledge in
Requirements Specification. In Proc. 6th ICSE: Intl. Conf. on Software Engineering,
Tokyo, Japan, 1982. IEEE Computer Society Press.

59. S. J. Greenspan, J. Mylopoulos, and A. Borgida. A Requirements Modelling Language.
Information Systems, 11(1):9–23, 1986. (About RML).

60. P. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm. Union),
Geneva, Switzerland, 1981.

61. I. J. Hayes. Specification Case Studies. Prentice Hall International Series in Com-
puter Science, 2nd edition, 1993.

62. C. Hoare. A Grand Challenge for Computer Science. Presented at the UNU/IIST 10th
Anniversary Symposium, Lisboa, Portugal, March 19, 2002, and at the IFIP WG2.3
Meeting, Åbo/Turku, Finland, August 12, 2002. March, August 2002.

63. C. Hoare and H. J. Feng. Unifying Theories of Programming. Prentice Hall, 1997.
64. A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications: Reasoning, Anal-

ysis and Action. ACM Transactions on Software Engineering and Methodology,
7(4):335–367, October 1998.

65. M. Imperato. An Introduction to Z. Chartwell-Bratt, 1991.
66. J. Jacky. The Way of Z: Practical Programming with Formal Methods. Cambridge

University Press, 1997.
67. C. Jones. Systematic Software Development Using VDM. Prentice-Hall, 1986.
68. C. Jones. Teaching notes for systematic software development using vdm. Technical

Report UMCS 86-4-2, Univ. of Manchester, 1986.
69. C. B. Jones. Software Development A Rigorous Approach. Prentice-Hall Interna-

tional, Englewood Cliffs, New Jersey, 1980.
70. D. Lightfoot. Formal Specification using Z. Macmillan, 1991.
71. Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specifications.

Addison Wesley, 1991.
72. Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Safety. Addison

Wesley, 1995.
73. J. A. McDermid and P. Whysall. Formal System Specification and Implementation

using Z. International Series in Computer Science. Prentice Hall, Hemel Hempstead,
Hertfordshire, UK, 1992. Withdrawn.

74. M. A. McMorran and S. Powell. Z Guide for Beginners. Blackwell Scientific, 1993.
75. J. Mylopoulos. Information Modelling in the Time of revolution. Information Sys-

tems, 23(3/4):127–155, 1998.
76. J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Non–Functional

Requirements: A Process–oriented Approach. IEEE Trans. on Software Engineering,
18(6):483–497, June 1992.

77. J. Mylopoulos, L. Chung, and E. Yu. From Object–Oriented to Goal–Oriented Re-
quirements Analysis. CACM: Communications of the ACM, 42(1):31–37, January
1999.

78. B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the Relation-
ships between Multiple Views in Requirements Specifications. IEEE Transactions on
Software Engineering, 20(10):760–773, October 1994.

79. O. Oest. VDM from research to practice. In H.-J. Kugler, editor, Information
Processing ’86, pages 527–533. IFIP World Congress Proceedings, North-Holland
Publ.Co., Amsterdam, 1986.

80. H. M. Petersen. Agents and Speech Acts: A Semantic Analysis. Master’s thesis, Infor-
matics and Mathematical Modelling, Computer Science and Engineering, Bldg. 322,
Richard Petersens Plads, Technical University of Denmark, DK–2800 Kgs. Lyngby,
Denmark, 20 June 2002.

81. B. F. Potter, J. E. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice Hall International Series in Computer Science, 1991.

82. B. F. Potter, J. E. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice Hall International Series in Computer Science, 2nd edition, 1996.

83. D. Rann, J. Turner, and J. Whitworth. Z: A Beginner’s Guide. Chapman & Hall,
London, 1994.

84. B. Ratcliff. Introducing Specification Using Z: A Practical Case Study Approach.
International Series in Software Engineering. McGraw-Hill, 1994.

85. C. Shekaran, D. Garlan, and et al. The role of software architecture in requirements
engineering. In First International Conference on Requirements Engineering (Cat.
No.94TH0613-0); Colorado Springs, CO, USA, pages 239–245, Los Alamitos, CA,
USA, 1994. IEEE Comput. Soc. Press.

86. D. Sheppard. An Introduction to Formal Specification with Z and VDM. Interna-
tional Series in Software Engineering. McGraw Hill, 1995.

87. J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-
tics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Jan. 1988.

88. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

89. M. Thomas. A Grand Challenge for Computer Science. Presented at the CoLogNET/-
FME Industry Day, August 25, 2002, at the FLoC’02 Federated Logic Conference,
Copenhagen, Denmark. July 2002.

90. A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Per-
spective. In Proceedings 22nd International Conference on Software Engineering,
ICSE’2000. IEEE Computer Society Press, 2000.

91. A. van Lamsweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal–Driven
Requirements Engineering. IEEE Transaction on Software Engineering, 1998. Spe-
cial Issue on Inconsistency Management in Software Development.

92. A. van Lamsweerde and E. Letier. Integrating Obstacles in Goal–Driven Require-
ments Engineering. In Proc. ICSE–98: 20th International Conference on Software
Enginereering, Kyoto, Japan, April 1998. IEEE Computer Society Press.

93. A. van Lamsweerde and L. Willemet. Inferring Declarative Requirements Specification
from Operational Scenarios. IEEE Transaction on Software Engineering, pages
1089–1114, 1998. Special Issue on Scenario Management.

94. A. van Lamsweerde and L. Willemet. Handling Obstacles in Goal–Driven Require-
ments Engineering. IEEE Transaction on Software Engineering, 2000. Special Issue
on Exception Handling.

95. J. C. P. Woodcock. Using Standard Z. International Series in Computer Science.
Prentice Hall, Hemel Hempstead, Hertfordshire, UK, 1993. In preparation.

96. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

97. J. C. P. Woodcock and M. Loomes. Software Engineering Mathematics. Addison-
Wesley Publishing Company, 1989.

98. J. B. Wordsworth. Software Development with Z: A Practical Approach to Formal
Methods in Software Engineering. Addison-Wesley Publishing Company, 1993.

99. E. Yu and J. Mylopoulos. Understanding ”why” in Software Process Modelling,
Analysis and Design. In Proc. 16th ICSE: Intl. Conf. on Software Engineering,
Sorrento, Italy, 1994. IEEE Press.

100. P. Zave. Classification of Research Efforts in Requirements Engineering. ACM Com-
puting Surveys, 29(4):315–321, 1997.

101. P. Zave and M. A. Jackson. Techniques for partial specification and specification of
switching systems. In S. Prehn and W. Toetenel, editors, VDM’91: Formal Software
Development Methods, volume 551 of LNCS, pages 511–525. Springer-Verlag, 1991.

102. P. Zave and M. A. Jackson. Requirements for telecommunications services: an attack
on complexity. In Proceedings of the Third IEEE International Symposium on
Requirements Engineering (Cat. No.97TB100086), pages 106–117. IEEE Comput.
Soc. Press, 1997.

